1
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Tsao CY, Tuan LH, Lee LJH, Liu CM, Hwu HG, Lee LJ. Impaired response to sleep deprivation in heterozygous Disc1 mutant mice. World J Biol Psychiatry 2022; 23:55-66. [PMID: 33783301 DOI: 10.1080/15622975.2021.1907724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Sleep/circadian rhythm disturbances are environmental stress factors that might interact with genetic risk factors and contribute to the pathogenesis of psychiatric disorders. METHODS In this study, the multiple-platform method was used to induce sleep deprivation (SD). We evaluated the impact of 72-hour SD in behavioural, anatomical, and biochemical aspects in heterozygous Disc1 mutant (Disc1 Het) mice, an animal model of schizophrenia. RESULTS The sleep pattern and circadian activity were not altered in Disc1 Het mice. Yet, we observed differential responses to SD stress between genotypes. Increased microglial density and reduced neuronal proliferative activity were found in the dentate gyrus, a neurogenic niche, in Het-SD mice. Notably, SD-induced Bdnf mRNA elevations were evident in both WT and Het mice, while only in WT-SD mice did we observe increased BDNF protein expression. Our results suggested an SD-induced physical response featured by the elevation of BDNF protein expression to counteract the harmful influences of SD and sufficient DISC1 is required in this process. CONCLUSIONS The present study proposes that sleep disturbance could be pathogenic especially in genetically predisposed subjects who fail to cope with the stress. Potential therapeutic strategies for psychiatric disorders targeting the mRNA translation machinery could be considered.
Collapse
Affiliation(s)
- Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lukas Jyuhn-Hsiarn Lee
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Departments of Environmental and Occupational Medicine, Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center for Environmental Medicine, Ph.D. Program of Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
4
|
Vázquez-Bourgon J, Ayesa-Arriola R, Fatjó-Vilas M, Roiz-Santiañez R, Fañanás L, Crespo-Facorro B. Effect of DISC1 Polymorphisms on the Long-term Course of Neurocognitive Deficits in Non-affective Psychosis. Eur Psychiatry 2020; 30:861-7. [DOI: 10.1016/j.eurpsy.2015.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
AbstractNeurocognitive deficits are core symptoms of schizophrenia that determine a poorer outcome. High variability in the progression of neuropsychological deficits in schizophrenia has been described. It is still unknown whether genetic variations can affect the course of cognitive deficits. Variations in the Disrupted in Schizophrenia 1 (DISC1) gene have previously been associated with neurocognitive deficits. This study investigated the association between 3 DISC1 polymorphisms (rs6675281 (Leu607Phe), rs1000731, and rs821616 (Ser704Cys)) and long-term (3 years) cognitive performance. One-hundred-thirty-three Caucasian drug-naive patients experiencing a first episode of non-affective psychosis were genotyped. Cognitive function was assessed at baseline and after 3 years of initiating treatment. Other clinical and socio-demographic variables were recorded to eliminate potential confounding effects. Patients carrying the A allele of rs1000731 exhibited a significant improvement in Working Memory and Attention domains, and the homozygosity of the A allele of rs821616 showed a significant improvement in Motor Dexterity performance over 3 years of follow-up. In conclusion, DISC1 gene variations may affect the course of cognitive deficits found in patients suffering from the first episode of non-affective psychosis.
Collapse
|
5
|
Delevich K, Jaaro-Peled H, Penzo M, Sawa A, Li B. Parvalbumin Interneuron Dysfunction in a Thalamo-Prefrontal Cortical Circuit in Disc1 Locus Impairment Mice. eNeuro 2020; 7:ENEURO.0496-19.2020. [PMID: 32029441 PMCID: PMC7054897 DOI: 10.1523/eneuro.0496-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Altered cortical excitation-inhibition (E-I) balance resulting from abnormal parvalbumin interneuron (PV IN) function is a proposed pathophysiological mechanism of schizophrenia and other major psychiatric disorders. Preclinical studies have indicated that disrupted-in-schizophrenia-1 (Disc1) is a useful molecular lead to address the biology of prefrontal cortex (PFC)-dependent cognition and PV IN function. To date, PFC inhibitory circuit function has not been investigated in depth in Disc1 locus impairment (LI) mouse models. Therefore, we used a Disc1 LI mouse model to investigate E-I balance in medial PFC (mPFC) circuits. We found that inhibition onto layer 2/3 excitatory pyramidal neurons in the mPFC was significantly reduced in Disc1 LI mice. This reduced inhibition was accompanied by decreased GABA release from local PV, but not somatostatin (SOM) INs, and by impaired feedforward inhibition (FFI) in the mediodorsal thalamus (MD) to mPFC circuit. Our mechanistic findings of abnormal PV IN function in a Disc1 LI model provide insight into biology that may be relevant to neuropsychiatric disorders including schizophrenia.
Collapse
Affiliation(s)
- Kristen Delevich
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mario Penzo
- National Institute of Mental Health, Bethesda, MD 20892
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
6
|
Baskaran R, Lai C, Li W, Tuan L, Wang C, Lee LJ, Liu C, Hwu H, Lee L. Characterization of striatal phenotypes in heterozygous
Disc1
mutant mice, a model of haploinsufficiency. J Comp Neurol 2019; 528:1157-1172. [DOI: 10.1002/cne.24813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Rathinasamy Baskaran
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Chuan‐Ching Lai
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Wai‐Yu Li
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Li‐Heng Tuan
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
| | - Chia‐Chuan Wang
- School of MedicineFu Jen Catholic University New Taipei Taiwan ROC
| | - Lukas J.‐H. Lee
- Division of Environmental Health and Occupational MedicineNational Health Research Institutes Miaoli Taiwan ROC
| | - Chih‐Min Liu
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
| | - Hai‐Gwo Hwu
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
- Institute of Brain and Mind SciencesNational Taiwan University Taipei Taiwan ROC
| | - Li‐Jen Lee
- Graduate Institute of Anatomy and Cell BiologyNational Taiwan University Taipei Taiwan ROC
- Department of PsychiatryNational Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan ROC
- Neurobiology and Cognitive Science CenterNational Taiwan University Taipei Taiwan ROC
- Institute of Brain and Mind SciencesNational Taiwan University Taipei Taiwan ROC
| |
Collapse
|
7
|
Change in Brain Plasmalogen Composition by Exposure to Prenatal Undernutrition Leads to Behavioral Impairment of Rats. J Neurosci 2019; 39:7689-7702. [PMID: 31391260 DOI: 10.1523/jneurosci.2721-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies suggest that poor nutrition during pregnancy influences offspring predisposition to experience developmental and psychiatric disorders. Animal studies have shown that maternal undernutrition leads to behavioral impairment, which is linked to alterations in monoaminergic systems and inflammation in the brain. In this study, we focused on the ethanolamine plasmalogen of the brain as a possible contributor to behavioral disturbances observed in offspring exposed to maternal undernutrition. Maternal food or protein restriction between gestational day (GD) 5.5 and GD 10.5 resulted in hyperactivity of rat male adult offspring. Genes related to the phospholipid biosynthesis were found to be activated in the PFC, but not in the NAcc or striatum, in the offspring exposed to prenatal undernutrition. Corresponding to these gene activations, increased ethanolamine plasmalogen (18:0p-22:6) was observed in the PFC using mass spectrometry imaging. A high number of crossings and the long time spent in the center area were observed in the offspring exposed to prenatal undernutrition and were mimicked in adult rats via the intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome. Additionally, plasmalogen (18:0p-22:6) increased only in the PFC, and not in the NAcc or striatum. These results suggest that brain plasmalogen is one of the key molecules to control behavior, and its injection using liposome is a potential therapeutic approach for cognitive impairment.SIGNIFICANCE STATEMENT Maternal undernutrition correlates to developmental and psychiatric disorders. Here, we found that maternal undernutrition in early pregnancy led to hyperactivity in rat male offspring and induced gene activation of phospholipid-synthesizing enzyme and elevation of ethanolamine plasmalogen (18:0p-22:6) level in the PFC. Intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome maintained crossing activity and the activity was circumscribed to the center area for a long time period, as in prenatally undernourished offspring with aberrant behavior. Furthermore, the amount of ethanolamine plasmalogen (18:0p-22:6) increased in the PFC of the rat after injection. Our result suggests that brain plasmalogen is one of the key molecules to control behavior and that its injection using liposome is a potential therapeutic approach for cognitive impairment.
Collapse
|
8
|
Liu CM, Liu YL, Hwu HG, Fann CSJ, Yang UC, Hsu PC, Chang CC, Chen WJ, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Lin YT, Tsuang MT. Genetic associations and expression of extra-short isoforms of disrupted-in-schizophrenia 1 in a neurocognitive subgroup of schizophrenia. J Hum Genet 2019; 64:653-663. [PMID: 30976040 DOI: 10.1038/s10038-019-0597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was reported to be associated with schizophrenia. In a previous study, we found significant association with schizophrenia patients with deficient sustained attention assessed by continuous performance test (CPT). This study aimed to identify risk polymorphisms in this specific neurocognitive subgroup and investigate the expression of different isoforms of DISC1. A total of 83 genetic variants were identified through direct sequencing in 50 controls and 100 schizophrenia patients. Fourteen variants were genotyped in 600 controls and 912 patients. Patients were subgrouped by familial loading (multiplex or simplex) and performance on CPT. The frequency of AA genotype of rs11122324 at the 3'-UTR of Es and Esv1 isoforms and of rs2793091 at intron 4 were significantly higher in multiplex schizophrenia patients than those in controls (corrected p < 0.05). In further subgrouping, the frequency of AA genotype of the two SNPs were significantly higher in multiplex schizophrenia patients with deficient sustained attention than those in controls (corrected p < 0.005). The mRNA expression levels of two extra-short isoforms (Es and Esv1) in the EBV-transformed lymphocytes of schizophrenia were significantly higher than those of controls. Luciferase reporter assays demonstrated that the A-allele of rs11122324 significantly upregulated DISC1 extra-short isoforms transcription compared with the G-allele. We found two SNPs (rs11122324 and rs2793091) of DISC1 may be specifically associated with multiplex schizophrenia patients with deficient sustained attention. The SNP rs11122324 may be a risk polymorphism, which may have functional influence on the transcription of Es and Esv1 through increasing their expression.
Collapse
Affiliation(s)
- Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan. .,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Ueng-Cheng Yang
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Hsu
- Institute of Bioinformatics, National Yang-Ming University, Taipei, Taiwan
| | | | - Wei J Chen
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tin Lin
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming T Tsuang
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Harvard Departments of Epidemiology and Psychiatry, Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
9
|
|
10
|
Zanella R, Morés N, Morés MAZ, Peixoto JO, Zanella EL, Ciacci-Zanella JR, Ibelli AMG, Gava D, Cantão ME, Ledur MC. Genome-wide association study of periweaning failure-to-thrive syndrome (PFTS) in pigs. Vet Rec 2016; 178:653. [PMID: 27162284 DOI: 10.1136/vr.103546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Porcine periweaning-failure-to-thrive syndrome (PFTS) is a condition that affects newly weaned piglets. It is characterised by a progressive debilitation leading to death, in the absence of infectious, nutritional, management or environmental factors. In this study, we present the first report of PFTS in South America and the results of a genome-wide association study to identify the genetic markers associated with the appearance of this condition in a crossbred swine population. Four chromosomal regions were associated with PFTS predisposition, one located on SSCX, one on SSC8, and the two other regions on SSC14. Regions on SSC8 and SSC14 harbour important functional candidate genes involved in human depression and might have an important role in PFTS. Our findings contribute to the increasing knowledge about this syndrome, which has been investigated since 2007, and to the identification of the aetiology of this disease.
Collapse
Affiliation(s)
- R Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - N Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M A Z Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - J O Peixoto
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - E L Zanella
- R. Zanella's present address is College of Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - J R Ciacci-Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - A M G Ibelli
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - D Gava
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M E Cantão
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M C Ledur
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| |
Collapse
|
11
|
Greenwood TA, Lazzeroni LC, Calkins ME, Freedman R, Green MF, Gur RE, Gur RC, Light GA, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophr Res 2016; 170:30-40. [PMID: 26597662 PMCID: PMC4707095 DOI: 10.1016/j.schres.2015.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 01/15/2023]
Abstract
The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| | - Laura C Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO, United States
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States; VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, United States
| | - Keith H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver, CO, United States
| | - Allen D Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States; VA Puget Sound Health Care System, Seattle, WA, United States
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Larry J Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States; James J. Peters VA Medical Center, New York, NY, United States
| | - Jeremy M Silverman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, United States; James J. Peters VA Medical Center, New York, NY, United States
| | - William S Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Catherine A Sugar
- Department of Biostatistics, University of California Los Angeles School of Public Health, Los Angeles, CA, United States
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Debby W Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States; VA Puget Sound Health Care System, Seattle, WA, United States
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Center for Behavioral Genomics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States; Harvard Institute of Psychiatric Epidemiology and Genetics, Boston, MA, United States
| | - Bruce I Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, United States
| |
Collapse
|
12
|
Rosen AM, Spellman T, Gordon JA. Electrophysiological endophenotypes in rodent models of schizophrenia and psychosis. Biol Psychiatry 2015; 77:1041-9. [PMID: 25910423 PMCID: PMC4444383 DOI: 10.1016/j.biopsych.2015.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/03/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia is caused by a diverse array of risk factors and results in a similarly diverse set of symptoms. Electrophysiological endophenotypes lie between risks and symptoms and have the potential to link the two. Electrophysiological studies in rodent models, described here, demonstrate that widely differing risk factors result in a similar set of core electrophysiological endophenotypes, suggesting the possibility of a shared neurobiological substrate.
Collapse
Affiliation(s)
- Andrew M. Rosen
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Timothy Spellman
- Department of Physiology, College of Physicians and Surgeons Columbia University New York, NY 10032
| | - Joshua A. Gordon
- Department of Psychiatry, College of Physicians and Surgeons Columbia University New York, NY 10032,Division of Integrative Neuroscience New York State Psychiatric Institute New York NY 10032,Correspondence to: Joshua A. Gordon 1051 Riverside Drive Unit 87 Kolb Annex Room 140 New York, NY 10032 Ph. 646 774-7116 Fax. 646 774-7101
| |
Collapse
|
13
|
Muraki K, Tanigaki K. Neuronal migration abnormalities and its possible implications for schizophrenia. Front Neurosci 2015; 9:74. [PMID: 25805966 PMCID: PMC4354421 DOI: 10.3389/fnins.2015.00074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/20/2015] [Indexed: 02/01/2023] Open
Abstract
Schizophrenia is a complex mental disorder that displays behavioral deficits such as decreased sensory gating, reduced social interaction and working memory deficits. The neurodevelopmental model is one of the widely accepted hypotheses of the etiology of schizophrenia. Subtle developmental abnormalities of the brain which stated long before the onset of clinical symptoms are thought to lead to the emergence of illness. Schizophrenia has strong genetic components but its underlying molecular pathogenesis is still poorly understood. Genetic linkage and association studies have identified several genes involved in neuronal migrations as candidate susceptibility genes for schizophrenia, although their effect size is small. Recent progress in copy number variation studies also has identified much higher risk loci such as 22q11. Based on these genetic findings, we are now able to utilize genetically-defined animal models. Here we summarize the results of neurodevelopmental and behavioral analysis of genetically-defined animal models. Furthermore, animal model experiments have demonstrated that embryonic and perinatal neurodevelopmental insults in neurogenesis and neuronal migrations cause neuronal functional and behavioral deficits in affected adult animals, which are similar to those of schizophrenic patients. However, these findings do not establish causative relationship. Genetically-defined animal models are a critical approach to explore the relationship between neuronal migration abnormalities and behavioral abnormalities relevant to schizophrenia.
Collapse
Affiliation(s)
- Kazue Muraki
- Shiga Medical Center, Research Institute Moriyama, Shiga, Japan
| | - Kenji Tanigaki
- Shiga Medical Center, Research Institute Moriyama, Shiga, Japan
| |
Collapse
|
14
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Vázquez-Bourgon J, Mata I, Roiz-Santiáñez R, Ayesa-Arriola R, Suárez Pinilla P, Tordesillas-Gutiérrez D, Vázquez-Barquero JL, Crespo-Facorro B. A Disrupted-in-Schizophrenia 1 Gene Variant is Associated with Clinical Symptomatology in Patients with First-Episode Psychosis. Psychiatry Investig 2014; 11:186-91. [PMID: 24843375 PMCID: PMC4023094 DOI: 10.4306/pi.2014.11.2.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE DISC1 gene is one of the main candidate genes for schizophrenia since it has been associated to the illness in several populations. Moreover, variations in several DISC1 polymorphisms, and in particular Ser704Cys SNP, have been associated in schizophrenic patients to structural and functional modifications in two brain areas (pre-frontal cortex and hippocampus) that play a central role in the genesis of psychotic symptoms. This study tested the association between Ser704Cys DISC1 polymorphism and the clinical onset of psychosis. METHODS Two hundred and thirteen Caucasian drug-naive patients experiencing a first episode of non-affective psychosis were genotyped for rs821616 (Ser704Cys) SNP of the DISC1 gene. The clinical severity of the illness was assessed using SAPS and SANS scales. Other clinical and socio-demographic variables were recorded to rule out possible confounding effects. RESULTS Patients homozygous for the Ser allele of the Ser704Cys DISC1 SNP had significantly (p<0.05) higher rates at the positive symptoms dimension (SAPS-SANS scales) and hallucinations item, compared to Cys carriers. CONCLUSION DISC1 gene variations may modulate the clinical severity of the psychosis at the onset of the disorder.
Collapse
Affiliation(s)
- Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marques de Valdecilla-IFIMAV, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Ignacio Mata
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Roberto Roiz-Santiáñez
- Department of Psychiatry, University Hospital Marques de Valdecilla-IFIMAV, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, University Hospital Marques de Valdecilla-IFIMAV, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Paula Suárez Pinilla
- Department of Psychiatry, University Hospital Marques de Valdecilla-IFIMAV, School of Medicine, University of Cantabria, Santander, Spain
| | - Diana Tordesillas-Gutiérrez
- Department of Psychiatry, University Hospital Marques de Valdecilla-IFIMAV, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - José Luis Vázquez-Barquero
- Department of Psychiatry, University Hospital Marques de Valdecilla-IFIMAV, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital Marques de Valdecilla-IFIMAV, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
16
|
Chen WJ. Taiwan Schizophrenia Linkage Study: lessons learned from endophenotype-based genome-wide linkage scans and perspective. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:636-47. [PMID: 24132895 DOI: 10.1002/ajmg.b.32166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022]
Abstract
Taiwan Schizophrenia Linkage Study (TSLS) was initiated with a linkage strategy for locating multiple genes, each of small to moderate effect, and aimed to recruit a large enough sample of pairs of affected siblings and their families ascertained from a multisite study. With a sample of 607 families successfully recruited, a total of 2,242 individuals (1,207 affected and 1,035 unaffected) from 557 families were genotyped using 386 microsatellite markers spaced at an average of 9-cM intervals. Here the author reviews the establishment of TSLS and initial signal derived from linkage scan using the diagnosis of schizophrenia. Based on the limited success of the initial linkage analysis, a sufficient-component causal model is proposed to incorporate endophenotypes and genes for schizophrenia. Four types of candidate endophenotype measured in TSLS, including schizotypal personality, Continuous Performance Test, Wisconsin Card Sorting Test, and niacin skin flush test, are briefly described. The author discusses different strategies of linkage analysis incorporating these endophenotypes, including quantitative trait loci (QTL) linkage analysis, clustering-derived subgroups, ordered subset analysis (OSA), and latent classes for linkage scan. Then the author summarizes the linkage signals generated from seven studies of endophenotype-based linkage analysis using TSLS, including QTL scan of neurocognitive performance, QTL scan of niacin skin flush, the family cluster of attention deficit and execution deficit, OSA by schizophrenia-schizotypy factors, nested OSA by age at onset and neurocognitive performance, and the latent class of deficit schizophrenia for linkage analysis. The perspective of combining next-generation sequencing with linkage analysis of families is also discussed.
Collapse
Affiliation(s)
- Wei J Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Genetic Epidemiology Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med 2013; 11:132. [PMID: 23680237 PMCID: PMC3668172 DOI: 10.1186/1741-7015-11-132] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/19/2013] [Indexed: 01/29/2023] Open
Abstract
The central theme of personalized medicine is the premise that an individual's unique physiologic characteristics play a significant role in both disease vulnerability and in response to specific therapies. The major goals of personalized medicine are therefore to predict an individual's susceptibility to developing an illness, achieve accurate diagnosis, and optimize the most efficient and favorable response to treatment. The goal of achieving personalized medicine in psychiatry is a laudable one, because its attainment should be associated with a marked reduction in morbidity and mortality. In this review, we summarize an illustrative selection of studies that are laying the foundation towards personalizing medicine in major depressive disorder, bipolar disorder, and schizophrenia. In addition, we present emerging applications that are likely to advance personalized medicine in psychiatry, with an emphasis on novel biomarkers and neuroimaging.
Collapse
Affiliation(s)
- Uzoezi Ozomaro
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Charles B Nemeroff
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Yang HC, Liu CM, Liu YL, Chen CW, Chang CC, Fann CSJ, Chiou JJ, Yang UC, Chen CH, Faraone SV, Tsuang MT, Hwu HG. The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population. PLoS One 2013; 8:e60099. [PMID: 23555897 PMCID: PMC3610748 DOI: 10.1371/journal.pone.0060099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 02/22/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment. METHODS We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia. RESULTS We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO. CONCLUSIONS These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Jie Chiou
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Stephen V. Faraone
- Medical Genetics Research Center and Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, United States of America
- Institute of Behavioral Genomics, University of California San Diego, La Jolla, California, United States of America
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Statistical epistasis and progressive brain change in schizophrenia: an approach for examining the relationships between multiple genes. Mol Psychiatry 2012; 17:1093-102. [PMID: 21876540 PMCID: PMC3235542 DOI: 10.1038/mp.2011.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although schizophrenia is generally considered to occur as a consequence of multiple genes that interact with one another, very few methods have been developed to model epistasis. Phenotype definition has also been a major challenge for research on the genetics of schizophrenia. In this report, we use novel statistical techniques to address the high dimensionality of genomic data, and we apply a refinement in phenotype definition by basing it on the occurrence of brain changes during the early course of the illness, as measured by repeated magnetic resonance scans (i.e., an 'intermediate phenotype.') The method combines a machine-learning algorithm, the ensemble method using stochastic gradient boosting, with traditional general linear model statistics. We began with 14 genes that are relevant to schizophrenia, based on association studies or their role in neurodevelopment, and then used statistical techniques to reduce them to five genes and 17 single nucleotide polymorphisms (SNPs) that had a significant statistical interaction: five for PDE4B, four for RELN, four for ERBB4, three for DISC1 and one for NRG1. Five of the SNPs involved in these interactions replicate previous research in that, these five SNPs have previously been identified as schizophrenia vulnerability markers or implicate cognitive processes relevant to schizophrenia. This ability to replicate previous work suggests that our method has potential for detecting a meaningful epistatic relationship among the genes that influence brain abnormalities in schizophrenia.
Collapse
|
20
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
21
|
Gender-specific association of TSNAX/DISC1 locus for schizophrenia and bipolar affective disorder in South Indian population. J Hum Genet 2012; 57:523-30. [PMID: 22673686 DOI: 10.1038/jhg.2012.62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genetic association studies have implicated the TSNAX/DISC1 (disrupted in schizophrenia 1) in schizophrenia (SCZ), bipolar affective disorder (BPAD) and major depression. This study was performed to assess the possible involvement of TSNAX/DISC1 locus in the aetiology of BPAD and SCZ in the Southern Indian population. We genotyped seven single nucleotide polymorphism (SNPs) from TSNAX/DISC1 region in 1252 individuals (419 BPAD patients, 408 SCZ patients and 425 controls). Binary logistic regression revealed a nominal association for rs821616 in DISC1 for BPAD and also combined cases of BPAD or SCZ, but after correcting for multiple testing, these results were non-significant. However, significant association was observed with BPAD, as well as combined cases of BPAD or SCZ, within the female subjects for the rs766288 after applying false discovery rate corrections at the 0.05 level. Two-locus analysis showed C-C (rs766288-rs2812393) as a risk combination in BPAD, and G-T (rs2812393-rs821616) as a protective combination in SCZ and combined cases of BPAD or SCZ. Female-specific associations were observed for rs766288-rs2812393, rs766288-rs821616 and rs8212393-rs821616 in two-locus analysis. Our results provide further evidence for sex-dependent effects of the TSNAX/DISC1 locus in the aetiology of SCZ and BPAD.
Collapse
|
22
|
Abstract
Schizophrenia is a prevalent complex trait disorder manifested by severe neurocognitive dysfunctions and lifelong disability. During the past few years several studies have provided direct evidence for the involvement of different signaling pathways in schizophrenia. In this review, we mainly focus on AKT/GSK3 signaling pathway in schizophrenia. The original study on the involvement of this pathway in schizophrenia was published by Emamian et al. in 2004. This study reported convergent evidence for a decrease in AKT1 protein levels and levels of phosphorylation of GSK-3β in the peripheral lymphocytes and brains of individuals with schizophrenia; a significant association between schizophrenia and an AKT1 haplotype; and a greater sensitivity to the sensorimotor gating-disruptive effect of amphetamine, conferred by AKT1 deficiency. It also showed that haloperidol can induce a stepwise increase in regulatory phosphorylation of AKT1 in the brains of treated mice that could compensate for the impaired function of this signaling pathway in schizophrenia. Following this study, several independent studies were published that not only confirmed the association of this signaling pathway with schizophrenia across different populations, but also shed light on the mechanisms by which AKT/GSK3 pathway may contribute to the development of this complex disorder. In this review, following an introduction on the role of AKT in human diseases and its functions in neuronal and non-neuronal cells, a review on the results of studies published on AKT/GSK3 signaling pathway in schizophrenia after the original 2004 paper will be provided. A brief review on other signaling pathways involved in schizophrenia and the possible connections with AKT/GSK3 signaling pathway will be discussed. Moreover, some possible molecular mechanisms acting through this pathway will be discussed besides the mechanisms by which they may contribute to the pathogenesis of schizophrenia. Finally, different transcription factors related to schizophrenia will be reviewed to see how hypo-activity of AKT signaling pathway may impact such transcriptional mechanisms.
Collapse
Affiliation(s)
- Effat S Emamian
- Advanced Technologies for Novel Therapeutics (ATNT), Newark NJ, USA.
| |
Collapse
|
23
|
Abstract
Although disrupted in schizophrenia 1 (DISC1) has been implicated in many psychiatric disorders, including schizophrenia, bipolar disorder, schizoaffective disorder and major depression, its biological role in these disorders is unclear. To better understand this gene and its role in psychiatric disease, we conducted transcriptional profiling and genome-wide association analysis in 1232 pedigreed Mexican-American individuals for whom we have neuroanatomic images, neurocognitive assessments and neuropsychiatric diagnoses. SOLAR was used to determine heritability, identify gene expression patterns and perform association analyses on 188 quantitative brain-related phenotypes. We found that the DISC1 transcript is highly heritable (h(2)=0.50; P=1.97 × 10(-22)), and that gene expression is strongly cis-regulated (cis-LOD=3.89) but is also influenced by trans-effects. We identified several DISC1 polymorphisms that were associated with cortical gray matter thickness within the parietal, temporal and frontal lobes. Associated regions affiliated with memory included the entorhinal cortex (rs821639, P=4.11 × 10(-5); rs2356606, P=4.71 × 10(-4)), cingulate cortex (rs16856322, P=2.88 × 10(-4)) and parahippocampal gyrus (rs821639, P=4.95 × 10(-4)); those affiliated with executive and other cognitive processing included the transverse temporal gyrus (rs9661837, P=5.21 × 10(-4); rs17773946, P=6.23 × 10(-4)), anterior cingulate cortex (rs2487453, P=4.79 × 10(-4); rs3738401, P=5.43 × 10(-4)) and medial orbitofrontal cortex (rs9661837; P=7.40 × 10(-4)). Cognitive measures of working memory (rs2793094, P=3.38 × 10(-4)), as well as lifetime history of depression (rs4658966, P=4.33 × 10(-4); rs12137417, P=4.93 × 10(-4)) and panic (rs12137417, P=7.41 × 10(-4)) were associated with DISC1 sequence variation. DISC1 has well-defined genetic regulation and clearly influences important phenotypes related to psychiatric disease.
Collapse
|
24
|
Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 2011; 168:930-46. [PMID: 21498463 PMCID: PMC3751972 DOI: 10.1176/appi.ajp.2011.10050723] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The authors used a custom array of 1,536 single-nucleotide polymorphisms (SNPs) to interrogate 94 functionally relevant candidate genes for schizophrenia and identify associations with 12 heritable neurophysiological and neurocognitive endophenotypes in data collected by the Consortium on the Genetics of Schizophrenia. METHOD Variance-component association analyses of 534 genotyped subjects from 130 families were conducted by using Merlin software. A novel bootstrap total significance test was also developed to overcome the limitations of existing genomic multiple testing methods and robustly demonstrate significant associations in the context of complex family data and possible population stratification effects. RESULTS Associations with endophenotypes were observed for 46 genes of potential functional significance, with three SNPs at p<10(-4), 27 SNPs at p<10(-3), and 147 SNPs at p<0.01. The bootstrap analyses confirmed that the 47 SNP-endophenotype combinations with the strongest evidence of association significantly exceeded that expected by chance alone, with 93% of these findings expected to be true. Many of the genes interact on a molecular level, and eight genes (e.g., NRG1 and ERBB4) displayed evidence for pleiotropy, revealing associations with four or more endophenotypes. The results collectively support a strong role for genes related to glutamate signaling in mediating schizophrenia susceptibility. CONCLUSIONS This study supports use of relevant endophenotypes and the bootstrap total significance test for identifying genetic variation underlying the etiology of schizophrenia. In addition, the observation of extensive pleiotropy for some genes and singular associations for others suggests alternative, independent pathways mediating pathogenesis in the "group of schizophrenias."
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093-0804, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kvajo M, McKellar H, Gogos JA. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 2011; 211:136-64. [PMID: 21821099 DOI: 10.1016/j.neuroscience.2011.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 01/31/2023]
Abstract
Schizophrenia is one of the most common psychiatric disorders, but despite progress in identifying the genetic factors implicated in its development, the mechanisms underlying its etiology and pathogenesis remain poorly understood. Development of mouse models is critical for expanding our understanding of the causes of schizophrenia. However, translation of disease pathology into mouse models has proven to be challenging, primarily due to the complex genetic architecture of schizophrenia and the difficulties in the re-creation of susceptibility alleles in the mouse genome. In this review we highlight current research on models of major susceptibility loci and the information accrued from their analysis. We describe and compare the different approaches that are necessitated by diverse susceptibility alleles, and discuss their advantages and drawbacks. Finally, we discuss emerging mouse models, such as second-generation pathophysiology models based on innovative approaches that are facilitated by the information gathered from the current genetic mouse models.
Collapse
Affiliation(s)
- M Kvajo
- Department of Physiology and Cellular Biophysics, College of Physicians & Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
26
|
Nicodemus KK, Callicott JH, Higier RG, Luna A, Nixon DC, Lipska BK, Vakkalanka R, Giegling I, Rujescu D, St Clair D, Muglia P, Shugart YY, Weinberger DR. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Hum Genet 2011; 127:441-52. [PMID: 20084519 DOI: 10.1007/s00439-009-0782-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/24/2009] [Indexed: 02/05/2023]
Abstract
The etiology of schizophrenia likely involves genetic interactions. DISC1, a promising candidate susceptibility gene, encodes a protein which interacts with many other proteins, including CIT, NDEL1, NDE1, FEZ1 and PAFAH1B1, some of which also have been associated with psychosis. We tested for epistasis between these genes in a schizophrenia case-control study using machine learning algorithms (MLAs: random forest, generalized boosted regression andMonteCarlo logic regression). Convergence of MLAs revealed a subset of seven SNPs that were subjected to 2-SNP interaction modeling using likelihood ratio tests for nested unconditional logistic regression models. Of the 7C2 = 21 interactions, four were significant at the α = 0.05 level: DISC1 rs1411771-CIT rs10744743 OR = 3.07 (1.37, 6.98) p = 0.007; CIT rs3847960-CIT rs203332 OR = 2.90 (1.45, 5.79) p = 0.003; CIT rs3847960-CIT rs440299 OR = 2.16 (1.04, 4.46) p = 0.038; one survived Bonferroni correction (NDEL1 rs4791707-CIT rs10744743 OR = 4.44 (2.22, 8.88) p = 0.00013). Three of four interactions were validated via functional magnetic resonance imaging (fMRI) in an independent sample of healthy controls; risk associated alleles at both SNPs predicted prefrontal cortical inefficiency during the N-back task, a schizophrenia-linked intermediate biological phenotype: rs3847960-rs440299; rs1411771-rs10744743, rs4791707-rs10744743 (SPM5 p < 0.05, corrected), although we were unable to statistically replicate the interactions in other clinical samples. Interestingly, the CIT SNPs are proximal to exons that encode theDISC1 interaction domain. In addition, the 3' UTR DISC1 rs1411771 is predicted to be an exonic splicing enhancer and the NDEL1 SNP is ~3,000 bp from the exon encoding the region of NDEL1 that interacts with the DISC1 protein, giving a plausible biological basis for epistasis signals validated by fMRI.
Collapse
Affiliation(s)
- Kristin K Nicodemus
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chakirova G, Whalley HC, Thomson PA, Hennah W, Moorhead TWJ, Welch KA, Giles S, Hall J, Johnstone EC, Lawrie SM, Porteous DJ, Brown VJ, McIntosh AM. The effects of DISC1 risk variants on brain activation in controls, patients with bipolar disorder and patients with schizophrenia. Psychiatry Res 2011; 192:20-8. [PMID: 21376542 DOI: 10.1016/j.pscychresns.2011.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 11/12/2010] [Accepted: 01/13/2011] [Indexed: 01/15/2023]
Abstract
Three risk variants (rs1538979, rs821577, and rs821633) in the Disrupted-in-Schizophrenia-1 (DISC1) gene have previously been associated with both schizophrenia and bipolar disorder in a recent collaborative analysis of European cohorts. In this study we examined the effects of these risk variants on brain activation during functional magnetic resonance imaging (fMRI) of the Hayling Sentence Completion Task (HSCT) in healthy volunteers (n=33), patients with schizophrenia (n=20) and patients with bipolar disorder (n=36). In the healthy controls the risk associated allele carriers of SNPs rs1538979 and rs821633 demonstrated decreased activation of the cuneus. Moreover, there was an effect of SNP rs1538979 in the pre/postcentral gyrus with decreased activation in healthy controls and increased activation in patients with schizophrenia. In the bipolar group there was decreased activation in the risk carriers of SNP rs821633 in the inferior parietal lobule and left cingulate cortex. Clusters in the precentral gyrus, left middle temporal gyrus and left cerebellum were found to be significant on examining the group × genotype interactions. These findings may provide a better understanding of the neural effects of DISC1 variants and on the pathophysiology of schizophrenia and bipolar disorder.
Collapse
|
28
|
Association of DISC1 gene with schizophrenia in families from two distinct French and Algerian populations. Psychiatr Genet 2010; 20:298-303. [DOI: 10.1097/ypg.0b013e32833aa5c4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Abou Jamra R, Schulze TG, Becker T, Brockschmidt FF, Green E, Alblas MA, Wendland JR, Adli M, Grozeva D, Strohmeier J, Georgi A, Craddock N, Propping P, Rietschel M, Nöthen MM, Cichon S, Schumacher J. A systematic association mapping on chromosome 6q in bipolar affective disorder--evidence for the melanin-concentrating-hormone-receptor-2 gene as a risk factor for bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:878-84. [PMID: 19927306 DOI: 10.1002/ajmg.b.31051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Strong evidence of linkage between chromosomal region 6q16-q22 and bipolar affective disorder (BPAD) has previously been reported. We conducted a systematic association mapping of the 6q-linkage interval using 617 SNP markers in a BPAD case-control sample of German descent (cases = 330, controls = 325). In this screening step, 46 SNPs showed nominally significant BPAD-association (P-values between 0.0007 and 0.0484). Although none of the 46 SNPs survived correction for multiple testing, they were genotyped in a second and ethnically matched BPAD sample (cases = 328, controls = 397). At the melanin-concentrating-hormone-receptor-2 (MCHR2) gene, we found nominal association in both the initial and second BPAD samples (combined P = 0.008). This finding was followed up by the genotyping of 17 additional MCHR2-SNPs in the combined sample in order to define our findings more precisely. We found that the MCHR2-locus can be divided into three different haplotype-blocks, and observed that the MCHR2-association was most pronounced in BPAD male patients with psychotic symptoms. In two neighboring blocks, putative risk-haplotypes were found to be 7% more frequent in patients (block II: 23.3% vs. 16.2%, P = 0.005, block III: 39.2% vs. 32.0%, P = 0.024), whereas the putative protective haplotypes were found to be 5-8% less frequent in patients (block II: 11.6% vs. 16.4%, P = 0.041, block III: 30.0% vs. 38.8%, P = 0.007). The corresponding odds ratios (single-marker analysis) ranged between 1.25 and 1.46. Our findings may indicate that MCHR2 is a putative risk factor for BPAD. These findings should be interpreted with caution and replicated in independent BPAD samples.
Collapse
Affiliation(s)
- Rami Abou Jamra
- Institute of Human Genetics, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dick DM, Riley B, Kendler KS. Nature and nurture in neuropsychiatric genetics: where do we stand? DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20373663 PMCID: PMC3181950 DOI: 10.31887/dcns.2010.12.1/ddick] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Both genetic and nongenetic risk factors, as well as interactions and correlations between them, are thought to contribute to the etiology of psychiatric and behavioral phenotypes. Genetic epidemiology consistently supports the involvement of genes in liability. Molecular genetic studies have been less successful in identifying liability genes, but recent progress suggests that a number of specific genes contributing to risk have been identified. Collectively, the results are complex and inconsistent, with a single common DNA variant in any gene influencing risk across human populations. Few specific genetic variants influencing risk have been unambiguously identified. Contemporary approaches, however, hold great promise to further elucidate liability genes and variants, as well as their potential inter-relationships with each other and with the environment. We will review the fields of genetic epidemiology and molecular genetics, providing examples from the literature to illustrate the key concepts emerging from this work.
Collapse
Affiliation(s)
- Danielle M Dick
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Richmond 23298, USA
| | | | | |
Collapse
|
31
|
Abstract
Schizophrenia is one of the most common psychiatric disorders, but despite some progress in identifying the genetic factors implicated in its development, the molecular mechanisms underlying its etiology and pathogenesis remain poorly understood. However, accumulating evidence suggests that regardless of the underlying genetic complexity, the mechanisms of the disease may impact a small number of common signaling pathways. In this review, we discuss the evidence for a role of schizophrenia susceptibility genes in intracellular signaling cascades by focusing on three prominent candidate genes: AKT, PPP3CC (calcineurin), and DISC1. We describe the regulation of a number of signaling cascades by AKT and calcineurin through protein phosphorylation and dephosphorylation, and the recently uncovered functions of DISC1 in cAMP and GSK3beta signaling. In addition, we present independent evidence for the involvement of their downstream signaling pathways in schizophrenia. Finally, we discuss evidence supporting an impact of these susceptibility genes on common intracellular signaling pathways and the convergence of their effects on neuronal processes implicated in schizophrenia.
Collapse
Affiliation(s)
- Mirna Kvajo
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
32
|
Wessman J, Paunio T, Tuulio-Henriksson A, Koivisto M, Partonen T, Suvisaari J, Turunen JA, Wedenoja J, Hennah W, Pietiläinen OPH, Lönnqvist J, Mannila H, Peltonen L. Mixture model clustering of phenotype features reveals evidence for association of DTNBP1 to a specific subtype of schizophrenia. Biol Psychiatry 2009; 66:990-6. [PMID: 19782967 DOI: 10.1016/j.biopsych.2009.05.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 05/08/2009] [Accepted: 05/09/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND While DTNBP1, DISC1, and NRG1 have been extensively studied as candidate genes of schizophrenia, results remain inconclusive. Possible explanations for this are that the genes might be relevant only to certain subtypes of the disease and/or only in certain populations. METHODS We performed unsupervised clustering of individuals from Finnish schizophrenia families, based on extensive clinical and neuropsychological data, including Structured Clinical Interview for DSM-IV (SCID) information. Families with at least one affected member with DSM-IV diagnosis of a schizophrenia spectrum psychosis were included in a register-based ascertainment. Final sample consisted of 904 individuals from 288 families. We then used the cluster phenotypes in a genetic association study of candidate genes. RESULTS A robust three-class clustering of individuals emerged: 1) psychotic disorder with mood symptoms (n = 172), 2) core schizophrenia (n = 223), and 3) absence of psychotic disorder (n = 509). One third of the individuals diagnosed with schizophrenia were assigned to cluster 1. These individuals had fewer negative and positive psychotic symptoms and cognitive deficits but more depressive symptoms than individuals in cluster 2. There was a significant association of cluster 2 cases with the DTNBP1 gene, while the DISC1 gene indicated a significant association with schizophrenia spectrum disorders based on the DSM-IV criteria. CONCLUSIONS In the Finnish population, DTNBP1 gene is associated with a schizophrenia phenotype characterized by prominent negative symptoms, generalized cognitive impairment, and few mood symptoms. Identification of genes and pathways related to schizophrenia necessitates novel definitions of disease phenotypes associated more directly with underlying biology.
Collapse
Affiliation(s)
- Jaana Wessman
- Department of Molecular Medicine, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mata I, Perez-Iglesias R, Roiz-Santiañez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Berja A, Vazquez-Barquero JL, Crespo-Facorro B. Additive effect of NRG1 and DISC1 genes on lateral ventricle enlargement in first episode schizophrenia. Neuroimage 2009; 53:1016-22. [PMID: 19913623 DOI: 10.1016/j.neuroimage.2009.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/16/2022] Open
Abstract
Neuregulin 1 (NRG1) and Disrupted-in-schizophrenia (DISC1) genes, which are candidate genes for schizophrenia, are implicated in brain development. We have previously reported an association between the T allele of the rs6994992 SNP within NRG1 gene and lateral ventricle (LV) enlargement in first-episode schizophrenia patients. Moreover, transgenic mice with mutant DISC1 have also been reported as showing LV enlargement. In this study, we examined the possible interactive effects of NRG1 and DISC1 on brain volumes in a sample of first-episode schizophrenia patients. Ninety-one patients experiencing their first episode of schizophrenia underwent genotyping of three SNPs within DISC1 and structural brain MRI. These results were combined with our previously reported genotypes on three SNPs within NRG1. The T/T genotype of rs2793092 SNP in DISC1 was significantly associated with increased LV volume. However, taking into account the rs6994992 SNP in the NRG1 gene, which was also associated with LV volume in a previous study, the DISC1 SNP only predicted LV enlargement among those patients carrying the T allele in the NRG1 SNP. Those patients with the "at risk" allelic combinations in both genes had LV volumes which were 48% greater than those with none of the allelic combinations. Our findings suggest that NRG1 and DISC1 genes may be associated with brain abnormalities in schizophrenia through their influence on related pathways of brain development.
Collapse
Affiliation(s)
- Ignacio Mata
- Department of Psychiatry, University Hospital Marques de Valdecilla, School of Medicine, University of Cantabria, Santander, Spain, CIBERSAM
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin SH, Liu CM, Liu YL, Fann CSJ, Hsiao PC, Wu JY, Hung SI, Chen CH, Wu HM, Jou YS, Liu SK, Hwang TJ, Hsieh MH, Chang CC, Yang WC, Lin JJ, Chou FHC, Faraone SV, Tsuang MT, Hwu HG, Chen WJ. Clustering by neurocognition for fine mapping of the schizophrenia susceptibility loci on chromosome 6p. GENES, BRAIN, AND BEHAVIOR 2009; 8:785-94. [PMID: 19694819 PMCID: PMC4286260 DOI: 10.1111/j.1601-183x.2009.00523.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosome 6p is one of the most commonly implicated regions in the genome-wide linkage scans of schizophrenia, whereas further association studies for markers in this region were inconsistent likely due to heterogeneity. This study aimed to identify more homogeneous subgroups of families for fine mapping on regions around markers D6S296 and D6S309 (both in 6p24.3) as well as D6S274 (in 6p22.3) by means of similarity in neurocognitive functioning. A total of 160 families of patients with schizophrenia comprising at least two affected siblings who had data for eight neurocognitive test variables of the continuous performance test (CPT) and the Wisconsin card sorting test (WCST) were subjected to cluster analysis with data visualization using the test scores of both affected siblings. Family clusters derived were then used separately in family-based association tests for 64 single nucleotide polymorphisms (SNPs) covering the region of 6p24.3 and 6p22.3. Three clusters were derived from the family-based clustering, with deficit cluster 1 representing deficit on the CPT, deficit cluster 2 representing deficit on both the CPT and the WCST, and a third cluster of nondeficit. After adjustment using false discovery rate for multiple testing, SNP rs13873 and haplotype rs1225934-rs13873 on BMP6-TXNDC5 genes were significantly associated with schizophrenia for the deficit cluster 1 but not for the deficit cluster 2 or nondeficit cluster. Our results provide further evidence that the BMP6-TXNDC5 locus on 6p24.3 may play a role in the selective impairments on sustained attention of schizophrenia.
Collapse
Affiliation(s)
- Sheng-Hsiang Lin
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Zhunan, Taiwan
| | | | - Po-Chang Hsiao
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Jer-Yuarn Wu
- National Genotyping Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shuen-Iu Hung
- National Genotyping Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Han-Ming Wu
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shi K. Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Tzung J. Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming H. Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Wei-Chih Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Jia Lin
- Department of Psychiatry, Chimei Medical Center, Tainan, Taiwan
| | | | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, USA
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, California, USA
| | - Hai-Gwo Hwu
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Wei J. Chen
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
35
|
Hennah W, Thomson P, McQuillin A, Bass N, Loukola A, Anjorin A, Blackwood D, Curtis D, Deary IJ, Harris SE, Isometsä ET, Lawrence J, Lönnqvist J, Muir W, Palotie A, Partonen T, Paunio T, Pylkkö E, Robinson M, Soronen P, Suominen K, Suvisaari J, Thirumalai S, St Clair D, Gurling H, Peltonen L, Porteous D. DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry 2009; 14:865-73. [PMID: 18317464 DOI: 10.1038/mp.2008.22] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) has been associated with risk of schizophrenia, schizoaffective disorder, bipolar disorder, major depression, autism and Asperger syndrome, but apart from in the original translocation family, true causal variants have yet to be confirmed. Here we report a harmonized association study for DISC1 in European cohorts of schizophrenia and bipolar disorder. We identify regions of significant association, demonstrate allele frequency heterogeneity and provide preliminary evidence for modifying interplay between variants. Whereas no associations survived permutation analysis in the combined data set, significant corrected associations were observed for bipolar disorder at rs1538979 in the Finnish cohorts (uncorrected P=0.00020; corrected P=0.016; odds ratio=2.73+/-95% confidence interval (CI) 1.42-5.27) and at rs821577 in the London cohort (uncorrected P=0.00070; corrected P=0.040; odds ratio=1.64+/-95% CI 1.23-2.19). The rs821577 single nucleotide polymorphism (SNP) showed evidence for increased risk within the combined European cohorts (odds ratio=1.27+/-95% CI 1.07-1.51), even though significant corrected association was not detected (uncorrected P=0.0058; corrected P=0.28). After conditioning the European data set on the two risk alleles, reanalysis revealed a third significant SNP association (uncorrected P=0.00050; corrected P=0.025). This SNP showed evidence for interplay, either increasing or decreasing risk, dependent upon the presence or absence of rs1538979 or rs821577. These findings provide further support for the role of DISC1 in psychiatric illness and demonstrate the presence of locus heterogeneity, with the effect that clinically relevant genetic variants may go undetected by standard analysis of combined cohorts.
Collapse
Affiliation(s)
- W Hennah
- Medical Genetics Section, University of Edinburgh, Edinburgh EH4 2XU, Scotland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu YL, Liu CM, Tien HF, Hwu HG. Construction of balanced translocation t(1;11)(q42.1;q14.3) probe and screening application in genomic samples in Taiwan. J Formos Med Assoc 2009; 108:587-91. [PMID: 19586833 DOI: 10.1016/s0929-6646(09)60377-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The disrupted-in-schizophrenia 1 (DISC1) gene is a candidate gene in schizophrenia. The balanced t(1;11)(q42.1;q14.3) translocation with a breakpoint between exons 8 and 9 of DISC1 has been found to be co-segregated with psychosis in a Scottish family. To examine whether the t(1;11)(q42.1;q14.3) translocation exists in Taiwanese samples, we constructed a plasmid probe that carried the two DNA fragments of chromosome 1 (738 bp) and chromosome 11 (719 bp) that covered the breakpoint. This probe was validated using a derived DNA gift from the translocation carrier of the Scottish family. We screened genomic DNA samples from 619 subjects (507 cases and 112 controls). None of the subjects showed the designed polymerase chain reaction (PCR) product detected by the probe. We concluded that the significant association between schizophrenia and the DISC1 gene in the Taiwanese sample was not caused by balance translocation, but rather by polymorphic variations of the gene to be detected.
Collapse
Affiliation(s)
- Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | |
Collapse
|
37
|
Tomppo L, Hennah W, Lahermo P, Loukola A, Tuulio-Henriksson A, Suvisaari J, Partonen T, Ekelund J, Lönnqvist J, Peltonen L. Association between genes of Disrupted in schizophrenia 1 (DISC1) interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of major mental illnesses. Biol Psychiatry 2009; 65:1055-62. [PMID: 19251251 PMCID: PMC2696182 DOI: 10.1016/j.biopsych.2009.01.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/02/2009] [Accepted: 01/08/2009] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disrupted in Schizophrenia 1 (DISC1) is currently one of the most interesting candidate genes for major mental illness, having been demonstrated to associate with schizophrenia, bipolar disorder, major depression, autism, and Asperger's syndrome. We have previously reported a DISC1 haplotype, HEP3, and an NDE1 spanning tag haplotype to associate to schizophrenia in Finnish schizophrenia families. Because both DISC1 and NDE1 display association in our study sample, we hypothesized that other genes interacting with DISC1 might also have a role in the etiology of schizophrenia. METHODS We selected 11 additional genes encoding components of the "DISC1 pathway" and studied these in our study sample of 476 families including 1857 genotyped individuals. We performed single nucleotide polymorphism (SNP) and haplotype association analyses in two independent sets of families. For markers and haplotypes found to be consistently associated in both sets, the overall significance was tested with the combined set of families. RESULTS We identified three SNPs to be associated with schizophrenia in PDE4D (rs1120303, p = .021), PDE4B (rs7412571, p = .018), and NDEL1 (rs17806986, p = .0038). Greater significance was observed with allelic haplotypes of PDE4D (p = .00084), PDE4B (p = .0022 and p = .029), and NDEL1 (p = .0027) that increased or decreased schizophrenia susceptibility. CONCLUSIONS Our findings with other converging lines of evidence support the underlying importance of DISC1-related molecular pathways in the etiology of schizophrenia and other major mental illnesses.
Collapse
Affiliation(s)
- Liisa Tomppo
- Institute for Molecular Medicine Finland FIMM and National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Olgiati P, Mandelli L, Lorenzi C, Marino E, Adele P, Ferrari B, De Ronchi D, Serretti A. Schizophrenia: genetics, prevention and rehabilitation. Acta Neuropsychiatr 2009; 21:109-20. [PMID: 26953749 DOI: 10.1111/j.1601-5215.2009.00360.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Genetic factors are largely implicated in predisposing to schizophrenia. Environmental factors contribute to the onset of the disorder in individuals at increased genetic risk. Cognitive deficits have emerged as endophenotypes and potential therapeutic targets for schizophrenia because of their association with functional outcome. The aims of this review were to analyse the joint effect of genetic and environmental (G×E) factors on liability to schizophrenia and to investigate relationships between genes and cognitive endophenotypes focusing on practical applications for prevention and rehabilitation. METHODS Medline search of relevant studies published between 1990 and 2008. RESULTS In schizophrenia, examples of G×E interaction include the catechol-O-methyl transferase (COMT) (Val158Met) polymorphism, which was found to moderate the onset of psychotic manifestations in response to stress and to increase the risk for psychosis related to cannabis use, and neurodevelopmental genes such as AKT1 (serine-threonine kinase), brain-derived neurotrophic factor (BDNF), DTNBP1 (dysbindin) and GRM3 (metabotropic glutamate receptor 3), which were associated with development of schizophrenia in adulthood after exposure to perinatal obstetric complications. Neurocognitive deficits are recognised as core features of schizophrenia that facilitate the onset of the disorder and have a great impact on functional outcome. Neurocognitive deficits are also endophenotypes that have been linked to a variety of genes [COMT, neuregulin (NRG1), BDNF, Disrupted-In-Schizophrenia 1 (DISC1) and dysbindin] conferring susceptibility to schizophrenia. Recently, it has emerged that cognitive improvement during rehabilitation therapy was under control of COMT (Val158Met) polymorphism. CONCLUSION This review could indicate a pivotal role of psychiatric genetics in prevention and rehabilitation of schizophrenic psychoses.
Collapse
Affiliation(s)
- Paolo Olgiati
- 1Department of Psychiatry, Institute of Psychiatry, Bologna University, Italy
| | - Laura Mandelli
- 1Department of Psychiatry, Institute of Psychiatry, Bologna University, Italy
| | - Cristina Lorenzi
- 2Department of Psychiatry, Istituto Scientifico San Raffaele, Vita-Salute University, Milan, Italy
| | - Elena Marino
- 2Department of Psychiatry, Istituto Scientifico San Raffaele, Vita-Salute University, Milan, Italy
| | - Pirovano Adele
- 2Department of Psychiatry, Istituto Scientifico San Raffaele, Vita-Salute University, Milan, Italy
| | - Barbara Ferrari
- 1Department of Psychiatry, Institute of Psychiatry, Bologna University, Italy
| | - Diana De Ronchi
- 1Department of Psychiatry, Institute of Psychiatry, Bologna University, Italy
| | - Alessandro Serretti
- 1Department of Psychiatry, Institute of Psychiatry, Bologna University, Italy
| |
Collapse
|
39
|
Tomppo L, Hennah W, Miettunen J, Järvelin MR, Veijola J, Ripatti S, Lahermo P, Lichtermann D, Peltonen L, Ekelund J. Association of variants in DISC1 with psychosis-related traits in a large population cohort. ARCHIVES OF GENERAL PSYCHIATRY 2009; 66:134-41. [PMID: 19188535 PMCID: PMC2704396 DOI: 10.1001/archgenpsychiatry.2008.524] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CONTEXT There is an abundance of data from human genetic studies and animal models that implies a role for the disrupted in schizophrenia 1 gene (DISC1) in the etiology of schizophrenia and other major mental illnesses. OBJECTIVE To study the effect of previously identified risk alleles of DISC1 on quantitative intermediate phenotypes for psychosis in an unselected population. DESIGN We examined 41 single-nucleotide polymorphisms within DISC1 and performed tests of association with 4 quantitative phenotypes. SETTING Academic research. PARTICIPANTS Individuals from an unselected birth cohort in Finland. Originally, everyone born in the catchment area in 1966 (N = 12 058) was included in the study. Of these, 4651 (38.6%) attended the 31-year follow-up and could be included in the study. MAIN OUTCOME MEASURES Scores on 4 psychometric instruments selected to function as proxies for positive and negative aspects of psychotic disorders, including the Perceptual Aberration Scale, Revised Social Anhedonia Scale, Revised Physical Anhedonia Scale, and Schizoidia Scale by Golden and Meehl. RESULTS Carriers of the minor allele of marker rs821577 had significantly higher scores on social anhedonia (P < .001). The minor allele of marker rs821633 was strongly associated with lower scores on social anhedonia when analyzed dependent on the absence of the minor alleles of markers rs1538979 and rs821577 (P < .001). CONCLUSIONS Variants in DISC1 affect the level of social anhedonia, a cardinal symptom of schizophrenia in the general population. DISC1 might be more central to human psychological functioning than previously thought, as it seems to affect the degree to which people enjoy social interactions.
Collapse
Affiliation(s)
- Liisa Tomppo
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liao SY, Lin SH, Liu CM, Hsieh MH, Hwang TJ, Liu SK, Guo SC, Hwu HG, Chen WJ. Genetic variants in COMT and neurocognitive impairment in families of patients with schizophrenia. GENES BRAIN AND BEHAVIOR 2008; 8:228-37. [PMID: 19077118 DOI: 10.1111/j.1601-183x.2008.00467.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined the relations of genetic variants in catechol-O-methyltransferase (COMT) gene, including rs737865 in intron 1, rs4680 in exon 4 (Val158Met) and downstream rs165599, to schizophrenia and its related neurocognitive functions in families of patients with schizophrenia. Totally, 680 individuals from 166 simplex (166 affected members and 354 nonpsychotic first-degree relatives) and 46 multiplex families (85 affected members and 75 nonpsychotic first-degree relatives) were interviewed using Diagnostic Interview for Genetic Studies, administered Wisconsin Card Sorting Test (WCST) and Continuous Performance Test (CPT), and drawn for venous blood. Both categorical (dichotomizing families on affected members' neurocognitive performance) and quantitative approaches toward the WCST and CPT performance scores were employed using the family-based association test and the variance components framework, respectively. Both false discovery rate and permutations were used to adjust for multiple testing. The genotypes of rs4680 were associated with both the WCST and CPT performance scores in these families, but not with schizophrenia per se in either whole sample or subgroup analyses. Meanwhile, the other two single nucleotide polymorphisms were differentially associated with the two tasks. For WCST indexes, regardless of subgroup analyses or quantitative approach, only rs737865 exhibited moderate associations. For CPT indexes, rs737865 exhibited association for the subgroup with deficit on CPT reaction time, whereas rs165599 exhibited association for the subgroup with deficit on CPT d' as well as quantitative undegraded d'. Our results indicate that the genetic variants in COMT might be involved in modulation of neurocognitive functions and hence conferring increased risk to schizophrenia.
Collapse
Affiliation(s)
- S-Y Liao
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine Research Center for Medical Excellence, School of Medicine, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu YL, Fann CSJ, Liu CM, Chen WJ, Wu JY, Hung SI, Chen CH, Jou YS, Liu SK, Hwang TJ, Hsieh MH, Chang CC, Yang WC, Lin JJ, Chou FHC, Faraone SV, Tsuang MT, Hwu HG. RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol Psychiatry 2008; 64:789-96. [PMID: 18571626 DOI: 10.1016/j.biopsych.2008.04.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 02/03/2023]
Abstract
BACKGROUND In a previous linkage study of schizophrenia that included Taiwanese samples, the marker D22S278 (22q12.3) was significantly linked to schizophrenia (p = .001). METHODS We conducted fine mapping of the implicated genomic region, with 47 validated single nucleotide polymorphism (SNP) markers around 1 Mb of D22S278, in a Taiwanese sample of 218 pedigrees with at least 2 siblings affected with schizophrenia. We examined the association of these SNPs and their haplotypes with schizophrenia and with subgroups defined by the presence and absence of deficits in sustained attention as assessed by undegraded and degraded continuous performance tests (CPTs). We also examined subgroups defined by deficits in categories achieved in the Wisconsin Card Sort Test (WCST). RESULTS Three of five candidate vulnerability genes (RASD2, APOL5, MYH9, EIF3S7, and CACNG2), which had marginally significant associations with schizophrenia, had significant associations with schizophrenic patients who did not have deficits in sustained attention on the undegraded CPT (RASD2 gene SNP rs736212; p = .0008 with single locus analysis) and the degraded CPT (MYH9 gene haplotype 1-1-1-1 of SNP rs3752463 - rs1557540 - rs713839 - rs739097; p = .0059 with haplotype analysis). We also found a significant association for patients who showed no deficits in executive function as measured by categories achieved in the WCST (CACNG2 gene haplotype 2-1-1-1 of SNP rs2267360 - rs140526 - rs1883987 - rs916269; p = .0163 with haplotype analysis). CONCLUSIONS The genes RASD2, MYH9, and CACNG2 might be vulnerability genes for neuropsychologically defined subgroups of schizophrenic patients.
Collapse
Affiliation(s)
- Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Imaging the genetics of executive function. Biol Psychol 2008; 79:30-42. [DOI: 10.1016/j.biopsycho.2007.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 01/27/2023]
|
43
|
5-HT1A gene variants and psychiatric disorders: a review of current literature and selection of SNPs for future studies. Int J Neuropsychopharmacol 2008; 11:701-21. [PMID: 18047755 DOI: 10.1017/s1461145707008218] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
5-HT1A receptors are key components of the serotonin system, acting both pre- and post- synaptically in different brain areas. There is a growing amount of evidence showing the importance of 5-HT1A in different psychiatric disorders, from mood to anxiety disorders, moving through suicidal behaviour and psychotic disorders. Findings in the literature are not consistent with any definite 5-HT1A influence in psychiatric disorders. 5-HT1A gene variants have been reported to play some role in mood disorders, anxiety disorders and psychotic disorders. Again, the literature findings are not unequivocal. Concerning response to treatment, the C(-1019)G variant seems to be of primary interest in antidepressant response: C allele carriers generally show a better response to treatment, especially in Caucasian samples. Together with the C(-1019)G (rs6295) variant, the Ile28Val (rs1799921), Arg219Leu (rs1800044) and Gly22Ser (rs1799920) variants have been investigated in possible associations with psychiatric disorders, also with no definitive results. This lack of consistency can be also due to an incomplete gene investigation. To make progress on this point, a list of validated single nucleotide polymorphisms (SNPs) covering the whole gene is proposed for further investigations.
Collapse
|
44
|
Abstract
Chromosomal abnormalities can be powerful tools to identify genes that influence disease risk. The study of a chromosome translocation that segregated with severe psychiatric illness in a large family led directly to the discovery of a gene disrupted by a chromosomal breakpoint. Disrupted-in-Schizophrenia-1 (DISC1) is now an important candidate risk gene for schizophrenia and affective disorders. We review the work that led up to this discovery and the evidence that it is important in the wider population with schizophrenia and affective disorders. We also discuss the latest findings on the neuronal functions of the protein DISC1 encoded by the gene.
Collapse
Affiliation(s)
- Walter J Muir
- Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, Scotland EH10 5HF, United Kingdom.
| | | | | |
Collapse
|
45
|
Fatemi SH, King DP, Reutiman TJ, Folsom TD, Laurence JA, Lee S, Fan YT, Paciga SA, Conti M, Menniti FS. PDE4B polymorphisms and decreased PDE4B expression are associated with schizophrenia. Schizophr Res 2008; 101:36-49. [PMID: 18394866 DOI: 10.1016/j.schres.2008.01.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 01/28/2023]
Abstract
Schizophrenia has a complex genetic underpinning and variations in a number of candidate genes have been identified that confer risk of developing the disorder. We report in the present studies that several single nucleotide polymorphisms (SNPs) and a two-SNP haplotype in PDE4B are associated with an increased incidence of schizophrenia in two large populations of Caucasian and African American patients. The SNPs in PDE4B associated with schizophrenia occur in intronic sequences in the vicinity of a critical splice junction that gives rise to the expression of PDE4B isoforms with distinct regulation and function. We also observed specific decreases in phosphodiesterase 4B (PDE4B) isoforms in brain tissue obtained postmortem from patients diagnosed with schizophrenia and bipolar disorder. PDE4B metabolically inactivates the second messenger cAMP to regulate intracellular signaling in neurons throughout the brain. Thus, the present observations suggest that dysregulation of intracellular signaling mediated by PDE4B is a significant factor in the cause and expression, respectively, of schizophrenia and bipolar disorder and that targeting PDE4B-regulated signaling pathways may yield new therapies to treat the totality of these disorders.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, University of Minnesota Medical School, MMC 392, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li J. Recent progress in the research field of neuropharmacology in China. Cell Mol Neurobiol 2008; 28:185-204. [PMID: 18240016 PMCID: PMC11515025 DOI: 10.1007/s10571-007-9252-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/03/2007] [Indexed: 01/23/2023]
Abstract
In recent years, Chinese neuropharmacologists have done a lot of basic and practical work in neuropharmacology, especially in the fields of pain, drug dependence, depression, Alzheimer's disease, schizophrenia, having obtained some exciting results that are of great significance for the development of neuropharmacology. Here I would like to review recent progress in the research fields of neuropharmacology in China.
Collapse
Affiliation(s)
- Jin Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
47
|
How has DISC1 enabled drug discovery? Mol Cell Neurosci 2008; 37:187-95. [DOI: 10.1016/j.mcn.2007.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/17/2022] Open
|
48
|
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
49
|
Murdoch H, Mackie S, Collins DM, Hill EV, Bolger GB, Klussmann E, Porteous DJ, Millar JK, Houslay MD. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J Neurosci 2007; 27:9513-24. [PMID: 17728464 PMCID: PMC6673124 DOI: 10.1523/jneurosci.1493-07.2007] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 02/03/2023] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a genetic susceptibility factor for schizophrenia and related severe psychiatric conditions. DISC1 is a multifunctional scaffold protein that is able to interact with several proteins, including the independently identified schizophrenia risk factor phosphodiesterase-4B (PDE4B). Here we report that the 100 kDa full-length DISC1 isoform (fl-DISC1) can bind members of each of the four gene, cAMP-specific PDE4 family. Elevation of intracellular cAMP levels, so as to activate protein kinase A, caused the release of PDE4D3 and PDE4C2 isoforms from fl-DISC1 while not affecting binding of PDE4B1 and PDE4A5 isoforms. Using a peptide array strategy, we show that PDE4D3 binds fl-DISC1 through two regions found in common with PDE4B isoforms, the interaction of which is supplemented because of the presence of additional PDE4B-specific binding sites. We propose that the additional binding sites found in PDE4B1 underpin its resistance to release during cAMP elevation. We identify, for the first time, a functional distinction between the 100 kDa long DISC1 isoform and the short 71 kDa isoform. Thus, changes in the expression pattern of DISC1 and PDE4 isoforms offers a means to reprogram their interaction and to determine whether the PDE4 sequestered by DISC1 is released after cAMP elevation. The PDE4B-specific binding sites encompass point mutations in mouse Disc1 that confer phenotypes related to schizophrenia and depression and that affect binding to PDE4B. Thus, genetic variation in DISC1 and PDE4 that influence either isoform expression or docking site functioning may directly affect psychopathology.
Collapse
Affiliation(s)
- Hannah Murdoch
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Shaun Mackie
- Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Daniel M. Collins
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elaine V. Hill
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Graeme B. Bolger
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300
| | - Enno Klussmann
- Leibniz-Institut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany, and
| | - David J. Porteous
- Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - J. Kirsty Millar
- Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Miles D. Houslay
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
50
|
Abstract
Recent research shows that single genes do not cause schizophrenia, but that multiple “susceptibility” genes each provide a genetic “bias” towards schizophrenia. Each susceptibility gene codes for a subtle molecular abnormality that hypothetically causes inefficient information processing in brain circuits that mediate the symptoms of this disorder. It is therefore not surprising that many of the susceptibility genes that have been identified for schizophrenia are known to regulate neuronal connectivity, synaptogenesis, and N-methyl-D-aspartate (NMDA) glutamate receptor functions. This includes genes for brain-derived neurotrophic factor (BDNF), dysbindin, also known as dystrobrevin-binding protein 1, neuregulin, disrupted in schizophrenia-1 (DISC-1), D-amino acid oxidase activator (DAOA), and regulator of G-protein signaling (RGS4). Hypothetically, converging molecular abnormalities expressed by defective versions of these genes could cause dysregulation of NMDA receptors and NMDA synapses, leading to vulnerability for schizophrenia due to inefficient information processing at glutamate synapses.
Collapse
Affiliation(s)
- Stephen M Stahl
- Department of Psychiatry, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|