1
|
Di Luzio M, Bellantoni D, Bellantoni AL, Villani V, Di Vincenzo C, Zanna V, Vicari S, Pontillo M. Similarities and differences between eating disorders and obsessive-compulsive disorder in childhood and adolescence: a systematic review. Front Psychiatry 2024; 15:1407872. [PMID: 38895032 PMCID: PMC11183500 DOI: 10.3389/fpsyt.2024.1407872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background The developmental age, comprising childhood and adolescence, constitutes an extremely important phase of neurodevelopment during which various psychiatric disorders can emerge. Obsessive-Compulsive Disorder (OCD) and Eating Disorders (ED) often manifest during this critical developmental period sharing similarities but also differences in psychopathology, neurobiology, and etiopathogenesis. The aim of this study is to focus on clinical, genetic and neurobiological similarities and differences in OCD and ED. Methods This study is based on a PubMed/MEDLINE and Cochrane Central Register for Controlled Trial (CENTRAL). The research adhered to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results The aforementioned search yielded an initial collection of 335 articles, published from 1968 to September 2023. Through the application of inclusion and exclusion criteria, a total of 324 articles were excluded, culminating in a final selection of 10 articles. Conclusions Our findings showed both differences and similarities between OCD and ED. Obsessive-compulsive (OC) symptoms are more prevalent in ED characterized by a binge/purge profile than in those with a restrictive profile during developmental age. OC symptomatology appears to be a common dimension in both OCD and ED. When presents, OC symptomatology, exhibits transversal characteristic alterations in the anterior cingulate cortex and poorer cognitive flexibility. These correlations could be highlighted by genetic overlaps between disorders. A comprehensive definition, integrating psychopathological and neurobiological aspects could significantly aid treatment selection and thereby influence the prognosis of these patients.
Collapse
Affiliation(s)
- Michelangelo Di Luzio
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Domenica Bellantoni
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Valeria Villani
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Di Vincenzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| | - Maria Pontillo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Eser P, Kocabicak E, Bekar A, Temel Y. Insights into neuroinflammatory mechanisms of deep brain stimulation in Parkinson's disease. Exp Neurol 2024; 374:114684. [PMID: 38199508 DOI: 10.1016/j.expneurol.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder, involves gradual degeneration of the nigrostriatal dopaminergic pathway, leading to neuronal loss within the substantia nigra pars compacta and dopamine depletion. Molecular factors, including neuroinflammation, impaired protein homeostasis, and mitochondrial dysfunction, contribute to the neuronal loss. Deep brain stimulation, a form of neuromodulation, applies electric current through stereotactically implanted electrodes, effectively managing motor symptoms in advanced Parkinson's disease patients. Deep brain stimulation exerts intricate effects on neuronal systems, encompassing alterations in neurotransmitter dynamics, microenvironment restoration, neurogenesis, synaptogenesis, and neuroprotection. Contrary to initial concerns, deep brain stimulation demonstrates antiinflammatory effects, influencing cytokine release, glial activation, and neuronal survival. This review investigates the intricacies of deep brain stimulation mechanisms, including insertional effects, histological changes, and glial responses, and sheds light on the complex interplay between electrodes, stimulation, and the brain. This exploration delves into understanding the role of neuroinflammatory pathways and the effects of deep brain stimulation in the context of Parkinson's disease, providing insights into its neuroprotective capabilities.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
3
|
van den Boom BJG, Elhazaz-Fernandez A, Rasmussen PA, van Beest EH, Parthasarathy A, Denys D, Willuhn I. Unraveling the mechanisms of deep-brain stimulation of the internal capsule in a mouse model. Nat Commun 2023; 14:5385. [PMID: 37666830 PMCID: PMC10477328 DOI: 10.1038/s41467-023-41026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Deep-brain stimulation (DBS) is an effective treatment for patients suffering from otherwise therapy-resistant psychiatric disorders, including obsessive-compulsive disorder. Modulation of cortico-striatal circuits has been suggested as a mechanism of action. To gain mechanistic insight, we monitored neuronal activity in cortico-striatal regions in a mouse model for compulsive behavior, while systematically varying clinically-relevant parameters of internal-capsule DBS. DBS showed dose-dependent effects on both brain and behavior: An increasing, yet balanced, number of excited and inhibited neurons was recruited, scattered throughout cortico-striatal regions, while excessive grooming decreased. Such neuronal recruitment did not alter basic brain function such as resting-state activity, and only occurred in awake animals, indicating a dependency on network activity. In addition to these widespread effects, we observed specific involvement of the medial orbitofrontal cortex in therapeutic outcomes, which was corroborated by optogenetic stimulation. Together, our findings provide mechanistic insight into how DBS exerts its therapeutic effects on compulsive behaviors.
Collapse
Affiliation(s)
- Bastijn J G van den Boom
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Alfredo Elhazaz-Fernandez
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Peter A Rasmussen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Enny H van Beest
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Aishwarya Parthasarathy
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Lv Q, Zeljic K, Zhao S, Zhang J, Zhang J, Wang Z. Dissecting Psychiatric Heterogeneity and Comorbidity with Core Region-Based Machine Learning. Neurosci Bull 2023; 39:1309-1326. [PMID: 37093448 PMCID: PMC10387015 DOI: 10.1007/s12264-023-01057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 04/25/2023] Open
Abstract
Machine learning approaches are increasingly being applied to neuroimaging data from patients with psychiatric disorders to extract brain-based features for diagnosis and prognosis. The goal of this review is to discuss recent practices for evaluating machine learning applications to obsessive-compulsive and related disorders and to advance a novel strategy of building machine learning models based on a set of core brain regions for better performance, interpretability, and generalizability. Specifically, we argue that a core set of co-altered brain regions (namely 'core regions') comprising areas central to the underlying psychopathology enables the efficient construction of a predictive model to identify distinct symptom dimensions/clusters in individual patients. Hypothesis-driven and data-driven approaches are further introduced showing how core regions are identified from the entire brain. We demonstrate a broadly applicable roadmap for leveraging this core set-based strategy to accelerate the pursuit of neuroimaging-based markers for diagnosis and prognosis in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Qian Lv
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Kristina Zeljic
- School of Health and Psychological Sciences, City, University of London, London, EC1V 0HB, UK
| | - Shaoling Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jiangtao Zhang
- Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Zhejiang Office of Mental Health, Hangzhou, 310012, China
| | - Jianmin Zhang
- Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Zhejiang Office of Mental Health, Hangzhou, 310012, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Hu Y, Xu X, Luo L, Li H, Li W, Guo L, Liu L. Different degrees of nodes behind obsessive-compulsive symptoms of schizophrenia. Front Psychiatry 2023; 14:1224040. [PMID: 37575581 PMCID: PMC10412812 DOI: 10.3389/fpsyt.2023.1224040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Obsessive-compulsive symptoms are frequently observed in various psychiatric disorders, including obsessive-compulsive disorder, schizophrenia, depression, and anxiety. However, the underlying anatomical basis of these symptoms remains unclear. In this study, we aimed to investigate the mechanism of schizophrenia with obsessive-compulsive symptoms by using diffusion tensor imaging (DTI)-based structural brain connectivity analysis to assess the network differences between patients with obsessive-compulsive disorder (OCD), patients with schizophrenia showing obsessive-compulsive symptoms (SCH), schizophrenia patients with obsessive-compulsive symptoms due to clozapine (LDP), and healthy controls (CN). We included 21 patients with OCD, 20 patients with SCH, 12 patients with LDP, and 25 CN. All subjects underwent MRI scanning, and structural brain connections were estimated using diffusion tensor imaging for further analysis of brain connectivity. The topology and efficiency of the network and the characteristics of various brain regions were investigated. We assessed baseline YALE-BROWN OBSESSIVE COMPULSIVE SCALE (Y-BOCS), Positive and Negative Syndrome Scale (PANSS), and 24-item Hamilton Depression Scale (HAMD-24) scores. Our results showed significant differences among the SCH, OCD, and CN groups (p < 0.05) in the MRI-measured degree of the following nodes: the superior orbitofrontal gyrus (25Frontal_Med_Orb_L), lingual gyrus (47Lingual_L), postcentral gyrus (58Postcentral_R), and inferior temporal gyrus (90Temporal_Inf_R). Additionally, we found significant differences in the degree of the brain regions 02Precentral_R, 47Lingual_L, 58Postcentral_R, and 90Temporal_Inf_R between the CN, OCD, SCH, and LDP groups (p < 0.05). These findings suggest that alterations in the degree of nodes might be the mechanism behind obsessive-compulsive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Yiying Hu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Liyuan Luo
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Huichao Li
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wangtao Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Liyuan Guo
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Lanying Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Mental Diseases of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Transcranial Magnetic Stimulation in Obsessive-Compulsive Disorder. Psychiatr Clin North Am 2023; 46:133-166. [PMID: 36740349 DOI: 10.1016/j.psc.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obsessive-compulsive disorder (OCD) patients need novel therapeutic interventions since most experience residual symptoms despite treatment. Converging evidence suggest that OCD involves dysfunction of limbic cortico-striato-thalamo-cortical loops, including the medial prefrontal cortex (mPFC) and dorsal anterior cingulate cortex (dACC), that tends to normalize with successful treatment. Recently, three repetitive transcranial magnetic stimulation (rTMS) coils were FDA-cleared for treatment-refractory OCD. This review presents on-label and off-label clinical evidence and relevant physical characteristics of the three coils. The Deep TMS™ H7 Coil studies' point to efficacy of mPFC-dACC stimulation, while no clear target stems from the small heterogenous D-B80 and figure-8 coils studies.
Collapse
|
7
|
Cruz S, Gutiérrez-Rojas L, González-Domenech P, Díaz-Atienza F, Martínez-Ortega JM, Jiménez-Fernández S. Deep brain stimulation in obsessive-compulsive disorder: Results from meta-analysis. Psychiatry Res 2022; 317:114869. [PMID: 36240634 DOI: 10.1016/j.psychres.2022.114869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023]
Abstract
The aim of this work is to investigate the effectiveness of Deep Brain Stimulation (DBS) in patients with severe Obsessive Compulsive Disorder (OCD) who are resistant to pharmacological treatments, focusing on obsessive compulsive, depressive and anxiety symptoms as well as global function. A systematic review and meta-analysis including 25 studies (without language restrictions) from between 2003 and 2020 was performed. A total of 303 patients were evaluated twice (before and after DBS). After DBS treatment OCD patients with resistance to pharmacological treatments showed a significant improvement of obsessive-compulsive symptoms (25 studies; SMD=2.39; 95% CI, 1.91 to 2.87; P<0.0001), depression (9 studies; SMD= 1.19; 95%CI, 0.84 to 1.54; P<0.0001), anxiety (5 studies; SMD=1.00; 95%CI, 0.32 to 1.69; P=0.004) and functionality (7 studies; SMD=-3.51; 95%CI, -5.00 to -2.02; P=0.005) measured by the standardized scales: Yale Brown Obsessive Compulsive Scale (YBOCS), Hamilton Depression Rating Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A) and Global Assessment of Function (GAF). Publication bias were discarded by using funnel plot. The main conclusions of this meta-analysis highlight the statistically significant effectiveness of DBS in patients with severe OCD who are resistant to conventional pharmacological treatments, underlying its role in global functioning apart from obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Sheila Cruz
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain
| | - Luis Gutiérrez-Rojas
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Psychiatry Service, Hospital San Cecilio, Granada, Spain.
| | | | - Francisco Díaz-Atienza
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain; Child and Adolescent Mental Health Service, Granada Virgen de las Nieves University Hospital, Granada, Spain
| | - José M Martínez-Ortega
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | - Sara Jiménez-Fernández
- Child and Adolescent Mental Health Service, Jaén University Hospital Complex, Jaén, Spain; Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Kokkonen A, Honkanen EA, Corp DT, Joutsa J. Neurobiological effects of deep brain stimulation: A systematic review of molecular brain imaging studies. Neuroimage 2022; 260:119473. [PMID: 35842094 DOI: 10.1016/j.neuroimage.2022.119473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for several brain disorders, including Parkinson's disease, essential tremor, dystonia and epilepsy, and an emerging therapeutic tool in many other neurological and psychiatric disorders. The therapeutic efficacy of DBS is dependent on the stimulation target, but its mechanisms of action are still relatively poorly understood. Investigating these mechanisms is challenging, partly because the stimulation devices and electrodes have limited the use of functional MRI in these patients. Molecular brain imaging techniques, such as positron emission tomography (PET) and single photon emission tomography (SPET), offer a unique opportunity to characterize the whole brain effects of DBS. Here, we investigated the direct effects of DBS by systematically reviewing studies performing an `on' vs `off' contrast during PET or SPET imaging. We identified 62 studies (56 PET and 6 SPET studies; 531 subjects). Approximately half of the studies focused on cerebral blood flow or glucose metabolism in patients Parkinson's disease undergoing subthalamic DBS (25 studies, n = 289), therefore Activation Likelihood Estimation analysis was performed on these studies. Across disorders and stimulation targets, DBS was associated with a robust local increase in ligand uptake at the stimulation site and target-specific remote network effects. Subthalamic nucleus stimulation in Parkinson's disease showed a specific pattern of changes in the motor circuit, including increased ligand uptake in the basal ganglia, and decreased ligand uptake in the primary motor cortex, supplementary motor area and cerebellum. However, there was only a handful of studies investigating other brain disorder and stimulation site combinations (1-3 studies each), or specific neurotransmitter systems, preventing definitive conclusions of the detailed molecular effects of the stimulation in these cases.
Collapse
Affiliation(s)
- Aleksi Kokkonen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland.
| | - Emma A Honkanen
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States of America.
| |
Collapse
|
9
|
Ahmari SE, Rauch SL. The prefrontal cortex and OCD. Neuropsychopharmacology 2022; 47:211-224. [PMID: 34400778 PMCID: PMC8617188 DOI: 10.1038/s41386-021-01130-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Obsessive Compulsive Disorder (OCD) is a highly prevalent and severe neuropsychiatric disorder, with an incidence of 1.5-3% worldwide. However, despite the clear public health burden of OCD and relatively well-defined symptom criteria, effective treatments are still limited, spotlighting the need for investigation of the neural substrates of the disorder. Human neuroimaging studies have consistently highlighted abnormal activity patterns in prefrontal cortex (PFC) regions and connected circuits in OCD during both symptom provocation and performance of neurocognitive tasks. Because of recent technical advances, these findings can now be leveraged to develop novel targeted interventions. Here we will highlight current theories regarding the role of the prefrontal cortex in the generation of OCD symptoms, discuss ways in which this knowledge can be used to improve treatments for this often disabling illness, and lay out challenges in the field for future study.
Collapse
Affiliation(s)
- Susanne E Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Scott L Rauch
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Tyagi H, Apergis-Schoute AM, Akram H, Foltynie T, Limousin P, Drummond LM, Fineberg NA, Matthews K, Jahanshahi M, Robbins TW, Sahakian BJ, Zrinzo L, Hariz M, Joyce EM. A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:160-169. [PMID: 35746938 PMCID: PMC9063594 DOI: 10.1176/appi.focus.20105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 01/03/2023]
Abstract
(Appeared originally in Biological Psychiatry 2019; 85:726-734) Reprinted under Creative Commons CC-BY license.
Collapse
|
11
|
Rasmussen SA, Goodman WK. The prefrontal cortex and neurosurgical treatment for intractable OCD. Neuropsychopharmacology 2022; 47:349-360. [PMID: 34433915 PMCID: PMC8616947 DOI: 10.1038/s41386-021-01149-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, circuit-based neurosurgical procedures have gained increasing acceptance as a safe and efficacious approach to the treatment of the intractable obsessive-compulsive disorder (OCD). Lesions and deep brain stimulation (DBS) of the longitudinal corticofugal white matter tracts connecting the prefrontal cortex with the striatum, thalamus, subthalamic nucleus (STN), and brainstem implicate orbitofrontal, medial prefrontal, frontopolar, and ventrolateral cortical networks in the symptoms underlying OCD. The highly parallel distributed nature of these networks may explain the relative lack of adverse effects observed following surgery. Additional pre-post studies of cognitive tasks in more surgical patients are needed to confirm the role of these networks in OCD and to define therapeutic responses to surgical intervention.
Collapse
Affiliation(s)
- Steven A. Rasmussen
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert School of Medicine, Brown University, Providence, RI USA ,grid.40263.330000 0004 1936 9094Carney Brain Science Institute, Brown University, Providence, RI USA
| | - Wayne K. Goodman
- grid.39382.330000 0001 2160 926XMenninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
12
|
Li N, Hollunder B, Baldermann JC, Kibleur A, Treu S, Akram H, Al-Fatly B, Strange BA, Barcia JA, Zrinzo L, Joyce EM, Chabardes S, Visser-Vandewalle V, Polosan M, Kuhn J, Kühn AA, Horn A. A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol Psychiatry 2021; 90:701-713. [PMID: 34134839 DOI: 10.1016/j.biopsych.2021.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Multiple deep brain stimulation (DBS) targets have been proposed for treating intractable obsessive-compulsive disorder (OCD). Here, we investigated whether stimulation effects of different target sites would be mediated by one common or several segregated functional brain networks. METHODS First, seeding from active electrodes of 4 OCD patient cohorts (N = 50) receiving DBS to anterior limb of the internal capsule or subthalamic nucleus zones, optimal functional connectivity profiles for maximal Yale-Brown Obsessive Compulsive Scale improvements were calculated and cross-validated in leave-one-cohort-out and leave-one-patient-out designs. Second, we derived optimal target-specific connectivity patterns to determine brain regions mutually predictive of clinical outcome for both targets and others predictive for either target alone. Functional connectivity was defined using resting-state functional magnetic resonance imaging data acquired in 1000 healthy participants. RESULTS While optimal functional connectivity profiles showed both commonalities and differences between target sites, robust cross-predictions of clinical improvements across OCD cohorts and targets suggested a shared network. Connectivity to the anterior cingulate cortex, insula, and precuneus, among other regions, was predictive regardless of stimulation target. Regions with maximal connectivity to these commonly predictive areas included the insula, superior frontal gyrus, anterior cingulate cortex, and anterior thalamus, as well as the original stereotactic targets. CONCLUSIONS Pinpointing the network modulated by DBS for OCD from different target sites identified a set of brain regions to which DBS electrodes associated with optimal outcomes were functionally connected-regardless of target choice. On these grounds, we establish potential brain areas that could prospectively inform additional or alternative neuromodulation targets for obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Ningfei Li
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany.
| | - Barbara Hollunder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Astrid Kibleur
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France; OpenMind Innovation, Paris, France
| | - Svenja Treu
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Bassam Al-Fatly
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan A Barcia
- Neurosurgery Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Eileen M Joyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | | | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, Evangelisches Klinikum Niederrhein, Oberhausen, Germany
| | - Andrea A Kühn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
13
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
14
|
Polosan M, Figee M. Electrical deep neuromodulation in psychiatry. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:89-110. [PMID: 34446252 DOI: 10.1016/bs.irn.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Addressing treatment refractoriness in psychiatric diseases is an essential public health objective. The last two decades have seen an increasing interest for deep brain stimulation (DBS) of several brain targets. In this chapter, we have reviewed the main DBS clinical trials in psychiatric diseases, mainly obsessive compulsive disorders (OCD) and depression, but also emerging research in other psychiatric disorders. While its efficacy and safety are confirmed, DBS is still not considered as standard therapy in psychiatry. However, advances in neuroimaging research combined to behavioral and electrophysiological data uniquely provided by DBS studies improve knowledge on physiopathology in these brain diseases. This will help define the optimal brain targets according to specific phenotype dimensions. Revealing the mechanisms of action and effects of DBS will support that its impact goes beyond a loco-regional brain stimulation and confirms that electrical neuromodulation influences brain networks. Added to the progress in neuromodulation technology, these insights will hopefully facilitate a more widespread application of this promising treatment. Future development of a personalized multimodal assessment of underlying dysfunctional brain networks will open new circuit-specific treatment perspectives that may facilitate better patient outcomes.
Collapse
Affiliation(s)
- Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France.
| | - Martijn Figee
- Center for Advanced Circuit Therapeutics, Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
15
|
Bijanki KR, Pathak YJ, Najera RA, Storch EA, Goodman WK, Simpson HB, Sheth SA. Defining functional brain networks underlying obsessive-compulsive disorder (OCD) using treatment-induced neuroimaging changes: a systematic review of the literature. J Neurol Neurosurg Psychiatry 2021; 92:776-786. [PMID: 33906936 PMCID: PMC8223624 DOI: 10.1136/jnnp-2020-324478] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
Approximately 2%-3% of the population suffers from obsessive-compulsive disorder (OCD). Several brain regions have been implicated in the pathophysiology of OCD, but their various contributions remain unclear. We examined changes in structural and functional neuroimaging before and after a variety of therapeutic interventions as an index into identifying the underlying networks involved. We identified 64 studies from 1990 to 2020 comparing pretreatment and post-treatment imaging of patients with OCD, including metabolic and perfusion, neurochemical, structural, functional and connectivity-based modalities. Treatment class included pharmacotherapy, cognitive-behavioural therapy/exposure and response prevention, stereotactic lesions, deep brain stimulation and transcranial magnetic stimulation. Changes in several brain regions are consistent and correspond with treatment response despite the heterogeneity in treatments and neuroimaging modalities. Most notable are decreases in metabolism and perfusion of the caudate, anterior cingulate cortex, thalamus and regions of prefrontal cortex (PFC) including the orbitofrontal cortex (OFC), dorsolateral PFC (DLPFC), ventromedial PFC (VMPFC) and ventrolateral PFC (VLPFC). Modulating activity within regions of the cortico-striato-thalamo-cortical system may be a common therapeutic mechanism across treatments. We identify future needs and current knowledge gaps that can be mitigated by implementing integrative methods. Future studies should incorporate a systematic, analytical approach to testing objective correlates of treatment response to better understand neurophysiological mechanisms of dysfunction.
Collapse
Affiliation(s)
- Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Yagna J Pathak
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York, USA
| | - Ricardo A Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - H Blair Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Arumugham SS, Srinivas D, Narayanaswamy JC, Jaisoorya TS, Kashyap H, Domenech P, Palfi S, Mallet L, Venkatasubramanian G, Reddy YJ. Identification of biomarkers that predict response to subthalamic nucleus deep brain stimulation in resistant obsessive-compulsive disorder: protocol for an open-label follow-up study. BMJ Open 2021; 11:e047492. [PMID: 34158304 PMCID: PMC8220486 DOI: 10.1136/bmjopen-2020-047492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/26/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) of bilateral anteromedial subthalamic nucleus (amSTN) has been found to be helpful in a subset of patients with severe, chronic and treatment-refractory obsessive-compulsive disorder (OCD). Biomarkers may aid in patient selection and optimisation of this invasive treatment. In this trial, we intend to evaluate neurocognitive function related to STN and related biosignatures as potential biomarkers for STN DBS in OCD. METHODS AND ANALYSIS Twenty-four subjects with treatment-refractory OCD will undergo open-label STN DBS. Structural/functional imaging, electrophysiological recording and neurocognitive assessment would be performed at baseline. The subjects would undergo a structured clinical assessment for 12 months postsurgery. A group of 24 healthy volunteers and 24 subjects with treatment-refractory OCD who receive treatment as usual would be recruited for comparison of biomarkers and treatment response, respectively. Baseline biomarkers would be evaluated as predictors of clinical response. Neuroadaptive changes would be studied through a reassessment of neurocognitive functioning, imaging and electrophysiological activity post DBS. ETHICS AND DISSEMINATION The protocol has been approved by the National Institute of Mental Health and Neurosciences Ethics Committee. The study findings will be disseminated through peer-reviewed scientific journals and scientific meetings.
Collapse
Affiliation(s)
- Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - T S Jaisoorya
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Himani Kashyap
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Philippe Domenech
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Stéphane Palfi
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Luc Mallet
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Yc Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Peng S, Dhawan V, Eidelberg D, Ma Y. Neuroimaging evaluation of deep brain stimulation in the treatment of representative neurodegenerative and neuropsychiatric disorders. Bioelectron Med 2021; 7:4. [PMID: 33781350 PMCID: PMC8008578 DOI: 10.1186/s42234-021-00065-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
Brain stimulation technology has become a viable modality of reversible interventions in the effective treatment of many neurological and psychiatric disorders. It is aimed to restore brain dysfunction by the targeted delivery of specific electronic signal within or outside the brain to modulate neural activity on local and circuit levels. Development of therapeutic approaches with brain stimulation goes in tandem with the use of neuroimaging methodology in every step of the way. Indeed, multimodality neuroimaging tools have played important roles in target identification, neurosurgical planning, placement of stimulators and post-operative confirmation. They have also been indispensable in pre-treatment screen to identify potential responders and in post-treatment to assess the modulation of brain circuitry in relation to clinical outcome measures. Studies in patients to date have elucidated novel neurobiological mechanisms underlying the neuropathogenesis, action of stimulations, brain responses and therapeutic efficacy. In this article, we review some applications of deep brain stimulation for the treatment of several diseases in the field of neurology and psychiatry. We highlight how the synergistic combination of brain stimulation and neuroimaging technology is posed to accelerate the development of symptomatic therapies and bring revolutionary advances in the domain of bioelectronic medicine.
Collapse
Affiliation(s)
- Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Vijay Dhawan
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| |
Collapse
|
18
|
Abstract
Obsessive-compulsive disorder (OCD) is a common, chronic, and oftentimes disabling disorder. The only established first-line treatments for OCD are exposure and response prevention, and serotonin reuptake inhibitor medications (SRIs). However, a subset of patients fails to respond to either modality, and few experience complete remission. Beyond SRI monotherapy, antipsychotic augmentation is the only medication approach for OCD with substantial empirical support. Our incomplete understanding of the neurobiology of OCD has hampered efforts to develop new treatments or enhance extant interventions. This review focuses on several promising areas of research that may help elucidate the pathophysiology of OCD and advance treatment. Multiple studies support a significant genetic contribution to OCD, but pinpointing the specific genetic determinants requires additional investigation. The preferential efficacy of SRIs in OCD has neither led to discovery of serotonergic abnormalities in OCD nor to development of new serotonergic medications for OCD. Several lines of preclinical and clinical evidence suggest dysfunction of the glutamatergic system in OCD, prompting testing of several promising glutamate modulating agents. Functional imaging studies in OCD show consistent evidence for increased activity in brain regions that form a cortico-striato-thalamo-cortical (CSTC) loop. Neuromodulation treatments with either noninvasive devices (e.g., transcranial magnetic stimulation) or invasive procedures (e.g., deep brain stimulation) provide further support for the CSTC model of OCD. A common substrate for various interventions (whether drug, behavioral, or device) may be modulation (at different nodes or connections) of the CSTC circuit that mediates the symptoms of OCD.
Collapse
Affiliation(s)
- Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| | - Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| | - Sameer A. Sheth
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| |
Collapse
|
19
|
Abstract
It becomes increasingly clear that (non-)invasive neurostimulation is an effective treatment for obsessive-compulsive disorder (OCD). In this chapter we review the available evidence on techniques and targets, clinical results including a meta-analysis, mechanisms of action, and animal research. We focus on deep brain stimulation (DBS), but also cover non-invasive neurostimulation including transcranial magnetic stimulation (TMS). Data shows that most DBS studies target the ventral capsule/ventral striatum (VC/VS), with an overall 76% response rate in treatment-refractory OCD. Also TMS holds clinical promise. Increased insight in the normalizing effects of neurostimulation on cortico-striatal-thalamic-cortical (CSTC) loops - through neuroimaging and animal research - provides novel opportunities to further optimize treatment strategies. Advancing clinical implementation of neurostimulation techniques is essential to ameliorate the lives of the many treatment-refractory OCD patients.
Collapse
|
20
|
Metabolic activity in subcallosal cingulate predicts response to deep brain stimulation for depression. Neuropsychopharmacology 2020; 45:1681-1688. [PMID: 32580207 PMCID: PMC7419290 DOI: 10.1038/s41386-020-0745-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 01/03/2023]
Abstract
Subcallosal cingulate (SCC) deep brain stimulation (DBS) is a promising therapy for treatment-resistant depression (TRD), but response rates in open-label studies were not replicated in a large multicenter trial. Identifying biomarkers of response could improve patient selection and outcomes. We examined SCC metabolic activity as both a predictor and marker of SCC DBS treatment response. Brain glucose metabolism (CMRGlu) was measured with [18F] FDG-PET at baseline and 6 months post DBS in 20 TRD patients in a double-blind randomized controlled trial where two stimulation types (long pulse width (LPW) n = 9 and short pulse width (SPW) n = 11) were used. Responders (n = 10) were defined by a ≥48% reduction in Hamilton Depression Rating Scale scores after 6 months. The response rates were similar with five responders in each stimulation group: LPW (55.6%) and SPW (44.5%). First, differences in SCC CMRGlu in responders and non-responders were compared at baseline. Then machine learning analysis was performed with a leave-one-out cross-validation using a Gaussian naive Bayes classifier to test whether baseline CMRGlu in SCC could categorize responders. Finally, we compared 6-month change in metabolic activity with change in depression severity. All analyses were controlled for age. Baseline SCC CMRGlu was significantly higher in responders than non-responders. The machine learning analysis predicted response with 80% accuracy. Furthermore, reduction in SCC CMRGlu 6 months post DBS correlated with symptom improvement (r(17) = 0.509; p = 0.031). This is the first evidence of an image-based treatment selection biomarker that predicts SCC DBS response. Future studies could utilize SCC metabolic activity for prospective patient selection.
Collapse
|
21
|
The ansa subthalamica as a substrate for DBS-induced manic symptoms. Brain Stimul 2020; 13:1399-1401. [DOI: 10.1016/j.brs.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
|
22
|
Raviv N, Staudt MD, Rock AK, MacDonell J, Slyer J, Pilitsis JG. A Systematic Review of Deep Brain Stimulation Targets for Obsessive Compulsive Disorder. Neurosurgery 2020; 87:1098-1110. [PMID: 32615588 DOI: 10.1093/neuros/nyaa249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a complex neuropsychiatric disease characterized by obsessions and compulsions. Deep brain stimulation (DBS) has demonstrated efficacy in improving symptoms in medically refractory patients. Multiple targets have been investigated. OBJECTIVE To systematically review the current level and quality of evidence supporting OCD-DBS by target region with the goal of establishing a common nomenclature. METHODS A systematic literature review was performed using the PubMed database and a patient/problem, intervention, comparison, outcome search with the terms "DBS" and "OCD." Of 86 eligible articles that underwent full-text review, 28 were included for review. Articles were excluded if the target was not specified, the focus on nonclinical outcomes, the follow-up period shorter than 3 mo, or the sample size smaller than 3 subjects. Level of evidence was assigned according to the American Association of Neurological Surgeons/Congress of Neurological Surgeons joint guideline committee recommendations. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS Selected publications included 9 randomized controlled trials, 1 cohort study, 1 case-control study, 1 cross-sectional study, and 16 case series. Striatal region targets such as the anterior limb of the internal capsule, ventral capsule/ventral striatum, and nucleus accumbens were identified, but stereotactic coordinates were similar despite differing structural names. Only 15 of 28 articles included coordinates. CONCLUSION The striatal area is the most commonly targeted region for OCD-DBS. We recommend a common nomenclature based on this review. To move the field forward to individualized therapy, active contact location relative to stereotactic coordinates and patient specific anatomical and clinical variances need to be reported.
Collapse
Affiliation(s)
- Nataly Raviv
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Andrew K Rock
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Jacquelyn MacDonell
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julia Slyer
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York.,Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| |
Collapse
|
23
|
Park J, Kim T, Kim M, Lee TY, Kwon JS. Functional Connectivity of the Striatum as a Neural Correlate of Symptom Severity in Patient with Obsessive-Compulsive Disorder. Psychiatry Investig 2020; 17:87-95. [PMID: 32000480 PMCID: PMC7047004 DOI: 10.30773/pi.2019.0206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE It is well established that the cortico-striato-thalamo-cortical (CSTC) circuit is implicated in the pathophysiology of obsessive- compulsive disorder (OCD). However, reports on corticostriatal functional connectivity (FC) in OCD have been inconsistent due to the structural and functional heterogeneity of the striatum. Therefore, in the present study, we investigated corticostriatal FC using a fine 12-seed striatal parcellation to overcome this heterogeneity and discover the neural correlates of symptoms in OCD patients. METHODS We recruited 23 OCD patients and 23 healthy controls (HCs). Whole-brain FC based on striatal seeds was examined using resting-state functional magnetic resonance imaging data and compared across OCD patients and HCs. We conducted correlation analysis between FCs of striatal subregions with significant group differences and symptom severity scores on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Hamilton Rating Scale for Depression, and Hamilton Rating Scale for Anxiety (HAM-A). RESULTS Compared to HCs, patients demonstrated increased FC of the dorsal caudal putamen and ventral rostral putamen (VRP) with several cortical regions, such as the intracalcarine cortex, inferior frontal gyrus, supramarginal/angular gyrus (SMG/AG), and postcentral gyrus (PCG). Furthermore, FC between the VRP and SMG/AG and between the VRP and PCG was negatively correlated with scores on the Y-BOCS compulsive subscale and the HAM-A, respectively. CONCLUSION These findings suggest that striatal subregions have strengthened FC with extensive cortical regions, which may reflect neural correlates of compulsive and anxious symptoms in OCD patients. These results contribute to an improved understanding of OCD pathophysiology by complementing the current evidence regarding striatal FC.
Collapse
Affiliation(s)
- Junha Park
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University-Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
24
|
Maatoug R, Ekmen A, Valero-Cabre A, Millet B. Stimulation therapeutic approaches to better understand Obsessive Compulsive Disorder: The issue of 'where' to treat. Encephale 2020; 46:399-403. [PMID: 32014241 DOI: 10.1016/j.encep.2019.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023]
Abstract
The use of invasive and non-invasive brain stimulation and neuromodulation technologies combined with neuroimaging approaches can help refine with causal evidence our physiopathological understanding of the Obsessive-Compulsive Disorder (OCD). Two key structures, the Orbitofrontal Cortex (OFC) and the Anterior Cingulate Cortex (ACC) have been found dysfunctional in OCD compared to healthy volunteers and on such basis have been tested as therapeutic targets for invasive and non-invasive neuromodulation therapy. Hereinafter, evidence addressing the cognitive processes subtended by to those two brain regions and their role in wider associated cortico-subcortical networks is reviewed. Very specifically, their relevance for OCD clinical features is discussed in extenso and its modulation with invasive and non-invasive focal brain stimulation such as deep brain stimulation (DBS) or transcranial magnetic Stimulation (TMS). Most importantly, this article brings new insights bridging causal evidence on the structural and functional neuroanatomy subtending OCD and novel therapeutic perspectives based on focal brain stimulation.
Collapse
Affiliation(s)
- R Maatoug
- Hôpital La Pitié Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - A Ekmen
- Hôpital La Pitié Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - A Valero-Cabre
- Hôpital La Pitié Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - B Millet
- Hôpital La Pitié Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
25
|
Hiebert NM, Lawrence MR, Ganjavi H, Watling M, Owen AM, Seergobin KN, MacDonald PA. Striatum-Mediated Deficits in Stimulus-Response Learning and Decision-Making in OCD. Front Psychiatry 2020; 11:13. [PMID: 32116835 PMCID: PMC7013245 DOI: 10.3389/fpsyt.2020.00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is a prevalent psychiatric disorder characterized by obsessions and compulsions. Studies investigating symptomatology and cognitive deficits in OCD frequently implicate the striatum. The aim of this study was to explore striatum-mediated cognitive deficits in patients with OCD as they complete a stimulus-response learning task previously shown to differentially rely on the dorsal (DS) and ventral striatum (VS). We hypothesized that patients with OCD will show both impaired decision-making and learning, coupled with reduced task-relevant activity in DS and VS, respectively, compared to healthy controls. We found that patients with OCD (n = 14) exhibited decision-making deficits and learned associations slower compared to healthy age-matched controls (n = 16). Along with these behavioral deficits, OCD patients had reduced task-relevant activity in DS and VS, compared to controls. This study reveals that responses in DS and VS are altered in OCD, and sheds light on the cognitive deficits and symptoms experienced by patients with OCD.
Collapse
Affiliation(s)
- Nole M Hiebert
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Marc R Lawrence
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Hooman Ganjavi
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Mark Watling
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Ken N Seergobin
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Penny A MacDonald
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada.,Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| |
Collapse
|
26
|
Maatoug R, Valero-Cabré A, Duriez P, Saudreau B, Fernández-Vidal S, Karachi C, Millet B. Sustained Recovery in a Treatment-Refractory Obsessive-Compulsive Disorder Patient After Deep Brain Stimulation Battery Failure. Front Psychiatry 2020; 11:572059. [PMID: 33281642 PMCID: PMC7691224 DOI: 10.3389/fpsyt.2020.572059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a widespread chronic neuropsychiatric disorder characterized by recurrent intrusive thoughts, images, or urges (obsessions) that typically cause anxiety or distress. Even when optimal treatment is provided, 10% of patients remain severely affected chronically. In some countries, deep brain stimulation (DBS) is an approved and effective therapy for patients suffering from treatment-resistant OCD. Hereafter, we report the case of a middle-aged man with a long history of treatment-resistant OCD spanning nearly a decade with Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores oscillating between 21 and 28. The patient underwent bilateral implantation of ventral striatum/ventral capsule DBS leads attached to a battery-operated implanted pulse generator. After a 3-month postimplantation period, the DBS protocol started. Three months after the onset of DBS treatment, the patient's Y-BOCS score had dropped to 3, and he became steadily asymptomatic. However, inadvertently, at this time, it was found out that the implanted pulse generator battery had discharged completely, interrupting brain stimulation. The medical team carried on with the original therapeutic and evaluation plan in the absence of active DBS current. After 12 additional months under off-DBS, the patient remained at a Y-BOCS score of 7 and asymptomatic. To our knowledge, this is the first report that provides an opportunity to discuss four different hypotheses of long-term recovery induced by DBS in a treatment-refractory OCD patient, notably: (1) A placebo effect; (2) Paradoxical improvements induced by micro-lesions generated by DBS probe implantation procedures; (3) Unexpected late spontaneous improvements; (4) Recovery driven by a combination of active DBS-induction, the effects of medication, and DBS-placebo effects.
Collapse
Affiliation(s)
- Redwan Maatoug
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, Paris, France
| | - Antoni Valero-Cabré
- Groupe de Dynamiques Cérébrales, Plasticité et Rééducation and Frontlab Team, Institut du Cerveau (ICM), INSERM 1127, CNRS, UMR 7225 and Sorbonne Université (SO), Paris, France.,Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127, Sorbonne Université, Paris, France.,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, MA, United States.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - Philibert Duriez
- Institute of Psychiatry and Neurosciences of Paris, Unité Mixte de Recherche en Santé (UMRS) 1266 Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris Descartes, Paris, France.,Clinique des Maladies Mentales et de l'Encéphale, Groupement Hospitalier Universitaire (GHU) Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Bertrand Saudreau
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, Paris, France
| | - Sara Fernández-Vidal
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau (CRICM), UMR-S975, Paris, France.,INSERM, U975, Paris, France.,CNRS, UMR 7225, CR-ICM, Paris, France.,Centre de Neuroimagerie de Recherche de l'Institut du Cerveau (CENIR ICM), Paris, France
| | - Carine Karachi
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau (CRICM), UMR-S975, Paris, France.,INSERM, U975, Paris, France.,CNRS, UMR 7225, CR-ICM, Paris, France.,Neurosurgery Department, APHP, Hôpitaux Universitaires Pitié-Salpêtrière/Charles Foix, Paris, France
| | - Bruno Millet
- Sorbonne Université, AP-HP, Service de psychiatrie adulte de la Pitié-Salpêtrière, Institut du Cerveau, ICM, Paris, France
| |
Collapse
|
27
|
Performance in delayed non-matching to sample task predicts the diagnosis of obsessive-compulsive disorder. Transl Psychiatry 2019; 9:338. [PMID: 31822655 PMCID: PMC6904547 DOI: 10.1038/s41398-019-0667-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
Electrical stimulation studies have recently evidenced the involvement of orbitofrontal cortex (OFC) in obsessive-compulsive disorder (OCD). In addition, lateral OFC is activated in healthy subjects during delayed non-matching-to-sample task (DNMS). In the present study, we hypothesized that OCD results from a specific defect of lateral OFC processing that can be evidenced via a DNMS task. To this end, we compared the DNMS performances of 20 OCD patients vs 20 demographically matched healthy controls. As predicted, our results showed that OCD patients performed worse than healthy controls at DNMS task. To test for the specificity of this behavioral impairment, we furthermore compared OCD patients and healthy subjects on a different task not involving directly the lateral OFC: the delayed match-to-sample task (DMS). As expected, OCD patients are more impaired for both the DNMS and the DMS task, compared with healthy subjects. Moreover, OCD patients tend statistically to perform worse for the DNMS task than for DMS task. Our results suggest the DNMS task specifically target the malfunctioning areas in OCD, such as the lateral OFC. In light of these results, lateral OFC should therefore be the focus of future therapeutic interventions.
Collapse
|
28
|
Cho S, Hachmann JT, Balzekas I, In MH, Andres-Beck LG, Lee KH, Min HK, Jo HJ. Resting-state functional connectivity modulates the BOLD activation induced by nucleus accumbens stimulation in the swine brain. Brain Behav 2019; 9:e01431. [PMID: 31697455 PMCID: PMC6908867 DOI: 10.1002/brb3.1431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION While the clinical efficacy of deep brain stimulation (DBS) the treatment of motor-related symptoms is well established, the mechanism of action of the resulting cognitive and behavioral effects has been elusive. METHODS By combining functional magnetic resonance imaging (fMRI) and DBS, we investigated the pattern of blood-oxygenation-level-dependent (BOLD) signal changes induced by stimulating the nucleus accumbens in a large animal model. RESULTS We found that diffused BOLD activation across multiple functional networks, including the prefrontal, limbic, and thalamic regions during the stimulation, resulted in a significant change in inter-regional functional connectivity. More importantly, the magnitude of the modulation was closely related to the strength of the inter-regional resting-state functional connectivity. CONCLUSIONS Nucleus accumbens stimulation affects the functional activity in networks that underlie cognition and behavior. Our study provides an insight into the nature of the functional connectivity, which mediates activation effect via brain networks.
Collapse
Affiliation(s)
- Shinho Cho
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Jan T Hachmann
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Myung-Ho In
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lindsey G Andres-Beck
- Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, MN, USA
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
29
|
Park HR, Kim IH, Kang H, McCairn KW, Lee DS, Kim BN, Kim DG, Paek SH. Electrophysiological and imaging evidence of sustained inhibition in limbic and frontal networks following deep brain stimulation for treatment refractory obsessive compulsive disorder. PLoS One 2019; 14:e0219578. [PMID: 31323037 PMCID: PMC6641158 DOI: 10.1371/journal.pone.0219578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder that arises from a complex interaction of environmental and genetic factors. Despite numerous pharmacological and behavioral interventions, approximately 10% of patients remain refractory. High-frequency deep brain stimulation (HF-DBS) has shown promising results for treatment-refractory OCD. We report the follow-up result of up to 6 years of 4 treatment-refractory OCD patients treated by HF-DBS. Targets of stimulation were the anterior limb of the internal capsule (ALIC) in two cases, and the nucleus accumbens (NAc) in the remaining cohort. The clinical profiles were quantified by the Yale-Brown obsessive-compulsive scale (Y-BOCS). Highly significant reductions in Y-BOCS scores were obtained from all patients during the follow-up period. A greater that 90% reduction in Y-BOCS, observed in the most successful case, was achieved with NAc HF-DBS. Y-BOCS scores in the other patients consistently achieved over 50% reductions in OCD symptoms. FDG-PET imaging indicated post-surgical reductions in metabolism, in not only targeted limbic networks, but also other frontal cortical and subcortical regions, suggesting that large-scale network modulation and inhibitions are associated with functional recovery in OCD. This study demonstrates that HF-DBS targeted to the ALIC and NAc is a safe and effective method for ameliorating intractable, treatment-refractory OCD symptoms. The NAc appeared to be the superior target for symptom reduction, and local inhibition of NAc activity and reduced frontal metabolism are key therapeutic indications.
Collapse
Affiliation(s)
- Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - In Hyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kevin W. McCairn
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Bung-Nyun Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
30
|
Abstract
Neurosurgical interventions have been used for decades to treat severe, refractory obsessive-compulsive disorder (OCD). Deep brain stimulation (DBS) is a neurosurgical procedure that is used routinely to treat movement disorders such as Parkinson's disease and essential tremor. Over the past two decades, DBS has been applied to OCD, building on earlier experience with lesional procedures. Promising results led to Humanitarian Device Exemption (HDE) approval of the therapy from the United States Food and Drug Administration in 2009. In this review, the authors describe the development of DBS for OCD, the most recent outcome data, and areas for future research.
Collapse
Affiliation(s)
- Sruja Arya
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Megan M Filkowski
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | | | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Norman LJ, Taylor SF, Liu Y, Radua J, Chye Y, De Wit SJ, Huyser C, Karahanoglu FI, Luks T, Manoach D, Mathews C, Rubia K, Suo C, van den Heuvel OA, Yücel M, Fitzgerald K. Error Processing and Inhibitory Control in Obsessive-Compulsive Disorder: A Meta-analysis Using Statistical Parametric Maps. Biol Psychiatry 2019; 85:713-725. [PMID: 30595231 PMCID: PMC6474799 DOI: 10.1016/j.biopsych.2018.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/26/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Error processing and inhibitory control enable the adjustment of behaviors to meet task demands. Functional magnetic resonance imaging studies report brain activation abnormalities in patients with obsessive-compulsive disorder (OCD) during both processes. However, conclusions are limited by inconsistencies in the literature and small sample sizes. Therefore, the aim here was to perform a meta-analysis of the existing literature using unthresholded statistical maps from previous studies. METHODS A voxelwise seed-based d mapping meta-analysis was performed using t-maps from studies comparing patients with OCD and healthy control subjects (HCs) during error processing and inhibitory control. For the error processing analysis, 239 patients with OCD (120 male; 79 medicated) and 229 HCs (129 male) were included, while the inhibitory control analysis included 245 patients with OCD (120 male; 91 medicated) and 239 HCs (135 male). RESULTS Patients with OCD, relative to HCs, showed longer inhibitory control reaction time (standardized mean difference = 0.20, p = .03, 95% confidence interval = 0.016, 0.393) and more inhibitory control errors (standardized mean difference = 0.22, p = .02, 95% confidence interval = 0.039, 0.399). In the brain, patients showed hyperactivation in the bilateral dorsal anterior cingulate cortex, supplementary motor area, and pre-supplementary motor area as well as right anterior insula/frontal operculum and anterior lateral prefrontal cortex during error processing but showed hypoactivation during inhibitory control in the rostral and ventral anterior cingulate cortices and bilateral thalamus/caudate, as well as the right anterior insula/frontal operculum, supramarginal gyrus, and medial orbitofrontal cortex (all seed-based d mapping z value >2, p < .001). CONCLUSIONS A hyperactive error processing mechanism in conjunction with impairments in implementing inhibitory control may underlie deficits in stopping unwanted compulsive behaviors in the disorder.
Collapse
Affiliation(s)
- Luke J. Norman
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Stephan F. Taylor
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA
| | - Yanni Liu
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA
| | - Joaquim Radua
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Stella J. De Wit
- Amsterdam University Medical Centers, Vrije Universiteit, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands,GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Chaim Huyser
- Bascule, Academic Centre for Children and Adolescent Psychiatry, Amsterdam, Netherlands
| | - F. Isik Karahanoglu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Dara Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Carol Mathews
- Department of Psychiatry and Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, Florida, USA
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Chao Suo
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Odile A. van den Heuvel
- Amsterdam University Medical Centers, Vrije Universiteit, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands,OCD-Team, Haukeland University Hospital, Bergen, Norway
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Kate Fitzgerald
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA
| |
Collapse
|
32
|
A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. Biol Psychiatry 2019; 85:726-734. [PMID: 30853111 PMCID: PMC6467837 DOI: 10.1016/j.biopsych.2019.01.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an emerging treatment for severe obsessive-compulsive disorder (OCD). We compared the efficacy of ventral capsule/ventral striatal (VC/VS) and anteromedial subthalamic nucleus (amSTN) DBS in the same patients and tested for mechanistic differences on mood and cognitive flexibility and associated neural circuitry. The possible synergistic benefit of DBS at both sites and cognitive behavioral therapy was explored. METHODS Six patients with treatment-refractory OCD (5 men; Yale-Brown Obsessive Compulsive Scale score >32) entered double-blind counterbalanced phases of 12-week amSTN or VC/VS DBS, followed by 12-week open phases when amSTN and VC/VS were stimulated together, in which optimal stimulation parameters were achieved and adjunctive inpatient cognitive behavioral therapy was delivered. OCD and mood were assessed with standardized scales and cognitive flexibility with the Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional Set-Shift task. Diffusion-weighted and intraoperative magnetic resonance imaging scans were performed for tractography from optimally activated electrode contacts. RESULTS DBS at each site significantly and equivalently reduced OCD symptoms with little additional gain following combined stimulation. amSTN but not VC/VS DBS significantly improved cognitive flexibility, whereas VC/VS DBS had a greater effect on mood. The VC/VS effective site was within the VC. VC DBS connected primarily to the medial orbitofrontal cortex, and amSTN DBS to the lateral orbitofrontal cortex, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex. No further improvement followed cognitive behavioral therapy, reflecting a floor effect of DBS on OCD. CONCLUSIONS Both the VC/VS and amSTN are effective targets for severe treatment-refractory OCD. Differential improvements in mood and cognitive flexibility and their associated connectivity suggest that DBS at these sites modulates distinct brain networks.
Collapse
|
33
|
Lei H, Lai J, Sun X, Xu Q, Feng G. Lateral orbitofrontal dysfunction in the Sapap3 knockout mouse model of obsessive–compulsive disorder. J Psychiatry Neurosci 2019; 44:120-131. [PMID: 30403026 PMCID: PMC6397042 DOI: 10.1503/jpn.180032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Obsessive–compulsive disorder (OCD) is a common psychiatric disorder that affects about 2% of the population, but the underlying neuropathophysiology of OCD is not well understood. Although increasing lines of evidence implicate dysfunction of the orbitofrontal cortex (OFC) in OCD, a detailed understanding of the functional alterations in different neuronal types in the OFC is still elusive. METHODS We investigated detailed activity pattern changes in putative pyramidal neurons and interneurons, as well as local field potential oscillations, in the lateral OFC underlying OCD-relevant phenotypes. We applied in vivo multichannel recording in an awake OCD mouse model that carried a deletion of the Sapap3 gene, and in wildtype littermates. RESULTS Compared with wildtype mice, the lateral OFC of Sapap3 knockout mice exhibited network dysfunction, demonstrated by decreased power of local field potential oscillations. The activity of inhibitory and excitatory neurons in the lateral OFC showed distinct perturbations in Sapap3 knockout mice: putative interneurons exhibited increased activity; putative pyramidal neurons exhibited enhanced bursting activity; and both putative pyramidal neurons and interneurons exhibited enhanced discharge variability and altered synchronization. LIMITATIONS To exclude motor activity confounders, this study examined functional alterations in lateral OFC neurons only when the mice were stationary. CONCLUSION We provide, to our knowledge, the first direct in vivo electrophysiological evidence of detailed functional alterations in different neuronal types in the lateral OFC of an OCD mouse model. These findings may help in understanding the underlying neuropathophysiology and circuitry mechanisms for phenotypes relevant to OCD, and may help generate and refine hypotheses about potential biomarkers for further investigation.
Collapse
Affiliation(s)
- Huimeng Lei
- From the Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Centre of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China (Lei, Lai, Sun, Xu); the McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts (Feng); and the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts (Feng)
| | - Juan Lai
- From the Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Centre of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China (Lei, Lai, Sun, Xu); the McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts (Feng); and the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts (Feng)
| | - Xiaohong Sun
- From the Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Centre of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China (Lei, Lai, Sun, Xu); the McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts (Feng); and the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts (Feng)
| | - Qunyuan Xu
- From the Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Centre of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China (Lei, Lai, Sun, Xu); the McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts (Feng); and the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts (Feng)
| | - Guoping Feng
- From the Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Centre of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China (Lei, Lai, Sun, Xu); the McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts (Feng); and the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts (Feng)
| |
Collapse
|
34
|
Monitoring deep brain stimulation by measuring regional brain oxygen responses in freely moving mice. J Neurosci Methods 2019; 317:20-28. [PMID: 30716350 DOI: 10.1016/j.jneumeth.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Translational studies investigating the effects of deep brain stimulation (DBS) on brain function up to now mainly relied on BOLD responses measured with fMRI. However, fMRI studies in rodents face technical and practical limitations (e.g., immobilization, sedation or anesthesia, spatial and temporal resolution of data). Direct measurement of oxygen concentration in the brain using electrochemical sensors is a promising alternative to the use of fMRI. Here, we tested for the first time if such measurements can be combined with DBS. NEW METHOD We combined bilateral DBS in the internal capsule (IC-DBS) with simultaneous amperometric measurements of oxygen in the medial prefrontal cortex (prelimbic area) and striatum of freely moving mice. Using a two-day within-animal experimental design, we tested the effects of DBS on baseline oxygen concentrations, and on novelty- and restraint-induced increases in oxygen concentration. RESULTS Basal oxygen levels were stable across the daily sampling periods. Exposure to novelty and immobilization reproducibly increased oxygen concentrations in both areas. IC-DBS did not significantly alter basal oxygen, but reduced the novelty-induced increase in the striatum. COMPARISON WITH EXISTING METHOD(S) Amperometric detection of brain oxygen concentration with high temporal and spatial resolution can be performed in a number of key brain areas to study the effects of DBS in animal models of disease. The method is easily implemented and does not require expensive equipment or complicated data analysis processes. CONCLUSIONS Direct and simultaneous measurement of brain oxygen concentration in multiple brain areas can be used to study the effects of bilateral DBS neuromodulation on brain activity in freely moving mice.
Collapse
|
35
|
Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach. Front Psychiatry 2019; 10:905. [PMID: 31920754 PMCID: PMC6923766 DOI: 10.3389/fpsyt.2019.00905] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder featuring repetitive intrusive thoughts and behaviors associated with a significant handicap. Of patients, 20% are refractory to medication and cognitive behavioral therapy. Refractory OCD is associated with suicidal behavior and significant degradation of social and professional functioning, with high health costs. Deep brain stimulation (DBS) has been proposed as a reversible and controllable method to treat refractory patients, with meta-analyses showing 60% response rate following DBS, whatever the target: anterior limb of the internal capsule (ALIC), ventral capsule/ventral striatum (VC/VS), nucleus accumbens (NAcc), anteromedial subthalamic nucleus (amSTN), or inferior thalamic peduncle (ITP). But how do we choose the "best" target? Functional neuroimaging studies have shown that ALIC-DBS requires the modulation of the fiber tract within the ventral ALIC via the ventral striatum, bordering the bed nucleus of the stria terminalis and connecting the medial prefrontal cortex with the thalamus to be successful. VC/VS effective sites of stimulation were found within the VC and primarily connected to the medial orbitofrontal cortex (OFC) dorsomedial thalamus, amygdala, and the habenula. NAcc-DBS has been found to reduce OCD symptoms by decreasing excessive fronto-striatal connectivity between NAcc and the lateral and medial prefrontal cortex. The amSTN effective stimulation sites are located at the inferior medial border of the STN, primarily connected to lateral OFC, dorsal anterior cingulate, and dorsolateral prefrontal cortex. Finally, ITP-DBS recruits a bidirectional fiber pathway between the OFC and the thalamus. Thus, these functional connectivity studies show that the various DBS targets lie within the same diseased neural network. They share similar efficacy profiles on OCD symptoms as estimated on the Y-BOCS, the amSTN being the target supported by the strongest evidence in the literature. VC/VS-DBS, amSTN-DBS, and ALIC-DBS were also found to improve mood, behavioral adaptability and potentially both, respectively. Because OCD is such a heterogeneous disease with many different symptom dimensions, the ultimate aim should be to find the most appropriate DBS target for a given refractory patient. This quest will benefit from further investigation and understanding of the individual functional connectivity of OCD patients.
Collapse
Affiliation(s)
- Suhan Senova
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Anne-Hélène Clair
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Palfi
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,IMRB UPEC/INSERM U 955 Team 14, Créteil, France
| | - Jérôme Yelnik
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Philippe Domenech
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Luc Mallet
- AP-HP, Groupe Hospitalier Henri-Mondor, DHU PePsy, Neurosurgery, Psychiatry and Addictology departments, Créteil, France.,Université Paris Est Creteil, Faculté de Médecine, Créteil, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Institut du Cerveau et de la Moelle épinière, Paris, France.,Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Apergis-Schoute AM, Bijleveld B, Gillan CM, Fineberg NA, Sahakian BJ, Robbins TW. Hyperconnectivity of the ventromedial prefrontal cortex in obsessive-compulsive disorder. Brain Neurosci Adv 2018; 2:1-10. [PMID: 31742235 PMCID: PMC6861127 DOI: 10.1177/2398212818808710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuroimaging research has highlighted maladaptive thalamo-cortico-striatal interactions in obsessive-compulsive disorder as well as a more general deficit in prefrontal functioning linked with compromised executive functioning. More specifically, dysfunction in the ventromedial prefrontal cortex, a central hub in coordinating flexible behaviour, is thought to be central to obsessive-compulsive disorder symptomatology. We sought to determine the intrinsic alterations of the ventromedial prefrontal cortex in obsessive-compulsive disorder employing resting-state functional connectivity magnetic resonance imaging analyses with a ventromedial prefrontal cortex seed region of interest. A total of 38 obsessive-compulsive disorder patients and 33 matched controls were included in our analyses. We found widespread ventromedial prefrontal cortex hyperconnectivity during rest in patients with obsessive-compulsive disorder, displaying increased connectivity with its own surrounding region in addition to hyperconnectivity with several areas along the thalamo-cortico-striatal loop: thalamus, caudate and frontal gyrus. Obsessive-compulsive disorder patients also exhibited increased functional connectivity from the ventromedial prefrontal cortex to temporal and occipital lobes, cerebellum and the motor cortex, reflecting ventromedial prefrontal cortex hyperconnectivity in large-scale brain networks. Furthermore, hyperconnectivity of the ventromedial prefrontal cortex and caudate correlated with obsessive-compulsive disorder symptomatology. Additionally, we used three key thalamo-cortico-striatal regions that were hyperconnected with our ventromedial prefrontal cortex seed as supplementary seed regions, revealing hypoconnectivity along the orbito- and lateral prefrontal cortex-striatal pathway. Taken together, these results confirm a central role of a hyperconnected ventromedial prefrontal cortex in obsessive-compulsive disorder, with a special role for maladaptive crosstalk with the caudate, and indications for hypoconnectivity along the lateral and orbito pathways.
Collapse
Affiliation(s)
- Annemieke M Apergis-Schoute
- Department of Psychology, University of Cambridge, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester UK
| | - Bastiaan Bijleveld
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Claire M Gillan
- School of Psychology and Trinity College Institute of Neuroscience and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Naomi A Fineberg
- Hertfordshire Partnership University NHS Foundation Trust, University of Hertfordshire, Welwyn Garden City, UK.,Postgraduate Medical School, University of Hertfordshire, Hatfield, UK
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Rappel P, Marmor O, Bick AS, Arkadir D, Linetsky E, Castrioto A, Tamir I, Freedman SA, Mevorach T, Gilad M, Bergman H, Israel Z, Eitan R. Subthalamic theta activity: a novel human subcortical biomarker for obsessive compulsive disorder. Transl Psychiatry 2018; 8:118. [PMID: 29915200 PMCID: PMC6006433 DOI: 10.1038/s41398-018-0165-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 11/24/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a common and serious psychiatric disorder. Although subthalamic nucleus deep brain stimulation (DBS) has been studied as a treatment for OCD patients the underlying mechanism of this treatment and the optimal method of stimulation are unknown. To study the neural basis of subthalamic nucleus DBS in OCD patients we used a novel, implantable DBS system with long-term local field potential sensing capability. We focus our analysis on two patients with OCD who experienced severe treatment-resistant symptoms and were implanted with subthalamic nucleus DBS systems. We studied them for a year at rest and during provocation of OCD symptoms (46 recording sessions) and compared them to four Parkinson's disease (PD) patients implanted with subthalamic nucleus DBS systems (69 recording sessions). We show that the dorsal (motor) area of the subthalamic nucleus in OCD patients displays a beta (25-35 Hz) oscillatory activity similar to PD patients whereas the ventral (limbic-cognitive) area of the subthalamic nucleus displays distinct theta (6.5-8 Hz) oscillatory activity only in OCD patients. The subthalamic nucleus theta oscillatory activity decreases with provocation of OCD symptoms and is inversely correlated with symptoms severity over time. We conclude that beta oscillations at the dorsal subthalamic nucleus in OCD patients challenge their pathophysiologic association with movement disorders. Furthermore, theta oscillations at the ventral subthalamic nucleus in OCD patients suggest a new physiological target for OCD therapy as well as a promising input signal for future emotional-cognitive closed-loop DBS.
Collapse
Affiliation(s)
- Pnina Rappel
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0004 1937 0538grid.9619.7The Edmond and Lily Safra Center for Brain Research, the Hebrew University, Jerusalem, Israel
| | - Odeya Marmor
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0004 1937 0538grid.9619.7The Edmond and Lily Safra Center for Brain Research, the Hebrew University, Jerusalem, Israel
| | - Atira S Bick
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - David Arkadir
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Eduard Linetsky
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Anna Castrioto
- 0000 0004 0429 3736grid.462307.4Grenoble Institute of Neuroscience, Grenoble, France
| | - Idit Tamir
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel ,0000 0001 2221 2926grid.17788.31The Center for Functional and Restorative Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel ,0000 0001 2297 6811grid.266102.1Department of Neurosurgery, University of California San Francisco, San Francisco, CA USA
| | - Sara A. Freedman
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel ,0000 0004 1937 0503grid.22098.31School of Social Work, Bar Ilan University, Ramat Gan, Israel
| | - Tomer Mevorach
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Moran Gilad
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Bergman
- 0000 0004 1937 0538grid.9619.7Department of Medical Neurobiology (Physiology), Institute of Medical Research – Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel ,0000 0004 1937 0538grid.9619.7The Edmond and Lily Safra Center for Brain Research, the Hebrew University, Jerusalem, Israel
| | - Zvi Israel
- 0000 0001 2221 2926grid.17788.31The Brain Division, Hadassah–Hebrew University Medical Center, Jerusalem, Israel ,0000 0001 2221 2926grid.17788.31The Center for Functional and Restorative Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Department of Medical Neurobiology (Physiology), Institute of Medical Research - Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel. .,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. .,Department of Psychiatry, Functional Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Norman LJ, Carlisi CO, Christakou A, Chantiluke K, Murphy C, Simmons A, Giampietro V, Brammer M, Mataix-Cols D, Rubia K. Neural dysfunction during temporal discounting in paediatric Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder. Psychiatry Res 2017; 269:97-105. [PMID: 28988149 PMCID: PMC5647646 DOI: 10.1016/j.pscychresns.2017.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/06/2017] [Accepted: 09/09/2017] [Indexed: 01/23/2023]
Abstract
Both Attention-Deficit/Hyperactivity Disorder (ADHD) and Obsessive-Compulsive Disorder (OCD) are associated with choice impulsivity, i.e. the tendency to prefer smaller immediate rewards over larger delayed rewards. However, the extent to which this impulsivity is mediated by shared or distinct underlying neural mechanisms is unclear. Twenty-six boys with ADHD, 20 boys with OCD and 20 matched controls (aged 12-18) completed an fMRI version of an individually adjusted temporal discounting (TD) task which requires choosing between a variable amount of money now or £100 in one week, one month or one year. Activations to immediate and delayed reward choices were compared between groups using a three-way ANCOVA. ADHD patients had steeper discounting rates on the task relative to controls. OCD patients did not differ from controls or patients with ADHD. Patients with ADHD and OCD showed predominantly shared activation deficits during TD in fronto-striato-insular-cerebellar regions responsible for self-control and temporal foresight, suggesting that choice impulsivity is mediated by overlapping neural dysfunctions in both disorders. OCD patients alone showed dysfunction relative to controls in right orbitofrontal and rostrolateral prefrontal cortex, extending previous findings of abnormalities in these regions in OCD to the domain of choice impulsiveness.
Collapse
Affiliation(s)
- Luke J Norman
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| | - Christina O Carlisi
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Anastasia Christakou
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Kaylita Chantiluke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Clodagh Murphy
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, London, UK
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Michael Brammer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
39
|
Zanello M, Pallud J, Baup N, Peeters S, Turak B, Krebs MO, Oppenheim C, Gaillard R, Devaux B. History of psychosurgery at Sainte-Anne Hospital, Paris, France, through translational interactions between psychiatrists and neurosurgeons. Neurosurg Focus 2017; 43:E9. [DOI: 10.3171/2017.6.focus17250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sainte-Anne Hospital is the largest psychiatric hospital in Paris. Its long and fascinating history began in the 18th century. In 1952, it was at Sainte-Anne Hospital that Jean Delay and Pierre Deniker used the first neuroleptic, chlorpromazine, to cure psychiatric patients, putting an end to the expansion of psychosurgery. The Department of Neuro-psychosurgery was created in 1941. The works of successive heads of the Neurosurgery Department at Sainte-Anne Hospital summarized the history of psychosurgery in France.Pierre Puech defined psychosurgery as the necessary cooperation between neurosurgeons and psychiatrists to treat the conditions causing psychiatric symptoms, from brain tumors to mental health disorders. He reported the results of his series of 369 cases and underlined the necessity for proper follow-up and postoperative re-education, illustrating the relative caution of French neurosurgeons concerning psychosurgery.Marcel David and his assistants tried to follow their patients closely postoperatively; this resulted in numerous publications with significant follow-up and conclusions. As early as 1955, David reported intellectual degradation 2 years after prefrontal leucotomies.Jean Talairach, a psychiatrist who eventually trained as a neurosurgeon, was the first to describe anterior capsulotomy in 1949. He operated in several hospitals outside of Paris, including the Sarthe Psychiatric Hospital and the Public Institution of Mental Health in the Lille region. He developed stereotactic surgery, notably stereo-electroencephalography, for epilepsy surgery but also to treat psychiatric patients using stereotactic lesioning with radiofrequency ablation or radioactive seeds of yttrium-90.The evolution of functional neurosurgery has been marked by the development of deep brain stimulation, in particular for obsessive-compulsive disorder, replacing the former lesional stereotactic procedures.The history of Sainte-Anne Hospital’s Neurosurgery Department sheds light on the initiation—yet fast reconsideration—of psychosurgery in France. This relatively more prudent attitude toward the practice of psychosurgery compared with other countries was probably due to the historically strong collaboration between psychiatrists and neurosurgeons in France.
Collapse
Affiliation(s)
- Marc Zanello
- 1Neurosurgery Department,
- 2IMABRAIN, INSERM U894, and
- 6University Paris Descartes, Paris, France
| | - Johan Pallud
- 1Neurosurgery Department,
- 2IMABRAIN, INSERM U894, and
- 6University Paris Descartes, Paris, France
| | - Nicolas Baup
- 3Department of Psychiatry, Service Hospitalo-Universitaire, and
| | | | - Baris Turak
- 1Neurosurgery Department,
- 6University Paris Descartes, Paris, France
| | - Marie Odile Krebs
- 3Department of Psychiatry, Service Hospitalo-Universitaire, and
- 4Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S894; and
- 6University Paris Descartes, Paris, France
| | - Catherine Oppenheim
- 2IMABRAIN, INSERM U894, and
- 5Neuroradiology Department, Sainte-Anne Hospital
- 6University Paris Descartes, Paris, France
| | - Raphael Gaillard
- 3Department of Psychiatry, Service Hospitalo-Universitaire, and
- 4Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR S894; and
- 6University Paris Descartes, Paris, France
| | - Bertrand Devaux
- 1Neurosurgery Department,
- 6University Paris Descartes, Paris, France
| |
Collapse
|
40
|
Blakemore RL, Vuilleumier P. An Emotional Call to Action: Integrating Affective Neuroscience in Models of Motor Control. EMOTION REVIEW 2017. [DOI: 10.1177/1754073916670020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intimate relationships between emotion and action have long been acknowledged, yet contemporary theories and experimental research within affective and movement neuroscience have not been linked into a coherent framework bridging these two fields. Accumulating psychological and neuroimaging evidence has, however, brought new insights regarding how emotions affect the preparation, execution, and control of voluntary movement. Here we review main approaches and findings on such emotion–action interactions. To assimilate key emotion concepts of action tendencies and motive states with fundamental constructs of the motor system, we underscore the need for integrating an information-processing approach of motor control into affective neuroscience. This should provide a rich foundation to bridge the two fields, allowing further refinement and empirical testing of emotion theories and better understanding of affective influences in movement disorders.
Collapse
Affiliation(s)
- Rebekah L. Blakemore
- Department of Neuroscience, University of Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
| | - Patrik Vuilleumier
- Department of Neuroscience, University of Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Switzerland
- Department of Neurology, University Hospitals of Geneva, Switzerland
| |
Collapse
|
41
|
High-Frequency Stimulation of the Subthalamic Nucleus Blocks Compulsive-Like Re-Escalation of Heroin Taking in Rats. Neuropsychopharmacology 2017; 42:1850-1859. [PMID: 27917870 PMCID: PMC5520777 DOI: 10.1038/npp.2016.270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022]
Abstract
Opioid addiction, including addiction to heroin, has markedly increased in the past decade. The cost and pervasiveness of heroin addiction, including resistance to recovery from addiction, provide a compelling basis for developing novel therapeutic strategies. Deep brain stimulation may represent a viable alternative strategy for the treatment of intractable heroin addiction, particularly in individuals who are resistant to traditional therapies. Here we provide preclinical evidence of the therapeutic potential of high-frequency stimulation of the subthalamic nucleus (STN HFS) for heroin addiction. STN HFS prevented the re-escalation of heroin intake after abstinence in rats with extended access to heroin, an animal model of compulsive heroin taking. STN HFS inhibited key brain regions, including the substantia nigra, entopeduncular nucleus, and nucleus accumbens shell measured using brain mapping analyses of immediate-early gene expression and produced a robust silencing of STN neurons as measured using whole-cell recording ex vivo. These results warrant further investigation to examine the therapeutic effects that STN HFS may have on relapse in humans with heroin addiction.
Collapse
|
42
|
Adams WK, Vonder Haar C, Tremblay M, Cocker PJ, Silveira MM, Kaur S, Baunez C, Winstanley CA. Deep-Brain Stimulation of the Subthalamic Nucleus Selectively Decreases Risky Choice in Risk-Preferring Rats. eNeuro 2017; 4:ENEURO.0094-17.2017. [PMID: 28791332 PMCID: PMC5547195 DOI: 10.1523/eneuro.0094-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) can improve the motor symptoms of Parkinson's disease (PD) and negate the problematic side effects of dopamine replacement therapy. Although there is concern that STN-DBS may enhance the development of gambling disorder and other impulse control disorders in this patient group, recent data suggest that STN-DBS may actually reduce iatrogenic impulse control disorders, and alleviate obsessive-compulsive disorder (OCD). Here, we sought to determine whether STN-DBS was beneficial or detrimental to performance of the rat gambling task (rGT), a rodent analogue of the Iowa Gambling Task (IGT) used to assess risky decision making clinically. Rats chose between four options associated with different amounts and probabilities of sugar pellet rewards versus timeout punishments. As in the IGT, the optimal approach was to favor options associated with smaller per-trial gains but lower timeout penalties. Once a stable behavioral baseline was established, electrodes were implanted bilaterally into the STN, and the effects of STN-DBS assessed on-task over 10 consecutive sessions using an A-B-A design. STN-DBS did not affect choice in optimal decision makers that correctly favored options associated with smaller per-trial gains but also lower penalties. However, a minority (∼25%) preferred the maladaptive "high-risk, high-reward" options at baseline. STN-DBS significantly and progressively improved choice in these risk-preferring rats. These data support the hypothesis that STN-DBS may be beneficial in ameliorating maladaptive decision making associated with compulsive and addiction disorders.
Collapse
Affiliation(s)
- Wendy K. Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Cole Vonder Haar
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Melanie Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Paul J. Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Mason M. Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Christelle Baunez
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, 13005, Marseille, France
| | - Catharine A. Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
43
|
Graat I, Figee M, Denys D. The application of deep brain stimulation in the treatment of psychiatric disorders. Int Rev Psychiatry 2017; 29:178-190. [PMID: 28523977 DOI: 10.1080/09540261.2017.1282439] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Deep brain stimulation (DBS) is a last-resort treatment for neurological and psychiatric disorders that are refractory to standard treatment. Over the last decades, the progress of DBS in psychiatry has been slower than in neurology, in part owing to the heterogenic symptomatology and complex neuroanatomy of psychiatric disorders. However, for obsessive-compulsive disorder (OCD) DBS is now an accepted treatment. This study first reviews clinical outcomes and mechanisms of DBS for OCD, and then discusses these results in an overview of current and future psychiatric applications, including DBS for mood disorders, Tourette's syndrome, addiction, anorexia nervosa, autism, schizophrenia, and anxiety disorders. In addition, it will focus on novel techniques that may enhance the application of DBS in psychiatry.
Collapse
Affiliation(s)
- Ilse Graat
- a Department of Psychiatry , Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Martijn Figee
- a Department of Psychiatry , Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands.,b Amsterdam Brain and Cognition , Amsterdam , Netherlands
| | - Damiaan Denys
- a Department of Psychiatry , Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands.,b Amsterdam Brain and Cognition , Amsterdam , Netherlands.,c Netherlands Institute for Neuroscience , An Institute of the Royal Netherlands Academy of Arts and Sciences , Amsterdam , Netherlands
| |
Collapse
|
44
|
Neural basis of impaired safety signaling in Obsessive Compulsive Disorder. Proc Natl Acad Sci U S A 2017; 114:3216-3221. [PMID: 28265059 DOI: 10.1073/pnas.1609194114] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to assign safety to stimuli in the environment is integral to everyday functioning. A key brain region for this evaluation is the ventromedial prefrontal cortex (vmPFC). To investigate the importance of vmPFC safety signaling, we used neuroimaging of Pavlovian fear reversal, a paradigm that involves flexible updating when the contingencies for a threatening (CS+) and safe (CS-) stimulus reverse, in a prototypical disorder of inflexible behavior influenced by anxiety, Obsessive Compulsive Disorder (OCD). Skin conductance responses in OCD patients (n = 43) failed to differentiate during reversal compared with healthy controls (n = 35), although significant differentiation did occur during early conditioning and amygdala BOLD signaling was unaffected in these patients. Increased vmPFC activation (for CS+ > CS-) during early conditioning predicted the degree of generalization in OCD patients during reversal, whereas vmPFC safety signals were absent throughout learning in these patients. Regions of the salience network (dorsal anterior cingulate, insula, and thalamus) showed early learning task-related hyperconnectivity with the vmPFC in OCD, consistent with biased processing of the CS+. Our findings reveal an absence of vmPFC safety signaling in OCD, undermining flexible threat updating and explicit contingency knowledge. Although differential threat learning can occur to some extent in the absence of vmPFC safety signals, effective CS- signaling becomes crucial during conflicting threat and safety cues. These results promote further investigation of vmPFC safety signaling in other anxiety disorders, with potential implications for the development of exposure-based therapies, in which safety signaling is likely to play a key role.
Collapse
|
45
|
Mulders AEP, Plantinga BR, Schruers K, Duits A, Janssen MLF, Ackermans L, Leentjens AFG, Jahanshahi A, Temel Y. Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: Neuroanatomical and pathophysiological considerations. Eur Neuropsychopharmacol 2016; 26:1909-1919. [PMID: 27838106 DOI: 10.1016/j.euroneuro.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/04/2016] [Accepted: 10/29/2016] [Indexed: 11/17/2022]
Abstract
Obsessive-compulsive disorder (OCD) is among the most disabling chronic psychiatric disorders and has a significant negative impact on multiple domains of quality of life. For patients suffering from severe refractory OCD, deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been applied. Reviewing the literature of the last years we believe that through its central position within the cortico-basal ganglia-thalamocortical circuits, the STN has a coordinating role in decision-making and action-selection mechanisms. Dysfunctional information-processing at the level of the STN is responsible for some of the core symptoms of OCD. Research confirms an electrophysiological dysfunction in the associative and limbic (non-motor) parts of the STN. Compared to Parkinson׳s disease patients, STN neurons in OCD exhibit a lower firing rate, less frequent but longer bursts, increased burst activity in the anterior ventromedial area, an asymmetrical left-sided burst distribution, and a predominant oscillatory activity in the δ-band. Moreover, there is direct evidence for the involvement of the STN in both checking behavior and OCD symptoms, which are both related to changes in electrophysiological activity in the non-motor STN. Through a combination of mechanisms, DBS of the STN seems to interrupt the disturbed information-processing, leading to a normalization of connectivity within the cortico-basal ganglia-thalamocortical circuits and consequently to a reduction in symptoms. In conclusion, based on the STN׳s strategic position within cortico-basal ganglia-thalamocortical circuits and its involvement in action-selection mechanisms that are responsible for some of the core symptoms of OCD, the STN is a mechanism-based target for DBS in OCD.
Collapse
Affiliation(s)
- A E P Mulders
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Translational Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - B R Plantinga
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Translational Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - K Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Duits
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M L F Janssen
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Translational Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A F G Leentjens
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Translational Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Y Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Translational Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
46
|
Rodriguez-Romaguera J, Greenberg BD, Rasmussen SA, Quirk GJ. An Avoidance-Based Rodent Model of Exposure With Response Prevention Therapy for Obsessive-Compulsive Disorder. Biol Psychiatry 2016; 80:534-40. [PMID: 27086546 PMCID: PMC4988932 DOI: 10.1016/j.biopsych.2016.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/30/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder is treated with exposure with response prevention (ERP) therapy, in which patients are repeatedly exposed to compulsive triggers but prevented from expressing their compulsions. Many compulsions are an attempt to avoid perceived dangers, and the intent of ERP is to extinguish compulsions. Patients failing ERP therapy are candidates for deep brain stimulation (DBS) of the ventral capsule/ventral striatum, which facilitates patients' response to ERP therapy. An animal model of ERP would be useful for understanding the neural mechanisms of extinction in obsessive-compulsive disorder. METHODS Using a platform-mediated signaled avoidance task, we developed a rodent model of ERP called extinction with response prevention (Ext-RP), in which avoidance-conditioned rats are given extinction trials while blocking access to the avoidance platform. Following 3 days of Ext-RP, rats were tested with the platform unblocked to evaluate persistent avoidance. We then assessed if pharmacologic inactivation of lateral orbitofrontal cortex (lOFC) or DBS of the ventral striatum reduced persistent avoidance. RESULTS Following Ext-RP training, most rats showed reduced avoidance at test (Ext-RP success), but a subset persisted in their avoidance (Ext-RP failure). Pharmacologic inactivation of lOFC eliminated persistent avoidance, as did DBS applied to the ventral striatum during Ext-RP. CONCLUSIONS DBS of ventral striatum has been previously shown to inhibit lOFC activity. Thus, activity in lOFC, which is known to be hyperactive in obsessive-compulsive disorder, may be responsible for impairing patients' response to ERP therapy.
Collapse
Affiliation(s)
- Jose Rodriguez-Romaguera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936
| | | | - Steven A. Rasmussen
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02906
| | - Gregory J. Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936
| |
Collapse
|
47
|
Abstract
Obsessive-compulsive disorder (OCD) is a mental disorder featuring obsessions (intrusive thoughts) and compulsions (repetitive behaviors performed in the context of rigid rituals). There is strong evidence for a neurobiological basis of this disorder, involving limbic cortical regions and related basal ganglion areas. However, more research is needed to lift the veil on the precise nature of that involvement and the way it drives the clinical expression of OCD. Altered cognitive functions may underlie the symptoms and thus draw a link between the clinical expression of the disorder and its neurobiological etiology. Our extensive review demonstrates that OCD patients do present a broad range of neuropsychological dysfunctions across all cognitive domains (memory, attention, flexibility, inhibition, verbal fluency, planning, decision-making), but some methodological issues temper this observation. Thus, future research should have a more integrative approach to cognitive functioning, gathering contributions of both experimental psychology and more fundamental neurosciences.
Collapse
Affiliation(s)
- Nabil Benzina
- "Behaviour, Emotion, and Basal Ganglia" Team, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France.
| | - Luc Mallet
- "Behaviour, Emotion, and Basal Ganglia" Team, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
- AP-HP, Service de Psychiatrie, DHU PePsy, Hôpital Henri Mondor, Université Paris-Est Créteil, INSERM U955, Fondation FondaMental, Créteil, France
| | - Eric Burguière
- "Behaviour, Emotion, and Basal Ganglia" Team, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Karim N'Diaye
- "Behaviour, Emotion, and Basal Ganglia" Team, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Antoine Pelissolo
- AP-HP, Service de Psychiatrie, DHU PePsy, Hôpital Henri Mondor, Université Paris-Est Créteil, INSERM U955, Fondation FondaMental, Créteil, France
| |
Collapse
|
48
|
Gillan CM, Robbins TW, Sahakian BJ, van den Heuvel OA, van Wingen G. The role of habit in compulsivity. Eur Neuropsychopharmacol 2016; 26:828-40. [PMID: 26774661 PMCID: PMC4894125 DOI: 10.1016/j.euroneuro.2015.12.033] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022]
Abstract
Compulsivity has been recently characterized as a manifestation of an imbalance between the brain׳s goal-directed and habit-learning systems. Habits are perhaps the most fundamental building block of animal learning, and it is therefore unsurprising that there are multiple ways in which the development and execution of habits can be promoted/discouraged. Delineating these neurocognitive routes may be critical to understanding if and how habits contribute to the many faces of compulsivity observed across a range of psychiatric disorders. In this review, we distinguish the contribution of excessive stimulus-response habit learning from that of deficient goal-directed control over action and response inhibition, and discuss the role of stress and anxiety as likely contributors to the transition from goal-directed action to habit. To this end, behavioural, pharmacological, neurobiological and clinical evidence are synthesised and a hypothesis is formulated to capture how habits fit into a model of compulsivity as a trans-diagnostic psychiatric trait.
Collapse
Affiliation(s)
- Claire M Gillan
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Odile A van den Heuvel
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands; Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands; The OCD Team, Haukeland University Hospital, Bergen, Norway
| | - Guido van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
49
|
van den Heuvel OA, van Wingen G, Soriano-Mas C, Alonso P, Chamberlain SR, Nakamae T, Denys D, Goudriaan AE, Veltman DJ. Brain circuitry of compulsivity. Eur Neuropsychopharmacol 2016; 26:810-27. [PMID: 26711687 DOI: 10.1016/j.euroneuro.2015.12.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/28/2015] [Accepted: 12/01/2015] [Indexed: 01/27/2023]
Abstract
Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field.
Collapse
Affiliation(s)
- Odile A van den Heuvel
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Department of Anatomy & Neurosciences, VUmc, Amsterdam, The Netherlands; The Obsessive-Compulsive Disorder Team, Haukeland University Hospital, Bergen, Norway.
| | - Guido van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carles Soriano-Mas
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Spain
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridge and Peterborough NHS Foundation Trust (CPFT), Cambridge, United Kingdom
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Academic Medical Center, Department of Psychiatry, Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, The Netherlands; Arkin Mental Health and Jellinek Addiction Treatment, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| |
Collapse
|
50
|
McGovern RA, Sheth SA. Role of the dorsal anterior cingulate cortex in obsessive-compulsive disorder: converging evidence from cognitive neuroscience and psychiatric neurosurgery. J Neurosurg 2016; 126:132-147. [PMID: 27035167 DOI: 10.3171/2016.1.jns15601] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Advances in understanding the neurobiological basis of psychiatric disorders will improve the ability to refine neuromodulatory procedures for treatment-refractory patients. One of the core dysfunctions in obsessive-compulsive disorder (OCD) is a deficit in cognitive control, especially involving the dorsal anterior cingulate cortex (dACC). The authors' aim was to derive a neurobiological understanding of the successful treatment of refractory OCD with psychiatric neurosurgical procedures targeting the dACC. METHODS First, the authors systematically conducted a review of the literature on the role of the dACC in OCD by using the search terms "obsessive compulsive disorder" and "anterior cingulate." The neuroscience literature on cognitive control mechanisms in the dACC was then combined with the literature on psychiatric neurosurgical procedures targeting the dACC for the treatment of refractory OCD. RESULTS The authors reviewed 89 studies covering topics that included structural and functional neuroimaging and electrophysiology. The majority of resting-state functional neuroimaging studies demonstrated dACC hyperactivity in patients with OCD relative to that in controls, while task-based studies were more variable. Electrophysiological studies showed altered dACC-related biomarkers of cognitive control, such as error-related negativity in OCD patients. These studies were combined with the cognitive control neurophysiology literature, including the recently elaborated expected value of control theory of dACC function. The authors suggest that a central feature of OCD pathophysiology involves the generation of mis-specified cognitive control signals by the dACC, and they elaborate on this theory and provide suggestions for further study. CONCLUSIONS Although abnormalities in brain structure and function in OCD are distributed across a wide network, the dACC plays a central role. The authors propose a theory of cognitive control dysfunction in OCD that attempts to explain the therapeutic efficacy of dACC neuromodulation. This theoretical framework should help to guide further research into targeted treatments of OCD and other disorders of cognitive control.
Collapse
Affiliation(s)
- Robert A McGovern
- Department of Neurological Surgery, The Neurological Institute, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- Department of Neurological Surgery, The Neurological Institute, Columbia University Medical Center, New York, New York
| |
Collapse
|