1
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
2
|
Chuang HW, Huang CC, Chen KT, Kuo YY, Ren JH, Wang TY, Tsai MH, Chen PT, Wei IH. Danshensu Interventions Mediate Rapid Antidepressant Effects by Activating the Mammalian Target of Rapamycin Signaling and Brain-Derived Neurotrophic Factor Release. Psychiatry Investig 2024; 21:1286-1298. [PMID: 39610240 DOI: 10.30773/pi.2024.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region. However, basic and clinical studies are needed to investigate the antidepressant effects danshensu and determine whether brain mTOR signaling and BDNF activation mediate these effects. The aforementioned need prompted us to conduct the present study. METHODS Using a C57BL/6 mouse model, we investigated the antidepressant-like effects of danshensu and the mechanisms that mediate these effects. To elucidate the mechanisms, we analyzed the roles of Akt/ERK-mTOR signaling and BDNF activation in mediating the antidepressant-like effects of danshensu. RESULTS Danshensu exerted its antidepressant-like effects by activating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) of Akt/ERK-mTOR signaling and promoting BDNF release. Treatment with danshensu increased the level of glutamate receptor 1 phosphorylation at the protein kinase A site. CONCLUSION Our study may be the first to demonstrate that the antidepressant effects of danshensu are dependent on the activation of the AMPAR-mTOR signaling pathway, are correlated with the elevation of BDNF level, and facilitate the insertion of AMPAR into the postsynaptic membrane. This study also pioneers in unveiling the potential of danshensu against depressive disorders.
Collapse
Affiliation(s)
- Han-Wen Chuang
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Chih-Chia Huang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Ti Chen
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Yen-Yu Kuo
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Jou-Hua Ren
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tse-Yen Wang
- Department of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mang-Hung Tsai
- Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Po-Ting Chen
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - I-Hua Wei
- Department of Anatomy, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Li C, Tian H, Li R, Jia F, Wang L, Ma X, Yang L, Zhang Q, Zhang Y, Yao K, Zhuo C. Molecular mechanisms of quetiapine bidirectional regulation of bipolar depression and mania based on network pharmacology and molecular docking: Evidence from computational biology. J Affect Disord 2024; 355:528-539. [PMID: 38518857 DOI: 10.1016/j.jad.2024.03.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Quetiapine monotherapy is recommended as the first-line option for acute mania and acute bipolar depression. However, the mechanism of action of quetiapine is unclear. Network pharmacology and molecular docking were employed to determine the molecular mechanisms of quetiapine bidirectional regulation of bipolar depression and mania. METHODS Putative target genes for quetiapine were collected from the GeneCard, SwissTargetPrediction, and DrugBank databases. Targets for bipolar depression and bipolar mania were identified from the DisGeNET and GeneCards databases. A protein-protein interaction (PPI) network was generated using the String database and imported into Cytoscape. DAVID and the Bioinformatics platform were employed to perform the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the top 15 core targets. The drug-pathway-target-disease network was constructed using Cytoscape. Finally, molecular docking was performed to evaluate the interactions between quetiapine and potential targets. RESULTS Targets for quetiapine actions against bipolar depression (126 targets) and bipolar mania (81 targets) were identified. Based on PPI and KEGG pathway analyses, quetiapine may affect bipolar depression by targeting the MAPK and PI3K/AKT insulin signaling pathways via BDNF, INS, EGFR, IGF1, and NGF, and it may affect bipolar mania by targeting the neuroactive ligand-receptor interaction signaling pathway via HTR1A, HTR1B, HTR2A, DRD2, and GRIN2B. Molecular docking revealed good binding affinity between quetiapine and potential targets. LIMITATIONS Pharmacological experiments should be conducted to verify and further explore these results. CONCLUSIONS Our findings suggest that quetiapine affects bipolar depression and bipolar mania through distinct biological core targets, and thus through different mechanisms. Furthermore, our results provide a theoretical basis for the clinical use of quetiapine and possible directions for new drug development.
Collapse
Affiliation(s)
- Chao Li
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China; Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Hongjun Tian
- Animal Imaging Center (AIC) of Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Ranli Li
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Feng Jia
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xiaoyan Ma
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Lei Yang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Qiuyu Zhang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Ying Zhang
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Kaifang Yao
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Chuanjun Zhuo
- Computational Biology Centre (CBC), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Medical University Affiliated Tianjin Anding Hospital, Tianjin 300222, China; Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
4
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
5
|
Abstract
Background Neurotrophins have been implicated in multiple psychiatric disorders. Nerve Growth Factor (NGF) is one of the major neurotrophins that has attracted much research interest. Therefore, we undertook, to the best of our knowledge, the first scoping review encompassing all major psychiatric disorders and their relation to NGF. This review aimed to identify the current position of NGF in psychiatric research and to outline present gaps in knowledge, which can be answered with a more detailed systematic review in the future. Methods Suitable studies were identified using PubMed. A total of 20 studies were included in the review: two on bipolar affective disorder (BPAD), three on schizophrenia, seven on depression, and eight on alcohol use disorder. Results NGF levels are definitively reduced in BPAD and depression, while NGF levels in schizophrenia decreased further after treatment than in the drug-naïve state. The effect of treatment on NGF levels in depression varied based on treatment modalities and severity of depression. In patients with depression, raised NGF was a predictor of conversion to bipolar disorder (BD). NGF levels were raised in acute alcohol intoxication and withdrawal but normalized slowly as abstinence was maintained. NGF may play a protective role in preventing the toxic ill effect of acute alcohol intoxication on the central nervous system. Conclusion Based on current knowledge, NGF levels may be a useful biomarker of a chronic mental stress condition. However, further research is needed before it can be used to identify a specific psychiatric illness or predict treatment response.
Collapse
Affiliation(s)
- Alankrit Jaiswal
- Dept. of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Umesh Shreekantiah
- Dept. of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Nishant Goyal
- Dept. of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Ren L, Zhang H, Tao W, Xue W, Chen Y, Zou Z, Guo X, Shen Q, Wang W, Jiang H, Tang J, Feng Q, Chen G. Hippocampal pituitary adenylate cyclase-activating polypeptide mediates rapid antidepressant-like effects of Yueju pill. Neuropeptides 2023; 101:102350. [PMID: 37285664 DOI: 10.1016/j.npep.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Yueju pill, a classic Chinese Medicine formulated, was recently found to produce rapid antidepressant-like effects in a PKA-CREB signaling-dependent manner. In our study, we found that the Yueju pill induced a remarkable increase in PACAP. The intracerebroventricular injection of PACAP agonist induced a rapid antidepressant-like effect; conversely, the intrahippocampal infusion of a PACAP antagonist reversed the antidepressant response of the Yueju pill. Mice with hippocampal PACAP knockdown via viral-mediated RNAi displayed depression-like behavior. PACAP knockdown also blunted the antidepressant effect of the Yueju pill. PACAP knockdown resulted in down-regulated CREB and expression of the synaptic protein PSD95 at both baselines and after administration of the Yueju pill. However, administration of the Yueju pill in the knockdown mice promoted PACAP and PKA levels. Chronically stressed mice showed deficient hippocampal PACAP-PKA-CREB signaling and depression-like behavior, which were reversed by a single dose of the Yueju pill. In this study, we demonstrated that the up-regulation of PACAP induced activating of PKA-CREB signaling would play a part in the rapid antidepressant-like effects of the Yueju pill. We also identified iridoids fraction of Gardenia jasminoides Ellis (GJ-IF), a vital component of the Yueju pill, was identified to recapitulate rapid antidepressant-like behavior through increased hippocampal PACAP expression of the Yueju pill. The promotion of hippocampal PACAP may collectively represent a novel mechanism of rapid antidepressant-like effect.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders & School of Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Weiwei Tao
- Basic Teaching and Research Department of Integrated Chinese and Western Medicine, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenda Xue
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Chen
- Basic Teaching and Research Department of Integrated Chinese and Western Medicine, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhilu Zou
- Basic Teaching and Research Department of Integrated Chinese and Western Medicine, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyan Guo
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinqin Shen
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Wang
- Key Laboratory of Integrative Medicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Juanjuan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders & School of Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Kim J, Kim TE, Lee SH, Koo JW. The Role of Glutamate Underlying Treatment-resistant Depression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:429-446. [PMID: 37424412 PMCID: PMC10335903 DOI: 10.9758/cpn.22.1034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 07/11/2023]
Abstract
The monoamine hypothesis has significantly improved our understanding of mood disorders and their treatment by linking monoaminergic abnormalities to the pathophysiology of mood disorders. Even 50 years after the monoamine hypothesis was established, some patients do not respond to treatments for depression, including selective serotonin reuptake drugs. Accumulating evidence shows that patients with treatment-resistant depression (TRD) have severe abnormalities in the neuroplasticity and neurotrophic factor pathways, indicating that different treatment approaches may be necessary. Therefore, the glutamate hypothesis is gaining attention as a novel hypothesis that can overcome monoamine restrictions. Glutamate has been linked to structural and maladaptive morphological alterations in several brain areas associated with mood disorders. Recently, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has shown efficacy in TRD treatment and has received the U.S. Food and Drug Administration approval, revitalizing psychiatry research. However, the mechanism by which ketamine improves TRD remains unclear. In this review, we re-examined the glutamate hypothesis, bringing the glutamate system onboard to join the modulation of the monoamine systems, emphasizing the most prominent ketamine antidepressant mechanisms, such as NMDAR inhibition and NMDAR disinhibition in GABAergic interneurons. Furthermore, we discuss the animal models used in preclinical studies and the sex differences in the effects of ketamine.
Collapse
Affiliation(s)
- Jeongseop Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Tae-Eun Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| |
Collapse
|
8
|
Machado-Vieira R, Courtes AC, Zarate CA, Henter ID, Manji HK. Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder. Front Neurosci 2023; 17:1228455. [PMID: 37592949 PMCID: PMC10427509 DOI: 10.3389/fnins.2023.1228455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Bipolar disorder (BD) is characterized by extreme mood swings ranging from manic/hypomanic to depressive episodes. The severity, duration, and frequency of these episodes can vary widely between individuals, significantly impacting quality of life. Individuals with BD spend almost half their lives experiencing mood symptoms, especially depression, as well as associated clinical dimensions such as anhedonia, fatigue, suicidality, anxiety, and neurovegetative symptoms. Persistent mood symptoms have been associated with premature mortality, accelerated aging, and elevated prevalence of treatment-resistant depression. Recent efforts have expanded our understanding of the neurobiology of BD and the downstream targets that may help track clinical outcomes and drug development. However, as a polygenic disorder, the neurobiology of BD is complex and involves biological changes in several organelles and downstream targets (pre-, post-, and extra-synaptic), including mitochondrial dysfunction, oxidative stress, altered monoaminergic and glutamatergic systems, lower neurotrophic factor levels, and changes in immune-inflammatory systems. The field has thus moved toward identifying more precise neurobiological targets that, in turn, may help develop personalized approaches and more reliable biomarkers for treatment prediction. Diverse pharmacological and non-pharmacological approaches targeting neurobiological pathways other than neurotransmission have also been tested in mood disorders. This article reviews different neurobiological targets and pathophysiological findings in non-canonical pathways in BD that may offer opportunities to support drug development and identify new, clinically relevant biological mechanisms. These include: neuroinflammation; mitochondrial function; calcium channels; oxidative stress; the glycogen synthase kinase-3 (GSK3) pathway; protein kinase C (PKC); brain-derived neurotrophic factor (BDNF); histone deacetylase (HDAC); and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Ioline D. Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Husseini K. Manji
- Deparment of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Relationship between Urinary Metabolomic Profiles and Depressive Episode in Antarctica. Int J Mol Sci 2023; 24:ijms24020943. [PMID: 36674456 PMCID: PMC9861393 DOI: 10.3390/ijms24020943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Antarctic expeditions have a high risk of participant depression owing to long stays and isolated environments. By quantifying the stress state and changes in biomolecules over time before the onset of depressive symptoms, predictive markers of depression can be explored. Here, we evaluated the psychological changes in 30 participants in the Japanese Antarctic Research Expedition using the Patient Health Questionnaire-9 (PHQ-9). Urinary samples were collected every three months for a year, and comprehensive urinary metabolomic profiles were quantified using liquid chromatography time-of-flight mass spectrometry. Five participants showed major depressive episodes (PHQ-9 ≥ 10) at 12 months. The urinary metabolites between these participants and the 25 unaffected participants were compared at individual metabolite and pathway levels. The individual comparisons showed the most significant differences at 12 months in 14 metabolites, including ornithine and beta-alanine. Data from shorter stays showed less significant differences. In contrast, pathway and enrichment analyses showed the most significant difference at three months and a less significant difference at longer stays. These time transitions of urinary metabolites could help in the development of urinary biomarkers to detect subjects with depressive episodes at an early stage.
Collapse
|
10
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
11
|
Chuang HW, Wang TY, Huang CC, Wei IH. Echinacoside exhibits antidepressant-like effects through AMPAR-Akt/ERK-mTOR pathway stimulation and BDNF expression in mice. Chin Med 2022; 17:9. [PMID: 34983570 PMCID: PMC8728918 DOI: 10.1186/s13020-021-00549-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Several natural products have been demonstrated to be effective in the treatment of depressive disorders. Echinacoside, a naturally occurring phenol extracted from Cistanche tubulosa, Echinacea angustifolia, and Cistanche spp, has a wide range of physiological effects, such as antioxidation, neuroprotection, anti-inflammatory, and immunoregulation, which are closely related to depression. In addition, echinacoside can activate protein kinase B (Akt), extracellular signal–regulated kinase (ERK), and brain-derived neurotrophic factor (BDNF) in the brain. A key downstream event of the Akt, ERK, and BDNF signaling pathways, namely mechanistic target of rapamycin (mTOR) signaling, plays a crucial role in generating an rapid antidepressant effect. Thus, echinacoside is a promising therapeutic agent for depression. However, research regarding the role of echinacoside in antidepressant effect and brain mTOR activation remains lacking. Materials and methods The forced swimming test and Western blot analysis in C57BL/6 mice was used to investigate the antidepressant-like activities of echinacoside and the underlying mechanism involved inα-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)–Akt/ERK–mTOR pathway. Results We confirmed the suggestions by previous reports that echinacoside activates Akt/ERK signaling and further demonstrated that echinacoside could provide antidepressant-like effects in mice via the activation of AMPAR–Akt/ERK–mTOR pathway in the hippocampus. Conclusions To the best of our knowledge, our study is the first to reveal that echinacoside is a potential treatment for depressive disorders. Moreover, the present study suggests a mechanism for the neuroprotective effect of echinacoside. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00549-5.
Collapse
Affiliation(s)
- Han-Wen Chuang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tse-Yen Wang
- Department of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Chia Huang
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan. .,Department of Psychiatry, China Medical University, Taichung, Taiwan. .,Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan. .,Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - I-Hua Wei
- Department of Anatomy, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
13
|
Jones GH, Rong C, Shariq AS, Mishra A, Machado-Vieira R. Intracellular Signaling Cascades in Bipolar Disorder. Curr Top Behav Neurosci 2021; 48:101-132. [PMID: 32860212 DOI: 10.1007/7854_2020_157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar spectrum disorders carry a significant public health burden. Disproportionately high rates of suicide, incarceration, and comorbid medical conditions necessitate an extraordinary focus on understanding the intricacies of this disease. Elucidating granular, intracellular details seems to be a necessary preamble to advancing promising therapeutic opportunities. In this chapter, we review a wide range of intracellular mechanisms including mitochondrial energetics, calcium signaling, neuroinflammation, the microbiome, neurotransmitter metabolism, glycogen synthase kinase 3-beta (GSK3β), protein kinase C (PKC) and diacylglycerol (DAG), and neurotrophins (especially BDNF), as well as the glutamatergic, dopaminergic, purinergic, and neurohormonal systems. Owing to the relative lack of understanding and effective therapeutic options compared to the rest of the spectrum, special attention is paid in the chapter to the latest developments in bipolar depression. Likewise, from a therapeutic standpoint, special attention should be paid to the pervasive mechanistic actions of lithium as a means of amalgamating numerous, disparate cascades into a digestible cognitive topology.
Collapse
Affiliation(s)
- Gregory H Jones
- Department of Psychiatry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carola Rong
- Department of Psychiatry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aisha S Shariq
- Department of Psychiatry, Texas Tech University Health Science Center, El Paso, TX, USA
- Texas Tech University Health Science Center, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Abhinav Mishra
- Texas Tech University Health Science Center, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
14
|
Zheng W, Zhou YL, Wang CY, Lan XF, Zhang B, Zhou SM, Yan S, Ning YP. Plasma BDNF concentrations and the antidepressant effects of six ketamine infusions in unipolar and bipolar depression. PeerJ 2021; 9:e10989. [PMID: 33850645 PMCID: PMC8015784 DOI: 10.7717/peerj.10989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives Accumulating evidence has implicated that brain derived neurotrophic factor (BDNF) is thought to be involved in the pathophysiology of depression, but its correlation with ketamine's antidepressant efficacy focusing on Chinese individuals with depression is not known. This study was aim to determine the correlation of plasma BDNF (pBDNF) concentrations and ketamine's antidepressant efficacy. Methods Ninety-four individuals with depression received six intravenous infusions ketamine (0.5 mg/kg). Remission and response were defined as Montgomery-Asberg Depression Rating Scale (MADRS) scores less than 10 and a reduction of 50% or more in MADRS scores, respectively. Plasma was collected at baseline and at 24 h and 2 weeks after completing six ketamine infusions (baseline, 13 d and 26 d). Results A significant improvement in MADRS scores and pBDNF concentrations was found after completing six ketamine infusions compared to baseline (all ps < 0.05). Higher baseline pBDNF concentrations were found in ketamine responders/remitters (11.0 ± 6.2/10.1 ± 5.8 ng/ml) than nonresponders/nonremitters (8.0 ± 5.5/9.2 ± 6.4 ng/ml) (all ps < 0.05). Baseline pBDNF concentrations were correlated with MADRS scores at 13 d (t = - 2.011, p = 0.047) or 26 d (t = - 2.398, p = 0.019) in depressed patients (all ps < 0.05). Subgroup analyses found similar results in individuals suffering from treatment refractory depression. Conclusion This preliminary study suggests that baseline pBDNF concentrations appeared to be correlated with ketamine's antidepressant efficacy in Chinese patients with depression.
Collapse
Affiliation(s)
- Wei Zheng
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yan-Ling Zhou
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Cheng-Yu Wang
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiao-Feng Lan
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Bin Zhang
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Su-Miao Zhou
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Su Yan
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Ping Ning
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Psychiatry, The first School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion 2021; 57:23-36. [PMID: 33340709 PMCID: PMC10494232 DOI: 10.1016/j.mito.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of bipolar disorder has been corroborated by several studies involving postmortem brain analysis, neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to explore mitochondria as a potential target for novel therapeutic agents.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Taylor Andrews
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
16
|
Wilkowska A, Włodarczyk A, Gałuszko-Węgielnik M, Wiglusz MS, Cubała WJ. Intravenous Ketamine Infusions in Treatment-Resistant Bipolar Depression: An Open-Label Naturalistic Observational Study. Neuropsychiatr Dis Treat 2021; 17:2637-2646. [PMID: 34421299 PMCID: PMC8373304 DOI: 10.2147/ndt.s325000] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Bipolar disorder is a chronic and recurrent condition often associated with treatment resistance and suicidality. There is an unmet need for effective treatment in this group of patients. Ketamine has been demonstrated to have antidepressant and antisuicidal properties in unipolar depression. Most of the available studies concern unipolar depression. Here, we present the efficacy and safety of IV ketamine as an add-on treatment in patients with bipolar I and bipolar II depression. PATIENTS AND METHODS Thirteen patients with treatment-resistant bipolar depression (TRBD) received eight IV infusions of 0.5 mg/kg ketamine twice a week over four weeks. This is an open-label naturalistic observational study. Ketamine is an add-on treatment. Depressive symptoms were measured with the Montgomery-Asberg Depression Rating Scale (MADRS), and manic symptoms were measured with the Young Mania Rating Scale (YMRS). Psychomimetic symptoms were assessed with the Clinician-Administered Dissociative States Scale (CADSS) and the Brief Psychiatric Rating Scale (BPRS). RESULTS The rates of response and remission after the seventh infusion of ketamine were 61.5% and 46.2%, respectively. A significant antisuicidal effect was observed in responders at the 7th infusion. Suicidality was measured with item 10 on the MADRS scale. The average time to respond was between 21.1 and 23.2 days to remission. There was an increase in the CADSS scores during the treatment compared to baseline and follow-up, but no differences between responders and non-responders were observed. No affective switch was observed according to the YMRS scale scores. Ketamine treatment was associated with a transient increase in arterial blood pressure. No serious adverse events, however, were observed. CONCLUSION This report presents the preliminary results of IV ketamine effectiveness and safety in treatment-resistant bipolar depression. The findings suggest that it is a feasible, safe and well-tolerated treatment option in this group of patients. There is a definite need for more studies in this field.
Collapse
Affiliation(s)
- Alina Wilkowska
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Adam Włodarczyk
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Mariusz S Wiglusz
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
17
|
Abstract
Bipolar disorders are severe and have a high prevalence; despite this, the neurobiological mechanisms are far from being elucidated, and this limits the development of new treatments. Although the aetiology of bipolar disorders is not yet fully understood, it is accepted that the disorder(s) may result from the interaction between genetic factors that cause susceptibility and predisposing, precipitating and perpetuating environmental factors, such as stress and traumatic events. A pathophysiological formulation of the disease suggests that dysfunctions in intracellular biochemical cascades, oxidative stress and mitochondrial dysfunction impair the processes linked to neuronal plasticity, leading to cell damage and the consequent loss of brain tissue that has been identified in post-mortem and neuroimaging studies. The data we have reviewed suggests that peripheral biomarkers related to hormones, inflammation, oxidative stress and neurotrophins are altered in bipolar disorders, especially during acute mood episodes. Together, these changes have been associated with a systemic toxicity of the disease and the damage resulting from multiple episodes. Systemic toxicity related to recurrent episodes in bipolar disorder may influence brain anatomical changes associated with the progression of stress and neuroplasticity in bipolar disorder and the response to treatment.
Collapse
Affiliation(s)
- Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
18
|
Pereira AC, Oliveira J, Silva S, Madeira N, Pereira CMF, Cruz MT. Inflammation in Bipolar Disorder (BD): Identification of new therapeutic targets. Pharmacol Res 2020; 163:105325. [PMID: 33278569 DOI: 10.1016/j.phrs.2020.105325] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
Bipolar disorder (BD) is a chronic and cyclic mental disorder, characterized by unusual mood swings between mania/hypomania and depression, raising concern in both scientific and medical communities due to its deleterious social and economic impact. Polypharmacy is the rule due to the partial effectiveness of available drugs. Disease course is often unremitting, resulting in frequent cognitive deficits over time. Despite all research efforts in identifying BD-associated molecular mechanisms, current knowledge remains limited. However, the involvement of inflammation in BD pathophysiology is increasingly consensual, with the immune system and neuroinflammation playing a key role in disease course. Evidence includes altered levels of cytokines and acute-phase proteins, pathological microglial activation, deregulation of Nrf2-Keap1 system and changes in biogenic amines neurotransmitters, whose expression is regulated by TNF-α, a pro-inflammatory cytokine highly involved in BD, pointing out inflammation as a novel and attractive therapeutic target for BD. As result, new therapeutic agents including non-steroidal anti-inflammatory drugs, N-acetylcysteine and GSK3 inhibitors have been incorporated in BD treatment. Taking into consideration the latest pre-clinical and clinical trials, in this review we discuss recent data regarding inflammation in BD, unveiling potential therapeutic approaches through direct or indirect modulation of inflammatory response.
Collapse
Affiliation(s)
- Ana Catarina Pereira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, 3000-548, Coimbra, Portugal.
| | - Joana Oliveira
- University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal.
| | - Sónia Silva
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal.
| | - Nuno Madeira
- University of Coimbra, Faculty of Medicine, 3000-548, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Psychiatry, 3004-561, Coimbra, Portugal.
| | - Cláudia M F Pereira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, 3000-548, Coimbra, Portugal.
| | - Maria T Cruz
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal.
| |
Collapse
|
19
|
Tripathi MK, Kartawy M, Amal H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 2020; 34:101567. [PMID: 32464501 PMCID: PMC7256645 DOI: 10.1016/j.redox.2020.101567] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule and a neurotransmitter that plays an important role in physiological and pathophysiological processes. In physiological conditions, NO regulates cell survival, differentiation and proliferation of neurons. It also regulates synaptic activity, plasticity and vesicle trafficking. NO affects cellular signalling through protein S-nitrosylation, the NO-mediated posttranslational modification of cysteine thiols (SNO). SNO can affect protein activity, protein-protein interaction and protein localization. Numerous studies have shown that excessive NO and SNO can lead to nitrosative stress in the nervous system, contributing to neuropathology. In this review, we summarize the role of NO and SNO in the progression of neurodevelopmental, psychiatric and neurodegenerative disorders, with special attention to autism spectrum disorder (ASD). We provide mechanistic insights into the contribution of NO in diverse brain disorders. Finally, we suggest that pharmacological agents that can inhibit or augment the production of NO as well as new approaches to modulate the formation of SNO-proteins can serve as a promising approach for the treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
20
|
Chang EH, Carreiro ST, Frattini SA, Huerta PT. Assessment of glutamatergic synaptic transmission and plasticity in brain slices: relevance to bioelectronic approaches. Bioelectron Med 2020; 5:6. [PMID: 32232097 PMCID: PMC7098243 DOI: 10.1186/s42234-019-0022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
Background Glutamatergic neurons represent the largest neuronal class in the brain and are responsible for the bulk of excitatory synaptic transmission and plasticity. Abnormalities in glutamatergic neurons are linked to several brain disorders and their modulation represents a potential opportunity for emerging bioelectronic medicine (BEM) approaches. Here, we have used a set of electrophysiological assays to identify the effect of the pyrimidine nucleoside uridine on glutamatergic systems in ex vivo brain slices. An improved understanding of glutamatergic synaptic transmission and plasticity, through this type of examination, is critical to the development of potential neuromodulation strategies. Methods Ex vivo hippocampal slices (400 μm thick) were prepared from mouse brain. We recorded field excitatory postsynaptic potentials (fEPSP) in the CA1’s stratum radiatum by stimulation of the CA3 Schaeffer collateral/commissural axons. Uridine was applied at concentrations (3, 30, 300 μM) representing the physiological range present in brain tissue. Synaptic function was studied with input-output (I-O) functions, as well as paired-pulse facilitation (PPF). Synaptic plasticity was studied by applying tetanic stimulation to induce post-tetanic potentiation (PTP), short-term potentiation (STP) and long-term potentiation (LTP). Additionally, we determined whether uridine affected synaptic responses carried solely by n-methyl-d-aspartate receptors (NMDARs), particularly during the oxygen-glucose deprivation (OGD) paradigm. Results The presence of uridine altered glutamatergic synaptic transmission and plasticity. We found that uridine affected STP and LTP in a concentration-dependent manner. Low-dose uridine (3 μM) had no effect, but higher doses (30 and 300 μM) impaired STP and LTP. Moreover, uridine (300 μM) decreased NMDAR-mediated synaptic responses. Conversely, uridine (at all concentrations tested) had a negligible effect on PPF and basal synaptic transmission, which is mediated primarily by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). In addition, uridine (100 μM) exerted a protective effect when the hippocampal slices were challenged with OGD, a widely used model of cerebral ischemia. Conclusions Using a wide set of electrophysiological assays, we identify that uridine interacts with glutamatergic neurons to alter NMDAR-mediated responses, impair synaptic STP and LTP in a dose-dependent manner, and has a protective effect against OGD insult. This work outlines a strategy to identify deficits in glutamatergic mechanisms for signaling and plasticity that may be critical for targeting these same systems with BEM device-based approaches. To improve the efficacy of potential neuromodulation approaches for treating brain dysfunction, we need to improve our understanding of glutamatergic systems in the brain, including the effects of modulators such as uridine.
Collapse
Affiliation(s)
- Eric H Chang
- 1Laboratory of Immune & Neural Networks, Institutes of Molecular Medicine and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,2Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549 USA
| | - Samantha T Carreiro
- Nimbus Therapeutics, 130 Prospect Street, Suite 301, Cambridge, MA 02139 USA
| | - Stephen A Frattini
- 1Laboratory of Immune & Neural Networks, Institutes of Molecular Medicine and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Patricio T Huerta
- 1Laboratory of Immune & Neural Networks, Institutes of Molecular Medicine and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549 USA
| |
Collapse
|
21
|
Wilkowska A, Szałach Ł, Cubała WJ. Ketamine in Bipolar Disorder: A Review. Neuropsychiatr Dis Treat 2020; 16:2707-2717. [PMID: 33209026 PMCID: PMC7670087 DOI: 10.2147/ndt.s282208] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Bipolar disorder (BD) is a psychiatric illness associated with high morbidity, mortality and suicide rate. It has neuroprogressive course and a high rate of treatment resistance. Hence, there is an unquestionable need for new BD treatment strategies. Ketamine appears to have rapid antidepressive and antisuicidal effects. Since most of the available studies concern unipolar depression, here we present a novel insight arguing that ketamine might be a promising treatment for bipolar disorder.
Collapse
Affiliation(s)
- Alina Wilkowska
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Szałach
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
22
|
Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:797-811. [PMID: 31858154 DOI: 10.1007/s00210-019-01791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
The evaluation of drug-induced mitochondrial impairment may be important in drug development as well as in the comprehension of molecular mechanisms of the therapeutic and adverse effects of drugs. The primary aim of this study was to investigate the effects of four drugs for treatment of depression (bupropion, fluoxetine, amitriptyline, and imipramine) and five drugs for bipolar disorder treatment (lithium, valproate, valpromide, lamotrigine, and carbamazepine) on cell energy metabolism. The in vitro effects of the selected psychopharmaca were measured in isolated pig brain mitochondria; the activities of citrate synthase (CS) and electron transport chain (ETC) complexes (I, II + III, and IV) and mitochondrial respiration rates linked to complex I and complex II were measured. Complex I was significantly inhibited by lithium, carbamazepine, fluoxetine, amitriptyline, and imipramine. The activity of complex IV was decreased after exposure to carbamazepine. The activities of complex II + III and CS were not affected by any tested drug. Complex I-linked respiration was significantly inhibited by bupropion, fluoxetine, amitriptyline, imipramine, valpromide, carbamazepine, and lamotrigine. Significant inhibition of complex II-linked respiration was observed after mitochondria were exposed to amitriptyline, fluoxetine, and carbamazepine. Our outcomes confirm the need to investigate the effects of drugs on both the total respiration rate and the activities of individual enzymes of the ETC to reveal the risk of adverse effects as well as to understand the molecular mechanisms leading to drug-induced changes in the respiratory rate. Our approach can be further replicated to study the mechanisms of action of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
23
|
Neurobiology of the major psychoses: a translational perspective on brain structure and function-the FOR2107 consortium. Eur Arch Psychiatry Clin Neurosci 2019; 269:949-962. [PMID: 30267149 DOI: 10.1007/s00406-018-0943-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Genetic (G) and environmental (E) factors are involved in the etiology and course of the major psychoses (MP), i.e. major depressive disorder (MDD), bipolar disorder (BD), schizoaffective disorder (SZA) and schizophrenia (SZ). The neurobiological correlates by which these predispositions exert their influence on brain structure, function and course of illness are poorly understood. In the FOR2107 consortium, animal models and humans are investigated. A human cohort of MP patients, healthy subjects at genetic and/or environmental risk, and control subjects (N = 2500) has been established. Participants are followed up after 2 years and twice underwent extensive deep phenotyping (MR imaging, clinical course, neuropsychology, personality, risk/protective factors, biomaterials: blood, stool, urine, hair, saliva). Methods for data reduction, quality assurance for longitudinal MRI data, and (deep) machine learning techniques are employed. In the parallelised animal cluster, genetic risk was introduced by a rodent model (Cacna1c deficiency) and its interactions with environmental risk and protective factors are studied. The animals are deeply phenotyped regarding cognition, emotion, and social function, paralleling the variables assessed in humans. A set of innovative experimental projects connect and integrate data from the human and animal parts, investigating the role of microRNA, neuroplasticity, immune signatures, (epi-)genetics and gene expression. Biomaterial from humans and animals are analyzed in parallel. The FOR2107 consortium will delineate pathophysiological entities with common neurobiological underpinnings ("biotypes") and pave the way for an etiologic understanding of the MP, potentially leading to their prevention, the prediction of individual disease courses, and novel therapies in the future.
Collapse
|
24
|
Dal-Pont GC, Jório MTS, Resende WR, Gava FF, Aguiar-Geraldo JM, Possamai-Della T, Peper-Nascimento J, Quevedo J, Valvassori SS. Effects of lithium and valproate on behavioral parameters and neurotrophic factor levels in an animal model of mania induced by paradoxical sleep deprivation. J Psychiatr Res 2019; 119:76-83. [PMID: 31574363 DOI: 10.1016/j.jpsychires.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
The present study aimed to evaluate the effects of treatment with lithium (Li) and valproate (VPA) on behaviors and brain BDNF, NGF, NT-3, NT-4 and GDNF levels in mice submitted to paradoxical sleep deprivation (PSD), which induces an animal model of mania. Male C57BL/6J mice received an intraperitoneal (i.p.) injection of saline solution (NaCl 0.09%, 1 ml/kg), Li (47.3 mg/kg, 1 ml/kg) or VPA (200 mg/kg, 1 ml/kg) once a day for seven days. Animals were randomly distributed into six groups (n = 10 per group): (1) Control + Sal; (2) Control + Li; (3) Control + VPA; (4) PSD + Sal; (5) PSD + Li; or (6) PSD + VPA. Animals were submitted to 36 h of PSD, and then, they were submitted to the open field test. The frontal cortex and hippocampus were dissected from the brain. The manic-like behaviors in the mice were analyzed. Treatment with Li and VPA reversed the behavioral alterations induced by PSD. PSD decreased BDNF, NGF, and GDNF levels in the frontal cortex and hippocampus of mice. The administration of Li and VPA protected the brain against the damage induced by PSD. However, PSD and the administration of Li and VPA did not affect the levels of NT-3 and NT-4 in either brain structure evaluated. In conclusion, the PSD protocol induced manic-like behavior in rats and induced alterations in neurotrophic factor levels. It seems that neurotrophic factors and sleep are essential targets to treat BD.
Collapse
Affiliation(s)
- Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marco T S Jório
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
25
|
Sasa Quelpaertensis Nakai Induced Antidepressant-Like Effect in Ovariectomized Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5815604. [PMID: 31380432 PMCID: PMC6657632 DOI: 10.1155/2019/5815604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023]
Abstract
Background Sasa quelpaertensis Nakai extract (SQE) or dwarf bamboo has been extensively investigated for its antioxidant and anti-inflammatory effects; however, no previous study assessed its effect as an antidepressant agent. Therefore, this study was designed to examine the effect of oral SQE administration in ameliorating menopausal depressive symptoms and to evaluate its mechanisms in ovariectomized rats with repeated stress. Methods All experimental groups except normal group underwent ovariectomy and then immobilization for 14 consecutive days. During these 2 weeks, two rat groups received SQE (100 and 300 mg/kg orally) and their cutaneous body temperature was measured. The tail suspension test (TST) and forced swim test (FST) were performed in order to evaluate depression-like behavior. Additionally, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were carried out to evaluate the central monoaminergic neurotransmitter levels and activity. Results Oral SQE (100 mg/kg) administration had reduced immobility time in TST and FST. Additionally, the SQE 100 and 300 mg/kg administration had decreased the cutaneous body temperature in the rats compared to those without treatment. In ELISA analysis, the SQE 100 group expressed elevated levels of serotonin and dopamine in the hypothalamus, prefrontal cortex, and hippocampus. Antityrosine hydroxylase (anti-TH) antibodies showed a tremendous increase in the density of TH positive cells in the locus coeruleus (LC) region of the SQE 100 group. Likewise, the SQE 100 elevated the number of tryptophan hydroxylase (TPH) and protein kinase C (PKC) immunoreactive cell counts and density in the hypothalamic region. Conclusion These results suggested that the oral SQE administration induced the antidepressant-like effect in the ovariectomized rats with repeated stress via upregulating the levels of serotonin and dopamine through enhancing the expression of TH, TPH, and PKC in many brain areas.
Collapse
|
26
|
Pagani R, Gasparini A, Ielmini M, Caselli I, Poloni N, Ferrari M, Marino F, Callegari C. Twenty years of Lithium pharmacogenetics: A systematic review. Psychiatry Res 2019; 278:42-50. [PMID: 31146140 DOI: 10.1016/j.psychres.2019.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/31/2023]
Abstract
Lithium is among the best proven treatments for patients diagnosed with Bipolar Disorder, however response to Lithium appears to be considerably variable among individuals and it has been suggested that this inconstancy in Lithium response could be genetically determined. Starting from this perspective, in the last few decades, a number of pharmacogenetic studies have attempted to identify genetic variants, which might be associated with response to Lithium in bipolar patients, in order to develop a pharmacogenetics test to tailor treatment on patients, identifying who will benefit the most from therapy with Lithium. Within this context, authors have critically reviewed pharmacogenetic studies of Lithium response in bipolar disorder, suggesting strategies for future work in this field. Computerized searches of PubMed and Embase databases, for studies published between 1998 and January 2018, was performed: 1162 studies were identified but only 37 relevant papers were selected for detailed review. Despite some interesting preliminary findings, the pharmacogenetics of Lithium and the development of a specific pharmacogenetics test in bipolar disorder appears to be a field still in its infancy, even though the advent of genome-wide association studies holds particular promise for future studies, which should include larger samples.
Collapse
Affiliation(s)
- R Pagani
- Clinica Santa Croce, Orselina, Switzerland
| | - A Gasparini
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Borri 57, 2100 Varese, Italy
| | - M Ielmini
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Borri 57, 2100 Varese, Italy
| | - I Caselli
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Borri 57, 2100 Varese, Italy
| | - N Poloni
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Borri 57, 2100 Varese, Italy
| | - M Ferrari
- Department of Clinical Medicine, Division of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - F Marino
- Department of Clinical Medicine, Division of Experimental and Clinical Pharmacology, University of Insubria, Varese, Italy
| | - C Callegari
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Borri 57, 2100 Varese, Italy.
| |
Collapse
|
27
|
Psychiatric disorders in multiple sclerosis. J Neurol 2019; 268:45-60. [PMID: 31197511 DOI: 10.1007/s00415-019-09426-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by a large spectrum of symptoms, involving all functional systems. Psychiatric symptoms are common in people with MS (pwMS) having an important impact on quality of life and on some features of MS (fatigue, sleep, disability, adherence to disease-modifying drugs). The main psychiatric disturbances in MS are depressive, bipolar, anxiety, schizophrenic and obsessive-compulsive syndromes. METHODS Literature search for original articles and review in the databases, including PubMed and Scopus from 1959 to 2019. RESULTS AND CONCLUSION Studies answering the aim of this review were selected and reported. Epidemiological and clinical aspects of psychiatric syndromes (PS) in MS as well as self-report diagnostic scales and radiological correlates of PS in MS are described. Moreover, some radiological studies about primary psychiatric disorders (PD) are reported to underline how gray matter atrophy, white matter abnormalities and corpus callosum involvement in these diseases, as features in common with MS, may explain the more frequent occurrence of PD in MS than in the general population.
Collapse
|
28
|
Bar-Yosef T, Damri O, Agam G. Dual Role of Autophagy in Diseases of the Central Nervous System. Front Cell Neurosci 2019; 13:196. [PMID: 31191249 PMCID: PMC6548059 DOI: 10.3389/fncel.2019.00196] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital lysosomal degradation and recycling pathway in the eukaryotic cell, responsible for maintaining an intricate balance between cell survival and cell death, necessary for neuronal survival and function. This dual role played by autophagy raises the question whether this process is a protective or a destructive pathway, the contributor of neuronal cell death or a failed attempt to repair aberrant processes? Deregulated autophagy at different steps of the pathway, whether excessive or downregulated, has been proposed to be associated with neurodegenerative disorders such as Alzheimer's-, Huntington's-, and Parkinson's-disease, known for their intracellular accumulation of protein aggregates. Recent observations of impaired autophagy also appeared in psychiatric disorders such as schizophrenia and bipolar disorder suggesting an additional contribution to the pathophysiology of mental illness. Here we review the current understanding of autophagy's role in various neuropsychiatric disorders and, hitherto, the prevailing new potential autophagy-related therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| |
Collapse
|
29
|
Willeford A, Atayee RS, Winters KD, Mesarwi P. The Enigma of Low-Dose Ketamine for Treatment of Opioid-Induced Hyperalgesia in the Setting of Psychosocial Suffering and Cancer-Associated Pain. J Pain Palliat Care Pharmacother 2019; 32:248-255. [DOI: 10.1080/15360288.2019.1615028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Valvassori SS, Gava FF, Dal-Pont GC, Simões HL, Damiani-Neves M, Andersen ML, Boeck CR, Quevedo J. Effects of lithium and valproate on ERK/JNK signaling pathway in an animal model of mania induced by amphetamine. Heliyon 2019; 5:e01541. [PMID: 31193305 PMCID: PMC6525279 DOI: 10.1016/j.heliyon.2019.e01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder, characterized by recurrent mood episodes of depression and mania. Some studies have indicated that there are ERK and JNK pathways alterations in the brain from bipolar patients. The animal model of mania induced by dextroamphetamine (d-AMPH) has been considered an excellent model to study intracellular alterations related to BD. The present study aimed to evaluate the effects of lithium (Li) and valproate (VPA) on the behavioral and ERK1/2/JNK1/2 signaling pathway in an animal model of mania induced by d-AMPH. Wistar rats were first given d-AMPH or saline (Sal) for 14 days, and then, between the 8th and 14th days, the rats were treated with Li, VPA, or Sal. The open-field test was used to evaluate the locomotion and exploration behaviors of rats. The levels of phosphorylated ERK1/2 and JNK1/2 were assessed in the hippocampus and frontal cortex of the rats. Li and VPA reversed the increased of locomotion and exploration induced by d-AMPH. The treatment with VPA or AMPH per se decreased the levels of pERK1 in the hippocampus. The treatment with VPA in the animals submitted to the administration of d-AMPH decreased the levels of ERK1, JNK-1, and JNK-2 phosphorylated in the hippocampus of the animals. The treatment with Li decreased the JNK-1 phosphorylated in the hippocampus of the animals submitted to the animal model of mania induced by d-AMPH. Although the association of VPA plus amphetamine alters some proteins involved in the JNK pathway in the hippocampus, these alterations were very random and seemed that were not related to the d-AMPH-induced manic-like behavior. These results suggest that the manic-like effects induced by d-AMPH and the antimanic effects of mood stabilizers, Li and VPA, are not related to the alteration on ERK1/2 and JNK1/2 pathways.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henio Leonardo Simões
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Marcela Damiani-Neves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monica Levy Andersen
- Master's Degree in Health and Life Sciences, Postgraduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | | | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
31
|
Lago SG, Bahn S. Clinical Trials and Therapeutic Rationale for Drug Repurposing in Schizophrenia. ACS Chem Neurosci 2019; 10:58-78. [PMID: 29944339 DOI: 10.1021/acschemneuro.8b00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a paucity of efficacious novel drugs to address high rates of treatment resistance and refractory symptoms in schizophrenia. The identification of novel therapeutic indications for approved drugs-drug repurposing-has the potential to expedite clinical trials and reduce the costly risk of failure which currently limits central nervous system drug discovery efforts. In the present Review we discuss the historical role of drug repurposing in schizophrenia drug discovery and review the main classes of repurposing candidates currently in clinical trials for schizophrenia in terms of their therapeutic rationale, mechanisms of action, and preliminary results from clinical trials. Subsequently we outline the challenges and limitations which face the clinical repurposing pipeline and how novel technologies might serve to address these.
Collapse
Affiliation(s)
- Santiago G. Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
32
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
33
|
Liao L, Wang X, Yao X, Zhang B, Zhou L, Huang J. Gestational stress induced differential expression of HDAC2 in male rat offspring hippocampus during development. Neurosci Res 2018; 147:9-16. [PMID: 30452948 DOI: 10.1016/j.neures.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Accumulating evidence from preclinical and clinical studies indicates prenatal exposure to stress or excess glucocorticoids can affect offspring brain. HDAC2 is an important target of glucocorticoid. Here we detected HDAC2 expression in male offspring hippocampus from gestational restraint stressed rat during development and the relationship between HDAC2 expression and behaviors and neurogenesis in male offspring. Pregnant rats received restrained stress during the last week of pregnancy. Expressions of HDAC2 in offspring hippocampus were detected on postnatal 0 day (P0) and 60 days (P60). Neurogenesis was evaluated by Doublecortin (DCX) staining on P60. Anxiety-like behavior and cognition were detected in open field, elevated plus maze, novel object recognition test, and Barnes maze. We found that HDAC2 expression in the hippocampus of male prenatally stressed offspring (MPSO) was similar to the male control offspring on P0, but significantly lower on P60. Corresponding to the decreased expression of HDAC2 in MPSO hippocampus at P60, neurogenesis in the dentate gyrus of MPSO was significantly lower than the control male offspring. And MPSO also showed greater anxiety and poorer learning and memories abilities than control male offspring. These showed that HDAC2 could partly explain the effects of gestational stress on male offspring behaviors.
Collapse
Affiliation(s)
- Libin Liao
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, PR China; Department of Histology and Embryology, Basic Medical College of Xinjiang Medical University, Ürümqi, Xinjiang, PR China
| | - Xueqin Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xueping Yao
- Department of Mechanism Lab Centre, Basic Medical College of Xinjiang Medical University, Ürümqi, Xinjiang, PR China
| | - Bin Zhang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, PR China
| | - Lihong Zhou
- Department of Human Anatomy, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, PR China.
| |
Collapse
|
34
|
Alten B, Yesiltepe M, Bayraktar E, Tas ST, Gocmen AY, Kursungoz C, Martinez A, Sara Y. High-fructose corn syrup consumption in adolescent rats causes bipolar-like behavioural phenotype with hyperexcitability in hippocampal CA3-CA1 synapses. Br J Pharmacol 2018; 175:4450-4463. [PMID: 30221753 DOI: 10.1111/bph.14500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/03/2018] [Accepted: 08/26/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Children and adolescents are the top consumers of high-fructose corn syrup (HFCS) sweetened beverages. Even though the cardiometabolic consequences of HFCS consumption in adolescents are well known, the neuropsychiatric consequences have yet to be determined. EXPERIMENTAL APPROACH Adolescent rats were fed for a month with 11% weight/volume carbohydrate containing HFCS solution, which is similar to the sugar-sweetened beverages of human consumption. The metabolic, behavioural and electrophysiological characteristics of HFCS-fed rats were determined. Furthermore, the effects of TDZD-8, a highly specific GSK-3B inhibitor, on the HFCS-induced alterations were further explored. KEY RESULTS HFCS-fed adolescent rats displayed bipolar-like behavioural phenotype with hyperexcitability in hippocampal CA3-CA1 synapses. This hyperexcitability was associated with increased presynaptic release probability and increased readily available pool of AMPA receptors to be incorporated into the postsynaptic membrane, due to decreased expression of the neuron-specific α3-subunit of Na+ /K+ -ATPase and an increased ser845 -phosphorylation of GluA1 subunits (AMPA receptor subunit) respectively. TDZD-8 treatment was found to restore behavioural and electrophysiological disturbances associated with HFCS consumption by inhibition of GSK-3B, the most probable mechanism of action of lithium for its mood-stabilizing effects. CONCLUSION AND IMPLICATIONS This study shows that HFCS consumption in adolescent rats led to a bipolar-like behavioural phenotype with neuronal hyperexcitability, which is known to be one of the earliest endophenotypic manifestations of bipolar disorder. Inhibition of GSK-3B with TDZD-8 attenuated hyperexcitability and restored HFCS-induced behavioural alterations.
Collapse
Affiliation(s)
- Baris Alten
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Metin Yesiltepe
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erva Bayraktar
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sadik Taskin Tas
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ayse Yesim Gocmen
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Canan Kursungoz
- Materials Science and Nanotechnology Department, Bilkent University, Ankara, Turkey.,National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Ana Martinez
- Centro de Investigaciones Biologicas - CSIC, Madrid, Spain
| | - Yildirim Sara
- Medical Pharmacology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
35
|
Huang CC, Tsai MH, Wu YC, Chen KT, Chuang HW, Chen Y, Tseng GW, Fu PI, Wei IH. Activity Dependent Mammalian Target of Rapamycin Pathway and Brain Derived Neurotrophic Factor Release Is Required for the Rapid Antidepressant Effects of Puerarin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-16. [PMID: 30284466 DOI: 10.1142/s0192415x18500787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Puerarin is a traditional Chinese medicine with beneficial effects of reduced depression-like behaviors in mice with stress. Previous studies also show that puerarin can produce neuroprotective effect via activating the Akt or increased brain-derived neurotrophic factor (BDNF) expression. Interestingly, BDNF and Akt downstream target, mammalian target of rapamycin (mTOR) mediate the fast-acting antidepressant properties of ketamine. Until now, the involvement of the mTOR signaling pathway or BDNF on puerarin-induced antidepressant effect remains unknown. We aimed to investigate whether the antidepressant-like effect induced by puerarin would associate mTOR signaling pathway and BDNF release. The antidepressant-like effects of puerarin were evaluated using the forced swim test. The activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptor (AMPAR)-mTOR signaling pathway and release of BDNF in the prefrontal cortex were determined. We also investigated the effect of puerarin on AMPAR trafficking through measuring the PKA phosphorylation of AMPAR subunit GluR1. Our present results show that puerarin exerted antidepressant-like responses that was mediated by AMPAR-induced mTOR signaling pathway and associated with increased BDNF release. Moreover, a significant increase in the GluR1 phosphorylation at its PKA site was noted following puerarin treatment. Our findings are the first to demonstrate that the antidepressant-like actions of puerarin require AMPAR-mTOR signaling pathway activation, are associated with an increased BDNF level and facilitate AMPAR membrane insertion. These findings provide preclinical evidence that puerarin may possess antidepressant property which is mediated by the glutamatergic system.
Collapse
Affiliation(s)
- Chih-Chia Huang
- * Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- † Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- ‡ Department of Psychiatry, China Medical University, Taichung, Taiwan
| | - Mang-Hung Tsai
- § Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Ya-Chieh Wu
- ** Department of Nursing, Ching-Kuo Institute of Management and Health, Keelung, Taiwan
| | - Kuang-Ti Chen
- † Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Han-Wen Chuang
- † Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yun Chen
- ¶ Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Guan-Woei Tseng
- ∥ Department of Medicine, China Medical University, Taichung, Taiwan
| | - Pin-I Fu
- ∥ Department of Medicine, China Medical University, Taichung, Taiwan
| | - I-Hua Wei
- § Department of Anatomy, China Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Urinary biomarker panel for diagnosing patients with depression and anxiety disorders. Transl Psychiatry 2018; 8:192. [PMID: 30232320 PMCID: PMC6145889 DOI: 10.1038/s41398-018-0245-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 11/08/2022] Open
Abstract
Available data indicate that patients with depression and anxiety disorders are likely to be at greater risk for suicide. Therefore, it is important to correctly diagnose patients with depression and anxiety disorders. However, there are still no empirical laboratory methods to objectively diagnose these patients. In this study, the multiple metabolomics platforms were used to profile the urine samples from 32 healthy controls and 32 patients with depression and anxiety disorders for identifying differential metabolites and potential biomarkers. Then, 16 healthy controls and 16 patients with depression and anxiety disorders were used to independently validate the diagnostic performance of the identified biomarkers. Finally, a panel consisting of four biomarkers-N-methylnicotinamide, aminomalonic acid, azelaic acid and hippuric acid-was identified. This panel was capable of distinguishing patients with depression and anxiety disorders from healthy controls with an area under the receiver operating characteristic curve of 0.977 in the training set and 0.934 in the testing set. Meanwhile, we found that these identified differential metabolites were mainly involved in three metabolic pathways and five molecular and cellular functions. Our results could lay the groundwork for future developing a urine-based diagnostic method for patients with depression and anxiety disorders.
Collapse
|
37
|
Dal-Pont GC, Resende WR, Varela RB, Menegas S, Trajano KS, Peterle BR, Quevedo J, Valvassori SS. Inhibition of GSK-3β on Behavioral Changes and Oxidative Stress in an Animal Model of Mania. Mol Neurobiol 2018; 56:2379-2393. [DOI: 10.1007/s12035-018-1226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
|
38
|
Akarsu S, Bolu A, Aydemir E, Zincir SB, Kurt YG, Zincir S, Erdem M, Uzun Ö. The Relationship between the Number of Manic Episodes and Oxidative Stress Indicators in Bipolar Disorder. Psychiatry Investig 2018; 15:514-519. [PMID: 29674601 PMCID: PMC5975995 DOI: 10.30773/pi.2016.12.31] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/31/2016] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is a chronic mood disorder characterized by recurrent episodes that has a lifetime prevalence of 0.4- 5.5%. The neurochemical mechanism of BD is not fully understood. Oxidative stress in neurons causes lipid peroxidation in proteins associated with neuronal membranes and intracellular enzymes and it may lead to dysfunction in neurotransmitter reuptake and enzyme activities. These pathological processes are thought to occur in brain regions associated with affective functions and emotions in BD. The relationship between the number of manic episodes and total oxidant-antioxidant capacity was investigated in this study. METHODS Eighty-two BD patients hospitalized due to manic symptoms and with no episodes of depression were enrolled in the study. Thirty of the 82 patients had had their first episode of mania, and the other 52 patients had had two or more manic episodes. The control group included 45 socio-demographically matched healthy individuals. Serum total antioxidant capacity (TAC) and total oxidant capacity (TOC) measurements of the participants were performed. The oxidative stress index (OSI) was calculated by TOC/TAC. RESULTS There were no significant differences in OSI scores between BD patients with first-episode mania and BD patients with more than one manic episode. However, OSI scores in both groups were significantly higher than in the control group. TOC levels of BD patients with first-episode mania were found to be significantly higher than TOC levels of BD patients with more than one manic episode and healthy controls. There were no significant differences in TAC levels between BD patients with first-episode mania and BD patients with more than one manic episode. TAC levels in both groups were significantly higher than in the control group. CONCLUSION Significant changes in oxidative stress indicators were observed in this study, confirming previous studies. Increased levels of oxidants were shown with increased disease severity rather than with the number of manic episodes. Systematic studies, including of each period of the disorder, are needed for using the findings indicating deterioration of oxidative parameters.
Collapse
Affiliation(s)
- Süleyman Akarsu
- Department of Psychiatry, Freelance Physician, Hatay, Turkey
| | - Abdullah Bolu
- Department of Psychiatry, Gülhane Education and Research Hospital, Ankara, Turkey
| | - Emre Aydemir
- Department of Psychiatry, Beytepe State Hospital, Ankara, Turkey
| | - Selma Bozkurt Zincir
- Department of Psychiatry, Medical Park Göztepe Hospital Complex, Istanbul, Turkey
| | | | - Serkan Zincir
- Department of Psychiatry, Eskişehir State Hospital, Eskişehir, Turkey
| | - Murat Erdem
- Department of Psychiatry, Bilted Psychiatry Treatment Center, Ankara, Turkey
| | - Özcan Uzun
- Department of Psychiatry, Gülhane Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
39
|
Fornaro M, Kardash L, Novello S, Fusco A, Anastasia A, De Berardis D, Perna G, Carta MG. Progress in bipolar disorder drug design toward the development of novel therapeutic targets: a clinician's perspective. Expert Opin Drug Discov 2018; 13:221-228. [PMID: 29357703 DOI: 10.1080/17460441.2018.1428554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a considerable burden to the affected individual. The need for novel drug targets and improved drug design (DD) in BD is therefore clear. Areas covered: The following article provides a brief, narrative, clinician-oriented overview of the most promising novel pharmacological targets for BD along with a concise overview regarding the general DD process and the unmet needs relevant to BD. Expert opinion: A number of novel potential drug targets have been investigated. With the notable exception of the kynurenine pathway, available evidence is too scarce to highlight a definitive roadmap for forthcoming DD in BD. BD itself may present with different facets, as it is a polymorphic clinical spectrum. Therefore, promoting clinical-case stratification should be based on precision medicine, rather than on novel biological targets. Furthermore, the full release of raw study data to the scientific community and the development of uniform clinical trial standards (including more realistic outcomes) should be promoted to facilitate the DD process in BD.
Collapse
Affiliation(s)
- Michele Fornaro
- a Department of Neuroscience, Reproductive Sciences and Odontostomatology, Section of Psychiatry, University School of Medicine , "Federico II" University of Naples , Italy
| | - Lubna Kardash
- b Department of Internal Medicine , Wayne State University , Detroit , MI , USA
| | - Stefano Novello
- a Department of Neuroscience, Reproductive Sciences and Odontostomatology, Section of Psychiatry, University School of Medicine , "Federico II" University of Naples , Italy
| | - Andrea Fusco
- a Department of Neuroscience, Reproductive Sciences and Odontostomatology, Section of Psychiatry, University School of Medicine , "Federico II" University of Naples , Italy
| | - Annalisa Anastasia
- a Department of Neuroscience, Reproductive Sciences and Odontostomatology, Section of Psychiatry, University School of Medicine , "Federico II" University of Naples , Italy
| | - Domenico De Berardis
- c Department of Mental Health, Psychiatric Service of Diagnosis and Treatment , National Health Service, Hospital "G. Mazzini" , Teramo , Italy
| | - Giampaolo Perna
- d Department of Psychiatry and Neuropsychology , Maastricht University , Maastricht , Netherlands.,e Department of Clinical Neurosciences , FoRiPsi, Hermanas Hospitalarias-Villa San Benedetto Menni Hospital , Como , Italy.,f Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine , University of Miami , Miami , FL , USA
| | | |
Collapse
|
40
|
Abstract
SummaryFor many patients with bipolar disorder there is a long delay between the onset of illness and receiving a diagnosis and the initiation of treatment. This may have an adverse effect on the clinical outcome. Early intervention in bipolar disorder has received less attention than in schizophrenia, and there are relatively few specialist services in this area. This article reviews the literature on the early detection of bipolar disorder and on the effectiveness of pharmacological, psychological and psychosocial interventions in the early phase of the disorder.
Collapse
|
41
|
Anticevic A, Krystal JH, Murray JD. Meeting Emerging Challenges and Opportunities in Psychiatry Through Computational Neuroscience. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1016/b978-0-12-809825-7.02004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Saxena A, Scaini G, Bavaresco DV, Leite C, Valvassori SS, Carvalho AF, Quevedo J. Role of Protein Kinase C in Bipolar Disorder: A Review of the Current Literature. MOLECULAR NEUROPSYCHIATRY 2017; 3:108-124. [PMID: 29230399 DOI: 10.1159/000480349] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a major health problem. It causes significant morbidity and imposes a burden on the society. Available treatments help a substantial proportion of patients but are not beneficial for an estimated 40-50%. Thus, there is a great need to further our understanding the pathophysiology of BD to identify new therapeutic avenues. The preponderance of evidence pointed towards a role of protein kinase C (PKC) in BD. We reviewed the literature pertinent to the role of PKC in BD. We present recent advances from preclinical and clinical studies that further support the role of PKC. Moreover, we discuss the role of PKC on synaptogenesis and neuroplasticity in the context of BD. The recent development of animal models of BD, such as stimulant-treated and paradoxical sleep deprivation, and the ability to intervene pharmacologically provide further insights into the involvement of PKC in BD. In addition, the effect of PKC inhibitors, such as tamoxifen, in the resolution of manic symptoms in patients with BD further points in that direction. Furthermore, a wide variety of growth factors influence neurotransmission through several molecular pathways that involve downstream effects of PKC. Our current understanding identifies the PKC pathway as a potential therapeutic avenue for BD.
Collapse
Affiliation(s)
- Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela V Bavaresco
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Camila Leite
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
43
|
Valvassori SS, Dal-Pont GC, Resende WR, Varela RB, Peterle BR, Gava FF, Mina FG, Cararo JH, Carvalho AF, Quevedo J. Lithium and Tamoxifen Modulate Behavior and Protein Kinase C Activity in the Animal Model of Mania Induced by Ouabain. Int J Neuropsychopharmacol 2017; 20:877-885. [PMID: 29020306 PMCID: PMC5737643 DOI: 10.1093/ijnp/pyx049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/04/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The intracerebroventricular injection of ouabain, a specific inhibitor of the Na+/K+-adenosine-triphosphatase (Na+/K+-ATPase) enzyme, induces hyperactivity in rats in a putative animal model of mania. Several evidences have suggested that the protein kinase C signaling pathway is involved in bipolar disorder. In addition, it is known that protein kinase C inhibitors, such as lithium and tamoxifen, are effective in treating acute mania. METHODS In the present study, we investigated the effects of lithium and tamoxifen on the protein kinase C signaling pathway in the frontal cortex and hippocampus of rats submitted to the animal model of mania induced by ouabain. We showed that ouabain induced hyperlocomotion in the rats. RESULTS Ouabain increased the protein kinase C activity and the protein kinase C and MARCKS phosphorylation in frontal cortex and hippocampus of rats. Lithium and tamoxifen reversed the behavioral and protein kinase C pathway changes induced by ouabain. These findings indicate that the Na+/K+-ATPase inhibition can lead to protein kinase C alteration. CONCLUSIONS The present study showed that lithium and tamoxifen modulate changes in the behavior and protein kinase C signalling pathway alterations induced by ouabain, underlining the need for more studies of protein kinase C as a possible target for treatment of bipolar disorder.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo).,Correspondence: S. S. Valvassori, PhD, Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil, CEP 88806-000 ()
| | - Gustavo C Dal-Pont
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - Wilson R Resende
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - Roger B Varela
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - Bruna R Peterle
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - Fernanda F Gava
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - Francielle G Mina
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - José H Cararo
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - André F Carvalho
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| | - João Quevedo
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, and Ms Gava); Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Valvassori, Mr Dal-Pont, Dr Resende, Mr Varela, Ms Peterle, Ms Gava, Ms Mina, and Dr Quevedo); Laboratory of Inborn Errors of Metabolism, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil (Dr Cararo); Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil(Dr Carvalho); Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo);Center of Excellence on Mood Disorders, Department of Psychiatry and BehavioralSciences, The University of Texas Health Science Center at Houston Medical School, Houston, Texas (Dr Quevedo); Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (Dr Quevedo)
| |
Collapse
|
44
|
Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology 2017; 117:447-459. [DOI: 10.1016/j.neuropharm.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
45
|
Gomes LM, Carvalho-Silva M, Teixeira LJ, Rebelo J, Mota IT, Bilesimo R, Michels M, Arent CO, Mariot E, Dal-Pizzol F, Scaini G, Quevedo J, Streck EL. Omega-3 fatty acids and mood stabilizers alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration. Metab Brain Dis 2017; 32:519-528. [PMID: 27987060 DOI: 10.1007/s11011-016-9942-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022]
Abstract
Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of ω3 fatty acids with Li reversed this inhibition in the hippocampus and striatum. In conclusion, our results support other studies showing the importance of ω3 fatty acids in the brain and the potential for these fatty acids to aid in the treatment of BD.
Collapse
Affiliation(s)
- Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Letícia J Teixeira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabella T Mota
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rafaela Bilesimo
- Laboratório de Fisiopatologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Ste, 5102, Houston, TX, USA.
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Ste, 5102, Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
46
|
Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway. Biomed Pharmacother 2017; 88:931-938. [DOI: 10.1016/j.biopha.2017.01.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/12/2017] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
|
47
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
48
|
GRIN3B missense mutation as an inherited risk factor for schizophrenia: whole-exome sequencing in a family with a familiar history of psychotic disorders. Genet Res (Camb) 2017; 99:e1. [PMID: 28132660 PMCID: PMC6865172 DOI: 10.1017/s0016672316000148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the most important excitatory neurotransmitter in the brain. The N-methyl-D-aspartate (NMDA) receptor is a glutamate-gated ionotropic cation channel that is composed of several subunits and modulated by a glycine binding site. Many forms of synaptic plasticity depend on the influx of calcium ions through NMDA receptors, and NMDA receptor dysfunction has been linked to a number of neuropsychiatric disorders, including schizophrenia. Whole-exome sequencing was performed in a family with a strong history of psychotic disorders over three generations. We used an iterative strategy to obtain condense and meaningful variants. In this highly affected family, we found a frameshift mutation (rs10666583) in the GRIN3B gene, which codes for the GluN3B subunit of the NMDA receptor in all family members with a psychotic disorder, but not in the healthy relatives. Matsuno et al., also reported this null variant as a risk factor for schizophrenia in 2015. In a broader sample of 22 patients with psychosis, the allele frequency of the rs10666583 mutation variant was increased compared to those of healthy population samples and unaffected relatives. Compared to the 1000 Genomes Project population, we found a significant increase of this variant with a large effect size among patients. The amino acid shift degrades the S1/S2 glycine binding domain of the dominant modulatory GluN3B subunit of the NMDA receptor, which subsequently affects the permeability of the channel pore to calcium ions. A decreased glycine affinity for the GluN3B subunit might cause impaired functional capability of the NMDA receptor and could be an important risk factor for the pathogenesis of psychotic disorders.
Collapse
|
49
|
Kroes RA, Nilsson CL. Towards the Molecular Foundations of Glutamatergic-targeted Antidepressants. Curr Neuropharmacol 2017; 15:35-46. [PMID: 26955966 PMCID: PMC5327457 DOI: 10.2174/1570159x14666160309114740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/08/2015] [Accepted: 01/30/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Depression affects over 120 million individuals of all ages and is the leading cause of disability worldwide. The lack of objective diagnostic criteria, together with the heterogeneity of the depressive disorder itself, makes it challenging to develop effective therapies. The accumulation of preclinical data over the past 20 years derived from a multitude of models using many divergent approaches, has fueled the resurgence of interest in targeting glutamatergic neurotransmission for the treatment of major depression. OBJECTIVE The emergence of mechanistic studies are advancing our understanding of the molecular underpinnings of depression. While clearly far from complete and conclusive, they offer the potential to lead to the rational design of more specific therapeutic strategies and the development of safer and more effective rapid acting, long lasting antidepressants. METHODS The development of comprehensive omics-based approaches to the dysregulation of synaptic transmission and plasticity that underlies the core pathophysiology of MDD are reviewed to illustrate the fundamental elements. RESULTS This review frames the rationale for the conceptualization of depression as a "pathway disease". As such, it culminates in the call for the development of novel state-of-the-art "-omics approaches" and neurosystems biological techniques necessary to advance our understanding of spatiotemporal interactions associated with targeting glutamatergic-triggered signaling in the CNS. CONCLUSION These technologies will enable the development of novel psychiatric medications specifically targeted to impact specific, critical intracellular networks in a more focused manner and have the potential to offer new dimensions in the area of translational neuropsychiatry.
Collapse
Affiliation(s)
- Roger A. Kroes
- Naurex, Inc., 1801 Maple Street, Evanston, Illinois 60201, United States
| | - Carol L. Nilsson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1074, United States
| |
Collapse
|
50
|
Anticevic A, Schleifer C, Youngsun TC. Emotional and cognitive dysregulation in schizophrenia and depression: understanding common and distinct behavioral and neural mechanisms. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26869843 PMCID: PMC4734880 DOI: 10.31887/dcns.2015.17.4/aanticevic] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging behavioral and neuroimaging studies in schizophrenia (SCZ) and major depressive disorder (MD) are mapping mechanisms of co-occurring and distinct affective disturbances across these disorders. This constitutes a critical goal towards developing rationally guided therapies for upstream neural pathways that contribute to comorbid symptoms across disorders. We highlight the current state of the art in our understanding of emotional dysregulation in SCZ versus MD by focusing on broad domains of behavioral function that can map onto underlying neural systems, namely deficits in hedonics, anticipatory behaviors, computations underlying value and effort, and effortful goal-directed behaviors needed to pursue rewarding outcomes. We highlight unique disturbances in each disorder that may involve dissociable neural systems, but also possible interactions between affect and cognition in MD versus SCZ. Finally, we review computational and translational approaches that offer mechanistic insight into how cellular-level disruptions can lead to complex affective disturbances, informing development of therapies across MD and SCZ.
Collapse
Affiliation(s)
- Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine; Interdepartmental Neuroscience Program, Yale University; NIAAA Center for the Translational Neuroscience of Alcoholism; Department of Psychology, Yale University; Division of Neurocognition, Neurogenetics & Neurocomputation, Yale University School of Medicine (Alan Anticevic) - New Haven, Connecticut, USA
| | | | | |
Collapse
|