1
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
2
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
3
|
Śmiałowska M, Zięba B, Domin H. A role of noradrenergic receptors in anxiolytic-like effect of high CRF in the rat frontal cortex. Neuropeptides 2021; 88:102162. [PMID: 34062382 DOI: 10.1016/j.npep.2021.102162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Corticotropin releasing factor (CRF) is a neuropeptide widely distributed in the brain as a hormonal modulator and neurotransmitter. The best known behavioral function of CRF is activation of stress and anxiety via the hypothalamus and limbic structures but the role of CRF in the cortex is still poorly understood. Our previous studies have shown anxiolytic-like effects of high doses of CRF injected into the Fr2 frontal cortex and involvement of CRF1 receptors (R) in that effect. These results seemed to be controversial as most other studies suggested anxiogenic and not anxiolytic effects of CRF1R stimulation. Since stress is associated with adrenergic system, in the present study, we focused on participation of alpha1 and alpha2 or beta adrenergic receptors in the anxiolytic-like effect of CRF. Moreover, we verified whether these effects of CRF in the Fr2 were really connected with CRF1R. Male Wistar rats were bilaterally microinjected with CRF in a dose of 0.2 μg/1 μl/site or with the specific agonist of CRF1R, stressin 1 (0.2-0.0125 μg/1 μl/site) into the Fr2 area. The elevated plus maze (EPM) test was performed 30 min later to assess the anxiolysis. An involvement of noradrenergic receptors in the CRF induced anxiolytic-like effect in the Fr2 was studied by pretreatment with the alpha1 antagonist prazosin, alpha2 agonist clonidine, alpha2 antagonist RS 79948 or beta antagonist propranolol, 20-30 min before CRF. The influence on anxiety was assessed in the EPM test. The results show that anxiolytic behavior after CRF microinjection into the Fr2 area seems to be mainly connected with the CRF1R activation because a similar effect was observed after stressin 1 administration and it was blocked by CRF1R antagonist. The results observed after administration of noradrenergic ligands indicated that anxiolytic effects of CRF in the Fr2 engaged the alpha1 and alpha2 adrenergic receptors but not beta receptors.
Collapse
Affiliation(s)
- Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland.
| | - Barbara Zięba
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland
| | - Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna street, Poland
| |
Collapse
|
4
|
Caccamise A, Van Newenhizen E, Mantsch JR. Neurochemical mechanisms and neurocircuitry underlying the contribution of stress to cocaine seeking. J Neurochem 2021; 157:1697-1713. [PMID: 33660857 PMCID: PMC8941950 DOI: 10.1111/jnc.15340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
In individuals with substance use disorders, stress is a critical determinant of relapse susceptibility. In some cases, stressors directly trigger cocaine use. In others, stressors interact with other stimuli to promote drug seeking, thereby setting the stage for relapse. Here, we review the mechanisms and neurocircuitry that mediate stress-triggered and stress-potentiated cocaine seeking. Stressors trigger cocaine seeking by activating noradrenergic projections originating in the lateral tegmentum that innervate the bed nucleus of the stria terminalis to produce beta adrenergic receptor-dependent regulation of neurons that release corticotropin releasing factor (CRF) into the ventral tegmental area (VTA). CRF promotes the activation of VTA dopamine neurons that innervate the prelimbic prefrontal cortex resulting in D1 receptor-dependent excitation of a pathway to the nucleus accumbens core that mediates cocaine seeking. The stage-setting effects of stress require glucocorticoids, which exert rapid non-canonical effects at several sites within the mesocorticolimbic system. In the nucleus accumbens, corticosterone attenuates dopamine clearance via the organic cation transporter 3 to promote dopamine signaling. In the prelimbic cortex, corticosterone mobilizes the endocannabinoid, 2-arachidonoylglycerol (2-AG), which produces CB1 receptor-dependent reductions in inhibitory transmission, thereby increasing excitability of neurons which comprise output pathways responsible for cocaine seeking. Factors that influence the role of stress in cocaine seeking, including prior history of drug use, biological sex, chronic stress/co-morbid stress-related disorders, adolescence, social variables, and genetics are discussed. Better understanding when and how stress contributes to drug seeking should guide the development of more effective interventions, particularly for those whose drug use is stress related.
Collapse
Affiliation(s)
- Aaron Caccamise
- Graduate Program in Neuroscience, Marquette University, Milwaukee, WI 53201
| | - Erik Van Newenhizen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - John R. Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
5
|
Rajbhandari AK, Bakshi VP. Repeated norepinephrine receptor stimulation in the BNST induces sensorimotor gating deficits via corticotropin releasing factor. Neuropharmacology 2020; 172:108090. [PMID: 32360378 DOI: 10.1016/j.neuropharm.2020.108090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
Intense stress precipitates symptoms in disorders such as post-traumatic stress (PTSD) and schizophrenia. Patients with these disorders have dysfunctional sensorimotor gating as indexed by disrupted prepulse inhibition of the startle response (PPI), which refers to decreased startle response when a weak pre-stimulus precedes a startling stimulus. Stress promotes release of norepinephrine (NE) and corticotrophin releasing factor (CRF) within the brain, neurotransmitters that also modulate PPI. We have shown that repeated stress causes sensitization of NE receptors within the basolateral amygdala (BLA) via CRF receptors and promotes long-lasting PPI disruptions and startle abnormalities. The bed nucleus of the stria terminalis (BNST) is another crucial brain region that could be involved in stress-induced alterations in NE and CRF functions to promote PPI changes as this anatomical structure is enriched in CRF and NE receptors that have been shown to regulate each other. We hypothesized that repeated infusions of NE into the BNST would cross-sensitize CRF receptors or vice versa to alter PPI. Separate groups of male Sprague Dawley rats received, CRF (200ng/0.5 μl), NE (20μg/0.5 μl), or vehicle into the BNST, once/day for 3 days and PPI was tested after each infusion. Repeated CRF-or vehicle-treated rats were then challenged with a subthreshold dose of NE (0.3μg/0.5 μl) while repeated NE-treated rats were challenged with CRF (200ng/0.5 μl), and PPI was measured. Surprisingly, initial/repeated CRF or vehicle in the BNST had no effects on PPI. In contrast, initial and repeated NE disrupted PPI. Sub-threshold NE challenge in rats that previously received repeated CRF had no effect on PPI. Interestingly though, intra-BNST challenge dose of CRF significantly disrupted PPI in rats that previously had received repeated NE infusions. Taken together, these results indicate that repeated stress-induced NE release could alter the activity of CRF receptors in the BNST to modulate sensorimotor gating as measured through PPI.
Collapse
Affiliation(s)
- Abha Karki Rajbhandari
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| | - Vaishali P Bakshi
- Dept. of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA; AKR Is Now at Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| |
Collapse
|
6
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
7
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
8
|
Snyder AE, Salimando GJ, Winder DG, Silberman Y. Chronic Intermittent Ethanol and Acute Stress Similarly Modulate BNST CRF Neuron Activity via Noradrenergic Signaling. Alcohol Clin Exp Res 2019; 43:1695-1701. [PMID: 31141179 DOI: 10.1111/acer.14118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Relapse is a critical barrier to effective long-term treatment of alcoholism, and stress is often cited as a key trigger to relapse. Numerous studies suggest that stress-induced reinstatement to drug-seeking behaviors is mediated by norepinephrine (NE) and corticotropin-releasing factor (CRF) signaling interactions in the bed nucleus of the stria terminalis (BNST), a brain region critical to many behavioral and physiologic responses to stressors. Here, we sought to directly examine the effects of NE on BNST CRF neuron activity and determine whether these effects may be modulated by chronic intermittent EtOH (CIE) exposure or a single restraint stress. METHODS Adult male CRF-tomato reporter mice were treatment-naïve, or either exposed to CIE for 2 weeks or to a single 1-hour restraint stress. Effects of application of exogenous NE on BNST CRF neuron activity were assessed via whole-cell patch-clamp electrophysiological techniques. RESULTS We found that NE depolarized BNST CRF neurons in naïve mice in a β-adrenergic receptor (AR)-dependent mechanism. CRF neurons from CIE- or stress-exposed mice had significantly elevated basal resting membrane potential compared to naïve mice. Furthermore, CIE and stress individually disrupted the ability of NE to depolarize CRF neurons, suggesting that both stress and CIE utilize β-AR signaling to modulate BNST CRF neurons. Neither stress nor CIE altered the ability of exogenous NE to inhibit evoked glutamatergic transmission onto BNST CRF neurons as shown in naïve mice, a mechanism previously shown to be α-AR-dependent. CONCLUSIONS Altogether, these findings suggest that stress and CIE interact with β-AR signaling to modulate BNST CRF neuron activity, potentially disrupting the α/β-AR balance of BNST CRF neuronal excitability. Restoration of α/β-AR balance may lead to novel therapies for the alleviation of many stress-related disorders.
Collapse
Affiliation(s)
- Angela E Snyder
- From the, Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gregory J Salimando
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yuval Silberman
- From the, Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
9
|
Gao HR, Gao HY. Cardiovascular functions of central corticotropin-releasing factor related peptides system. Neuropeptides 2019; 75:18-24. [PMID: 30922523 DOI: 10.1016/j.npep.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
The corticotropin-releasing factor (CRF) related peptides system has widespread distributions in central nervous system, to perform many physiological and pathophysiological functions, including cardiovascular functions. A complex connection exists between the central CRF related peptides system and cardiovascular system. There are multiple pathways and mechanisms through which the central CRF related peptides system influences cardiovascular functions. A dysfunction in the central CRF related peptides system may lead to a wide range of alterations in cardiovascular functions. Though there are difficulties or limitations in establishing exact modulatory roles of the central CRF related peptides system in cardiovascular functions. The central CRF related peptides system as target to prevent cardiovascular diseases is being pursued with increasing interest. In this review, we summarize recent understanding on cardiovascular functions of the CRF related peptides system in limbic forebrain, hypothalamus and brain stem structures, discuss mechanisms of the central CRF related peptides system in control of cardiovascular functions, and suggest that the central CRF related peptides system may be a potent candidate for prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- He-Ren Gao
- Research Institute of Acupuncture and Meridian, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - He-Yuan Gao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| |
Collapse
|
10
|
Schmidt KT, Makhijani VH, Boyt KM, Cogan ES, Pati D, Pina MM, Bravo IM, Locke JL, Jones SR, Besheer J, McElligott ZA. Stress-Induced Alterations of Norepinephrine Release in the Bed Nucleus of the Stria Terminalis of Mice. ACS Chem Neurosci 2019; 10:1908-1914. [PMID: 30252438 DOI: 10.1021/acschemneuro.8b00265] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stress can drive adaptive changes to maintain survival during threatening stimuli. Chronic stress exposure, however, may result in pathological adaptations. A key neurotransmitter involved in stress signaling is norepinephrine. Previous studies show that acute stress elevates norepinephrine levels in the bed nucleus of the stria terminalis (BNST), a critical node regulating anxiety and upstream of stress responses. Here, we use mice expressing channelrhodopsin in norepinephrine neurons to selectively activate terminals in the BNST, and measure norepinephrine release with optogenetics-assisted fast-scan cyclic voltammetry (FSCV). We demonstrate that while corticosterone habituates to chronic restraint stress, cFos activation of medullary norepinephrine neurons shows equivalent activation under both acute and chronic stress conditions. Mice exposed to a single restraint session show an identical optically stimulated norepinephrine release profile compared to that of unexposed mice. Mice experiencing 5 days of restraint stress, however, show elevated norepinephrine release across multiple stimulation parameters, and reduced sensitivity to the α2-adrenergic receptor (AR) antagonist idazoxan. These data are the first to examine norepinephrine release in the BNST to tonic and phasic stimulation frequencies, and confirm that repeated stress alters autoreceptor sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jason L. Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | | | | |
Collapse
|
11
|
The role of the bed nucleus of the stria terminalis in pain-induced aversive motivation. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Pomrenze MB, Tovar-Diaz J, Blasio A, Maiya R, Giovanetti SM, Lei K, Morikawa H, Hopf FW, Messing RO. A Corticotropin Releasing Factor Network in the Extended Amygdala for Anxiety. J Neurosci 2019; 39:1030-1043. [PMID: 30530860 PMCID: PMC6363927 DOI: 10.1523/jneurosci.2143-18.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/24/2018] [Accepted: 12/01/2018] [Indexed: 11/21/2022] Open
Abstract
The central amygdala (CeA) is important for fear responses to discrete cues. Recent findings indicate that the CeA also contributes to states of sustained apprehension that characterize anxiety, although little is known about the neural circuitry involved. The stress neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by subpopulations of neurons in the lateral CeA and the dorsolateral bed nucleus of the stria terminalis (dlBST). Here we investigated the function of these CRF neurons in stress-induced anxiety using chemogenetics in male rats that express Cre recombinase from a Crh promoter. Anxiety-like behavior was mediated by CRF projections from the CeA to the dlBST and depended on activation of CRF1 receptors and CRF neurons within the dlBST. Our findings identify a CRFCeA→CRFdlBST circuit for generating anxiety-like behavior and provide mechanistic support for recent human and primate data suggesting that the CeA and BST act together to generate states of anxiety.SIGNIFICANCE STATEMENT Anxiety is a negative emotional state critical to survival, but persistent, exaggerated apprehension causes substantial morbidity. Identifying brain regions and neurotransmitter systems that drive anxiety can help in developing effective treatment. Much evidence in rodents indicates that neurons in the bed nucleus of the stria terminalis (BST) generate anxiety-like behaviors, but more recent findings also implicate neurons of the CeA. The neuronal subpopulations and circuitry that generate anxiety are currently subjects of intense investigation. Here we show that CeA neurons that release the stress neuropeptide corticotropin-releasing factor (CRF) drive anxiety-like behaviors in rats via a pathway to dorsal BST that activates local BST CRF neurons. Thus, our findings identify a CeA→BST CRF neuropeptide circuit that generates anxiety-like behavior.
Collapse
Affiliation(s)
| | | | | | - Rajani Maiya
- Department of Neuroscience
- Department of Neurology, University of Texas at Austin, Austin, Texas 78712, and
| | - Simone M Giovanetti
- Department of Neuroscience
- Department of Neurology, University of Texas at Austin, Austin, Texas 78712, and
| | - Kelly Lei
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | | | - F Woodward Hopf
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | - Robert O Messing
- Institute for Neuroscience,
- Department of Neuroscience
- Department of Neurology, University of Texas at Austin, Austin, Texas 78712, and
| |
Collapse
|
13
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
14
|
α 2A-Adrenergic Receptor Activation Decreases Parabrachial Nucleus Excitatory Drive onto BNST CRF Neurons and Reduces Their Activity In Vivo. J Neurosci 2018; 39:472-484. [PMID: 30478032 DOI: 10.1523/jneurosci.1035-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and β-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, using Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENT Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent coexpression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.
Collapse
|
15
|
Walter AL, Bartsch JC, Datunashvili M, Blaesse P, Lange MD, Pape HC. Physiological Profile of Neuropeptide Y-Expressing Neurons in Bed Nucleus of Stria Terminalis in Mice: State of High Excitability. Front Cell Neurosci 2018; 12:393. [PMID: 30455634 PMCID: PMC6231247 DOI: 10.3389/fncel.2018.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Both, the anterior bed nucleus of the stria terminalis (BNST) and the neuropeptide Y (NPY) system are involved in shaping fear and defensive responses that adapt the organism to potentially life-threatening conditions. NPY is expressed in the BNST but NPY-expressing neurons in this critical hub in the stress response network have not been addressed before. Therefore, we performed whole-cell patch-clamp recordings in acute slices of anterior BNST from Npy-hrGFP transgenic mice to identify and characterize NPY-expressing neurons. We show that NPY-positive and NPY-negative neurons in anterior BNST match the previous classification scheme of type I (Regular Spiking), type II (Low-Threshold Bursting), and type III (fast Inward Rectifying) cells, although the proportion of these physiological phenotypes was similar within both neuronal subpopulations. However, NPY-positive and NPY-negative neurons possessed distinct intrinsic electrophysiological properties. NPY-positive neurons displayed higher input resistance and lower membrane capacitance, corresponding to small cell bodies and shorter less ramified dendrites, as compared to their NPY-negative counterparts. Furthermore, NPY-positive neurons generated higher frequent series of action potentials upon membrane depolarization and displayed significantly lower GABAA receptor-mediated synaptic responsiveness during evoked, spontaneous, and elementary synaptic activity. Taken together, these properties indicate an overall state of high excitability in NPY-positive neurons in anterior BNST. In view of the role of the anterior BNST in anxiety- and stress-related behaviors, these findings suggest a scenario where NPY-positive neurons are preferentially active and responsive to afferent inputs, thereby contributing to adaptation of the organism to stressful environmental encounters.
Collapse
Affiliation(s)
- Achim Leonhard Walter
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Maia Datunashvili
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Peter Blaesse
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Maren Denise Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
16
|
Ide S, Yamamoto R, Suzuki H, Takeda H, Minami M. Roles of noradrenergic transmission within the ventral part of the bed nucleus of the stria terminalis in bidirectional brain-intestine interactions. Neuropsychopharmacol Rep 2018; 38:182-188. [PMID: 30264532 PMCID: PMC7292287 DOI: 10.1002/npr2.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Aims The bed nucleus of the stria terminalis (BNST) is a limbic structure mediating autonomic and neuroendocrine responses and negative affective states such as anxiety and fear. We previously demonstrated that noradrenergic transmission via β‐adrenoceptors within the ventral part of BNST (vBNST) is involved in bidirectional interactions between the brain and the upper gastrointestinal (GI) tract. The present study aimed to examine the roles of intra‐vBNST noradrenergic transmission via β‐adrenoceptors in bidirectional interactions between the brain and lower GI tract. Methods In vivo microdialysis experiments were performed to examine colorectal distention (CRD)‐induced noradrenaline release within the vBNST of freely moving male Sprague‐Dawley rats. Colonic transit and abdominal pain perception were examined following intra‐vBNST injections of isoproterenol, a β‐adrenoceptor agonist, with and without co‐administration of timolol, a β‐adrenoceptor antagonist. Results CRD increased extracellular noradrenaline levels within the vBNST and evoked abdominal contractions in a pressure‐dependent manner (30‐60 mm Hg). Bilateral intra‐vBNST injections of isoproterenol (30 nmol/side) significantly increased CRD (30 mm Hg)‐induced abdominal contractions. Intra‐vBNST injections of isoproterenol (30 nmol/side) significantly increased colonic transit, which was reversed by co‐administration of timolol (30 nmol/side). Conclusion The results of this study suggest (a) the existence of a positive feedback loop between intra‐vBNST noradrenaline release and abdominal pain perception, and (b) the modulation of colonic motility by intra‐vBNST noradrenergic transmission via β‐adrenoceptors. Dysfunction of the lower GI tract may increase noradrenaline release within the vBNST, which, in turn, may exacerbate impairment of its motility and pain perception. In vivo microdialysis experiments demonstrated that colorectal distention (CRD) increased extracellular levels of noradrenaline within the vBNST. Intra‐vBNST injections of isoproterenol, a β‐adrenoceptor agonist, induced visceral hypersensitivity to CRD and increased colonic transit, and the increase in colonic transit was reversed by co‐administration of timolol, a β‐adrenoceptor antagonist. The present findings demonstrated important roles of noradrenergic transmission via β‐adrenoceptors within the vBNST in bidirectional brain‐intestine interactions.
![]()
Collapse
Affiliation(s)
- Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryuta Yamamoto
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hacchi Suzuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Takeda
- Laboratory of Pathophysiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Harris NA, Winder DG. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors. ACS Chem Neurosci 2018; 9:2173-2187. [PMID: 29851347 PMCID: PMC6146063 DOI: 10.1021/acschemneuro.8b00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Collapse
Affiliation(s)
- Nicholas A. Harris
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
- Vanderbilt J.F. Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Pituitary Adenylate Cyclase-Activating Peptide in the Bed Nucleus of the Stria Terminalis Mediates Stress-Induced Reinstatement of Cocaine Seeking in Rats. Neuropsychopharmacology 2018; 43:978-986. [PMID: 28656976 PMCID: PMC5854788 DOI: 10.1038/npp.2017.135] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/20/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Stressors often contribute to difficulties in maintaining behavior change following a period of abstinence, and may play a significant role in drug relapse. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the bed nucleus of the stria terminalis (BNST) mediates many consequences of chronic stressor exposure. Here we ask whether PACAP is also involved in producing reinstatement in a model of stress-induced relapse to drug taking. Rats self-administered cocaine for 1 h daily over 10 days that was followed by 20 days of extinction training in which lever pressing no longer produced cocaine. In experiment 1, quantitative PCR (qPCR) was performed at several stages to determine transcript levels of PACAP and corresponding receptors. Reinstatement of cocaine seeking was then tested after footshock exposure in different groups of rats that were pretreated with vehicle solution, a PAC1 receptor antagonist (experiment 2), or a PACAP agonist (experiment 3) without footshock. In experiment 1, cocaine self-administration increased BNST PACAP transcript levels similar to what we have previously reported with chronic stress. In experiment 2, intra-BNST infusions of the PAC1/VPAC2 antagonist, PACAP 6-38, prevented footshock-induced reinstatement of extinguished cocaine seeking. In experiment 3, intra-BNST PACAP infusion reinstated previously extinguished cocaine-seeking behavior in the absence of footshock. Cocaine self-administration elevated BNST PACAP, and BNST PACAP receptor activation was necessary and sufficient for stress-induced reinstatement of cocaine seeking. These data suggest that BNST PACAP systems may be viable targets for relapse prevention.
Collapse
|
19
|
Oliveira LA, Gomes-de-Souza L, Benini R, Crestani CC. Control of cardiovascular responses to stress by CRF in the bed nucleus of stria terminalis is mediated by local NMDA/nNOS/sGC/PKG signaling. Psychoneuroendocrinology 2018; 89:168-176. [PMID: 29414029 DOI: 10.1016/j.psyneuen.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022]
Abstract
The aims of the present study were to assess an interaction of corticotropin-releasing factor (CRF) neurotransmission within the bed nucleus of the stria terminalis (BNST) with local nitrergic signaling, as well as to investigate an involvement of activation of local NMDA glutamate receptor and nitric oxide (NO) signaling in control of cardiovascular responses to acute restraint stress by BNST CRF neurotransmission in rats. We observed that CRF microinjection into the BNST increased local NO release during restraint stress. Furthermore, bilateral microinjection of CRF into the BNST enhanced both the arterial pressure and heart rate increases evoked by restraint stress, but without affecting the sympathetically-mediated cutaneous vasoconstriction. The facilitation of both pressor and tachycardiac responses to restraint stress evoked by BNST treatment with CRF were completely inhibited by local pretreatment with either the selective NMDA glutamate receptor antagonist LY235959, the selective neuronal nitric oxide synthase (nNOS) inhibitor Nω-Propyl-l-arginine (NPLA), the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or the protein kinase G (PKG) inhibitor KT5823. Taken together, these results provide evidence that BNST CRF neurotransmission facilitates local NMDA-mediated glutamatergic neurotransmission and activates nitrergic signaling, and this pathway is involved in control of cardiovascular responses to stress.
Collapse
Affiliation(s)
- Leandro A Oliveira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
20
|
Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:423-434. [PMID: 29383398 DOI: 10.1007/s00210-018-1470-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+ neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment.
Collapse
|
21
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
22
|
Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis. J Neurosci 2017; 36:8038-49. [PMID: 27488624 DOI: 10.1523/jneurosci.0856-16.2016] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Early work stressed the differing involvement of the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the genesis of fear versus anxiety, respectively. In 2009, Walker, Miles, and Davis proposed a model of amygdala-BNST interactions to explain these functional differences. This model became extremely influential and now guides a new wave of studies on the role of BNST in humans. Here, we consider evidence for and against this model, in the process highlighting central principles of BNST organization. This analysis leads us to conclude that BNST's influence is not limited to the generation of anxiety-like responses to diffuse threats, but that it also shapes the impact of discrete threatening stimuli. It is likely that BNST-CeA interactions are involved in modulating responses to such threats. In addition, whereas current views emphasize the contributions of the anterolateral BNST region in anxiety, accumulating data indicate that the anteromedial and anteroventral regions also play a critical role. The presence of multiple functional subregions within the small volume of BNST raises significant technical obstacles for functional imaging studies in humans.
Collapse
|
23
|
Vranjkovic O, Pina M, Kash TL, Winder DG. The bed nucleus of the stria terminalis in drug-associated behavior and affect: A circuit-based perspective. Neuropharmacology 2017; 122:100-106. [PMID: 28351600 DOI: 10.1016/j.neuropharm.2017.03.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
Abstract
The bed nucleus of the stria terminalis was first described nearly a century ago and has since emerged as a region central to motivated behavior and affective states. The last several decades have firmly established a role for the BNST in drug-associated behavior and implicated this region in addiction-related processes. Whereas past approaches used to characterize the BNST have focused on a more general role of this region and its subnuclei in behavior, more recent work has begun to reveal its elaborate circuitry and cellular components. Such recent developments are largely owed to methodological advances, which have made possible efforts previously deemed intractable, such as tracing of long-range cell-type specific projections and identifying functional efferent and afferent connections. In this review, we integrate earlier foundational work with more recent and advanced studies to construct a broad overview of the molecular neurocircuitry of the BNST in drug-associated behavior and affect. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Oliver Vranjkovic
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA
| | - Melanie Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA; Department of Psychiatry, Vanderbilt University School of Medicine, USA; Department of Pharmacology, Vanderbilt University School of Medicine, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Stress differentially regulates brain expression of corticotropin-releasing factor in binge-like eating prone and resistant female rats. Appetite 2016; 107:585-595. [DOI: 10.1016/j.appet.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022]
|
25
|
|
26
|
Henckens MJAG, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 2016; 17:636-51. [PMID: 27586075 DOI: 10.1038/nrn.2016.94] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysregulation of the corticotropin-releasing factor (CRF)-urocortin (UCN) system has been implicated in stress-related psychopathologies such as depression and anxiety. It has been proposed that CRF-CRF receptor type 1 (CRFR1) signalling promotes the stress response and anxiety-like behaviour, whereas UCNs and CRFR2 activation mediate stress recovery and the restoration of homeostasis. Recent findings, however, provide clear evidence that this view is overly simplistic. Instead, a more complex picture has emerged that suggests that there are brain region- and cell type-specific effects of CRFR signalling that are influenced by the individual's prior experience and that shape molecular, cellular and ultimately behavioural responses to stressful challenges.
Collapse
Affiliation(s)
- Marloes J A G Henckens
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
27
|
Fosnocht AQ, Briand LA. Substance use modulates stress reactivity: Behavioral and physiological outcomes. Physiol Behav 2016; 166:32-42. [PMID: 26907955 DOI: 10.1016/j.physbeh.2016.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/01/2023]
Abstract
Drug addiction is a major public health concern in the United States costing taxpayers billions in health care costs, lost productivity and law enforcement. However, the availability of effective treatment options remains limited. The development of novel therapeutics will not be possible without a better understanding of the addicted brain. Studies in both clinical and preclinical models indicate that chronic drug use leads to alterations in the body and brain's response to stress. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis may shed light on the ability of stress to increase vulnerability to relapse. Further, within both the HPA axis and limbic brain regions, corticotropin-releasing factor (CRF) is critically involved in the brain's response to stress. Alterations in both central and peripheral CRF activity seen following chronic drug use provide a mechanism by which substance use can alter stress reactivity, thus mediating addictive phenotypes. While many reviews have focused on how stress alters drug-mediated changes in physiology and behavior, the goal of this review is to focus on how substance use alters responses to stress.
Collapse
Affiliation(s)
| | - Lisa A Briand
- Department of Psychology, Temple University, United States.
| |
Collapse
|
28
|
Daniel SE, Rainnie DG. Stress Modulation of Opposing Circuits in the Bed Nucleus of the Stria Terminalis. Neuropsychopharmacology 2016; 41:103-25. [PMID: 26096838 PMCID: PMC4677121 DOI: 10.1038/npp.2015.178] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022]
Abstract
The anterior bed nucleus of the stria terminalis (BNST) has been recognized as a critical structure in regulating trait anxiety, contextual fear memory, and appetitive behavior, and is known to be sensitive to stress manipulations. As one of the most complex structures in the central nervous system, the intrinsic circuitry of the BNST is largely unknown; however, recent technological developments have allowed researchers to begin to untangle the internal connections of the nucleus. This research has revealed the possibility of two opposing circuits, one anxiolytic and one anxiogenic, within the BNST, the relative strength of which determines the behavioral outcome. The balance of these pathways is critical in maintaining a normal physiological and behavioral state; however, stress and drugs of abuse can differentially affect the opposing circuitry within the nucleus to shift the balance to a pathological state. In this review, we will examine how stress interacts with the neuromodulators, corticotropin-releasing factor, norepinephrine, dopamine, and serotonin to affect the circuitry of the BNST as well as how synaptic plasticity in the BNST is modulated by stress, resulting in long-lasting changes in the circuit and behavioral state.
Collapse
Affiliation(s)
- Sarah E Daniel
- Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Rainnie
- Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
29
|
Zhou J, Luo Y, Zhang JT, Li MX, Wang CM, Guan XL, Wu PF, Hu ZL, Jin Y, Ni L, Wang F, Chen JG. Propranolol decreases retention of fear memory by modulating the stability of surface glutamate receptor GluA1 subunits in the lateral amygdala. Br J Pharmacol 2015; 172:5068-82. [PMID: 26228348 DOI: 10.1111/bph.13272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Posttraumatic stress disorder (PTSD) is a mental disorder with enhanced retention of fear memory and has profound impact on quality of life for millions of people worldwide. The β-adrenoceptor antagonist propranolol has been used in preclinical and clinical studies for the treatment of PTSD, but the mechanisms underlying its potential efficacy on fear memory retention remain to be elucidated. EXPERIMENTAL APPROACH We investigated the action of propranolol on the retention of conditioned fear memory, the surface expression of glutamate receptor GluA1 subunits of AMPA receptors and synaptic adaptation in the lateral amygdala (LA) of rats. KEY RESULTS Propranolol attenuated reactivation-induced strengthening of fear retention while reducing enhanced surface expression of GluA1 subunits and restoring the impaired long-term depression in LA. These effects of propranolol were mediated by antagonizing reactivation-induced enhancement of adrenergic signalling, which activates PKA and calcium/calmodulin-dependent protein kinase II and then regulates the trafficking of AMPA receptors via phosphorylation of GluA1 subunits at the C-terminus. Both i.p. injection and intra-amygdala infusion of propranolol attenuated reactivation-induced enhancement of fear retention. CONCLUSIONS AND IMPLICATIONS Reactivation strengthens fear retention by increasing the level of noradrenaline and promotes the surface expression of GluA1 subunits and the excitatory synaptic transmission in LA. These findings uncover one mechanism underlying the efficiency of propranolol on retention of fear memories and suggest that β-adrenoceptor antagonists, which act centrally, may be more suitable for the treatment of PTSD.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Ting Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Xing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can-Ming Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Lei Guan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
30
|
Kash TL, Pleil KE, Marcinkiewcz CA, Lowery-Gionta EG, Crowley N, Mazzone C, Sugam J, Hardaway JA, McElligott ZA. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells 2015; 38:1-13. [PMID: 25475545 PMCID: PMC4314126 DOI: 10.14348/molcells.2015.2261] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022] Open
Abstract
Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
Collapse
Affiliation(s)
- Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Nicole Crowley
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Christopher Mazzone
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| |
Collapse
|
31
|
Lovinger DM. Mechanisms of Neuroplasticity and Ethanol's Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis. Alcohol Res 2015; 37:109-24. [PMID: 26259092 PMCID: PMC4476598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Long-lasting changes in synaptic function (i.e., synaptic plasticity) have long been thought to contribute to information storage in the nervous system. Although synaptic plasticity mainly has adaptive functions that allow the organism to function in complex environments, it is now clear that certain events or exposure to various substances can produce plasticity that has negative consequences for organisms. Exposure to drugs of abuse, in particular ethanol, is a life experience that can activate or alter synaptic plasticity, often resulting in increased drug seeking and taking and in many cases addiction.Two brain regions subject to alcohol's effects on synaptic plasticity are the striatum and bed nucleus of the stria terminalis (BNST), both of which have key roles in alcohol's actions and control of intake. The specific effects depend on both the brain region analyzed (e.g., specific subregions of the striatum and BNST) and the duration of ethanol exposure (i.e., acute vs. chronic). Plastic changes in synaptic transmission in these two brain regions following prolonged ethanol exposure are thought to contribute to excessive alcohol drinking and relapse to drinking. Understanding the mechanisms underlying this plasticity may lead to new therapies for treatment of these and other aspects of alcohol use disorder.
Collapse
|
32
|
McReynolds JR, Vranjkovic O, Thao M, Baker DA, Makky K, Lim Y, Mantsch JR. Beta-2 adrenergic receptors mediate stress-evoked reinstatement of cocaine-induced conditioned place preference and increases in CRF mRNA in the bed nucleus of the stria terminalis in mice. Psychopharmacology (Berl) 2014; 231:3953-63. [PMID: 24696080 PMCID: PMC8647032 DOI: 10.1007/s00213-014-3535-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/02/2014] [Indexed: 12/30/2022]
Abstract
RATIONALE Understanding the mechanisms responsible for stress-induced relapse is important for guiding treatment strategies aimed at minimizing the contribution of stress to addiction. Evidence suggests that these mechanisms involve interactions between noradrenergic systems and the neuropeptide corticotropin-releasing factor (CRF). OBJECTIVES The interaction between β-adrenergic receptors (ARs) and CRF as it relates to the reinstatement of cocaine-conditioned reward in response to a stressor was examined in mice. We hypothesized that β2-ARs are required for stress-induced activation of CRF pathways responsible for reinstatement. METHODS Stress-induced relapse was examined based on the re-establishment of cocaine-induced conditioned place preference (CPP; 4 × 15 mg/kg cocaine, i.p.) after extinction using forced swim (6 min at 22 °C) or an injection of the β2-AR agonist, clenbuterol (4 mg/kg, i.p.). The CRF-R1 antagonist antalarmin (10 mg/kg, i.p.) or the β2-AR antagonist ICI-118,551 (1 mg/kg, i.p.) were given 30 min prior to reinstating stimuli. Quantitative PCR was conducted in dissected bed nucleus of the stria terminalis (BNST) and amygdala, putative sources of CRF that contribute to reinstatement, to examine the effects of ICI-118,551 on swim-induced increases in CRF messenger RNA (mRNA) in mice with a cocaine history. RESULTS Pretreatment with ICI-118,551 or antalarmin blocked swim-induced reinstatement of CPP. Reinstatement by clenbuterol was also blocked by antalarmin. ICI-118,551 pretreatment prevented swim-induced increases in CRF mRNA in the BNST. Effects in the amygdala were not observed. CONCLUSIONS These findings indicate that, during stress, norepinephrine, via β2-ARs, either directly or indirectly activates CRF-releasing neurons in the BNST that interface with motivational neurocircuitry to induce reinstatement of cocaine-conditioned reward.
Collapse
Affiliation(s)
- Jayme R. McReynolds
- Corresponding Author: John Mantsch, Ph.D., Department of Biomedical Sciences, Marquette University, , , Telephone Number: (414) 288-2036, Fax Number: (414) 288-6564
| | - Oliver Vranjkovic
- Corresponding Author: John Mantsch, Ph.D., Department of Biomedical Sciences, Marquette University, , , Telephone Number: (414) 288-2036, Fax Number: (414) 288-6564
| | | | | | | | | | | |
Collapse
|
33
|
CRF-R2 and the heterosynaptic regulation of VTA glutamate during reinstatement of cocaine seeking. J Neurosci 2014; 34:10402-14. [PMID: 25080599 DOI: 10.1523/jneurosci.0911-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stress can reinstate cocaine seeking through an interaction between the stress hormone corticotropin releasing factor (CRF) and glutamate release onto dopamine neurons in the ventral tegmental area (VTA). To better understand the underlying causes, synaptic mechanisms were investigated in brain slices from rats. In control tissue, EPSCs displayed concentration-dependent, bimodal responses to CRF potentiation at low concentrations (3-100 nm) and attenuation at higher concentrations (300 nm). EPSC potentiation and attenuation were mediated by CRF-R1 and CRF-R2 receptor subtypes, respectively, localized to presynaptic terminals. The CRF-R2 attenuation was blocked by the GABA-B receptor antagonist CGP55843. Additional recordings of GABA-A IPSCs showed CRF-R2 activation-facilitated presynaptic release of GABA, suggesting that CRF-R2 may regulate glutamate release via heterosynaptic facilitation of GABA synapses. After chronic cocaine self-administration and extinction training, the sensitivity of glutamate and GABA receptors was unchanged. However, the ability of CRF-R2 agonists to depress EPSCs and potentiate IPSCs was diminished. After yohimbine plus cue reinstatement, the actions of CRF-R2 on GABA and glutamate release were reversed. CRF-R2 activation increased EPSCs as a result of a reduction of tonic GABA-dependent inhibition. After reinstatement, application of the A1 adenosine antagonist 1,3-dipropyl-8-cyclopentylxanthine increased GABA tone to inhibit the CRF-R2 action. Blockade of GABA-B receptors prevented both the CRF-R2 increase in EPSCs and the attenuation produced by 1,3-dipropyl-8-cyclopentylxanthine. These studies demonstrate that presynaptic CRF-R1/R2 tightly regulate glutamate transmission in the VTA via a concerted, heterosynaptic manner that may become altered by stress-related pathologies, such as addiction.
Collapse
|
34
|
Vranjkovic O, Gasser PJ, Gerndt CH, Baker DA, Mantsch JR. Stress-induced cocaine seeking requires a beta-2 adrenergic receptor-regulated pathway from the ventral bed nucleus of the stria terminalis that regulates CRF actions in the ventral tegmental area. J Neurosci 2014; 34:12504-14. [PMID: 25209288 PMCID: PMC4160780 DOI: 10.1523/jneurosci.0680-14.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/21/2022] Open
Abstract
The ventral bed nucleus of the stria terminalis (vBNST) has been implicated in stress-induced cocaine use. Here we demonstrate that, in the vBNST, corticotropin releasing factor (CRF) is expressed in neurons that innervate the ventral tegmental area (VTA), a site where the CRF receptor antagonist antalarmin prevents the reinstatement of cocaine seeking by a stressor, intermittent footshock, following intravenous self-administration in rats. The vBNST receives dense noradrenergic innervation and expresses β adrenergic receptors (ARs). Footshock-induced reinstatement was prevented by bilateral intra-vBNST injection of the β-2 AR antagonist, ICI-118,551, but not the β-1 AR antagonist, betaxolol. Moreover, bilateral intra-vBNST injection of the β-2 AR agonist, clenbuterol, but not the β-1 agonist, dobutamine, reinstated cocaine seeking, suggesting that activation of vBNST β-2 AR is both necessary for stress-induced reinstatement and sufficient to induce cocaine seeking. The contribution of a β-2 AR-regulated vBNST-to-VTA pathway that releases CRF was investigated using a disconnection approach. Injection of ICI-118,551 into the vBNST in one hemisphere and antalarmin into the VTA of the contralateral hemisphere prevented footshock-induced reinstatement, whereas ipsilateral manipulations failed to attenuate stress-induced cocaine seeking, suggesting that β-2 AR regulate vBNST efferents that release CRF into the VTA, activating CRF receptors, and promoting cocaine use. Last, reinstatement by clenbuterol delivered bilaterally into the vBNST was prevented by bilateral vBNST pretreatment with antalarmin, indicating that β-2 AR-mediated actions in the vBNST also require local CRF receptor activation. Understanding the processes through which stress induces cocaine seeking should guide the development of new treatments for addiction.
Collapse
Affiliation(s)
- Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Clayton H Gerndt
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
35
|
Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner. Neuropharmacology 2014; 86:116-24. [PMID: 25018040 DOI: 10.1016/j.neuropharm.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Dopaminergic innervation of the extended amygdala regulates anxiety-like behavior and stress responsivity. A portion of this dopamine input arises from dopamine neurons located in the ventral lateral periaqueductal gray (vlPAG) and rostral (RLi) and caudal linear nuclei of the raphe (CLi). These neurons receive substantial norepinephrine input, which may prime them for involvement in stress responses. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase promoter, we explored the physiology and responsiveness to norepinephrine of these neurons. We find that RLi dopamine neurons differ from VTA dopamine neurons with respect to membrane resistance, capacitance and the hyperpolarization-activated current, Ih. Further, we found that norepinephrine increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) on RLi dopamine neurons. This effect was mediated through the α1 adrenergic receptor (AR), as the actions of norepinephrine were mimicked by the α1-AR agonist methoxamine and blocked by the α1-AR antagonist prazosin. This action of norepinephrine on sEPSCs was transient, as it did not persist in the presence of prazosin. Methoxamine also increased the frequency of miniature EPSCs, indicating that the α1-AR action on glutamatergic transmission likely has a presynaptic mechanism. There was also a modest decrease in sEPSC frequency with the application of the α2-AR agonist UK-14,304. These studies illustrate a potential mechanism through which norepinephrine could recruit the activity of this population of dopaminergic neurons.
Collapse
|
36
|
McReynolds JR, Peña DF, Blacktop JM, Mantsch JR. Neurobiological mechanisms underlying relapse to cocaine use: contributions of CRF and noradrenergic systems and regulation by glucocorticoids. Stress 2014; 17:22-38. [PMID: 24328808 DOI: 10.3109/10253890.2013.872617] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Considering its pervasive and uncontrollable influence in drug addicts, understanding the neurobiological processes through which stress contributes to drug use is a critical goal for addiction researchers and will likely be important for the development of effective medications aimed at relapse prevention. In this paper, we review work from our laboratory and others focused on determining the neurobiological mechanisms that underlie and contribute to stress-induced relapse of cocaine use with an emphasis on the actions of corticotropin-releasing factor in the ventral tegmental area (VTA) and a key pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine and beta adrenergic receptors. Additionally, we discuss work suggesting that the influence of stress in cocaine addiction changes and intensifies with repeated cocaine use in an intake-dependent manner and examine the potential role of glucocorticoid hormones in the underlying drug-induced neuroadaptations. It is our hope that research in this area will inform clinical practice and medication development aimed at minimizing the contribution of stress to the addiction cycle, thereby improving treatment outcomes and reducing the societal costs of addiction.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University , Milwaukee, WI , USA
| | | | | | | |
Collapse
|
37
|
Al-Hasani R, McCall JG, Foshage AM, Bruchas MR. Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism. Neuropsychopharmacology 2013; 38:2484-97. [PMID: 23787819 PMCID: PMC3799068 DOI: 10.1038/npp.2013.151] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/31/2013] [Accepted: 06/13/2013] [Indexed: 12/27/2022]
Abstract
Activation of kappa-opioid receptors (KORs) in monoamine circuits results in dysphoria-like behaviors and stress-induced reinstatement of drug seeking in both conditioned place preference (CPP) and self-administration models. Noradrenergic (NA) receptor systems have also been implicated in similar behaviors. Dynorphinergic projections terminate within the locus coeruleus (LC), a primary source of norepinephrine in the forebrain, suggesting a possible link between the NA and dynorphin/kappa opioid systems, yet the implications of these putative interactions have not been investigated. We isolated the necessity of KORs in the LC in kappa opioid agonist (U50,488)-induced reinstatement of cocaine CPP by blocking KORs in the LC with NorBNI (KOR antagonist). KOR-induced reinstatement was significantly attenuated in mice injected with NorBNI in the LC. To determine the sufficiency of KORs in the LC on U50,488-induced reinstatement of cocaine CPP, we virally re-expressed KORs in the LC of KOR knockout mice. We found that KORs expression in the LC alone was sufficient to partially rescue KOR-induced reinstatement. Next we assessed the role of NA signaling in KOR-induced reinstatement of cocaine CPP in the presence and absence of a α2-agonist (clonidine), β-adrenergic receptor antagonist (propranolol), and β(1)- and β(2)-antagonist (betaxolol and ICI-118,551 HCl). Both the blockade of postsynaptic β(1)-adrenergic receptors and the activation of presynaptic inhibitory adrenergic autoreceptors selectively potentiated the magnitude of KOR-induced reinstatement of cocaine CPP but not cocaine-primed CPP reinstatement. Finally, viral restoration of KORs in the LC together with β-adrenergic receptor blockade did not potentiate KOR-induced reinstatement to cocaine CPP, suggesting that adrenergic receptor interactions occur at KOR-expressing regions external to the LC. These results identify a previously unknown interaction between KORs and NA systems and suggest a NA regulation of KOR-dependent reinstatement of cocaine CPP.
Collapse
Affiliation(s)
- Ream Al-Hasani
- Basic Research Division, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA,Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jordan G McCall
- Basic Research Division, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Audra M Foshage
- Basic Research Division, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA,Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
| | - Michael R Bruchas
- Basic Research Division, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA,Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA,Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA,Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA,Departments of Anesthesiology and Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8054, St Louis, MO 63110, USA, Tel: +1 314 747 5754, Fax: +1 314 362 8571, E-mail:
| |
Collapse
|
38
|
M T, JE G, RL H, AL H, VB R. The role of PKC signaling in CRF-induced modulation of startle. Psychopharmacology (Berl) 2013; 229:579-89. [PMID: 23722830 PMCID: PMC3784645 DOI: 10.1007/s00213-013-3114-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/11/2013] [Indexed: 02/06/2023]
Abstract
RATIONALE Hypersignaling of corticotropin releasing factor (CRF) has been implicated in stress disorders; however, many of its downstream mechanisms of action remain unclear. In vitro, CRF1 receptor activation initiates multiple cell signaling cascades, including protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase kinase MEK1/2 signaling. It is unclear, however, which of these signaling cascades mediate CRF-induced behaviors during stress. OBJECTIVES We examined the role of PKA, PKC, and MEK1/2 signaling pathways in CRF-induced anxiety as measured by startle hyperreactivity. METHODS Mice treated with intracerbroventricular (ICV) ovine CRF (oCRF) were pretreated with the PKA inhibitor Rp-cAMPS, PKC inhibitor bisindolylmaleimide (BIM), or MEK1/2 inhibitor PD98059 (ICV) and assessed for acoustic startle reactivity. RESULTS The PKC inhibitor BIM significantly attenuated CRF-induced increases in startle. BIM was also able to block startle increases induced by oCRF when both compounds were infused directly into the bed nucleus of stria terminalis (BNST). PKA and MEK1/2 inhibition had no significant effects on CRF-induced changes in startle at the dose ranges tested. CRF-induced disruption of prepulse inhibition was not significantly reversed by any of the three pretreatments at the dose ranges tested. CONCLUSIONS PKC signaling is required for CRF-induced increases in startle, and this effect is mediated at least in part at the BNST. These findings suggest that PKC signaling cascades (1) may be important for the acute effects of CRF to induce startle hyperreactivity and (2) support further research of the role of PKC signaling in startle abnormalities relevant to disorders such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Toth M
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Gresack JE
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York NY USA
| | - Hauger RL
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Halberstadt AL
- Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Risbrough VB
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA,Corresponding author: Victoria Risbrough, Ph.D., University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla CA 92093-0804, Tel: 16195433582; Fax: 16195432475:
| |
Collapse
|
39
|
Rodríguez-Sierra OE, Turesson HK, Pare D. Contrasting distribution of physiological cell types in different regions of the bed nucleus of the stria terminalis. J Neurophysiol 2013; 110:2037-49. [PMID: 23926040 DOI: 10.1152/jn.00408.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We characterized the electroresponsive and morphological properties of neurons in the bed nucleus of the stria terminalis (BNST). Previously, Rainnie and colleagues distinguished three cell types in the anterolateral region of BNST (BNST-AL): low-threshold bursting cells (LTB; type II) and regular spiking neurons that display time-dependent (RS; type I) or fast (fIR; type III) inward rectification in the hyperpolarizing direction (Hammack SE, Mania I, Rainnie DG. J Neurophysiol 98: 638-56, 2007). We report that the same neuronal types exist in the anteromedial (AM) and anteroventral (AV) regions of BNST. In addition, we observed two hitherto unreported cell types: late-firing (LF) cells, only seen in BNST-AL, that display a conspicuous delay to firing, and spontaneously active (SA) neurons, only present in BNST-AV, firing continuously at rest. However, the feature that most clearly distinguished the three BNST regions was the incidence of LTB cells (approximately 40-70%) and the strength of their bursting behavior (both higher in BNST-AM and AV relative to AL). The incidence of RS cells was similar in the three regions (∼25%), whereas that of fIR cells was higher in BNST-AL (∼25%) than AV or AM (≤8%). With the use of biocytin, two dominant morphological cell classes were identified but they were not consistently related to particular physiological phenotypes. One neuronal class had highly branched and spiny dendrites; the second had longer but poorly branched and sparsely spiny dendrites. Both often exhibited dendritic varicosities. Since LTB cells prevail in BNST, it will be important to determine what inputs set their firing mode (tonic vs. bursting) and in what behavioral states.
Collapse
Affiliation(s)
- Olga E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey; and
| | | | | |
Collapse
|
40
|
Neurobiological mechanisms that contribute to stress-related cocaine use. Neuropharmacology 2013; 76 Pt B:383-94. [PMID: 23916481 DOI: 10.1016/j.neuropharm.2013.07.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
The ability of stressful life events to trigger drug use is particularly problematic for the management of cocaine addiction due to the unpredictable and often uncontrollable nature of stress. For this reason, understanding the neurobiological processes that contribute to stress-related drug use is important for the development of new and more effective treatment strategies aimed at minimizing the role of stress in the addiction cycle. In this review we discuss the neurocircuitry that has been implicated in stress-induced drug use with an emphasis on corticotropin releasing factor actions in the ventral tegmental area (VTA) and an important pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine via actions at beta adrenergic receptors. In addition to the neurobiological mechanisms that underlie stress-induced cocaine seeking, we review findings suggesting that the ability of stressful stimuli to trigger cocaine use emerges and intensifies in an intake-dependent manner with repeated cocaine self-administration. Further, we discuss evidence that the drug-induced neuroadaptations that are necessary for heightened susceptibility to stress-induced drug use are reliant on elevated levels of glucocorticoid hormones at the time of cocaine use. Finally, the potential ability of stress to function as a "stage setter" for drug use - increasing sensitivity to cocaine and drug-associated cues - under conditions where it does not directly trigger cocaine seeking is discussed. As our understanding of the mechanisms through which stress promotes drug use advances, the hope is that so too will the available tools for effectively managing addiction, particularly in cocaine addicts whose drug use is stress-driven. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
41
|
Noradrenergic synaptic function in the bed nucleus of the stria terminalis varies in animal models of anxiety and addiction. Neuropsychopharmacology 2013; 38:1665-73. [PMID: 23467277 PMCID: PMC3717545 DOI: 10.1038/npp.2013.63] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/08/2022]
Abstract
Lewis rats show increased anxiety-like behaviors and drug consumption compared with Sprague-Dawley rats. Prior work suggests norepinephrine (NE) signaling in the bed nucleus of the stria terminalis (BNST) could have a role in mediating these phenotypes. Here, we investigated NE content and dynamics in the ventral BNST (vBNST) using fast-scan cyclic voltammetry in these two rat strains. We found that NE release evoked by electrical stimulus and its subsequent uptake was dysregulated in the more anxious Lewis rats. Because addiction is a multifaceted disease influenced by both genetic and environmental factors, we hypothesized NE dynamics would vary in these strains after the induction of a physical dependence on morphine. Following naloxone-precipitated morphine withdrawal, NE release and uptake dynamics were not changed in Lewis rats but were significantly altered in Sprague-Dawley rats. The alterations in Sprague-Dawley rats were accompanied by an increase in anxiety-like behavior in those animals as measured with the elevated plus maze. These studies suggest novel mechanisms involved in the development of affective disorders, and highlight the noradrenergic system in the vBNST as a common substrate for the manifestation of pathological anxiety and addiction.
Collapse
|
42
|
Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 2013; 76 Pt B:320-8. [PMID: 23752096 DOI: 10.1016/j.neuropharm.2013.05.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Alice M Stamatakis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
43
|
A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. J Neurosci 2013; 33:950-60. [PMID: 23325234 DOI: 10.1523/jneurosci.2949-12.2013] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A growing literature suggests that catecholamines and corticotropin-releasing factor (CRF) interact in a serial manner to activate the bed nucleus of the stria terminalis (BNST) to drive stress- or cue-induced drug- and alcohol-seeking behaviors. Data suggest that these behaviors are driven in part by BNST projections to the ventral tegmental area (VTA). Together, these findings suggest the existence of a CRF-signaling pathway within the BNST that is engaged by catecholamines and regulates the activity of BNST neurons projecting to the VTA. Here we test three aspects of this model to determine: (1) whether catecholamines modify CRF neuron activity in the BNST; (2) whether CRF regulates excitatory drive onto VTA-projecting BNST neurons; and (3) whether this system is altered by ethanol exposure and withdrawal. A CRF neuron fluorescent reporter strategy was used to identify BNST CRF neurons for whole-cell patch-clamp analysis in acutely prepared slices. Using this approach, we found that both dopamine and isoproterenol significantly depolarized BNST CRF neurons. Furthermore, using a fluorescent microsphere-based identification strategy we found that CRF enhances the frequency of spontaneous EPSCs onto VTA-projecting BNST neurons in naive mice. This action of CRF was occluded during acute withdrawal from chronic intermittent ethanol exposure. These findings suggest that dopamine and isoproterenol may enhance CRF release from local BNST sources, leading to enhancement of excitatory neurotransmission on VTA-projecting neurons, and that this pathway is engaged by patterns of alcohol exposure and withdrawal known to drive excessive alcohol intake.
Collapse
|
44
|
Silberman Y, Winder DG. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala. Neuropharmacology 2013; 70:316-23. [PMID: 23470280 DOI: 10.1016/j.neuropharm.2013.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/14/2023]
Abstract
Glutamatergic neurotransmission in the central nucleus of the amygdala (CeA) plays an important role in many behaviors including anxiety, memory consolidation and cardiovascular responses. While these behaviors can be modulated by corticotropin releasing factor (CRF) and catecholamine signaling, the mechanism(s) by which these signals modify CeA glutamatergic neurotransmission remains unclear. Utilizing whole-cell patch-clamp electrophysiology recordings from neurons in the lateral subdivision of the CeA (CeAL), we show that CRF, dopamine (DA) and the β-adrenergic receptor agonist isoproterenol (ISO) all enhance the frequency of spontaneous excitatory postsynaptic currents (sEPSC) without altering sEPSC kinetics, suggesting they increase presynaptic glutamate release. The effect of CRF on sEPSCs was mediated by a combination of CRFR1 and CRFR2 receptors. While previous work from our lab suggests that CRFRs mediate the effect of catecholamines on excitatory transmission in other subregions of the extended amygdala, blockade of CRFRs in the CeAL failed to significantly alter effects of DA and ISO on glutamatergic transmission. These findings suggest that catecholamine and CRF enhancement of glutamatergic transmission onto CeAL neurons occurs via distinct mechanisms. While CRF increased spontaneous glutamate release in the CeAL, CRF caused no significant changes to optogenetically evoked glutamate release in this region. The dissociable effects of CRF on different types of glutamatergic neurotransmission suggest that CRF may specifically regulate spontaneous excitatory transmission.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
45
|
Flavin SA, Winder DG. Noradrenergic control of the bed nucleus of the stria terminalis in stress and reward. Neuropharmacology 2013; 70:324-30. [PMID: 23466330 DOI: 10.1016/j.neuropharm.2013.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a group of inter-connected subnuclei that play critical roles in stress-reward interactions. An interesting feature of this brain region is the massive noradrenergic input that it receives. Important roles for norepinephrine in this region have been documented in a number of stress and reward related behaviors. This work has been paralleled over the last several years by efforts to understand the actions of norepinephrine on neuronal function in the region. In this review, we will summarize the current state of these research areas.
Collapse
Affiliation(s)
- Stephanie A Flavin
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, United States
| | | |
Collapse
|
46
|
Hott SC, Gomes FV, Fabri DRS, Reis DG, Crestani CC, Côrrea FMA, Resstel LBM. Both α1- and β1-adrenoceptors in the bed nucleus of the stria terminalis are involved in the expression of conditioned contextual fear. Br J Pharmacol 2013; 167:207-21. [PMID: 22506532 DOI: 10.1111/j.1476-5381.2012.01985.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats. EXPERIMENTAL APPROACH Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty-four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re-exposure to the aversive context. KEY RESULTS L-propranolol, a non-selective β-adrenoceptor antagonist, and phentolamine, a non-selective α-adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective β(1) -adrenoceptor antagonist, and WB4101, a selective α(1) -antagonist, but not with ICI118,551, a selective β(2) -adrenoceptor antagonist or RX821002, a selective α(2) -antagonist. CONCLUSIONS AND IMPLICATIONS These findings support the idea that noradrenergic neurotransmission in the BNST via α(1) - and β(1) -adrenoceptors is involved in the expression of conditioned contextual fear.
Collapse
Affiliation(s)
- Sara C Hott
- Department of Pharmacology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Silberman Y, Winder DG. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward. Front Psychiatry 2013; 4:42. [PMID: 23755023 PMCID: PMC3665954 DOI: 10.3389/fpsyt.2013.00042] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022] Open
Abstract
Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.
Collapse
Affiliation(s)
- Yuval Silberman
- Neuroscience Program in Substance Abuse, Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute , Nashville, TN , USA
| | | |
Collapse
|
48
|
Beckerman MA, Van Kempen TA, Justice NJ, Milner TA, Glass MJ. Corticotropin-releasing factor in the mouse central nucleus of the amygdala: ultrastructural distribution in NMDA-NR1 receptor subunit expressing neurons as well as projection neurons to the bed nucleus of the stria terminalis. Exp Neurol 2012; 239:120-32. [PMID: 23063907 DOI: 10.1016/j.expneurol.2012.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/21/2012] [Accepted: 10/05/2012] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) and glutamate are critical signaling molecules in the central nucleus of the amygdala (CeA). Central amygdala CRF, acting via the CRF type 1 receptor (CRF-R1), plays an integral role in stress responses and emotional learning, processes that are generally known to involve functional NMDA-type glutamate receptors. There is also evidence that CRF expressing CeA projection neurons to the bed nucleus of the stria terminalis (BNST) play an important role in stress related behaviors. Despite the potentially significant interactions between CRF and NMDA receptors in the CeA, the synaptic organization of these systems is largely unknown. Using dual labeling high resolution immunocytochemical electron microscopy, it was found that individual somata and dendrites displayed immunoreactivity for CRF and the NMDA-NR1 (NR1) subunit in the mouse CeA. In addition, CRF-containing axon terminals contacted postsynaptic targets in the CeA, some of which also expressed NR1. Neuronal profiles expressing the CRF type 1 receptor (CRF-R1), identified by the expression of green fluorescent protein (GFP) in bacterial artificial chromosome (BAC) transgenic mice, also contained NR1, and GFP immunoreactive terminals formed synapses with NR1 containing dendrites. Although CRF and GFP were only occasionally co-expressed in individual somata and dendritic profiles, contacts between labeled axon terminals and dendrites were frequently observed. A combination of tract tracing and immunocytochemistry revealed that a population of CeA CRF neurons projected to the BNST. It was also found that CRF, or GFP expressing terminals directly contacted CeA-BNST projection neurons. These results indicate that the NMDA receptor is positioned for the postsynaptic regulation of CRF expressing CeA neurons and the modulation of signals conveyed by CRF inputs. Interactions between CRF and NMDA receptor mediated signaling in CeA neurons, including those projecting to the BNST, may provide the synaptic basis for integrating the experience of stress and relevant environmental stimuli with behaviors that may be of particular relevance to stress-related learning and the emergence of psychiatric disorders, including drug addiction.
Collapse
Affiliation(s)
- Marc A Beckerman
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
49
|
Sartor GC, Aston-Jones G. Regulation of the ventral tegmental area by the bed nucleus of the stria terminalis is required for expression of cocaine preference. Eur J Neurosci 2012; 36:3549-58. [PMID: 23039920 DOI: 10.1111/j.1460-9568.2012.08277.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/31/2012] [Accepted: 08/03/2012] [Indexed: 01/23/2023]
Abstract
Lateral hypothalamus (LH) orexin neurons are essential for the expression of a cocaine place preference. However, the afferents that regulate the activity of these orexin neurons during reward behaviors are not completely understood. Using tract tracing combined with Fos staining, we examined LH afferents for Fos induction during cocaine preference in rats. We found that the ventral bed nucleus of the stria terminalis (vBNST) was a major input to the LH orexin cell field that was significantly Fos-activated during cocaine conditioned place preference (CPP). Inactivation of the vBNST with baclofen plus muscimol blocked expression of cocaine CPP. Surprisingly, such inactivation of the vBNST also increased Fos induction in LH orexin neurons; as activity in these cells is normally associated with increased preference, this result indicates that a vBNST-orexin connection is unlikely to be responsible for CPP that is dependent on vBNST activity. Because previous studies have revealed that vBNST regulates dopamine cells in the ventral tegmental area (VTA), which is known to be involved in CPP and other reward functions, we tested whether vBNST afferents to the VTA are necessary for cocaine CPP. We found that disconnection of the vBNST and VTA (using local microinjections of baclofen plus muscimol unilaterally into the vBNST and contralateral VTA) significantly attenuated expression of cocaine preference. However, blocking ionotropic glutamatergic afferents to the VTA from the vBNST did not significantly reduce cocaine preference. These results indicate that a non-glutamatergic vBNST-VTA projection is involved in expression of cocaine preference.
Collapse
Affiliation(s)
- Gregory C Sartor
- Department of Neurosciences, Medical University of South Carolina, 171 Ashley Avenue, BSB 403, Charleston, SC 29425, USA
| | | |
Collapse
|
50
|
Conrad KL, Davis AR, Silberman Y, Sheffler DJ, Shields AD, Saleh SA, Sen N, Matthies HJG, Javitch JA, Lindsley CW, Winder DG. Yohimbine depresses excitatory transmission in BNST and impairs extinction of cocaine place preference through orexin-dependent, norepinephrine-independent processes. Neuropsychopharmacology 2012; 37:2253-66. [PMID: 22617356 PMCID: PMC3422490 DOI: 10.1038/npp.2012.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alpha2 adrenergic receptor (α(2)-AR) antagonist yohimbine is a widely used tool for the study of anxiogenesis and stress-induced drug-seeking behavior. We previously demonstrated that yohimbine paradoxically depresses excitatory transmission in the bed nucleus of the stria terminalis (BNST), a region critical to the integration of stress and reward pathways, and produces an impairment of extinction of cocaine-conditioned place preference (cocaine-CPP) independent of α(2)-AR signaling. Recent studies show yohimbine-induced drug-seeking behavior is attenuated by orexin receptor 1 (OX(1)R) antagonists. Moreover, yohimbine-induced cocaine-seeking behavior is BNST-dependent. Here, we investigated yohimbine-orexin interactions. Our results demonstrate yohimbine-induced depression of excitatory transmission in the BNST is unaffected by alpha1-AR and corticotropin-releasing factor receptor-1 (CRFR(1)) antagonists, but is (1) blocked by OxR antagonists and (2) absent in brain slices from orexin knockout mice. Although the actions of yohimbine were not mimicked by the norepinephrine transporter blocker reboxetine, they were by exogenously applied orexin A. We find that, as with yohimbine, orexin A depression of excitatory transmission in BNST is OX(1)R-dependent. Finally, we find these ex vivo effects are paralleled in vivo, as yohimbine-induced impairment of cocaine-CPP extinction is blocked by a systemically administered OX(1)R antagonist. These data highlight a new mechanism for orexin on excitatory anxiety circuits and demonstrate that some of the actions of yohimbine may be directly dependent upon orexin signaling and independent of norepinephrine and CRF in the BNST.
Collapse
Affiliation(s)
- Kelly L Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adeola R Davis
- Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas J Sheffler
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela D Shields
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sam A Saleh
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Namita Sen
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Heinrich JG Matthies
- Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan A Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA,Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA,Vanderbilt Brain Institute, Nashville, TN, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA, Tel: +1 615 322 1144, Fax: +1 615 322 1462, E-mail:
| |
Collapse
|