1
|
Machiraju SN, Wyss J, Light G, Braff DL, Cadenhead KS. Novel N100 area reliably captures aberrant sensory processing and is associated with neurocognition in early psychosis. Schizophr Res 2024; 271:71-80. [PMID: 39013347 DOI: 10.1016/j.schres.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Despite findings from translational and genetic studies in the event-related potential (ERP) literature, the validity and reliability of P50 suppression as a schizophrenia spectrum endophenotype has been questioned. Here, we aimed to examine sensory registration and gating measures derived from P50 and N100 amplitude, as well as N100 area-a novel approach proposed herein-in early psychosis versus health. METHODS Individuals at clinical high risk for psychosis (CHR; n = 77), first-episode psychosis (FE; n = 52), and healthy controls (HC; n = 65) were assessed in a paired-click auditory ERP paradigm. Eight CHR converted to psychosis (CHRC) and 39 did not (CHR-NC) by 24 months, while 30 CHR were lost to follow-. Group differences, test-retest reliability, and associations with neurocognitive function were assessed in nine ERP measures. RESULTS Significant differences were observed in N100 S1 amplitude, S1 area, and area difference between HC and FE, as well as in N100 S1 area between HC and CHR, among the total population. Furthermore, significant differences were found in N100 S1 area between HC and CHR-NC (Cliff's delta, Δ = 0.32), as well as in N100 area difference between HC and CHR-C (Δ = 0.55). Both N100 S1 area and area difference demonstrated moderate to acceptable reliability (intraclass correlation coefficients: 0.61-0.78). Processing speed negatively correlated with both N100 S1 area and area difference, while executive function negatively correlated with N100 S1 area alone in CHR and FE. CONCLUSION Among the ERP measures studied, N100 area measures may serve as a reliable biomarker of aberrant sensory processing and neurocognition in early psychosis.
Collapse
Affiliation(s)
| | - Jeffrey Wyss
- Department of Psychiatry, University of California, San Diego, United States of America
| | - Gregory Light
- Department of Psychiatry, University of California, San Diego, United States of America; Department of Psychiatry, VA San Diego Health, United States of America
| | - David L Braff
- Department of Psychiatry, University of California, San Diego, United States of America
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, United States of America.
| |
Collapse
|
2
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
3
|
Caballero N, Machiraju S, Diomino A, Kennedy L, Kadivar A, Cadenhead KS. Recent Updates on Predicting Conversion in Youth at Clinical High Risk for Psychosis. Curr Psychiatry Rep 2023; 25:683-698. [PMID: 37755654 PMCID: PMC10654175 DOI: 10.1007/s11920-023-01456-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent advances in the prediction and treatment of psychotic conversion. Over the past 25 years, research into the prodromal phase of psychotic illness has expanded with the promise of early identification of individuals at clinical high risk (CHR) for psychosis who are likely to convert to psychosis. RECENT FINDINGS Meta-analyses highlight conversion rates between 20 and 30% within 2-3 years using existing clinical criteria while research into more specific risk factors, biomarkers, and refinement of psychosis risk calculators has exploded, improving our ability to predict psychotic conversion with greater accuracy. Recent studies highlight risk factors and biomarkers likely to contribute to earlier identification and provide insight into neurodevelopmental abnormalities, CHR subtypes, and interventions that can target specific risk profiles linked to neural mechanisms. Ongoing initiatives that assess longer-term (> 5-10 years) outcome of CHR participants can provide valuable information about predictors of later conversion and diagnostic outcomes while large-scale international biomarker studies provide hope for precision intervention that will alter the course of early psychosis globally.
Collapse
Affiliation(s)
- Noe Caballero
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Siddharth Machiraju
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Anthony Diomino
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Leda Kennedy
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Armita Kadivar
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0810, USA.
| |
Collapse
|
4
|
Proshin AT. Comparative Analysis of Dopaminergic and Cholinergic Mechanisms of Sensory and Sensorimotor Gating in Healthy Individuals and in Patients With Schizophrenia. Front Behav Neurosci 2022; 16:887312. [PMID: 35846783 PMCID: PMC9282644 DOI: 10.3389/fnbeh.2022.887312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory and sensorimotor gating provide the early processing of information under conditions of rapid presentation of multiple stimuli. Gating deficiency is observed in various psychopathologies, in particular, in schizophrenia. However, there is also a significant proportion of people in the general population with low filtration rates who do not show any noticeable cognitive decline. The review article presents a comparative analysis of existing data on the peculiarities of cholinergic and dopaminergic mechanisms associated with lowering gating in healthy individuals and in patients with schizophrenia. The differences in gating mechanisms in cohorts of healthy individuals and those with schizophrenia are discussed.
Collapse
|
5
|
Auditory event-related electroencephalographic potentials in borderline personality disorder. J Affect Disord 2022; 296:454-464. [PMID: 34600969 DOI: 10.1016/j.jad.2021.09.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Borderline Personality Disorder (BPD) is characterized by mood dysregulation, impulsivity, identity disturbances, and a higher risk for suicide. Currently, the diagnosis is solely based on clinical observation of overt symptoms, and this can delay the detection of the disease and the timely start of appropriate treatment. Several candidate clinical tools have been studied to better characterize BPD, including event-related potentials (ERP). This review aimed at summarizing the results of the available ERP studies on BPD to clarify the possible application of this technique in the early diagnosis of BPD. METHODS A bibliographic search on PubMed and PsycInfo was performed in order to identify studies comprising individuals with BPD diagnosis and a control group that evaluated the ERP elicited by auditory stimuli. RESULTS Ten studies that explored various ERP components associated with auditory stimuli in BPD were included. Overall, the results showed that positive ERP (P50, P100, and P300) amplitude and latencies as well as loudness dependance were altered in BPD patients compared to controls, possibly reflecting deficits involving attention, mainly at its early stage, and executive functions. LIMITATIONS The reviewed studies used different ERP approaches and non-homogeneous BPD diagnostic criteria. CONCLUSIONS Auditory ERP appear to be a promising tool for the assessment of BPD patients, especially for early diagnosis and evaluation of cognitive symptoms.
Collapse
|
6
|
Hamilton HK, Boos AK, Mathalon DH. Electroencephalography and Event-Related Potential Biomarkers in Individuals at Clinical High Risk for Psychosis. Biol Psychiatry 2020; 88:294-303. [PMID: 32507388 PMCID: PMC8300573 DOI: 10.1016/j.biopsych.2020.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023]
Abstract
Clinical outcomes vary among youths at clinical high risk for psychosis (CHR-P), with approximately 20% progressing to full-blown psychosis over 2 to 3 years and 30% achieving remission. Recent research efforts have focused on identifying biomarkers that precede psychosis onset and enhance the accuracy of clinical outcome prediction in CHR-P individuals, with the ultimate goal of developing staged treatment approaches based on the individual's level of risk. Identifying such biomarkers may also facilitate progress toward understanding pathogenic mechanisms underlying psychosis onset, which may support the development of mechanistically informed early interventions for psychosis. In recent years, electroencephalography-based event-related potential measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its clinical outcomes. In this review, we describe the evidence for event-related potential abnormalities in CHR-P and discuss how they inform our understanding of information processing deficits as vulnerability markers for emerging psychosis and as indicators of future outcomes. Among the measures studied, P300 and mismatch negativity are notable because deficits predict conversion to psychosis and/or CHR-P remission. However, the accuracy with which these and other measures predict outcomes in CHR-P has been obscured in the prior literature by the tendency to only report group-level differences, underscoring the need for inclusion of individual predictive accuracy metrics in future studies. Nevertheless, both P300 and mismatch negativity show promise as electrophysiological markers of risk for psychosis, as target engagement measures for clinical trials, and as potential translational bridges between human studies and animal models focused on novel drug development for early psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California
| | - Alison K Boos
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Northern California Institute for Research and Education, San Francisco, California
| | - Daniel H Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California; Department of Psychiatry, University of California, San Francisco, California.
| |
Collapse
|
7
|
Togay B, Çıkrıkçılı U, Bayraktaroglu Z, Uslu A, Noyan H, Üçok A. Lower prepulse inhibition in clinical high-risk groups but not in familial risk groups for psychosis compared with healthy controls. Early Interv Psychiatry 2020; 14:196-202. [PMID: 31264797 DOI: 10.1111/eip.12845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
AIM Although the lower level of prepulse inhibition (PPI) of the startle response is well known in schizophrenia, the onset of this difference is not clear. The aim of the present study was to compare PPI in individuals with clinical and familial high risk for psychosis, and healthy controls. METHODS We studied PPI in individuals within three groups: ultra-high risk for psychosis (UHR, n = 29), familial high risk for psychosis (FHR, n = 24) and healthy controls (HC, n = 28). The FHR group was chosen among siblings of patients with schizophrenia, whereas UHR was defined based on the Comprehensive Assessment of At-Risk Mental States (CAARMS). We collected clinical data using the BPRS-E, SANS and SAPS when individuals with UHR were antipsychotic-naïve. A cognitive battery that assessed attention, cognitive flexibility, working memory, verbal learning and memory domains was applied to all participants. RESULTS PPI was lower in the UHR group compared with both the FHR and HC groups. Those with a positive family history for schizophrenia had lower PPI than others in the UHR group. There was no difference in PPI between the FHR and HC groups. We found no relationship between PPI and cognitive performance in the three groups. Startle reactivity was not different among the three groups. Positive and negative symptoms were not related to PPI and startle reactivity in the UHR group. CONCLUSIONS Our findings suggest that clinical and familial high-risk groups for psychosis have different patterns of PPI.
Collapse
Affiliation(s)
- Bilge Togay
- University of Health Sciences, Tepecik Training and Research Hospital, Clinic of Psychiatry, Izmir, Turkey
| | | | - Zubeyir Bayraktaroglu
- Istanbul Medipol University, International School of Medicine, Department of Physiology, Beykoz, Istanbul, Turkey.,Istanbul Medipol University, Regenerative and Restorative Medicine Research Center (REMER), Beykoz, Istanbul, Turkey
| | - Atilla Uslu
- Istanbul Faculty of Medicine, Department of Physiology, Istanbul University, Istanbul, Turkey
| | - Handan Noyan
- Institute of Experimental Medicine and Research, Istanbul University, Istanbul, Turkey
| | - Alp Üçok
- Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Aleksandrowicz A, Hagenmuller F, Haker H, Heekeren K, Theodoridou A, Walitza S, Ehlis AC, Fallgatter A, Rössler W, Kawohl W. Frontal brain activity in individuals at risk for schizophrenic psychosis and bipolar disorder during the emotional Stroop task - an fNIRS study. Neuroimage Clin 2020; 26:102232. [PMID: 32272372 PMCID: PMC7139160 DOI: 10.1016/j.nicl.2020.102232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The emotional Stroop effect is defined as increased reaction times to emotional stimuli compared to neutral ones. It has been often reported in the literature, on both behavioral and neurophysiological level. The goal of this study was to investigate the frontal brain activation in individuals at risk for schizophrenic psychosis and bipolar disorder during an emotional Stroop task. We expected to observe decreased activation in the at-risk individuals compared to the healthy controls. METHODS Individuals at high risk for psychosis (HR), at ultra-high risk for psychosis (UHR), at risk for bipolar disorder (BIP) and healthy controls (HC) performed an emotional Stroop task, which included positively, negatively and neutrally valenced words. Functional near-infrared spectroscopy (fNIRS) was used to measure levels of oxygenated hemoglobin (O2Hb) representing brain activity in the dorsolateral prefrontal and frontotemporal cortex. RESULTS Results showed significantly decreased levels of O2Hb in the right dorsolateral prefrontal cortex (DLPFC) in the HR and UHR groups compared to the HC, indicating lower activity. Even though the decrease was independent from the valence of the words, it was the most visible for the negative ones. Moreover, significantly lower O2Hb levels in the frontotemporal cortex (FTC) were observed in all at risk groups compared to the HC. CONCLUSIONS Lower activity in the FTC in groups at risk for psychosis and bipolar disorder reflects unspecific dysfunctions. Decreased activity in the DLPFC in the HR and UHR groups indicates that hypofrontality can be found already in individuals at risk for schizophrenic psychosis.
Collapse
Affiliation(s)
- Aleksandra Aleksandrowicz
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Florence Hagenmuller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Helene Haker
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Susanne Walitza
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Clinic Tuebingen, Tuebingen, Germany
| | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, University Clinic Tuebingen, Tuebingen, Germany
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Institute of Psychiatry, Laboratory of Neuroscience (LIM 27), University of Sao Paulo, Brazil
| | - Wolfram Kawohl
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatryand Psychotherapy, PDAG, Windisch, Switzerland.
| |
Collapse
|
9
|
Biagianti B, Fisher M, Loewy R, Brandrett B, Ordorica C, LaCross K, Schermitzler B, McDonald M, Ramsay I, Vinogradov S. Specificity and Durability of Changes in Auditory Processing Efficiency After Targeted Cognitive Training in Individuals With Recent-Onset Psychosis. Front Psychiatry 2020; 11:857. [PMID: 33005156 PMCID: PMC7484996 DOI: 10.3389/fpsyt.2020.00857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/06/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND We previously demonstrated that the high heterogeneity of response to computerized Auditory Training (AT) in psychosis can be ascribed to individual differences in sensory processing efficiency and neural plasticity. In particular, we showed that Auditory Processing Speed (APS) serves as a behavioral measure of target engagement, with faster speed predicting greater transfer effects to untrained cognitive domains. Here, we investigate whether the ability of APS to function as a proxy for target engagement is unique to AT, or if it applies to other training interventions, such as Executive Functioning Training (EFT). Additionally, we examine whether changes in APS are durable after these two forms of training. METHODS One hundred and twenty-five participants with Recent Onset Psychosis (ROP) were randomized to AT (n = 66) and EFT (n = 59), respectively. APS was captured at baseline, after treatment, and at 6-month follow-up. Mixed models repeated measures analysis with restricted maximum likelihood was used to examine whether training condition differentiated APS trajectories. Within-group correlational analyses were used to study the relationship between APS and performance improvements in each of the training exercises. RESULTS The two groups were matched for age, gender, education, and baseline APS. Participants showed high inter-individual variability in APS at each time point. The mixed model showed a significant effect of time (F = 5.99, p = .003) but not a significant group-by-time effect (F = .73, p = .48). This was driven by significant APS improvements AT patients after treatment (d = .75) that were maintained after 6 months (d = .63). Conversely, in EFT patients, APS improvements did not reach statistical significance after treatment (p = .33) or after 6 months (p = .24). In AT patients, baseline APS (but not APS change) highly predicted peak performance for each training exercise (all r's >.42). CONCLUSIONS Participant-specific speed in processing basic auditory stimuli greatly varies in ROP, and strongly influences the magnitude of response to auditory but not executive functioning training. Importantly, enhanced auditory processing efficiency persists 6 months after AT, suggesting the durability of neuroplasticity processes induced by this form of training. Future studies should aim to identify markers of target engagement and durability for cognitive training interventions that target sensory modalities beyond the auditory domain.
Collapse
Affiliation(s)
- Bruno Biagianti
- Department of R&D, Posit Science Corporation, San Francisco, CA, United States.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Melissa Fisher
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Rachel Loewy
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | | | - Catalina Ordorica
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Kristin LaCross
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Brandon Schermitzler
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michelle McDonald
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Ian Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Sauer A, Grent-'t-Jong T, Wibral M, Grube M, Singer W, Uhlhaas PJ. A MEG Study of Visual Repetition Priming in Schizophrenia: Evidence for Impaired High-Frequency Oscillations and Event-Related Fields in Thalamo-Occipital Cortices. Front Psychiatry 2020; 11:561973. [PMID: 33329101 PMCID: PMC7719679 DOI: 10.3389/fpsyt.2020.561973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/19/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Cognitive dysfunctions represent a core feature of schizophrenia and a predictor for clinical outcomes. One possible mechanism for cognitive impairments could involve an impairment in the experience-dependent modifications of cortical networks. Methods: To address this issue, we employed magnetoencephalography (MEG) during a visual priming paradigm in a sample of chronic patients with schizophrenia (n = 14), and in a group of healthy controls (n = 14). We obtained MEG-recordings during the presentation of visual stimuli that were presented three times either consecutively or with intervening stimuli. MEG-data were analyzed for event-related fields as well as spectral power in the 1-200 Hz range to examine repetition suppression and repetition enhancement. We defined regions of interest in occipital and thalamic regions and obtained virtual-channel data. Results: Behavioral priming did not differ between groups. However, patients with schizophrenia showed prominently reduced oscillatory response to novel stimuli in the gamma-frequency band as well as significantly reduced repetition suppression of gamma-band activity and reduced repetition enhancement of beta-band power in occipital cortex to both consecutive repetitions as well as repetitions with intervening stimuli. Moreover, schizophrenia patients were characterized by a significant deficit in suppression of the C1m component in occipital cortex and thalamus as well as of the late positive component (LPC) in occipital cortex. Conclusions: These data provide novel evidence for impaired repetition suppression in cortical and subcortical circuits in schizophrenia. Although behavioral priming was preserved, patients with schizophrenia showed deficits in repetition suppression as well as repetition enhancement in thalamic and occipital regions, suggesting that experience-dependent modification of neural circuits is impaired in the disorder.
Collapse
Affiliation(s)
- Andreas Sauer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation With Max Planck Society, Frankfurt am Main, Germany
| | - Tineke Grent-'t-Jong
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland, United Kingdom.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg-August University, Göttingen, Germany
| | - Michael Grube
- Department of Psychiatry and Psychotherapy-Psychosomatics, Municipal Clinic, Frankfurt am Main, Germany
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Singer Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation With Max Planck Society, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland, United Kingdom.,Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Lavoie S, Polari AR, Goldstone S, Nelson B, McGorry PD. Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders. Early Interv Psychiatry 2019; 13:1319-1328. [PMID: 30688016 DOI: 10.1111/eip.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
Abstract
AIM Clinical staging in psychiatry aims to classify patients according to the severity of their symptoms, from stage 0 (increased risk, asymptomatic) to stage 4 (severe illness), enabling adapted treatment at each stage of the illness. The staging model would gain specificity if one or more quantifiable biological markers could be identified. Several biomarkers reflecting possible causal mechanisms and/or consequences of the pathophysiology are candidates for integration into the clinical staging model of psychiatric illnesses. METHODS This review covers the evolution (from stage 0 to stage 4) of the most important brain functioning impairments as measured with electroencephalography (EEG), in psychosis spectrum and in severe mood disorders. RESULTS The present review of the literature demonstrates that it is currently not possible to draw any conclusion with regard to the state or trait character of any of the EEG impairments in both major depressive disorder and bipolar disorder. As for schizophrenia, the most promising markers of the stage of the illness are the pitch mismatch negativity as well as the p300 event-related potentials, as these components seem to deteriorate with increasing severity of the illness. CONCLUSIONS Given the complexity of major psychiatric disorders, and that not a single impairment can be observed in all patients, future research should most likely consider combinations of markers in the quest for a better identification of the stages of the psychiatric illnesses.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea R Polari
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Orygen Youth Health, Melbourne Health, Melbourne, Victoria, Australia
| | - Sherilyn Goldstone
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Smith ES, Crawford TJ, Thomas M, Reid VM. Is schizotypic maternal personality linked to sensory gating abilities during infancy? Exp Brain Res 2019; 237:1869-1879. [PMID: 31087111 PMCID: PMC6584245 DOI: 10.1007/s00221-019-05554-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
Schizotypy is a personality dimension within the general population elevated among schizophrenia-spectrum patients and their first-degree relatives. Sensory gating is the pre-attentional habituation of responses distinguishing between important and irrelevant information. This is measured by event-related potentials, which have been found to display abnormalities in schizophrenic disorders. The current study investigated whether 6-month-old infants of mothers with schizotypic traits display sensory gating abnormalities. The paired-tone paradigm: two identical auditory tones (stimulus 1 and stimulus 2) played 500 ms apart, was used to probe the selective activation of the brain during 15-minutes of sleep. Their mothers completed the Oxford and Liverpool Inventory of Feelings and Experiences-Short Form as an index of schizotypy dimensionality, categorized into: infants of control, and infants of schizotypic, mothers. The findings revealed that although the infants' P50 components displayed significant differences between stimulus 1 and stimulus 2 in the paired-tone paradigm, there was no clear difference between infants of schizotypic and infants of control mothers. In contrast, all mothers displayed significant differences between stimulus 1 and stimulus 2, as observed in the infants, but also significant differences between their sensory gating ability correlated with schizotypy dimensionality. These findings are consistent with sensory processes, such as sensory gating, evidencing impairment in schizophrenia-spectrum disorders. The present research supports the idea that first-degree relatives of individuals who identify on this spectrum, within the sub-clinical category, do not display the same deficit at 6 postnatal months of age.
Collapse
Affiliation(s)
- Eleanor S Smith
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK.
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| | - Trevor J Crawford
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| | - Megan Thomas
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, FY3 8NR, UK
| | - Vincent M Reid
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| |
Collapse
|
13
|
Mahmood Z, Kelsven S, Cadenhead K, Wyckoff J, Reyes-Madrigal F, de la Fuente-Sandoval C, Twamley EW. Compensatory Cognitive Training for Latino Youth at Clinical High Risk for Psychosis: Study Protocol for a Randomized Controlled Trial. Front Psychiatry 2019; 10:951. [PMID: 31998163 PMCID: PMC6967834 DOI: 10.3389/fpsyt.2019.00951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Early psychosocial interventions targeting cognitive and functional outcomes in individuals at clinical high risk for psychosis are a research priority. An even greater need is the identification of effective interventions in underserved populations. Compensatory Cognitive Training (CCT) is a psychosocial intervention with demonstrated efficacy in chronic schizophrenia and first episode psychosis, but remains to be evaluated in pre-illness phases. The aim of this study was to describe the development and implementation of an ongoing pilot randomized controlled trial investigating the efficacy of group-based, manualized CCT, as compared to recreational therapy (RT), for Latino participants at clinical high risk for psychosis (CHR) in both the United States and Mexico. It is hypothesized that, in comparison to those receiving RT, participants receiving CCT will show significant improvements in neurocognitive performance and functional capacity (co-primary outcomes) and self-rated functioning and clinical symptoms (secondary outcomes). Methods: Latino CHR participants aged 12-30 years will be included in the study. Both CCT and RT will be delivered in either Spanish or English, depending on group preference. Additionally, all assessments will be administered in participants' preferred language. A comprehensive assessment of neurocognitive and functional performance and clinical symptomatology will be performed at baseline, mid-intervention (4 weeks, 8 weeks), post-intervention (12 weeks) and 3-month follow-up. The primary outcome measures are neurocognition and functional capacity, as assessed by the MATRICS (Measurement and Treatment Research in Cognition in Schizophrenia) Consensus Cognitive Battery and the University of California, San Diego Performance-Based Skills Assessment-Brief, respectively. Furthermore, secondary outcomes measures will be used to examine change in clinical symptoms and self-reported functioning in response to CCT versus RT. Discussion: The evaluation of a novel treatment such as CCT in CHR youth will provide empirical support for a low risk, comprehensive cognitive intervention that could have important implications for public health if it improves neurocognition and functioning.
Collapse
Affiliation(s)
- Zanjbeel Mahmood
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States.,Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Skylar Kelsven
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Kristin Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Janae Wyckoff
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.,Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Elizabeth W Twamley
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
14
|
Whitford TJ, Oestreich LKL, Ford JM, Roach BJ, Loewy RL, Stuart BK, Mathalon DH. Deficits in Cortical Suppression During Vocalization are Associated With Structural Abnormalities in the Arcuate Fasciculus in Early Illness Schizophrenia and Clinical High Risk for Psychosis. Schizophr Bull 2018; 44:1312-1322. [PMID: 29194516 PMCID: PMC6192501 DOI: 10.1093/schbul/sbx144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Self-generated speech produces a smaller N1 amplitude in the auditory-evoked potential than externally generated speech; this phenomenon is known as N1-suppression. Schizophrenia patients show less N1-suppression than healthy controls. This failure to self-suppress may underlie patients' characteristic tendency to misattribute self-generated thoughts and actions to external sources. While the cause of N1-suppression deficits to speech in schizophrenia remains unclear, structural damage to the arcuate fasciculus is a candidate, due to its ostensible role in transmitting the efference copy of the motor plan to speak. Fifty-one patients with early illness schizophrenia (ESZ), 40 individuals at clinical high-risk for psychosis (CHR), and 59 healthy control (HC) participants underwent an electroencephalogram while they spoke and then listened to a recording of their speech. N1-suppression to the spoken sounds was calculated. Participants also underwent a diffusion-tensor imaging (DTI) scan, from which the arcuate fasciculus and pyramidal tract were extracted with deterministic tractography. ESZ patients exhibited significantly less N1-suppression to self-generated speech than HC participants, with CHR participants exhibiting intermediate levels. ESZ patients also exhibited structural abnormalities in the arcuate fasciculus-specifically, reduced fractional anisotropy and increased radial diffusivity-relative to both HC and CHR. There were no between-group differences in the structural integrity of the pyramidal tract. Finally, level of N1-suppression was linearly related to the structural integrity of the arcuate fasciculus, but not the pyramidal tract, across groups. These results suggest that the self-suppression deficits to willed speech consistently observed in schizophrenia patients may be caused, at least in part, by structural damage to the arcuate fasciculus.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, The University of New South Wales, Sydney, Australia
| | - Lena K L Oestreich
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Judith M Ford
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA,San Francisco Veterans Affairs Healthcare System, San Francisco, CA
| | - Brian J Roach
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA
| | - Rachel L Loewy
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA
| | - Barbara K Stuart
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California—San Francisco, San Francisco, CA,San Francisco Veterans Affairs Healthcare System, San Francisco, CA,To whom correspondence should be addressed; Department of Psychiatry, School of Medicine, University of California—San Francisco (UCSF), 4150 Clement Street, San Francisco, CA 94121, US; tel: +1-415-221-4810, fax: +1-415-750-6622, e-mail:
| |
Collapse
|
15
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. Long-latency suppression of auditory and somatosensory change-related cortical responses. PLoS One 2018; 13:e0199614. [PMID: 29944700 PMCID: PMC6019261 DOI: 10.1371/journal.pone.0199614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/29/2018] [Indexed: 11/19/2022] Open
Abstract
Sensory suppression is a mechanism that attenuates selective information. As for long-latency suppression in auditory and somatosensory systems, paired-pulse suppression, observed as 2 identical stimuli spaced by approximately 500 ms, is widely known, though its mechanism remains to be elucidated. In the present study, we investigated the relationship between auditory and somatosensory long-latency suppression of change-related cortical responses using magnetoencephalography. Somatosensory change-related responses were evoked by an abrupt increase in stimulus strength in a train of current-constant square wave pulses at 100 Hz to the left median nerve at the wrist. Furthermore, auditory change-related responses were elicited by an increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones. Binaural stimulation was used in Experiment 1, while monaural stimulation was used in Experiment 2. For both somatosensory and auditory stimuli, the conditioning and test stimuli were identical, and inserted at 2400 and 3000 ms, respectively. The results showed clear suppression of the test response in the bilateral parisylvian region, but not in the postcentral gyrus of the contralateral hemisphere in the somatosensory system. Similarly, the test response in the bilateral supratemporal plane (N100m) was suppressed in the auditory system. Furthermore, there was a significant correlation between suppression of right N100m and right parisylvian activity, suggesting that similar mechanisms are involved in both. Finally, a high test-retest reliability for suppression was seen with both modalities. Suppression revealed in the present study is considered to reflect sensory inhibition ability in individual subjects.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
- * E-mail:
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
16
|
Uncensored EEG: The role of DC potentials in neurobiology of the brain. Prog Neurobiol 2018; 165-167:51-65. [PMID: 29428834 DOI: 10.1016/j.pneurobio.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/24/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022]
Abstract
Brain direct current (DC) potentials denote sustained shifts and slow deflections of cerebral potentials superimposed with conventional electroencephalography (EEG) waves and reflect alterations in the excitation level of the cerebral cortex and subcortical structures. Using galvanometers, such sustained displacement of the EEG baseline was recorded in the early days of EEG recordings. To stabilize the EEG baseline and eliminate artefacts, EEG was performed later by voltage amplifiers with high-pass filters that dismiss slow DC potentials. This left slow DC potential recordings as a neglected diagnostic source in the routine clinical setting over the last few decades. Brain DC waves may arise from physiological processes or pathological phenomena. Recordings of DC potentials are fundamental electro-clinical signatures of some neurological and psychological disorders and may serve as diagnostic, prognostic, and treatment monitoring tools. We here review the utility of both physiological and pathological brain DC potentials in different aspects of neurological and psychological disorders. This may enhance our understanding of the role of brain DC potentials and improve our fundamental clinical and research strategies for brain disorders.
Collapse
|
17
|
Biagianti B, Roach BJ, Fisher M, Loewy R, Ford JM, Vinogradov S, Mathalon DH. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia. NEUROPSYCHIATRIC ELECTROPHYSIOLOGY 2017; 3:2. [PMID: 28845238 PMCID: PMC5568850 DOI: 10.1186/s40810-017-0024-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/05/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. METHODS Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. RESULTS Compared to HC, ESZ individuals showed significant MMN reductions at baseline (p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals (p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group (p = .02), but not in the CG group. CONCLUSIONS In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN was significantly reduced relative to HCs, and associated with global cognitive impairment. MMN did not show changes after AT and exhibited trait-like stability. Greater deficits in the trait aspects of Double-Deviant MMN predicted greater gains in global cognition in response to AT, suggesting that MMN may identify individuals who stand to gain the most from AT. TRIAL REGISTRATION NCT00694889. Registered 1 August 2007.
Collapse
Affiliation(s)
- Bruno Biagianti
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Brian J. Roach
- Department of Mental Health, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Melissa Fisher
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Rachel Loewy
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Judith M. Ford
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
- Department of Mental Health, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H. Mathalon
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
- Department of Mental Health, San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
18
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. New paradigm for auditory paired pulse suppression. PLoS One 2017; 12:e0177747. [PMID: 28542290 PMCID: PMC5436751 DOI: 10.1371/journal.pone.0177747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Sensory gating is a mechanism of sensory processing used to prevent an overflow of irrelevant information, with some indexes, such as prepulse inhibition (PPI) and P50 suppression, often utilized for its evaluation. In addition, those are clinically important for diseases such as schizophrenia. In the present study, we investigated long-latency paired-pulse suppression of change-related cortical responses using magnetoencephalography. The test change-related response was evoked by an abrupt increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones at 65 dB. By inserting a leading change stimulus (prepulse), we observed suppression of the test response. In Experiment 1, we examined the effects of conditioning-test intervals (CTI) using a 25-ms pure tone at 80 dB as both the test and prepulse. Our results showed clear suppression of the test response peaking at a CTI of 600 ms, while maximum inhibition was approximately 30%. In Experiment 2, the effects of sound pressure on prepulse were examined by inserting prepulses 600 ms prior to the test stimulus. We found that a paired-pulse suppression greater than 25% was obtained by prepulses larger than 77 dB, i.e., 12 dB louder than the background, suggesting that long latency suppression requires a relatively strong prepulse to obtain adequate suppression, different than short-latency paired-pulse suppression reported in previous studies. In Experiment 3, we confirmed similar levels of suppression using electroencephalography. These results suggested that two identical change stimuli spaced by 600 ms were appropriate for observing the long-latency inhibition. The present method requires only a short inspection time and is non-invasive.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
19
|
Biagianti B, Fisher M, Neilands TB, Loewy R, Vinogradov S. Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia. Neuropsychology 2016; 30:998-1008. [PMID: 27617637 DOI: 10.1037/neu0000311] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. METHOD 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. RESULTS We observed significant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed interindividual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20 and 40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. CONCLUSIONS There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of interindividual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. (PsycINFO Database Record
Collapse
Affiliation(s)
- Bruno Biagianti
- Department of Psychiatry, University of California at San Francisco
| | - Melissa Fisher
- Department of Psychiatry, University of California at San Francisco
| | | | - Rachel Loewy
- Department of Psychiatry, University of California at San Francisco
| | | |
Collapse
|
20
|
Greenwood TA, Light GA, Swerdlow NR, Calkins ME, Green MF, Gur RE, Gur RC, Lazzeroni LC, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL. Gating Deficit Heritability and Correlation With Increased Clinical Severity in Schizophrenia Patients With Positive Family History. Am J Psychiatry 2016; 173:385-91. [PMID: 26441157 PMCID: PMC4933520 DOI: 10.1176/appi.ajp.2015.15050605] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The Consortium on the Genetics of Schizophrenia Family Study evaluated 12 primary and other supplementary neurocognitive and neurophysiological endophenotypes in schizophrenia probands and their families. Previous analyses of prepulse inhibition (PPI) and P50 gating measures in this sample revealed heritability estimates that were lower than expected based on earlier family studies. Here the authors investigated whether gating measures were more heritable in multiply affected families with a positive family history compared with families with only a single affected proband (singleton). METHOD A total of 296 nuclear families consisting of a schizophrenia proband, at least one unaffected sibling, and both parents underwent a comprehensive endophenotype and clinical characterization. The Family Interview for Genetic Studies was administered to all participants and used to obtain convergent psychiatric symptom information for additional first-degree relatives. Among the families, 97 were multiply affected, and 96 were singletons. RESULTS Both PPI and P50 gating displayed substantially increased heritability in the 97 multiply affected families (47% and 36%, respectively) compared with estimates derived from the entire sample of 296 families (29% and 20%, respectively). However, no evidence for heritability was observed for either measure in the 96 singleton families. Schizophrenia probands derived from the multiply affected families also displayed a significantly increased severity of clinical symptoms compared with those from singleton families. CONCLUSIONS PPI and P50 gating measures demonstrate substantially increased heritability in schizophrenia families with a higher genetic vulnerability for illness, providing further support for the commonality of genes underlying both schizophrenia and gating measures.
Collapse
Affiliation(s)
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA,VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO
| | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Larry J. Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY,James J. Peters VA Medical Center, New York, NY
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA
| | - Catherine A. Sugar
- Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA,VA Puget Sound Health Care System, Seattle, WA
| | - Ming T. Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Center for Behavioral Genomics, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA,Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| |
Collapse
|
21
|
Bodatsch M, Brockhaus-Dumke A, Klosterkötter J, Ruhrmann S. Forecasting psychosis by event-related potentials-systematic review and specific meta-analysis. Biol Psychiatry 2015; 77:951-8. [PMID: 25636178 DOI: 10.1016/j.biopsych.2014.09.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Prediction and prevention of psychosis have become major research topics. Clinical approaches warrant objective biological parameters to enhance validity in prediction of psychosis onset. In this regard, event-related potentials (ERPs) have been identified as promising tools for improving psychosis prediction. METHODS Herein, the focus is on sensory gating, mismatch negativity (MMN) and P300, thereby discussing which parameters allow for a timely and valid detection of future converters to psychosis. In a first step, we systematically reviewed the studies that resulted from a search of the MEDLINE database. In a second step, we performed a meta-analysis of those investigations reporting transitions that statistically compared ERPs in converting versus nonconverting subjects. RESULTS Sensory gating, MMN, and P300 have been demonstrated to be impaired in subjects clinically at risk of developing a psychotic disorder. In the meta-analysis, duration MMN achieved the highest effect size measures. CONCLUSIONS In summary, MMN studies have produced the most convincing results until now, including independent replication of the predictive validity. However, a synopsis of the literature revealed a relative paucity of ERP studies addressing the psychosis risk state. Considering the high clinical relevance of valid psychosis prediction, future research should question for the most informative paradigms and should allow for meta-analytic evaluation with regard to specificity and sensitivity of the most appropriate parameters.
Collapse
Affiliation(s)
- Mitja Bodatsch
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne.
| | - Anke Brockhaus-Dumke
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne; Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Rheinhessen-Fachklinik Alzey, Alzey, Germany
| | | | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne
| |
Collapse
|
22
|
Rentzsch J, Shen C, Jockers-Scherübl MC, Gallinat J, Neuhaus AH. Auditory mismatch negativity and repetition suppression deficits in schizophrenia explained by irregular computation of prediction error. PLoS One 2015; 10:e0126775. [PMID: 25955846 PMCID: PMC4425493 DOI: 10.1371/journal.pone.0126775] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The predictive coding model is rapidly gaining attention in schizophrenia research. It posits the neuronal computation of residual variance ('prediction error') between sensory information and top-down expectation through multiple hierarchical levels. Event-related potentials (ERP) reflect cortical processing stages that are increasingly interpreted in the light of the predictive coding hypothesis. Both mismatch negativity (MMN) and repetition suppression (RS) measures are considered a prediction error correlates based on error detection and error minimization, respectively. METHODS Twenty-five schizophrenia patients and 25 healthy controls completed auditory tasks designed to elicit MMN and RS responses that were investigated using repeated measures models and strong spatio-temporal a priori hypothesis based on previous research. Separate correlations were performed for controls and schizophrenia patients, using age and clinical variables as covariates. RESULTS MMN and RS deficits were largely replicated in our sample of schizophrenia patients. Moreover, MMN and RS measures were strongly correlated in healthy controls, while no correlation was found in schizophrenia patients. Single-trial analyses indicated significantly lower signal-to-noise ratio during prediction error computation in schizophrenia. CONCLUSIONS This study provides evidence that auditory ERP components relevant for schizophrenia research can be reconciled in the light of the predictive coding framework. The lack of any correlation between the investigated measures in schizophrenia patients suggests a disruption of predictive coding mechanisms in general. More specifically, these results suggest that schizophrenia is associated with an irregular computation of residual variance between sensory input and top-down models, i.e. prediction error.
Collapse
Affiliation(s)
- Johannes Rentzsch
- Department of Psychiatry, Charité University Medicine, Berlin, Germany
| | - Christina Shen
- Department of Psychiatry, Charité University Medicine, Berlin, Germany
| | - Maria C. Jockers-Scherübl
- Department of Psychiatry, Charité University Medicine, Berlin, Germany
- Department of Psychiatry, Oberhavel Hospital, Hennigsdorf, Germany
| | - Jürgen Gallinat
- Department of Psychiatry, Charité University Medicine, Berlin, Germany
- Department of Psychiatry, University Hospital Eppendorf, Hamburg, Germany
| | - Andres H. Neuhaus
- Department of Psychiatry, Charité University Medicine, Berlin, Germany
| |
Collapse
|
23
|
Abstract
Numerous electrophysiological and neuroimaging studies have reported neurophysiological and cognitive deficits in schizophrenia patients during wakefulness. However, these findings have been inconsistently replicated across different groups of patients, thus complicating the identification of underlying neuronal defects. Sleep minimizes possible waking-related confounds, including decreased motivation and presence of active symptoms. Additionally, the two main sleep rhythms, slow waves and spindles, reflect the intrinsic activity of corticothalamic circuits and are associated with cognitive activities, including learning and memory, occurring during wakefulness. In this review I will present the most relevant sleep findings in schizophrenia, with particular emphasis on several recent studies that have consistently reported sleep spindle deficits in patients with schizophrenia. I will then elaborate on how these findings may contribute to a better understanding of the neurobiology of schizophrenia as well as to the development of novel pharmacological and non-pharmacological interventions to ameliorate the symptoms and cognitive impairments of schizophrenia patients.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- To whom correspondence should be addressed: Fabio Ferrarelli, MD, PhD, University of Wisconsin-Madison, USA, , tel: 6082636100
| |
Collapse
|
24
|
Hazlett EA, Rothstein EG, Ferreira R, Silverman JM, Siever LJ, Olincy A. Sensory gating disturbances in the spectrum: similarities and differences in schizotypal personality disorder and schizophrenia. Schizophr Res 2015; 161:283-90. [PMID: 25482574 PMCID: PMC4308515 DOI: 10.1016/j.schres.2014.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND DSM-5 places schizophrenia on a continuum from severe, chronic schizophrenia to the attenuated schizophrenia-like traits of schizotypal personality disorder (SPD), the prototypic schizophrenia-related personality disorder. SPD shares common genetic and neurobiological substrates with schizophrenia, including information processing abnormalities, although they are less marked. This is the first study to directly compare the P50 evoked electroencephalographic response-a measure of sensory gating and a neurophysiological endophenotype-between schizophrenia-spectrum groups. Two hypotheses were tested: (1) Compared with healthy controls (HCs), schizophrenia patients show reduced P50 suppression and SPD patients resemble schizophrenia but exhibit less marked deficits; and (2) Deficient P50 suppression in SPD is associated with greater clinical symptom severity. METHODS P50 was assessed in 32 schizophrenia-spectrum disorder patients (12 SPD, 20 schizophrenia patients) and 25 demographically-matched HCs. The standard conditioning (C)-testing (T) paradigm was used and P50 suppression was quantified using the T-C difference and the T/C ratio. RESULTS All P50 measures showed a linear, stepwise pattern with the SPD group intermediate between the HC and schizophrenia groups. Compared with HCs, both patient groups had lower conditioning and T-C difference values. Among the SPD group, greater clinical symptom severity was associated with greater conditioning-response amplitude deficits. CONCLUSION These findings: (1) are novel in showing that P50 deficits in SPD resemble those observed in schizophrenia, albeit less marked; (2) support the concept that the phenomenological link between SPD and schizophrenia lies in shared neurocognitive/neurophysiological pathologies; and (3) provide evidence that P50 is a neurophysiological endophenotype for schizophrenia-spectrum disorders.
Collapse
Affiliation(s)
- Erin A. Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY,Mental Illness Research, Education, and Clinical Center (VISN3), James J. Peters Veterans Affairs Medical Center, Bronx, NY,Corresponding Author: Mental Illness Research, Education, and Clinical Center (VISN3), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, 10468, United States, Phone: 718-584-9000 x3701; Fax: 718-364-3576,
| | - Ethan G. Rothstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rui Ferreira
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeremy M. Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY,Research and Development, James J. Peters Veterans Affairs Medical Center, Bronx, NY,Mental Illness Research, Education, and Clinical Center (VISN3), James J. Peters Veterans Affairs Medical Center, Bronx, NY
| | - Ann Olincy
- Department of Psychiatry, University of Colorado, Denver, CO
| |
Collapse
|
25
|
Shaikh M, Dutt A, Broome MR, Vozmediano AG, Ranlund S, Diez A, Caseiro O, Lappin J, Amankwa S, Carletti F, Fusar-Poli P, Walshe M, Hall MH, Howes O, Ellett L, Murray RM, McGuire P, Valmaggia L, Bramon E. Sensory gating deficits in the attenuated psychosis syndrome. Schizophr Res 2015; 161:277-82. [PMID: 25556079 DOI: 10.1016/j.schres.2014.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/31/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Individuals with an "Attenuated Psychosis Syndrome" (APS) have a 20-40% chance of developing a psychotic disorder within two years; however it is difficult to predict which of them will become ill on the basis of their clinical symptoms alone. We examined whether P50 gating deficits could help to discriminate individuals with APS and also those who are particularly likely to make a transition to psychosis. METHOD 36 cases meeting PACE (Personal Assessment and Crisis Evaluation) criteria for the APS, all free of antipsychotics, and 60 controls performed an auditory conditioning-testing experiment while their electroencephalogram was recorded. The P50 ratio and its C-T difference were compared between groups. Subjects received follow-up for up to 2 years to determine their clinical outcome. RESULTS The P50 ratio was significantly higher and C-T difference lower in the APS group compared to controls. Of the individuals with APS who completed the follow-up (n=36), nine (25%) developed psychosis. P50 ratio and the C-T difference did not significantly differ between those individuals who developed psychosis and those who did not within the APS group. CONCLUSION P50 deficits appear to be associated with the pre-clinical phase of psychosis. However, due to the limitations of the study and its sample size, replication in an independent cohort is necessary, to clarify the role of P50 deficits in illness progression and whether this inexpensive and non-invasive EEG marker could be of clinical value in the prediction of psychosis outcomes amongst populations at risk.
Collapse
Affiliation(s)
- Madiha Shaikh
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychology, Royal Holloway, University of London, UK.
| | - Anirban Dutt
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | | | - Alberto G Vozmediano
- Psychiatry Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Siri Ranlund
- Division of Psychiatry & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, UK
| | - Alvaro Diez
- Division of Psychiatry & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, UK
| | - Olalla Caseiro
- University Hospital Marqués de Valdecilla, IFIMAV, Spain
| | - Julia Lappin
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Susan Amankwa
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Francesco Carletti
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Muriel Walshe
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Mei-Hua Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Oliver Howes
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Lyn Ellett
- Department of Psychology, Royal Holloway, University of London, UK
| | - Robin M Murray
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Philip McGuire
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Lucia Valmaggia
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK
| | - Elvira Bramon
- NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, King's College London, The South London and Maudsley NHS Foundation Trust, London, UK; Division of Psychiatry & Institute of Cognitive Neuroscience, University College London, W1W 7EJ, UK
| |
Collapse
|
26
|
van Tricht MJ, Nieman DH, Koelman JTM, Mensink AJM, Bour LJ, van der Meer JN, van Amelsvoort TA, Linszen DH, de Haan L. Sensory gating in subjects at ultra high risk for developing a psychosis before and after a first psychotic episode. World J Biol Psychiatry 2015; 16:12-21. [PMID: 22730901 DOI: 10.3109/15622975.2012.680911] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To explore sensory gating deficits in subjects at Ultra High Risk (UHR) for psychosis before and after transition to a first psychotic episode. METHODS Sensory gating was assessed with the paired click paradigm in 61 UHR subjects, of whom 18 (30%) made a transition to psychosis (UHR + T) over a 3-year follow-up period and 28 matched healthy controls. Subjects were assessed at inclusion and again after approximately 18 months. P50, N100 (N1) and P200 (P2) sensory gating was established using the amplitude on the first (S1) and second (S2) click, the ratio- (S2/S1) and the difference score (S1-S2). Psychopathology was also assessed. RESULTS At baseline, UHR + T subjects presented smaller N1 difference scores compared to UHR + NT subjects and controls. The N1 difference score contributed modestly to the prediction of a first psychotic episode. Repeated measure analyses revealed smaller N1 and P2 S1 amplitudes, smaller P2 difference scores and larger P2 ratio's at follow-up compared to baseline in UHR + T subjects. CONCLUSION The N1 difference score may be helpful in predicting a first psychosis. N1 and P2 sensory gating measures also showed alterations between the prodromal phase and the first psychosis, suggesting that these changes may relate to the onset of a frank psychotic episode.
Collapse
|
27
|
Abstract
Psychotic disorders continue to be among the most disabling and scientifically challenging of all mental illnesses. Accumulating research findings suggest that the etiologic processes underlying the development of these disorders are more complex than had previously been assumed. At the same time, this complexity has revealed a wider range of potential options for preventive intervention, both psychosocial and biological. In part, these opportunities result from our increased understanding of the dynamic and multifaceted nature of the neurodevelopmental mechanisms involved in the disease process, as well as the evidence that many of these entail processes that are malleable. In this article, we review the burgeoning research literature on the prodrome to psychosis, based on studies of individuals who meet clinical high risk criteria. This literature has examined a range of factors, including cognitive, genetic, psychosocial, and neurobiological. We then turn to a discussion of some contemporary models of the etiology of psychosis that emphasize the prodromal period. These models encompass the origins of vulnerability in fetal development, as well as postnatal stress, the immune response, and neuromaturational processes in adolescent brain development that appear to go awry during the prodrome to psychosis. Then, informed by these neurodevelopmental models of etiology, we turn to the application of new research paradigms that will address critical issues in future investigations. It is expected that these studies will play a major role in setting the stage for clinical trials aimed at preventive intervention.
Collapse
|
28
|
Quednow BB, Brzózka MM, Rossner MJ. Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci 2014; 71:2815-35. [PMID: 24413739 PMCID: PMC11113759 DOI: 10.1007/s00018-013-1553-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a genetically complex disease considered to have a neurodevelopmental pathogenesis and defined by a broad spectrum of positive and negative symptoms as well as cognitive deficits. Recently, large genome-wide association studies have identified common alleles slightly increasing the risk for schizophrenia. Among the few schizophrenia-risk genes that have been consistently replicated is the basic Helix-Loop-Helix (bHLH) transcription factor 4 (TCF4). Haploinsufficiency of the TCF4 (formatting follows IUPAC nomenclature: TCF4 protein/protein function, Tcf4 rodent gene cDNA mRNA, TCF4 human gene cDNA mRNA) gene causes the Pitt-Hopkins syndrome-a neurodevelopmental disease characterized by severe mental retardation. Accordingly, Tcf4 null-mutant mice display developmental brain defects. TCF4-associated risk alleles are located in putative coding and non-coding regions of the gene. Hence, subtle changes at the level of gene expression might be relevant for the etiopathology of schizophrenia. Behavioural phenotypes obtained with a mouse model of slightly increased gene dosage and electrophysiological investigations with human risk-allele carriers revealed an overlapping spectrum of schizophrenia-relevant endophenotypes. Most prominently, early information processing and higher cognitive functions appear to be associated with TCF4 risk genotypes. Moreover, a recent human study unravelled gene × environment interactions between TCF4 risk alleles and smoking behaviour that were specifically associated with disrupted early information processing. Taken together, TCF4 is considered as an integrator ('hub') of several bHLH networks controlling critical steps of various developmental, and, possibly, plasticity-related transcriptional programs in the CNS and changes of TCF4 expression also appear to affect brain networks important for information processing. Consequently, these findings support the neurodevelopmental hypothesis of schizophrenia and provide a basis for identifying the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Experimental and Clinical Pharmacopsychology, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Magdalena M. Brzózka
- Department of Psychiatry, Molecular and Behavioral Neurobiology, Ludwig-Maximillians-University, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Department of Psychiatry, Molecular and Behavioral Neurobiology, Ludwig-Maximillians-University, Nussbaumstr. 7, 80336 Munich, Germany
- Research Group Gene Expression, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Goettingen, 37075 Germany
| |
Collapse
|
29
|
Thwaites SJ, van den Buuse M, Gogos A. Differential effects of estrogen and testosterone on auditory sensory gating in rats. Psychopharmacology (Berl) 2014; 231:243-56. [PMID: 23929132 DOI: 10.1007/s00213-013-3231-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/25/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE Estrogen has been shown to have beneficial effects in patients with schizophrenia. However, the mechanisms involved in this protective effect are unclear. Schizophrenia is associated with deficits in sensory gating, a filtering mechanism which normally prevents sensory overload. In rodent models, acute treatment with drugs such as the dopamine D1/D2 receptor agonist, apomorphine; the dopamine releaser, amphetamine; and the glutamate NMDA receptor antagonists, phencyclidine or MK-801, can induce a phenotype similar to that seen in schizophrenia. OBJECTIVES Given the putative protective action of estrogen in schizophrenia, here we investigated the effect of ovariectomy (OVX) and estrogen replacement in female rats on drug-induced auditory gating deficits. For comparison, we also assessed the effects of castration (CAST) and dihydrotestosterone (DHT) replacement in male rats. METHODS Rats were instrumented with cortical surface electrodes. Test sessions comprised of 150 presentations of paired clicks, 500 ms apart (S1 and S2). RESULTS Administration of all drugs increased the ratio of responses to S2/S1 in sham-operated female and male rats. OVX reduced event-related potential amplitudes but did not alter S2/S1 ratio or drug effects. In OVX rats with 17β-estradiol implants, the effect of apomorphine was abolished, but there was no change in that of amphetamine and phencyclidine. There were no effects of CAST or DHT replacement in male rats. CONCLUSIONS Chronic estrogen replacement in OVX rats protected against sensory gating deficits caused by direct dopamine D1/D2 receptor stimulation. These data could indicate a possible mechanism by which estrogen exerts a protective action in schizophrenia.
Collapse
Affiliation(s)
- Shane J Thwaites
- Behavioural Neuroscience Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | | |
Collapse
|
30
|
Vlcek P, Bob P, Raboch J. Sensory disturbances, inhibitory deficits, and the P50 wave in schizophrenia. Neuropsychiatr Dis Treat 2014; 10:1309-15. [PMID: 25075189 PMCID: PMC4106969 DOI: 10.2147/ndt.s64219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sensory gating disturbances in schizophrenia are often described as an inability to filter redundant sensory stimuli that typically manifest as inability to gate neuronal responses related to the P50 wave, characterizing a decreased ability of the brain to inhibit various responses to insignificant stimuli. It implicates various deficits of perceptual and attentional functions, and this inability to inhibit, or "gate", irrelevant sensory inputs leads to sensory and information overload that also may result in neuronal hyperexcitability related to disturbances of habituation mechanisms. These findings seem to be particularly important in the context of modern electrophysiological and neuroimaging data suggesting that the filtering deficits in schizophrenia are likely related to deficits in the integrity of connections between various brain areas. As a consequence, this brain disintegration produces disconnection of information, disrupted binding, and disintegration of consciousness that in terms of modern neuroscience could connect original Bleuler's concept of "split mind" with research of neural information integration.
Collapse
Affiliation(s)
- Premysl Vlcek
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Bob
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, First Faculty of Medicine, Charles University, Prague, Czech Republic ; Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jiri Raboch
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry and UHSL, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
31
|
Thwaites SJ, Gogos A, Van den Buuse M. Schizophrenia-like disruptions of sensory gating by serotonin receptor stimulation in rats: Effect of MDMA, DOI and 8-OH-DPAT. Pharmacol Biochem Behav 2013; 112:71-7. [DOI: 10.1016/j.pbb.2013.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/23/2013] [Accepted: 09/28/2013] [Indexed: 11/27/2022]
|
32
|
Liu X, Hong X, Chan RCK, Kong F, Peng Z, Wan X, Wang C, Cheng L. Association study of polymorphisms in the alpha 7 nicotinic acetylcholine receptor subunit and catechol-o-methyl transferase genes with sensory gating in first-episode schizophrenia. Psychiatry Res 2013; 209:431-8. [PMID: 23598060 DOI: 10.1016/j.psychres.2013.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/02/2013] [Accepted: 03/26/2013] [Indexed: 11/15/2022]
Abstract
The purpose of the current study was to explore the association of auditory P50 sensory gating (P50) and prepulse inhibition (PPI) of schizophrenia with polymorphisms in the CHRNA7 and COMT genes. One hundred and fourty patients with schizophrenia participated in this study. They were administered the tests P50 and PPI. Moreover, three single nucleotide polymorphisms (SNPs) (rs2337980, rs1909884 and rs883473) in CHRNA7 and three SNPs (rs4680, rs737865 and rs165599) in COMT were selected to be genotyped by polyacrylamide gel microarray techniques. P50 index showed significant reduction in S2 amplitude between wild-type and mutation groups in the COMT rs4680. S1 amplitude of mutation group in the COMT rs737865 was also lower compared to wild-type group. PPI index revealed a shorter pulse latency of mutation group in the rs4680. The suppression ratio of mutation group was lower in COMT rs165599. Negative findings were shown between comparisons in all the CHRNA7 SNPs. We find that P50 and PPI may be influenced by COMT rs4680 polymorphisms in schizophrenia; more excitingly, we find that P50 might be influenced by COMT rs737865 polymorphisms and PPI may be influenced by COMT rs165599 polymorphisms in schizophrenia, and their mutations are associated with the reduction of the risk of P50 or PPI defects in schizophrenia. Futher studies with a larger number of subjects are needed to verify the present findings.
Collapse
Affiliation(s)
- Xia Liu
- Mental Health Center, Medical College of Shantou University, Shantou, China; Mental health Hospital of Jining, Jining, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Goulding SM, Holtzman CW, Trotman HD, Ryan AT, Macdonald AN, Shapiro DI, Brasfield JL, Walker EF. The prodrome and clinical risk for psychotic disorders. Child Adolesc Psychiatr Clin N Am 2013; 22:557-67. [PMID: 24012073 PMCID: PMC4140174 DOI: 10.1016/j.chc.2013.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The psychosis prodrome offers great promise for identifying neural mechanisms involved in psychotic disorders and offers an opportunity to implement empirical interventions to delay, and ultimately ameliorate, illness onset. This article summarizes the literature on individuals in the putatively prodromal phase of psychosis/deemed at clinical high risk (CHR) for psychosis onset. Standardized measurement and manifestation of the CHR syndromes are discussed, followed by empirical findings that highlight the psychological deficits and biological abnormalities seen in CHR syndromes and psychotic disorders. Current controversies surrounding the diagnosis of CHR syndromes and issues related to the treatment of CHR individuals are also presented.
Collapse
Affiliation(s)
- Sandra M Goulding
- Mental Health and Development Program, Department of Psychology, Emory University, 36 Eagle Row, Room 270, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rihs TA, Tomescu MI, Britz J, Rochas V, Custo A, Schneider M, Debbané M, Eliez S, Michel CM. Altered auditory processing in frontal and left temporal cortex in 22q11.2 deletion syndrome: a group at high genetic risk for schizophrenia. Psychiatry Res 2013; 212:141-9. [PMID: 23137800 DOI: 10.1016/j.pscychresns.2012.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 01/23/2023]
Abstract
In order to investigate electroencephalographic (EEG) biomarkers of auditory processing for schizophrenia, we studied a group with a well known high-risk profile: patients with 22q11.2 deletion syndrome (22q11 DS) have a 30% risk of developing schizophrenia during adulthood. We performed high-density EEG source imaging to measure auditory gating of the P50 component of the evoked potential and middle to late latency auditory processing in 21 participants with the 22q11.2 deletion and 17 age-matched healthy controls. While we found no indication of altered P50 suppression in 22q11 DS, we observed marked differences for the first N1 component with increased amplitudes on central electrodes, corresponding to increased activations in dorsal anterior cingulate and medial frontal cortex. We also found a left lateralized reduction of activation of primary and secondary auditory cortex during the second N1 (120ms) and the P2 component in 22q11 DS. Our results show that sensory gating and activations until 50ms were preserved in 22q11 DS, while impairments appear at latencies that correspond to higher order auditory processing. While the increased activation of cingulate and medial frontal cortex could reflect developmental changes in 22q11 DS, the reduced activity seen in left auditory cortex might serve as a biomarker for the development of schizophrenia, if confirmed by longitudinal research protocols.
Collapse
Affiliation(s)
- Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva, CH-1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dissanayake DW, Mason R, Marsden CA. Sensory gating, Cannabinoids and Schizophrenia. Neuropharmacology 2013; 67:66-77. [DOI: 10.1016/j.neuropharm.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
|
36
|
Reneerkens OAH, Sambeth A, Van Duinen MA, Blokland A, Steinbusch HWM, Prickaerts J. The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans. Psychopharmacology (Berl) 2013; 225:303-12. [PMID: 22855271 DOI: 10.1007/s00213-012-2817-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
Abstract
RATIONALE Sensory gating is an adaptive mechanism of the brain to prevent overstimulation. Patients suffering from clinical disorders such as Alzheimer's disease or schizophrenia exhibit a deficit in gating, which indicates not only an impairment in basic information processing that might contribute to the cognitive problems seen in these patients. Phosphodiesterase type 5 inhibitors (PDE5-Is) have been shown to improve cognition in rodents in various behavioural tasks and might consequently be an interesting target for cognition enhancement. However, the effects of PDE5-Is on sensory gating are not known yet. OBJECTIVES This work aims to study the effects of PDE5 inhibition on auditory sensory gating in rats and humans. METHODS In the rat study, vehicle or 0.3-3 mg/kg of the PDE5-I vardenafil was given orally 30 min before testing and electrode locations were the vertex, hippocampus and the striatum. The human subjects received placebo, 10-20 mg vardenafil 85 min before testing and sensory gating was measured at the cortex (Fz, Fcz and Cz) electrodes. RESULTS Significant gating was only found for the N1 component in rats while all three peaks P1, N1 and P2 showed gating in humans, i.e. the response to the second sound click was decreased as compared with the first for these deflections. Administration of vardenafil did neither have an effect on sensory gating in rats nor in humans. CONCLUSIONS These findings imply that positive effects of PDE5 inhibition on cognition are not mediated by more early phases of information processing.
Collapse
Affiliation(s)
- O A H Reneerkens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Bodatsch M, Klosterkötter J, Müller R, Ruhrmann S. Basic disturbances of information processing in psychosis prediction. Front Psychiatry 2013; 4:93. [PMID: 23986723 PMCID: PMC3750943 DOI: 10.3389/fpsyt.2013.00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
The basic symptoms (BS) approach provides a valid instrument in predicting psychosis onset and represents moreover a significant heuristic framework for research. The term "basic symptoms" denotes subtle changes of cognition and perception in the earliest and prodromal stages of psychosis development. BS are thought to correspond to disturbances of neural information processing. Following the heuristic implications of the BS approach, the present paper aims at exploring disturbances of information processing, revealed by functional magnetic resonance imaging (fMRI) and electro-encephalographic as characteristics of the at-risk state of psychosis. Furthermore, since high-risk studies employing ultra-high-risk criteria revealed non-conversion rates commonly exceeding 50%, thus warranting approaches that increase specificity, the potential contribution of neural information processing disturbances to psychosis prediction is reviewed. In summary, the at-risk state seems to be associated with information processing disturbances. Moreover, fMRI investigations suggested that disturbances of language processing domains might be a characteristic of the prodromal state. Neurophysiological studies revealed that disturbances of sensory processing may assist psychosis prediction in allowing for a quantification of risk in terms of magnitude and time. The latter finding represents a significant advancement since an estimation of the time to event has not yet been achieved by clinical approaches. Some evidence suggests a close relationship between self-experienced BS and neural information processing. With regard to future research, the relationship between neural information processing disturbances and different clinical risk concepts warrants further investigations. Thereby, a possible time sequence in the prodromal phase might be of particular interest.
Collapse
Affiliation(s)
- Mitja Bodatsch
- Department of Psychiatry and Psychotherapy, University of Cologne , Cologne , Germany
| | | | | | | |
Collapse
|
38
|
Perez VB, Ford JM, Roach BJ, Loewy RL, Stuart BK, Vinogradov S, Mathalon DH. Auditory cortex responsiveness during talking and listening: early illness schizophrenia and patients at clinical high-risk for psychosis. Schizophr Bull 2012; 38:1216-24. [PMID: 21993915 PMCID: PMC3494053 DOI: 10.1093/schbul/sbr124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The corollary discharge mechanism is theorized to dampen sensations resulting from our own actions and distinguish them from environmental events. Deficits in this mechanism in schizophrenia may contribute to misperceptions of self-generated sensations as originating from external stimuli. We previously found attenuated speech-related suppression of auditory cortex in chronic patients, consistent with such deficits. Whether this abnormality precedes psychosis onset, emerges early in the illness, and/or progressively worsens with illness chronicity, is unknown. METHODS Event-related potentials (ERPs) were recorded from schizophrenia patients (SZ; n = 75) and age-matched healthy controls (HC; n = 77). A subsample of early illness schizophrenia patients (ESZ; n = 39) was compared with patients at clinical high-risk for psychosis (CHR; n = 35) and to a subgroup of age-matched HC (n = 36) during a Talk-Listen paradigm. The N1 ERP component was elicited by vocalizations as subjects talked (Talk) and heard them played back (Listen). RESULTS As shown previously, SZ showed attenuated speech-related N1 suppression relative to HC. This was also observed in ESZ. N1 suppression values in CHR were intermediate to HC and ESZ and not statistically distinguishable from either comparison group. Age-corrected N1 Talk-Listen difference z scores were not correlated with illness duration in the full SZ sample. CONCLUSIONS Putative dysfunction of the corollary discharge mechanism during speech is evident early in the illness and is stable over its course. The intermediate effects in CHR patients may reflect the heterogeneity of this group, requiring longitudinal follow-up data to address if speech-related N1 suppression abnormalities are a risk marker for conversion to psychosis.
Collapse
Affiliation(s)
- Veronica B. Perez
- Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA,Department of Psychiatry, San Francisco Veterans Administration Medical Center, San Francisco, CA
| | - Judith M. Ford
- Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA,Department of Psychiatry, San Francisco Veterans Administration Medical Center, San Francisco, CA
| | - Brian J. Roach
- Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA,Department of Psychiatry, San Francisco Veterans Administration Medical Center, San Francisco, CA
| | - Rachel L. Loewy
- Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA
| | - Barbara K. Stuart
- Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA
| | - Sophia Vinogradov
- Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA,Department of Psychiatry, San Francisco Veterans Administration Medical Center, San Francisco, CA
| | - Daniel H. Mathalon
- Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA,Department of Psychiatry, San Francisco Veterans Administration Medical Center, San Francisco, CA,To whom correspondence should be addressed; Department of Psychiatry, University of California, San Francisco (UCSF), San Francisco, CA 94121, US; tel: 415-221-4810, fax: 415-750-6622, e-mail:
| |
Collapse
|
39
|
Singh F, Mirzakhanian H, Fusar-Poli P, de la Fuente-Sandoval C, Cadenhead KS. Ethical implications for clinical practice and future research in "at risk" individuals. Curr Pharm Des 2012; 18:606-12. [PMID: 22239594 DOI: 10.2174/138161212799316262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
Abstract
The last 15 years have witnessed a shift in schizophrenia research with increasing interest in earlier stages of illness with the hope of early intervention and ultimately prevention of psychotic illness. Large-scale longitudinal studies have identified clinical and biological risk factors associated with increased risk of psychotic conversion, which together with symptomatic and demographic risk factors may improve the power of prediction algorithms for psychotic transition. Despite these advances, 45-70% of at risk subjects in most samples do not convert to frank psychosis, but continue to function well below their age matched counterparts. The issue is of utmost importance in light of the upcoming DSM-V and the possible inclusion of the attenuated psychotic symptoms syndrome (APSS) diagnosis, with clinical and ethical implications. Clinical considerations include feasibility of reliably diagnosing the at risk state in non-academic medical centers, variable psychotic conversion rates, a non-uniform definition of conversion and extensive debate about treatment for individuals with an ill-defined outcome. On the ethical side, diagnosing APSS could lead to unnecessary prescribing of antipsychotics with long-term deleterious consequences, slow research by providing a false sense of comfort in the diagnosis, and have psychosocial implications for those who receive a diagnosis. Thus it may be prudent to engage at risk populations early and to use broad-spectrum treatments with low risk benefit ratios to relieve functional impairments, while simultaneously studying all subsets of the at risk population.
Collapse
Affiliation(s)
- Fiza Singh
- Department of Psychiatry, University of California San Diego, San Diego, California 92093-0810, USA
| | | | | | | | | |
Collapse
|
40
|
Perez VB, Shafer KM, Cadenhead KS. Visual information processing dysfunction across the developmental course of early psychosis. Psychol Med 2012; 42:2167-2179. [PMID: 22717191 PMCID: PMC4113431 DOI: 10.1017/s0033291712000426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Patients with schizophrenia consistently demonstrate information processing abnormalities assessed with visual masking (VM) tasks, and these deficits have been linked to clinical and functional severity. It has been suggested that VM impairments may be a vulnerability marker in individuals at risk for developing psychosis. METHOD Forward and backward VM performance was assessed in 72 first-episode (FE) psychosis patients, 98 subjects at risk (AR) for psychosis and 98 healthy controls (HC) using two identification tasks (with either a high- or low-energy mask) and a location task. VM was examined for stability in a subgroup (FE, n=15; AR, n=35; HC, n=21) and assessed relative to clinical and functional measures. RESULTS In the identification tasks, backward VM deficits were observed in both FE and AR relative to HC whereas forward VM deficits were only present in FE patients compared to HC. In the location task, AR subjects demonstrated superior performance in forward VM relative to HC. VM performance was stable over time, and VM deficits were associated with baseline functional measures and predicted future negative symptom severity in AR subjects. CONCLUSIONS Visual information processing deficits, as indexed by backward VM, are present before and after the onset of frank psychosis, and probably represent a stable vulnerability marker that is associated with negative symptoms and functional decline. Additionally, the paradoxically better performance of AR subjects in select forward tasks suggests that early compensatory changes may characterize an emerging psychotic state.
Collapse
Affiliation(s)
- V. B. Perez
- University of California, San Francisco (UCSF), CA, USA
| | - K. M. Shafer
- University of California, San Diego (UCSD), CA, USA
| | - K. S. Cadenhead
- University of California, San Diego (UCSD), CA, USA
- Veteran’s Affairs San Diego Health Care, La Jolla, CA, USA
| |
Collapse
|
41
|
Swerdlow NR, Light GA, Breier MR, Shoemaker JM, Saint Marie RL, Neary AC, Geyer MA, Stevens KE, Powell SB. Sensory and sensorimotor gating deficits after neonatal ventral hippocampal lesions in rats. Dev Neurosci 2012; 34:240-9. [PMID: 22572564 DOI: 10.1159/000336841] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/27/2012] [Indexed: 01/20/2023] Open
Abstract
Neonatal ventral hippocampal lesions (NVHLs) in rats lead to reduced prepulse inhibition (PPI) of startle and other behavioral deficits in adulthood that model abnormalities in schizophrenia patients. A neurophysiological deficit in schizophrenia patients and their first-degree relatives is reduced gating of the P50 event-related potential (ERP). N40 ERP gating in rats may be a cross-species analog of P50 gating, and is disrupted in experimental manipulations related to schizophrenia. Here, we tested whether N40 gating as well as PPI is disrupted after NVHLs, using contemporaneous measures of these two conceptually related phenomena. Male rat pups received sham or ibotenic acid NVHLs on postnatal day 7. PPI was tested on days 35 and 56, after which rats were equipped with cortical surface electrodes for ERP measurements. One week later, PPI and N40 gating were measured in a single test, using paired S1-S2 clicks spaced 500 ms apart to elicit N40 gating. Compared to sham-lesioned rats, those with NVHLs exhibited PPI deficits on days 35 and 56. NVHL rats also exhibited reduced N40 gating and reduced PPI, when measured contemporaneously at day 65. Deficits in PPI and N40 gating appeared most pronounced in rats with larger lesions, focused within the ventral hippocampus. In this first report of contemporaneous measures of two important schizophrenia-related phenotypes in NVHL rats, NVHLs reproduce both sensory (N40) and sensorimotor (PPI) gating deficits exhibited in schizophrenia. In this study, lesion effects were detected prior to pubertal onset, and were sustained well into adulthood.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schizophrenia risk polymorphisms in the TCF4 gene interact with smoking in the modulation of auditory sensory gating. Proc Natl Acad Sci U S A 2012; 109:6271-6. [PMID: 22451930 DOI: 10.1073/pnas.1118051109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several polymorphisms of the transcription factor 4 (TCF4) have been shown to increase the risk for schizophrenia, particularly TCF4 rs9960767. This polymorphism is associated with impaired sensorimotor gating measured by prepulse inhibition--an established endophenotype of schizophrenia. We therefore investigated whether TCF4 polymorphisms also affect another proposed endophenotype of schizophrenia, namely sensory gating assessed by P50 suppression of the auditory evoked potential. Although sensorimotor gating and sensory gating are not identical, recent data suggest that they share genetic fundamentals. In a multicenter study at six academic institutions throughout Germany, we applied an auditory P50 suppression paradigm to 1,821 subjects (1,023 never-smokers, 798 smokers) randomly selected from the general population. Samples were genotyped for 21 TCF4 polymorphisms. Given that smoking is highly prevalent in schizophrenia and affects sensory gating, we also assessed smoking behavior, cotinine plasma concentrations, exhaled carbon monoxide, and the Fagerström Test (FTND). P50 suppression was significantly decreased in carriers of schizophrenia risk alleles of the TCF4 polymorphisms rs9960767, rs10401120rs, rs17597926, and 17512836 (P < 0.0002-0.00005). These gene effects were modulated by smoking behavior as indicated by significant interactions of TCF4 genotype and smoking status; heavy smokers (FTND score ≥ 4) showed stronger gene effects on P50 suppression than light smokers and never-smokers. Our finding suggests that sensory gating is modulated by an interaction of TCF4 genotype with smoking, and both factors may play a role in early information processing deficits also in schizophrenia. Consequently, considering smoking behavior may facilitate the search for genetic risk factors for schizophrenia.
Collapse
|
43
|
Cheng CH, Wang PN, Hsu WY, Lin YY. Inadequate inhibition of redundant auditory inputs in Alzheimer's disease: An MEG study. Biol Psychol 2012; 89:365-73. [DOI: 10.1016/j.biopsycho.2011.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/17/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
44
|
Jahshan C, Cadenhead KS, Rissling AJ, Kirihara K, Braff DL, Light GA. Automatic sensory information processing abnormalities across the illness course of schizophrenia. Psychol Med 2012; 42:85-97. [PMID: 21740622 PMCID: PMC3193558 DOI: 10.1017/s0033291711001061] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Deficits in automatic sensory discrimination, as indexed by a reduction in the mismatch negativity (MMN) and P3a event-related potential amplitudes, are well documented in chronic schizophrenia. However, MMN and P3a have not been sufficiently studied early in the course of psychotic illness. The present study aimed to investigate MMN, P3a and reorienting negativity (RON) across the course of schizophrenia. METHOD MMN, P3a, and RON were assessed in 118 subjects across four groups: (1) individuals at risk for psychosis (n=26); (2) recent-onset patients (n=31); (3) chronic patients (n=33); and (4) normal controls (n=28) using a duration-deviant auditory oddball paradigm. RESULTS Frontocentral deficits in MMN and P3a were present in all patient groups. The at-risk group's MMN and P3a amplitudes were intermediate to those of the control and recent-onset groups. The recent-onset and chronic patients, but not the at-risk subjects, showed significant RON amplitude reductions, relative to the control group. Associations between MMN, P3a, RON and psychosocial functioning were present in the chronic patients. In the at-risk subjects, P3a and RON deficits were significantly associated with higher levels of negative symptoms. CONCLUSIONS Abnormalities in the automatic processes of sensory discrimination, orienting and reorienting of attention are evident in the early phases of schizophrenia and raise the possibility of progressive worsening across stages of the illness. The finding that MMN and P3a, but not RON, were reduced before psychosis onset supports the continued examination of these components as potential early biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Carol Jahshan
- Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Kristin S. Cadenhead
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Anthony J. Rissling
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Kenji Kirihara
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
45
|
Ziermans TB, Schothorst PF, Sprong M, Magnée MJCM, van Engeland H, Kemner C. Reduced prepulse inhibition as an early vulnerability marker of the psychosis prodrome in adolescence. Schizophr Res 2012; 134:10-5. [PMID: 22085828 DOI: 10.1016/j.schres.2011.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 10/04/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND The onset of psychosis is thought to be preceded by neurodevelopmental changes in the brain. However, the timing and nature of these changes have not been established. The aim of the present study was to determine whether three "classic" neurophysiological markers of schizophrenia are also characteristic of young adolescents (12-18 years) at ultra-high risk for psychosis (UHR). METHODS 63 young UHR individuals and 68 typically developing, age-, sex- and IQ-matched controls were recruited for neurophysiological assessment. Data for P50 suppression, prepulse inhibition (PPI) and smooth pursuit eye movements (SPEM) were gathered and compared. RESULTS UHR individuals showed reduced PPI compared to controls, which became more pronounced when controls were directly compared to medication-naive UHR individuals (N=39). There were no group differences in P50 or SPEM measures. CONCLUSIONS These results suggest that PPI is a relatively early vulnerability marker, while changes in other neurophysiological measures may only be detected or affected later during the illness course. Antipsychotic and antidepressant medication may aid in elevating PPI levels and potentially have a neuroprotective effect.
Collapse
Affiliation(s)
- Tim B Ziermans
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Carlson GC, Talbot K, Halene TB, Gandal MJ, Kazi HA, Schlosser L, Phung QH, Gur RE, Arnold SE, Siegel SJ. Dysbindin-1 mutant mice implicate reduced fast-phasic inhibition as a final common disease mechanism in schizophrenia. Proc Natl Acad Sci U S A 2011; 108:E962-70. [PMID: 21969553 PMCID: PMC3203764 DOI: 10.1073/pnas.1109625108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DTNBP1 (dystrobrevin binding protein 1) is a leading candidate susceptibility gene in schizophrenia and is associated with working memory capacity in normal subjects. In schizophrenia, the encoded protein dystrobrevin-binding protein 1 (dysbindin-1) is often reduced in excitatory cortical limbic synapses. We found that reduced dysbindin-1 in mice yielded deficits in auditory-evoked response adaptation, prepulse inhibition of startle, and evoked γ-activity, similar to patterns in schizophrenia. In contrast to the role of dysbindin-1 in glutamatergic transmission, γ-band abnormalities in schizophrenia are most often attributed to disrupted inhibition and reductions in parvalbumin-positive interneuron (PV cell) activity. To determine the mechanism underlying electrophysiological deficits related to reduced dysbindin-1 and the potential role of PV cells, we examined PV cell immunoreactivity and measured changes in net circuit activity using voltage-sensitive dye imaging. The dominant circuit impact of reduced dysbindin-1 was impaired inhibition, and PV cell immunoreactivity was reduced. Thus, this model provides a link between a validated candidate gene and an auditory endophenotypes. Furthermore, these data implicate reduced fast-phasic inhibition as a common underlying mechanism of schizophrenia-associated intermediate phenotypes.
Collapse
Affiliation(s)
- Gregory C Carlson
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Orosz AT, Feldon J, Simon AE, Hilti LM, Gruber K, Yee BK, Cattapan-Ludewig K. Learned irrelevance and associative learning is attenuated in individuals at risk for psychosis but not in asymptomatic first-degree relatives of schizophrenia patients: translational state markers of psychosis? Schizophr Bull 2011; 37:973-81. [PMID: 20080901 PMCID: PMC3160228 DOI: 10.1093/schbul/sbp165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Learned irrelevance (LIrr) refers to a form of selective learning that develops as a result of prior noncorrelated exposures of the predicted and predictor stimuli. In learning situations that depend on the associative link between the predicted and predictor stimuli, LIrr is expressed as a retardation of learning. It represents a form of modulation of learning by selective attention. Given the relevance of selective attention impairment to both positive and cognitive schizophrenia symptoms, the question remains whether LIrr impairment represents a state (relating to symptom manifestation) or trait (relating to schizophrenia endophenotypes) marker of human psychosis. We examined this by evaluating the expression of LIrr in an associative learning paradigm in (1) asymptomatic first-degree relatives of schizophrenia patients (SZ-relatives) and in (2) individuals exhibiting prodromal signs of psychosis ("ultrahigh risk" [UHR] patients) in each case relative to demographically matched healthy control subjects. There was no evidence for aberrant LIrr in SZ-relatives, but LIrr as well as associative learning were attenuated in UHR patients. It is concluded that LIrr deficiency in conjunction with a learning impairment might be a useful state marker predictive of psychotic state but a relatively weak link to a potential schizophrenia endophenotype.
Collapse
Affiliation(s)
- Ariane T. Orosz
- Laboratory of Behavioural Biology, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland,Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland,To whom correspondence should be addressed; tel: +41-31-932-83-52, fax: +41-31-930-99-61, e-mail:
| | - Joram Feldon
- Laboratory of Behavioural Biology, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
| | - Andor E. Simon
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland,Specialised Outpatient Service for Early Psychosis, Department of Psychiatric Neurophysiology, Bruderholz, Switzerland
| | - Leonie M. Hilti
- Institute of Psychology, University of Bern, Bern, Switzerland,Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Kerstin Gruber
- Specialised Outpatient Service for Early Psychosis, Department of Psychiatric Neurophysiology, Bruderholz, Switzerland
| | - Benjamin K. Yee
- Laboratory of Behavioural Biology, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
| | - Katja Cattapan-Ludewig
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland,Sanatorium Kilchberg, Switzerland
| |
Collapse
|
48
|
Cadenhead KS. Startle reactivity and prepulse inhibition in prodromal and early psychosis: effects of age, antipsychotics, tobacco and cannabis in a vulnerable population. Psychiatry Res 2011; 188:208-16. [PMID: 21555157 PMCID: PMC3114288 DOI: 10.1016/j.psychres.2011.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/22/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
The use of biomarkers in the study of the prodrome and first episode of psychosis provides a means of not only identifying individuals at greatest risk for psychosis but also understanding neurodevelopmental abnormalities early in the course of illness. Prepulse inhibition (PPI), a marker that is deficient in schizophrenia and after developmental manipulations in animal models, was assessed in 75 early psychosis (EP), 89 at risk (AR) for psychosis and 85 comparison subjects (CS) at baseline and 6 months. Consistent with findings in chronic schizophrenia, PPI was stable with repeated assessment and EP subjects had reduced PPI but this was most evident in tobacco smokers. A significant positive PPI and age association in AR and EP samples, but not CS, demonstrated potential neurodevelopmental differences in early psychosis. Unexpected findings included the fact that medication naive EP subjects, as well as AR subjects who later developed psychosis, had greater PPI, introducing the possibility of early compensatory changes that diverge from findings in chronic patients. In addition, subjects with a history of cannabis use had greater startle reactivity while EP and AR subjects who used cannabis and were also taking an antipsychotic had greater PPI, again highlighting the potentially important cannabis/psychosis association.
Collapse
|
49
|
Lazar NL, Neufeld RWJ, Cain DP. Contribution of nonprimate animal models in understanding the etiology of schizophrenia. J Psychiatry Neurosci 2011; 36:E5-29. [PMID: 21247514 PMCID: PMC3120891 DOI: 10.1503/jpn.100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelop mental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neuro transmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans.
Collapse
Affiliation(s)
- Noah L Lazar
- Department of Psychology, University of Western Ontario, London, Ont.
| | | | | |
Collapse
|
50
|
Zimmermann R, Gschwandtner U, Wilhelm FH, Pflueger MO, Riecher-Rössler A, Fuhr P. EEG spectral power and negative symptoms in at-risk individuals predict transition to psychosis. Schizophr Res 2010; 123:208-16. [PMID: 20850950 DOI: 10.1016/j.schres.2010.08.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 08/12/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION EEG power in the delta, theta and beta1 bands has been shown to be positively correlated with negative symptoms in first episode psychotic patients. The present study investigates this correlation in an "at risk mental state for psychosis" (ARMS) with the aim to improve prediction of transition to psychosis. METHODS Thirteen ARMS patients with later transition to psychosis (ARMS-T) and fifteen without (follow-up period of at least 4 years) (ARMS-NT) were investigated using spectral resting EEG data (of 8 electrodes over the fronto-central scalp area placed according to the 10-20 system) and summary score of the Scale for the Assessment of Negative Symptoms (SANS). Linear regressions were used to evaluate the correlation of SANS and EEG power in seven bands (delta, theta, alpha1, alpha2, beta1, beta2, beta3) in both ARMS groups and logistic regressions were used to predict transition to psychosis. Potentially confounding factors were controlled. RESULTS ARMS-T and ARMS-NT showed differential correlations of EEG power and SANS in delta, theta, and beta1 bands (p<.05): ARMS-T showed positive and ARMS-NT negative correlations. Logistic regressions showed that neither SANS score nor EEG spectral power alone predicted transition to psychosis. However, SANS score in combination with power in the delta, theta, beta1, and beta2 bands, respectively, predicted transition significantly (p<.03). CONCLUSIONS ARMS-T and ARMS-NT show differential correlations of SANS summary score and EEG power in delta, theta, and beta bands. Prediction of transition to psychosis is possible using combined information from a negative symptom scale and EEG spectral data.
Collapse
Affiliation(s)
- Ronan Zimmermann
- University Psychiatric Outpatient Department, Psychiatric University Clinics, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|