1
|
Guan S, Zhang Z, Meng C, Biswal B. Multifractal dynamic changes of spontaneous brain activity in psychiatric disorders: Adult attention deficit-hyperactivity disorder, bipolar disorder, and schizophrenia. J Affect Disord 2025; 373:291-305. [PMID: 39765289 DOI: 10.1016/j.jad.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
It is one of the strategies to study the complexity of spontaneous fluctuation of brain neurons based on resting-state functional magnetic resonance imaging (rs-fMRI), but the multifractal characteristics of spontaneous fluctuation of brain neurons in psychiatric diseases need to be studied. Therefore, this paper will study the multifractal spontaneous brain activity changes in psychiatric disorders using the multifractal detrended fluctuation analysis algorithm based on the UCLA datasets. Specifically: (1) multifractal characteristics in adult attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BP), and schizophrenia (SCHZ); (2) the source of those multifractal characteristics. Results showed that for adult ADHD, BP, and SCHZ, all 6 functional brain regions exhibit multifractal characteristics, and the multifractal spectrum shows a reduction in bell-shaped asymmetry, unlike the intensity of healthy control (HC) asymmetry. Besides, compared with HC, the multifractal sources of all functional brain regions were fat-tail probability distribution and the long-range dependence correlation, but the intensity of fat-tail probability distribution was decreased and the long-range dependence correlation was increased. The results provide a reference for further understanding the complexity of spontaneous fluctuation of neurons in psychiatric disorders.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu 610041, China.
| | - Ziwei Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
2
|
Vinke LN, Avanaki M, Jeffrey C, Harikumar A, Mow JL, Tootell RBH, DeTore NR, Holt DJ. Neural correlates of personal space regulation in psychosis: role of the inferior parietal cortex. Mol Psychiatry 2025:10.1038/s41380-025-02906-4. [PMID: 39900675 DOI: 10.1038/s41380-025-02906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Regulation of interpersonal distance or "personal space" (PS; the space near the body into which others cannot intrude without eliciting discomfort) is a largely unconscious channel of non-verbal social communication used by many species including humans. PS abnormalities have been observed in neuropsychiatric illnesses, including schizophrenia. However, the neurophysiological basis of these abnormalities remains unknown. To investigate this question, in this study, functional magnetic resonance imaging (fMRI) data were collected while individuals with psychotic disorders (PD; n = 37) and demographically-matched healthy control (HC) subjects (n = 60) viewed images of faces moving towards or away from them. Responses of a frontoparietal-subcortical network of brain regions were measured to the approaching versus the withdrawing face stimuli, and resting-state fMRI data were also collected. PS size was measured using the classical Stop Distance Procedure. As expected, the PD group demonstrated a significantly larger PS compared to the HC group (P = 0.002). In both groups, a network of parietal and frontal cortical regions showed greater approach-biased responses, whereas subcortical areas (the striatum, amygdala and hippocampus) showed greater withdrawal-biased responses. Moreover, within the PD (but not the HC) group, approach-biased activation of the inferior parietal cortex (IPC) and functional connectivity between the IPC and the ventral/limbic striatum were significantly correlated with PS size. This study provides evidence that PS abnormalities in psychotic illness involve disrupted function and connectivity of the PS network. Such brain-behavior relationships may serve as objective treatment targets for novel interventions for schizophrenia and related psychotic illnesses.
Collapse
Affiliation(s)
- Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mona Avanaki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clayton Jeffrey
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Amritha Harikumar
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica L Mow
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Roger B H Tootell
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole R DeTore
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Gee A, Dazzan P, Grace AA, Modinos G. Corticolimbic circuitry as a druggable target in schizophrenia spectrum disorders: a narrative review. Transl Psychiatry 2025; 15:21. [PMID: 39856031 PMCID: PMC11760974 DOI: 10.1038/s41398-024-03221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Schizophrenia spectrum disorders (SSD) involve disturbances in the integration of perception, emotion and cognition. The corticolimbic system is an interacting set of cortical and subcortical brain regions critically involved in this process. Understanding how neural circuitry and molecular mechanisms within this corticolimbic system may contribute to the development of not only positive symptoms but also negative and cognitive deficits in SSD has been a recent focus of intense research, as the latter are not adequately treated by current antipsychotic medications and are more strongly associated with poorer functioning and long-term outcomes. This review synthesises recent developments examining corticolimbic dysfunction in the pathophysiology of SSD, with a focus on neuroimaging advances and related novel methodologies that enable the integration of data across different scales. We then integrate how these findings may inform the identification of novel therapeutic and preventive targets for SSD symptomatology. A range of pharmacological interventions have shown initial promise in correcting corticolimbic dysfunction and improving negative, cognitive and treatment-resistant symptoms. We discuss current challenges and opportunities for improving the still limited translation of these research findings into clinical practice. We argue how our knowledge of the role of corticolimbic dysfunction can be improved by combining multiple research modalities to examine hypotheses across different spatial and temporal scales, combining neuroimaging with experimental interventions and utilising large-scale consortia to advance biomarker identification. Translation of these findings into clinical practice will be aided by consideration of optimal intervention timings, biomarker-led patient stratification, and the development of more selective medications.
Collapse
Affiliation(s)
- Abigail Gee
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
4
|
Cheng Y, Cai H, Liu S, Yang Y, Pan S, Zhang Y, Mo F, Yu Y, Zhu J. Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2025; 97:148-156. [PMID: 39103010 DOI: 10.1016/j.biopsych.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia. METHODS To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia. RESULTS The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks. CONCLUSIONS Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Siyu Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Shan Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqi Zhang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Fan Mo
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
5
|
Wang B, Zhang M, Fan F, Yuan C, Wang Z, Tan Y, Tan S. Subcortical and insula functional connectivity aberrations and clinical implications in first-episode schizophrenia. Asian J Psychiatr 2025; 103:104298. [PMID: 39591757 DOI: 10.1016/j.ajp.2024.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Schizophrenia is a complex mental disorder whose pathophysiology remains elusive, particularly in the roles of subcortex. This study aims to explore the role of subcortex and insula and their relationship with symptom changes in first-episode schizophrenia (FES) patients by utilizing machine learning algorithms and functional connectivity (FC). METHODS The study encompasses 261 participants, sourced from two independent samples of FES patients and their matched healthy controls (HC). The discovery dataset includes 77 FES patients at baseline (FES0W) and 77 matched HCs, with the patients undergoing a follow-up scan after eight weeks of antipsychotic treatment (FES8W, N = 34). A validation dataset from another region comprises 47 FES patients and 47 matched HCs. RESULTS Significant differences in subcortical FCs were observed between FES and controls, correlating with symptom severity and symptom changes. Machine learning models were developed to diagnose schizophrenia on an individual basis, achieving a balanced accuracy of 79.55 % across diverse centers. CONCLUSIONS These findings suggest that subcortical connectivity patterns offer potential as biomarkers for schizophrenia, enabling personalized treatment strategies and improving prognosis by facilitating early diagnosis.
Collapse
Affiliation(s)
- Bixin Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Meng Zhang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Chunyu Yuan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China.
| |
Collapse
|
6
|
Boisvert M, Dugré JR, Potvin S. Patterns of abnormal activations in severe mental disorders a transdiagnostic data-driven meta-analysis of task-based fMRI studies. Psychol Med 2024; 54:1-12. [PMID: 39397677 PMCID: PMC11536122 DOI: 10.1017/s003329172400165x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Studies suggest severe mental disorders (SMDs), such as schizophrenia, major depressive disorder and bipolar disorder, are associated with common alterations in brain activity, albeit with a graded level of impairment. However, discrepancies between study findings likely to results from both small sample sizes and the use of different functional magnetic resonance imaging (fMRI) tasks. To address these issues, data-driven meta-analytic approach designed to identify homogeneous brain co-activity patterns across tasks was conducted to better characterize the common and distinct alterations between these disorders. METHODS A hierarchical clustering analysis was conducted to identify groups of studies reporting similar neuroimaging results, independent of task type and psychiatric diagnosis. A traditional meta-analysis (activation likelihood estimation) was then performed within each of these groups of studies to extract their aberrant activation maps. RESULTS A total of 762 fMRI study contrasts were targeted, comprising 13 991 patients with SMDs. Hierarchical clustering analysis identified 5 groups of studies (meta-analytic groupings; MAGs) being characterized by distinct aberrant activation patterns across SMDs: (1) emotion processing; (2) cognitive processing; (3) motor processes, (4) reward processing, and (5) visual processing. While MAG1 was mostly commonly impaired, MAG2 was more impaired in schizophrenia, while MAG3 and MAG5 revealed no differences between disorder. MAG4 showed the strongest between-diagnoses differences, particularly in the striatum, posterior cingulate cortex, and ventromedial prefrontal cortex. CONCLUSIONS SMDs are characterized mostly by common deficits in brain networks, although differences between disorders are also present. This study highlights the importance of studying SMDs simultaneously rather than independently.
Collapse
Affiliation(s)
- Mélanie Boisvert
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Faculty of medicine, University of Montreal, Montreal, Canada
| | - Jules R. Dugré
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Faculty of medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
7
|
Rutherford S, Lasagna CA, Blain SD, Marquand AF, Wolfers T, Tso IF. Social Cognition and Functional Connectivity in Early and Chronic Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00212-X. [PMID: 39117275 DOI: 10.1016/j.bpsc.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Individuals with schizophrenia (SZ) experience impairments in social cognition that contribute to poor functional outcomes. However, mechanisms of social cognitive dysfunction in SZ remain poorly understood, which impedes the design of novel interventions to improve outcomes. In this preregistered project, we examined the representation of social cognition in the brain's functional architecture in early and chronic SZ. METHODS The study contains 2 parts: a confirmatory and an exploratory portion. In the confirmatory portion, we identified resting-state connectivity disruptions evident in early and chronic SZ. We performed a connectivity analysis using regions associated with social cognitive dysfunction in early and chronic SZ to test whether aberrant connectivity observed in chronic SZ (n = 47 chronic SZ and n = 52 healthy control participants) was also present in early SZ (n = 71 early SZ and n = 47 healthy control participants). In the exploratory portion, we assessed the out-of-sample generalizability and precision of predictive models of social cognition. We used machine learning to predict social cognition and established generalizability with out-of-sample testing and confound control. RESULTS Results revealed decreases between the left inferior frontal gyrus and the intraparietal sulcus in early and chronic SZ, which were significantly associated with social and general cognition and global functioning in chronic SZ and with general cognition and global functioning in early SZ. Predictive modeling revealed the importance of out-of-sample evaluation and confound control. CONCLUSIONS This work provides insights into the functional architecture in early and chronic SZ and suggests that inferior frontal gyrus-intraparietal sulcus connectivity could be a prognostic biomarker of social impairments and a target for future interventions (e.g., neuromodulation) focused on improved social functioning.
Collapse
Affiliation(s)
- Saige Rutherford
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Cognition, Brain, Behavior, Nijmegen, the Netherlands; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.
| | - Carly A Lasagna
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Scott D Blain
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| | - Andre F Marquand
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Cognition, Brain, Behavior, Nijmegen, the Netherlands
| | - Thomas Wolfers
- Department of Psychiatry, University of Tübingen, Tübingen, Germany; German Centre for Mental Health, University of Tübingen, Tübingen, Germany
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Toro VD, Antonucci LA, Quarto T, Passiatore R, Fazio L, Ursini G, Chen Q, Masellis R, Torretta S, Sportelli L, Kikidis GC, Massari F, D'Ambrosio E, Rampino A, Pergola G, Weinberger DR, Bertolino A, Blasi G. The interaction between early life complications and a polygenic risk score for schizophrenia is associated with brain activity during emotion processing in healthy participants. Psychol Med 2024; 54:1876-1885. [PMID: 38305128 DOI: 10.1017/s0033291724000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND Previous evidence suggests that early life complications (ELCs) interact with polygenic risk for schizophrenia (SCZ) in increasing risk for the disease. However, no studies have investigated this interaction on neurobiological phenotypes. Among those, anomalous emotion-related brain activity has been reported in SCZ, even if evidence of its link with SCZ-related genetic risk is not solid. Indeed, it is possible this relationship is influenced by non-genetic risk factors. Thus, this study investigated the interaction between SCZ-related polygenic risk and ELCs on emotion-related brain activity. METHODS 169 healthy participants (HP) in a discovery and 113 HP in a replication sample underwent functional magnetic resonance imaging (fMRI) during emotion processing, were categorized for history of ELCs and genome-wide genotyped. Polygenic risk scores (PRSs) were computed using SCZ-associated variants considering the most recent genome-wide association study. Furthermore, 75 patients with SCZ also underwent fMRI during emotion processing to verify consistency of their brain activity patterns with those associated with risk factors for SCZ in HP. RESULTS Results in the discovery and replication samples indicated no effect of PRSs, but an interaction between PRS and ELCs in left ventrolateral prefrontal cortex (VLPFC), where the greater the activity, the greater PRS only in presence of ELCs. Moreover, SCZ had greater VLPFC response than HP. CONCLUSIONS These results suggest that emotion-related VLPFC response lies in the path from genetic and non-genetic risk factors to the clinical presentation of SCZ, and may implicate an updated concept of intermediate phenotype considering early non-genetic factors of risk for SCZ.
Collapse
Affiliation(s)
- Veronica Debora Toro
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Linda A Antonucci
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Tiziana Quarto
- Department of Humanities, University of Foggia, Foggia, Italy
| | - Roberta Passiatore
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Leonardo Fazio
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Department of Medicine and Surgery, Libera Università Mediterranea "Giuseppe Degennaro", Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Rita Masellis
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Silvia Torretta
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Leonardo Sportelli
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluca Christos Kikidis
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Massari
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Enrico D'Ambrosio
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Antonio Rampino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Giulio Pergola
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Alessandro Bertolino
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Giuseppe Blasi
- Psychiatric Neuroscience Group, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
- U.O.C. Psichiatria Universitaria, Azìenda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
9
|
Knobloch S, Leiding D, Wagels L, Regenbogen C, Kellermann T, Mathiak K, Schneider F, Derntl B, Habel U. Empathy in schizophrenia: neural alterations during emotion recognition and affective sharing. Front Psychiatry 2024; 15:1288028. [PMID: 38855645 PMCID: PMC11157094 DOI: 10.3389/fpsyt.2024.1288028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Deficits in emotion recognition and processing are characteristic for patients with schizophrenia [SCZ]. Methods We targeted both emotion recognition and affective sharing, one in static and one in dynamic facial stimuli, during functional magnetic resonance imaging [fMRI] in 22 SCZ patients and 22 matched healthy controls [HC]. Current symptomatology and cognitive deficits were assessed as potential influencing factors. Results Behaviorally, patients only showed a prolonged response time in age-discrimination trials. For emotion-processing trials, patients showed a difference in neural response, without an observable behavioral correlate. During emotion and age recognition in static stimuli, a reduced activation of the bilateral anterior cingulate cortex [ACC] and the right anterior insula [AI] emerged. In the affective sharing task, patients showed a reduced activation in the left and right caudate nucleus, right AI and inferior frontal gyrus [IFG], right cerebellum, and left thalamus, key areas of empathy. Discussion We conclude that patients have deficits in complex visual information processing regardless of emotional content on a behavioral level and that these deficits coincide with aberrant neural activation patterns in emotion processing networks. The right AI as an integrator of these networks plays a key role in these aberrant neural activation patterns and, thus, is a promising candidate area for neurofeedback approaches.
Collapse
Affiliation(s)
- Simon Knobloch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Institute of Systems Neuroscience, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Delia Leiding
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA) – Translational Brain Medicine, Aachen, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA) – Translational Brain Medicine, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Department of the History, Philosophy and Ethics of Medicine, Centre for Health and Society (chs), School of Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA) – Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
10
|
Martino M, Magioncalda P. A three-dimensional model of neural activity and phenomenal-behavioral patterns. Mol Psychiatry 2024; 29:639-652. [PMID: 38114633 DOI: 10.1038/s41380-023-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
How phenomenal experience and behavior are related to neural activity in physiology and psychopathology represents a fundamental question in neuroscience and psychiatry. The phenomenal-behavior patterns may be deconstructed into basic dimensions, i.e., psychomotricity, affectivity, and thought, which might have distinct neural correlates. This work provides a data overview on the relationship of these phenomenal-behavioral dimensions with brain activity across physiological and pathological conditions (including major depressive disorder, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, anxiety disorders, addictive disorders, Parkinson's disease, Tourette syndrome, Alzheimer's disease, and frontotemporal dementia). Accordingly, we propose a three-dimensional model of neural activity and phenomenal-behavioral patterns. In this model, neural activity is organized into distinct units in accordance with connectivity patterns and related input/output processing, manifesting in the different phenomenal-behavioral dimensions. (1) An external neural unit, which involves the sensorimotor circuit/brain's sensorimotor network and is connected with the external environment, processes external inputs/outputs, manifesting in the psychomotor dimension (processing of exteroception/somatomotor activity). External unit hyperactivity manifests in psychomotor excitation (hyperactivity/hyperkinesia/catatonia), while external unit hypoactivity manifests in psychomotor inhibition (retardation/hypokinesia/catatonia). (2) An internal neural unit, which involves the interoceptive-autonomic circuit/brain's salience network and is connected with the internal/body environment, processes internal inputs/outputs, manifesting in the affective dimension (processing of interoception/autonomic activity). Internal unit hyperactivity manifests in affective excitation (anxiety/dysphoria-euphoria/panic), while internal unit hypoactivity manifests in affective inhibition (anhedonia/apathy/depersonalization). (3) An associative neural unit, which involves the brain's associative areas/default-mode network and is connected with the external/internal units (but not with the environment), processes associative inputs/outputs, manifesting in the thought dimension (processing of ideas). Associative unit hyperactivity manifests in thought excitation (mind-wandering/repetitive thinking/psychosis), while associative unit hypoactivity manifests in thought inhibition (inattention/cognitive deficit/consciousness loss). Finally, these neural units interplay and dynamically combine into various neural states, resulting in the complex phenomenal experience and behavior across physiology and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
11
|
Leshin J, Carter MJ, Doyle CM, Lindquist KA. Language access differentially alters functional connectivity during emotion perception across cultures. Front Psychol 2024; 14:1084059. [PMID: 38425348 PMCID: PMC10901990 DOI: 10.3389/fpsyg.2023.1084059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2023] [Indexed: 03/02/2024] Open
Abstract
Introduction It is often assumed that the ability to recognize the emotions of others is reflexive and automatic, driven only by observable facial muscle configurations. However, research suggests that accumulated emotion concept knowledge shapes the way people perceive the emotional meaning of others' facial muscle movements. Cultural upbringing can shape an individual's concept knowledge, such as expectations about which facial muscle configurations convey anger, disgust, or sadness. Additionally, growing evidence suggests that access to emotion category words, such as "anger," facilitates access to such emotion concept knowledge and in turn facilitates emotion perception. Methods To investigate the impact of cultural influence and emotion concept accessibility on emotion perception, participants from two cultural groups (Chinese and White Americans) completed a functional magnetic resonance imaging scanning session to assess functional connectivity between brain regions during emotion perception. Across four blocks, participants were primed with either English emotion category words ("anger," "disgust") or control text (XXXXXX) before viewing images of White American actors posing facial muscle configurations that are stereotypical of anger and disgust in the United States. Results We found that when primed with "disgust" versus control text prior to seeing disgusted facial expressions, Chinese participants showed a significant decrease in functional connectivity between a region associated with semantic retrieval (the inferior frontal gyrus) and regions associated with semantic processing, visual perception, and social cognition. Priming the word "anger" did not impact functional connectivity for Chinese participants relative to control text, and priming neither "disgust" nor "anger" impacted functional connectivity for White American participants. Discussion These findings provide preliminary evidence that emotion concept accessibility differentially impacts perception based on participants' cultural background.
Collapse
Affiliation(s)
- Joseph Leshin
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maleah J. Carter
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cameron M. Doyle
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen A. Lindquist
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
13
|
Kent J, Pinkham A. Cerebral and cerebellar correlates of social cognitive impairment in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110850. [PMID: 37657639 DOI: 10.1016/j.pnpbp.2023.110850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Social cognition is a broad construct encompassing the ways in which individuals perceive, process, and use information about other people. Social cognition involves both lower- and higher-level processes such as emotion recognition and theory of mind, respectively. Social cognitive impairments have been repeatedly demonstrated in schizophrenia spectrum illnesses and, crucially, are related to functional outcomes. In this review, we summarize the literature investigating the brain networks implicated in social cognitive impairments in schizophrenia spectrum illnesses. In addition to cortical and limbic loci and networks, we also discuss evidence for cerebellar contributions to social cognitive impairment in this population. We conclude by synthesizing these two literatures, with an emphasis on current knowledge gaps, particularly in regard to cerebellar influences, and future directions.
Collapse
Affiliation(s)
- Jerillyn Kent
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Amy Pinkham
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
14
|
Martínez A, Hillyard SA, Javitt DC. Visual Neurophysiological Biomarkers for Patient Stratification and Treatment Development Across Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 40:757-799. [PMID: 39562463 DOI: 10.1007/978-3-031-69491-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The human visual system begins in the retina and projects to cortex through both the thalamocortical and retinotectal visual pathways. The thalamocortical system is divided into separate magnocellular and parvocellular divisions, which engage separate layers of the lateral geniculate nucleus (LGN) and project preferentially to the dorsal and ventral visual streams, respectively. The retinotectal system, in contrast, projects to the superior colliculus, pulvinar nucleus of the thalamus and amygdala. The pulvinar nucleus also plays a critical role in the integration of information processing across early visual regions.The functions of the visual system can be assessed using convergent EEG- and functional brain imaging approaches, increasingly supplemented by simultaneously collected eye-tracking information. These approaches may be used for tracing the flow of information from retina through early visual regions, as well as the contribution of these regions to higher-order cognitive processing. A pathway of increasing interest in relationship to neuropsychiatric disorders is the primate-specific "third visual pathway" that relies extensively on motion-related input and contributes preferentially to social information processing. Thus, disturbances in the brain's responsiveness to motion stimuli may be especially useful as biomarkers for early visual dysfunction related to impaired social cognition.Visual event-related potentials (ERPs) can be collected with high-fidelity and have proven effective for the study of neuropsychiatric disorders such as schizophrenia and Alzheimer's disease, in which alterations in visual processing may occur early in the disorder, andautism-spectrum disorder (ASD), in which abnormal persistence of early childhood patterns may persist into adulthood, leading to impaired functioning of visual social pathways. The utility of visual ERPs as biomarkers for larger clinical studies is limited at present by the need for standardization of visual stimuli across laboratories, which requires specialized protocols and equipment. The development of optimized stimulation protocols as well as newer headset-based systems may increase the clinical utility of present stimulation approaches.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Steven A Hillyard
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Sahay S, Henkel ND, Vargas CFA, McCullumsmith RE, O’Donovan SM. Activity of Protein Kinase A in the Frontal Cortex in Schizophrenia. Brain Sci 2023; 14:13. [PMID: 38248228 PMCID: PMC10813263 DOI: 10.3390/brainsci14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
Schizophrenia is a serious cognitive disorder characterized by disruptions in neurotransmission, a process requiring the coordination of multiple kinase-mediated signaling events. Evidence suggests that the observed deficits in schizophrenia may be due to imbalances in kinase activity that propagate through an intracellular signaling network. Specifically, 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways are coupled to the activation of neurotransmitter receptors and modulate cellular functions through the activation of protein kinase A (PKA), an enzyme whose function is altered in the frontal cortex in schizophrenia. In this study, we measured the activity of PKA in human postmortem anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) tissue from schizophrenia and age- and sex-matched control subjects. No significant differences in PKA activity were observed in male and female individuals in either brain region; however, correlation analyses indicated that PKA activity in the ACC may be influenced by tissue pH in all subjects and by age and tissue pH in females. Our data provide novel insights into the function of PKA in the ACC and DLPFC in schizophrenia.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Nicholas Daniel Henkel
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Christina Flora-Anabelle Vargas
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Robert Erne McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
- Neuroscience Institute, Promedica, Toledo, OH 43606, USA
| | - Sinead Marie O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| |
Collapse
|
16
|
Grave J, Madeira N, Morais S, Rodrigues P, Soares SC. Emotional interference and attentional control in schizophrenia-spectrum disorders: The special case of neutral faces. J Behav Ther Exp Psychiatry 2023; 81:101892. [PMID: 37429124 DOI: 10.1016/j.jbtep.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Schizophrenia-spectrum disorders (SSD) are characterized by impaired emotion processing and attention. SSD patients are more sensitive to the presence of emotional distractors. But despite growing interest on the emotion-attention interplay, emotional interference in SSD is far from fully understood. Moreover, research to date has not established the link between emotional interference and attentional control in SSD. This study thus aimed to investigate the effects of facial expression and attentional control in SSD, by manipulating perceptual load. METHODS Twenty-two SSD patients and 22 healthy controls performed a target-letter discrimination task with task-irrelevant angry, happy, and neutral faces. Target-letter was presented among homogenous (low load) or heterogenous (high load) distractor-letters. Accuracy and RT were analysed using (generalized) linear mixed-effect models. RESULTS Accuracy was significantly lower in SSD patients than controls, regardless of perceptual load and facial expression. Concerning RT, SSD patients were significantly slower than controls in the presence of neutral faces, but only at high load. No group differences were observed for angry and happy faces. LIMITATIONS Heterogeneity of SSD, small sample size, lack of clinical control group, medication. CONCLUSIONS One possible explanation is that neutral faces captured exogenous attention to a greater extent in SSD, thus challenging attentional control in perceptually demanding conditions. This may reflect abnormal processing of neutral faces in SSD. If replicated, these findings will help to understand the interplay between exogenous attention, attentional control, and emotion processing in SSD, which may unravel the mechanism underlying socioemotional dysfunction in SSD.
Collapse
Affiliation(s)
- Joana Grave
- William James Center for Research (WJCR-Aveiro), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Center for Health Technology and Services Research (CINTESIS@RISE), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Nuno Madeira
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; Institute of Psychological Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal; CACC-Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Sofia Morais
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; Institute of Psychological Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal; CACC-Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Paulo Rodrigues
- Department of Psychology and Education, University of Beira Interior, Estrada do Sineiro, 6200-209 Covilhã, Portugal
| | - Sandra C Soares
- William James Center for Research (WJCR-Aveiro), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Osborne KJ, Zhang W, Gupta T, Farrens J, Geiger M, Kraus B, Krugel C, Nusslock R, Kappenman ES, Mittal VA. Clinical high risk for psychosis syndrome is associated with reduced neural responding to unpleasant images. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:1060-1071. [PMID: 37796541 PMCID: PMC11812458 DOI: 10.1037/abn0000862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Deficits in emotion processing are core features of psychotic disorders. Electrophysiology research in schizophrenia suggests deficits in sustained engagement with emotional content (indexed by the late positive potential [LPP]) may contribute to emotion processing impairments. Despite similar behavioral emotion processing dysfunction in those at clinical high risk (CHR) for psychosis, limited research has examined neural mechanisms of impaired emotion processing in the high-risk period, where research can inform risk models. To examine mechanisms of emotion processing deficits in those at CHR for psychosis, the present study used a passive viewing task to elicit the LPP in response to emotionally engaging and neutral stimuli in 28 CHR and 32 control participants (60% female). Relative to controls, CHR participants showed reduced LPP amplitude when viewing unpleasant images (d = 0.75, p = .005) but similar LPP amplitude in response to both neutral (d = 0.35, p = .19) and pleasant images (d = 0.31, p = .24). This pattern suggests that individuals at CHR for psychosis exhibit a deficit in sustained engagement with unpleasant stimuli. Clinical and trait questionnaires were administered to examine potential exploratory explanations for group differences in LPP amplitude. Consistent with evidence suggesting LPP amplitude reflects engagement of approach/avoidance motivational systems, greater LPP amplitude was associated with greater trait-level behavioral avoidance in control participants (r = .42, p = .032) but not CHR participants (r = -.21, p = .40). Together, the present research is consistent with LPP studies in psychosis and implicates reduced sustained engagement with emotional content in the high-risk period. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- K. Juston Osborne
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Wendy Zhang
- San Diego State University, Department of Psychology, San Diego, CA, USA
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Tina Gupta
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Jaclyn Farrens
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - McKena Geiger
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - Brian Kraus
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Chloe Krugel
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Robin Nusslock
- Northwestern University, Department of Psychology, Evanston, IL, USA
| | - Emily S. Kappenman
- San Diego State University, Department of Psychology, San Diego, CA, USA
- SDSU/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Vijay A. Mittal
- Northwestern University, Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
18
|
Lemmers-Jansen I, Velthorst E, Fett AK. The social cognitive and neural mechanisms that underlie social functioning in individuals with schizophrenia - a review. Transl Psychiatry 2023; 13:327. [PMID: 37865631 PMCID: PMC10590451 DOI: 10.1038/s41398-023-02593-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/23/2023] Open
Abstract
In many individuals with a diagnosis of schizophrenia social functioning is impaired across the lifespan. Social cognition has emerged as one of the possible factors that may contribute to these challenges. Neuroimaging research can give further insights into the underlying mechanisms of social (cognitive) difficulties. This review summarises the evidence on the associations between social cognition in the domains of theory of mind and emotion perception and processing, and individuals' social functioning and social skills, as well as associated neural mechanisms. Eighteen behavioural studies were conducted since the last major review and meta-analysis in the field (inclusion between 7/2017 and 1/2022). No major review has investigated the link between the neural mechanisms of social cognition and their association with social functioning in schizophrenia. Fourteen relevant studies were included (from 1/2000 to 1/2022). The findings of the behavioural studies showed that associations with social outcomes were slightly stronger for theory of mind than for emotion perception and processing. Moreover, performance in both social cognitive domains was more strongly associated with performance on social skill measures than questionnaire-based assessment of social functioning in the community. Studies on the underlying neural substrate of these associations presented mixed findings. In general, higher activation in various regions of the social brain was associated with better social functioning. The available evidence suggests some shared regions that might underlie the social cognition-social outcome link between different domains. However, due to the heterogeneity in approaches and findings, the current knowledge base will need to be expanded before firm conclusions can be drawn.
Collapse
Affiliation(s)
- Imke Lemmers-Jansen
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour (iBBA) Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eva Velthorst
- GGZ Noord-Holland-Noord, Heerhugowaard, The Netherlands
| | - Anne-Kathrin Fett
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Psychology, City, University of London, London, UK.
| |
Collapse
|
19
|
Reisch AA, Bessette KL, Jenkins LM, Skerrett KA, Gabriel LB, Kling LR, Stange JP, Ryan KA, Schreiner MW, Crowell SE, Kaufman EA, Langenecker SA. Human emotion processing accuracy, negative biases, and fMRI activation are associated with childhood trauma. Front Psychiatry 2023; 14:1181785. [PMID: 37908596 PMCID: PMC10614639 DOI: 10.3389/fpsyt.2023.1181785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Emerging literature suggests that childhood trauma may influence facial emotion perception (FEP), with the potential to negatively bias both emotion perception and reactions to emotion-related inputs. Negative emotion perception biases are associated with a range of psychiatric and behavioral problems, potentially due or as a result of difficult social interactions. Unfortunately, there is a poor understanding of whether observed negative biases are related to childhood trauma history, depression history, or processes common to (and potentially causative of) both experiences. Methods The present cross-sectional study examines the relation between FEP and neural activation during FEP with retrospectively reported childhood trauma in young adult participants with remitted major depressive disorder (rMDD, n = 41) and without psychiatric histories (healthy controls [HC], n = 34). Accuracy of emotion categorization and negative bias errors during FEP and brain activation were each measured during exposure to fearful, angry, happy, sad, and neutral faces. We examined participant behavioral and neural responses in relation to total reported severity of childhood abuse and neglect (assessed with the Childhood Trauma Questionnaire, CTQ). Results Results corrected for multiple comparisons indicate that higher trauma scores were associated with greater likelihood of miscategorizing happy faces as angry. Activation in the right middle frontal gyrus (MFG) positively correlated with trauma scores when participants viewed faces that they correctly categorized as angry, fearful, sad, and happy. Discussion Identifying the neural mechanisms by which childhood trauma and MDD may change facial emotion perception could inform targeted prevention efforts for MDD or related interpersonal difficulties.
Collapse
Affiliation(s)
- Alexis A. Reisch
- Cognitive Neuroscience Center, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Katie L. Bessette
- Cognitive Neuroscience Center, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry and Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lisanne M. Jenkins
- Cognitive Neuroscience Center, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Kristy A. Skerrett
- Cognitive Neuroscience Center, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Laura B. Gabriel
- Cognitive Neuroscience Center, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Leah R. Kling
- Cognitive Neuroscience Center, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Jonathan P. Stange
- Departments of Psychology and Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kelly A. Ryan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Mindy Westlund Schreiner
- Department of Psychiatry and Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, United States
| | - Sheila E. Crowell
- Department of Psychiatry and Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, United States
- Department of Psychology, University of Utah, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - Erin A. Kaufman
- Department of Psychiatry and Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Langenecker
- Cognitive Neuroscience Center, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Paunova R, Ramponi C, Kandilarova S, Todeva-Radneva A, Latypova A, Stoyanov D, Kherif F. Degeneracy and disordered brain networks in psychiatric patients using multivariate structural covariance analyzes. Front Psychiatry 2023; 14:1272933. [PMID: 37908595 PMCID: PMC10614636 DOI: 10.3389/fpsyt.2023.1272933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction In this study, we applied multivariate methods to identify brain regions that have a critical role in shaping the connectivity patterns of networks associated with major psychiatric diagnoses, including schizophrenia (SCH), major depressive disorder (MDD) and bipolar disorder (BD) and healthy controls (HC). We used T1w images from 164 subjects: Schizophrenia (n = 17), bipolar disorder (n = 25), major depressive disorder (n = 68) and a healthy control group (n = 54). Methods We extracted regions of interest (ROIs) using a method based on the SHOOT algorithm of the SPM12 toolbox. We then performed multivariate structural covariance between the groups. For the regions identified as significant in t term of their covariance value, we calculated their eigencentrality as a measure of the influence of brain regions within the network. We applied a significance threshold of p = 0.001. Finally, we performed a cluster analysis to determine groups of regions that had similar eigencentrality profiles in different pairwise comparison networks in the observed groups. Results As a result, we obtained 4 clusters with different brain regions that were diagnosis-specific. Cluster 1 showed the strongest discriminative values between SCH and HC and SCH and BD. Cluster 2 had the strongest discriminative value for the MDD patients, cluster 3 - for the BD patients. Cluster 4 seemed to contribute almost equally to the discrimination between the four groups. Discussion Our results suggest that we can use the multivariate structural covariance method to identify specific regions that have higher predictive value for specific psychiatric diagnoses. In our research, we have identified brain signatures that suggest that degeneracy shapes brain networks in different ways both within and across major psychiatric disorders.
Collapse
Affiliation(s)
- Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Cristina Ramponi
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Adeliya Latypova
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Guo T, Schwieter JW, Liu H. fMRI reveals overlapping and non-overlapping neural bases of domain-general and emotional conflict control. Psychophysiology 2023; 60:e14355. [PMID: 37254582 DOI: 10.1111/psyp.14355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/05/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
The present study uses functional magnetic resonance image (fMRI) to examine the overlapping and specific neural correlates of contextualized emotional conflict control and domain-general conflict control. During a performance on emotional and domain-general conflict tasks, conjunction analyses showed that neural areas distributed in the frontoparietal network were engaged in both processes, supporting the notion that similar neural mechanisms are implemented in these two types of control. Importantly, disjunction analyses revealed a broader neural recruitment of emotional conflict control compared to domain-general conflict control as shown by the possible lateralization of the lateral prefrontal cortex (lPFC), such that emotional conflict control significantly involved the left lPFC while domain-general conflict control seemly involved the right lPFC. Results of generalized psychophysiological interaction (gPPI) analyses further demonstrated that emotional conflict control, compared to domain-general conflict control, elicited broader synergistic activities in individuals' brain networks. Together, these findings offer novel and compelling neural evidence that furthers our understanding of the complex relationship between domain-general and emotional conflict control.
Collapse
Affiliation(s)
- Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China
| | - John W Schwieter
- Language Acquisition, Cognition, and Multilingualism Laboratory, Bilingualism Matters @ Wilfrid Laurier University, Waterloo, Ontario, Canada
- Department of Linguistics and Languages, McMaster University, Hamilton, Ontario, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China
| |
Collapse
|
22
|
Fulford D, Holt DJ. Social Withdrawal, Loneliness, and Health in Schizophrenia: Psychological and Neural Mechanisms. Schizophr Bull 2023; 49:1138-1149. [PMID: 37419082 PMCID: PMC10483452 DOI: 10.1093/schbul/sbad099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
BACKGROUND AND HYPOTHESIS Some of the most debilitating aspects of schizophrenia and other serious mental illnesses (SMI) are the impairments in social perception, motivation, and behavior that frequently accompany these conditions. These impairments may ultimately lead to chronic social disconnection (ie, social withdrawal, objective isolation, and perceived social isolation or loneliness), which may contribute to the poor cardiometabolic health and early mortality commonly observed in SMI. However, the psychological and neurobiological mechanisms underlying relationships between impairments in social perception and motivation and social isolation and loneliness in SMI remain incompletely understood. STUDY DESIGN A narrative, selective review of studies on social withdrawal, isolation, loneliness, and health in SMI. STUDY RESULTS We describe some of what is known and hypothesized about the psychological and neurobiological mechanisms of social disconnection in the general population, and how these mechanisms may contribute to social isolation and loneliness, and their consequences, in individuals with SMI. CONCLUSIONS A synthesis of evolutionary and cognitive theories with the "social homeostasis" model of social isolation and loneliness represents one testable framework for understanding the dynamic cognitive and biological correlates, as well as the health consequences, of social disconnection in SMI. The development of such an understanding may provide the basis for novel approaches for preventing or treating both functional disability and poor physical health that diminish the quality and length of life for many individuals with these conditions.
Collapse
Affiliation(s)
- Daniel Fulford
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
23
|
Wang C, Zhang Y, Lim LG, Cao W, Zhang W, Wan X, Fan L, Liu Y, Zhang X, Tian Z, Liu X, Pan X, Zheng Y, Pan R, Tan Y, Zhang Z, McIntyre RS, Li Z, Ho RCM, Tang TB. An fNIRS investigation of novel expressed emotion stimulations in schizophrenia. Sci Rep 2023; 13:11141. [PMID: 37429942 DOI: 10.1038/s41598-023-38057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
Living in high expressed emotion (EE) environments tends to increase the relapse rate in schizophrenia (SZ). At present, the neural substrates responsible for high EE in SZ remain poorly understood. Functional near-infrared spectroscopy (fNIRS) may be of great use to quantitatively assess cortical hemodynamics and elucidate the pathophysiology of psychiatric disorders. In this study, we designed novel low- (positivity and warmth) and high-EE (criticism, negative emotion, and hostility) stimulations, in the form of audio, to investigate cortical hemodynamics. We used fNIRS to measure hemodynamic signals while participants listened to the recorded audio. Healthy controls (HCs, [Formula: see text]) showed increased hemodynamic activation in the major language centers across EE stimulations, with stronger activation in Wernicke's area during the processing of negative emotional language. Compared to HCs, people with SZ ([Formula: see text]) exhibited smaller hemodynamic activation in the major language centers across EE stimulations. In addition, people with SZ showed weaker or insignificant hemodynamic deactivation in the medial prefrontal cortex. Notably, hemodynamic activation in SZ was found to be negatively correlated with the negative syndrome scale score at high EE. Our findings suggest that the neural mechanisms in SZ are altered and disrupted, especially during negative emotional language processing. This supports the feasibility of using the designed EE stimulations to assess people who are vulnerable to high-EE environments, such as SZ. Furthermore, our findings provide preliminary evidence for future research on functional neuroimaging biomarkers for people with psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Lam Ghai Lim
- Department of Electrical and Robotics Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Weiqi Cao
- Huaibei Normal University, Huaibei, China
| | - Wei Zhang
- Huaibei Mental Health Center, Huaibei, China
| | | | - Lijun Fan
- Huaibei Normal University, Huaibei, China
| | - Ying Liu
- Huaibei Normal University, Huaibei, China
| | - Xi Zhang
- Huaibei Mental Health Center, Huaibei, China
| | | | | | - Xiuzhi Pan
- Huaibei Normal University, Huaibei, China
| | - Yuan Zheng
- Huaibei Normal University, Huaibei, China
| | - Riyu Pan
- Anqing Normal University, Anqing, China
| | - Yilin Tan
- Huaibei Normal University, Huaibei, China
| | | | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Zhifei Li
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Roger C M Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
24
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
25
|
Zouraraki C, Karamaouna P, Giakoumaki SG. Cognitive Processes and Resting-State Functional Neuroimaging Findings in High Schizotypal Individuals and Schizotypal Personality Disorder Patients: A Systematic Review. Brain Sci 2023; 13:615. [PMID: 37190580 PMCID: PMC10137138 DOI: 10.3390/brainsci13040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Ample research findings indicate that there is altered brain functioning in the schizophrenia spectrum. Nevertheless, functional neuroimaging findings remain ambiguous for healthy individuals expressing high schizotypal traits and patients with schizotypal personality disorder (SPD). The purpose of this systematic review was to identify patterns of task-related and resting-state neural abnormalities across these conditions. MEDLINE-PubMed and PsycINFO were systematically searched and forty-eight studies were selected. Forty studies assessed healthy individuals with high schizotypal traits and eight studies examined SPD patients with functional neuroimaging techniques (fNIRS; fMRI; Resting-state fMRI). Functional alterations in striatal, frontal and temporal regions were found in healthy individuals with high schizotypal traits. Schizotypal personality disorder was associated with default mode network abnormalities but further research is required in order to better conceive its neural correlates. There was also evidence for functional compensatory mechanisms associated with both conditions. To conclude, the findings suggest that brain dysfunctions are evident in individuals who lie along the subclinical part of the spectrum, further supporting the continuum model for schizophrenia susceptibility. Additional research is required in order to delineate the counterbalancing processes implicated in the schizophrenia spectrum, as this approach will provide promising insights for both conversion and protection from conversion into schizophrenia.
Collapse
Affiliation(s)
- Chrysoula Zouraraki
- Laboratory of Neuropsychology, Department of Psychology, University of Crete, 74100 Rethymno, Greece; (C.Z.); (P.K.)
- University of Crete Research Center for the Humanities, The Social and Education Sciences (UCRC), University of Crete, Gallos University Campus, 74100 Rethymno, Greece
| | - Penny Karamaouna
- Laboratory of Neuropsychology, Department of Psychology, University of Crete, 74100 Rethymno, Greece; (C.Z.); (P.K.)
- University of Crete Research Center for the Humanities, The Social and Education Sciences (UCRC), University of Crete, Gallos University Campus, 74100 Rethymno, Greece
| | - Stella G. Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, University of Crete, 74100 Rethymno, Greece; (C.Z.); (P.K.)
- University of Crete Research Center for the Humanities, The Social and Education Sciences (UCRC), University of Crete, Gallos University Campus, 74100 Rethymno, Greece
| |
Collapse
|
26
|
Kietzman HW, Gourley SL. How social information impacts action in rodents and humans: the role of the prefrontal cortex and its connections. Neurosci Biobehav Rev 2023; 147:105075. [PMID: 36736847 PMCID: PMC10026261 DOI: 10.1016/j.neubiorev.2023.105075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Day-to-day choices often involve social information and can be influenced by prior social experience. When making a decision in a social context, a subject might need to: 1) recognize the other individual or individuals, 2) infer their intentions and emotions, and 3) weigh the values of all outcomes, social and non-social, prior to selecting an action. These elements of social information processing all rely, to some extent, on the medial prefrontal cortex (mPFC). Patients with neuropsychiatric disorders often have disruptions in prefrontal cortical function, likely contributing to deficits in social reasoning and decision making. To better understand these deficits, researchers have turned to rodents, which have revealed prefrontal cortical mechanisms for contending with the complex information processing demands inherent to making decisions in social contexts. Here, we first review literature regarding social decision making, and the information processing underlying it, in humans and patient populations. We then turn to research in rodents, discussing current procedures for studying social decision making, and underlying neural correlates.
Collapse
Affiliation(s)
- Henry W Kietzman
- Medical Scientist Training Program, Emory University School of Medicine, USA; Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, USA; Department of Psychiatry, Emory University School of Medicine, USA; Graduate Program in Neuroscience, Emory University, USA; Emory National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta GA 30329, USA; Children's Healthcare of Atlanta, USA.
| |
Collapse
|
27
|
Fiorito AM, Aleman A, Blasi G, Bourque J, Cao H, Chan RCK, Chowdury A, Conrod P, Diwadkar VA, Goghari VM, Guinjoan S, Gur RE, Gur RC, Kwon JS, Lieslehto J, Lukow PB, Meyer-Lindenberg A, Modinos G, Quarto T, Spilka MJ, Shivakumar V, Venkatasubramanian G, Villarreal M, Wang Y, Wolf DH, Yun JY, Fakra E, Sescousse G. Are Brain Responses to Emotion a Reliable Endophenotype of Schizophrenia? An Image-Based Functional Magnetic Resonance Imaging Meta-analysis. Biol Psychiatry 2023; 93:167-177. [PMID: 36085080 DOI: 10.1016/j.biopsych.2022.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France.
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Groningen, The Netherlands
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Josiane Bourque
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Patricia Conrod
- CHU Sainte-Justine Research Center, Department of Psychiatry and Addiction, University of Montréal, Montreal, Quebec, Canada
| | - Vaibhav A Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Vina M Goghari
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Johannes Lieslehto
- University of Eastern Finland, Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland
| | - Paulina B Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | | | - Michael J Spilka
- Department of Psychology, University of Georgia, Athens, Georgia
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | | - Mirta Villarreal
- Instituto de Neurociencias FLENI-CONICET, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Centre Hospitalier Le Vinatier, Bron, France
| |
Collapse
|
28
|
Giordano GM, Pezzella P, Giuliani L, Fazio L, Mucci A, Perrottelli A, Blasi G, Amore M, Rocca P, Rossi A, Bertolino A, Galderisi S. Resting-State Brain Activity Dysfunctions in Schizophrenia and Their Associations with Negative Symptom Domains: An fMRI Study. Brain Sci 2023; 13:brainsci13010083. [PMID: 36672064 PMCID: PMC9856573 DOI: 10.3390/brainsci13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to examine the neurobiological correlates of the two negative symptom domains of schizophrenia, the Motivational Deficit domain (including avolition, anhedonia, and asociality) and the Expressive Deficit domain (including blunted affect and alogia), focusing on brain areas that are most commonly found to be associated with negative symptoms in previous literature. Resting-state (rs) fMRI data were analyzed in 62 subjects affected by schizophrenia (SZs) and 46 healthy controls (HCs). The SZs, compared to the HCs, showed higher rs brain activity in the right inferior parietal lobule and the right temporoparietal junction, and lower rs brain activity in the right dorsolateral prefrontal cortex, the bilateral anterior dorsal cingulate cortex, and the ventral and dorsal caudate. Furthermore, in the SZs, the rs brain activity in the left orbitofrontal cortex correlated with negative symptoms (r = -0.436, p = 0.006), in particular with the Motivational Deficit domain (r = -0.424, p = 0.002), even after controlling for confounding factors. The left ventral caudate correlated with negative symptoms (r = -0.407, p = 0.003), especially with the Expressive Deficit domain (r = -0.401, p = 0.003); however, these results seemed to be affected by confounding factors. In line with the literature, our results demonstrated that the two negative symptom domains might be underpinned by different neurobiological mechanisms.
Collapse
Affiliation(s)
- Giulia Maria Giordano
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Pasquale Pezzella
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-0815666512
| | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Andrea Perrottelli
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Mario Amore
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, 10126 Turin, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences, Section of Psychiatry, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | | |
Collapse
|
29
|
Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR, Yousem DM. Neuroimaging in schizophrenia: A review article. Front Neurosci 2022; 16:1042814. [PMID: 36458043 PMCID: PMC9706110 DOI: 10.3389/fnins.2022.1042814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this review article we have consolidated the imaging literature of patients with schizophrenia across the full spectrum of modalities in radiology including computed tomography (CT), morphologic magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and magnetoencephalography (MEG). We look at the impact of various subtypes of schizophrenia on imaging findings and the changes that occur with medical and transcranial magnetic stimulation (TMS) therapy. Our goal was a comprehensive multimodality summary of the findings of state-of-the-art imaging in untreated and treated patients with schizophrenia. Clinical imaging in schizophrenia is used to exclude structural lesions which may produce symptoms that may mimic those of patients with schizophrenia. Nonetheless one finds global volume loss in the brains of patients with schizophrenia with associated increased cerebrospinal fluid (CSF) volume and decreased gray matter volume. These features may be influenced by the duration of disease and or medication use. For functional studies, be they fluorodeoxyglucose positron emission tomography (FDG PET), rs-fMRI, task-based fMRI, diffusion tensor imaging (DTI) or MEG there generally is hypoactivation and disconnection between brain regions. However, these findings may vary depending upon the negative or positive symptomatology manifested in the patients. MR spectroscopy generally shows low N-acetylaspartate from neuronal loss and low glutamine (a neuroexcitatory marker) but glutathione may be elevated, particularly in non-treatment responders. The literature in schizophrenia is difficult to evaluate because age, gender, symptomatology, comorbidities, therapy use, disease duration, substance abuse, and coexisting other psychiatric disorders have not been adequately controlled for, even in large studies and meta-analyses.
Collapse
Affiliation(s)
- Mona Dabiri
- Department of Radiology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kun Yang
- Department of Psychiatry, Molecular Psychiatry Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| | - Roland R. Lee
- Department of Radiology, UCSD/VA Medical Center, San Diego, CA, United States
| | - David M. Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| |
Collapse
|
30
|
Kuang Q, Zhou S, Li H, Mi L, Zheng Y, She S. Association between fractional amplitude of low-frequency fluctuation (fALFF) and facial emotion recognition ability in first-episode schizophrenia patients: a fMRI study. Sci Rep 2022; 12:19561. [PMID: 36380188 PMCID: PMC9666540 DOI: 10.1038/s41598-022-24258-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
It was still unclear that the correlation between the resting-state intrinsic activity in brain regions and facial emotion recognition (FER) ability in patients with first-episode schizophrenia (FSZ). Our aim was to analyse the correlation between the fractional amplitude of low-frequency fluctuation (fALFF) and FER ability in FSZ patients. A total of 28 patients with FSZ and 33 healthy controls (HCs) completed visual search tasks for FER ability. Regions of interest (ROIs) related to facial emotion were obtained from a previous meta-analysis. Pearson correlation analysis was performed to understand the correlation between fALFF and FER ability. Our results indicated that the patients performed worse than the HCs in the accuracy performances of happy FER and fearful FER. The previous meta-analysis results showed that the brain regions related to FER included the bilateral amygdala (AMY)/hippocampus (HIP), right fusiform gyrus (FFG), and right supplementary motor area (SMA). Partial correlation analysis showed that the fALFF of the right FFG was associated with high-load fearful FER accuracy (r = - 0.60, p = 0.004). Our study indicated that FER ability is correlated with resting-state intrinsic activity in brain regions related to facial emotion, which may provide a reference for the study of FER deficiency in schizophrenia.
Collapse
Affiliation(s)
- Qijie Kuang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People's Republic of China
| | - Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People's Republic of China
| | - Haijing Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People's Republic of China
| | - Lin Mi
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People's Republic of China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People's Republic of China.
| | - Shenglin She
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, People's Republic of China.
| |
Collapse
|
31
|
Guan S, Wan D, Zhao R, Canario E, Meng C, Biswal BB. The complexity of spontaneous brain activity changes in schizophrenia, bipolar disorder, and ADHD was examined using different variations of entropy. Hum Brain Mapp 2022; 44:94-118. [PMID: 36358029 PMCID: PMC9783493 DOI: 10.1002/hbm.26129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adult attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCHZ), and bipolar disorder (BP) have common symptoms and differences, and the underlying neural mechanisms are still unclear. This article will thoroughly discuss the differences between ADHD, BP, and SCHZ (31 healthy control and 31 ADHD; 34 healthy control and 34 BP; 42 healthy control and 42 SCHZ) relative to healthy subjects in combination with three atlases (et al., the Brainnetome atlas, the Dosenbach atlas, the Power atlas) and seven entropies (et al., approximate entropy (ApEn), sample entropy (SaEn), permutation entropy (PeEn), fuzzy entropy (FuEn), differential entropy (DiffEn), range entropy (RaEn), and dispersion entropy (DispEn)), as well as the prominent significant brain regions, in the hope of giving information that is more suitable for analyzing different diseases' entropy. First, the reliability (et al., intraclass correlation coefficient [ICC]) of seven kinds of entropy is calculated and analyzed by using the MSC dataset (10 subjects and 100 sessions in total) and simulation data; then, seven types of entropy and multiscale entropy expanded based on seven kinds of entropy are used to explore the differences and brain regions of ADHD, BP, and SCHZ relative to healthy subjects; and finally, by verifying the classification performance of the seven information entropies on ADHD, BP, and SCHZ, the effectiveness of the seven entropy methods is evaluated through these three methods. The core brain regions that affect the classification are given, and DiffEn performed best on ADHD, SaEn for BP, and RaEn for SCHZ.
Collapse
Affiliation(s)
- Sihai Guan
- Key Laboratory of Electronic and Information EngineeringState Ethnic Affairs Commission, College of Electronic and Information, Southwest Minzu UniversityChengduChina
| | - Dongyu Wan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Rong Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Edgar Canario
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina,Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
32
|
Vines L, Bridgwater M, Bachman P, Hayes R, Catalano S, Jalbrzikowski M. Elevated emotion reactivity and emotion regulation in individuals at clinical high risk for developing psychosis and those diagnosed with a psychotic disorder. Early Interv Psychiatry 2022; 16:724-735. [PMID: 34528404 DOI: 10.1111/eip.13212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/29/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022]
Abstract
AIMS Disrupted affective processes are core features of psychosis; yet emotion reactivity and emotion regulation impairments have not been fully characterized in individuals at clinical high-risk for developing psychosis (CHR) or adolescents diagnosed with a psychotic disorder (AOP). Characterizing these impairments may provide a fuller understanding of factors contributing to psychosis risk and psychosis onset. Using cross-sectional and longitudinal data, we evaluated (1) group-level effects of emotion reactivity and regulation, (2) stability of group-level effects over time and age, (3) relationships between emotion reactivity and regulation, and (4) associations between these measures and psychosocial functioning and clinical symptomatology. METHODS Eighty-seven participants (CHR = 32, TD = 42, AOP = 13; 12-25 years, 1-5 visits) completed the Emotion Reactivity Scale, Difficulties in Emotion Regulation Scale, and Emotion Regulation Questionnaire. We assessed psychotic symptoms with the Structured Interview for Prodromal Syndromes and measured real-world functioning with the Global Functioning: Social and Role Scales. We used analysis of variance to assess Aim 1 and linear mixed models to address Aims 2-4. RESULTS CHR and AOP endorsed experiencing heightened levels of emotion reactivity and greater difficulty utilizing emotion regulation strategies compared to TD. These impairments were stable across time and adolescent development. Greater levels of emotion reactivity were associated with greater emotion regulation impairments. Greater impairments in emotion regulation were associated with lower social functioning and greater negative symptom severity. CONCLUSION Therapeutic interventions designed to reduce emotion reactivity and improve one's ability to utilize emotion regulation strategies may be effective in reducing clinical symptomatology and improving real-world functioning in CHR and AOP.
Collapse
Affiliation(s)
- Leah Vines
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miranda Bridgwater
- Department of Psychology, University of Maryland, Baltimore, Maryland, USA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sabrina Catalano
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Hou J, Schmitt S, Zhao X, Wang J, Chen J, Mao Z, Qi A, Lu Z, Kircher T, Yang Y, Shi J. Neural Correlates of Facial Emotion Recognition in Non-help-seeking University Students With Ultra-High Risk for Psychosis. Front Psychol 2022; 13:812208. [PMID: 35756282 PMCID: PMC9226575 DOI: 10.3389/fpsyg.2022.812208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Since the introduction of the neurodevelopmental perspective of schizophrenia research on individuals at ultra-high risk for psychosis (UHR) has gained increasing interest, aiming at early detection and intervention. Results from fMRI studies investigating behavioral and brain functional changes in UHR during facial emotion recognition, an essential component of social cognition, showed heterogenous results, probably due clinical diversity across these investigations. This fMRI study investigated emotion recognition in a sub-group of the UHR spectrum, namely non-help-seeking, drug-naïve UHR with high cognitive functioning to reveal the neurofunctional underpinnings of their social functioning in comparison to healthy controls. Methods Two large cohorts of students from an elite University (n 1 = 4,040, n 2 = 4,364) were screened firstly with the Prodromal Questionnaires and by surpassing predefined cut-offs then interviewed with the semi-structured Interview for Psychosis-Risk Syndromes to verify their UHR status. Twenty-one identified non-help-seeking UHR and 23 non-UHR control subjects were scanned with functional magnetic resonance imaging while classifying emotions (i.e., neutral, happy, disgust and fear) in a facial emotion recognition task. Results Behaviorally, no group differences were found concerning accuracy, reaction times, sensitivity or specificity, except that non-help-seeking UHR showed higher specificity when recognizing neutral facial expressions. In comparison to healthy non-UHR controls, non-help-seeking UHR showed generally higher activation in the superior temporal and left Heschl's gyrus as well as in the somatosensory, insular and midcingulate cortex than the control subjects during the entire recognition task regardless of the emotion categories. In an exploratory analysis, in the non-help-seeking UHR group, functional activity in the left superior temporal gyrus was significantly correlated with deficits in the ability to experience emotions at uncorrected statistical thresholds. Conclusions Compared to healthy controls, non-help-seeking UHR show no behavioral deficits during facial emotion recognition, but functional hyperactivities in brain regions associated with this cognitive process. Our study may inspire future early intervention and provide loci for treatment using neural stimulation.
Collapse
Affiliation(s)
- Jiaojiao Hou
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
- Hannover Medical School, Clinics for Psychiatry, Social Psychiatry and Psychotherapy, Hannover, Germany
| | - Xudong Zhao
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Tongji University School of Medicine, Shanghai, China
| | - Jianxing Chen
- Tongji University School of Medicine, Shanghai, China
| | - Ziyu Mao
- Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ansi Qi
- Department of Medical Psychology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Lu
- Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Yunbo Yang
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Jingyu Shi
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
- Division of Medical Humanities and Behavioral Sciences, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Huang Y, Wang W, Hei G, Yang Y, Long Y, Wang X, Xiao J, Xu X, Song X, Gao S, Shao T, Huang J, Wang Y, Zhao J, Wu R. Altered regional homogeneity and cognitive impairments in first-episode schizophrenia: A resting-state fMRI study. Asian J Psychiatr 2022; 71:103055. [PMID: 35303593 DOI: 10.1016/j.ajp.2022.103055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/11/2022] [Accepted: 02/27/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Patients with schizophrenia consistently present pervasive cognitive deficits, but the neurobiological mechanism of cognitive impairments remains unclear. By analyzing regional homogeneity (ReHo) of resting-state functional Magnetic Resonance Imaging, this study aimed to explore the association between brain functional alterations and cognitive deficits in first-episode schizophrenia (FES) with a relatively large sample. METHODS A total of 187 patients with FES and 100 healthy controls from 3 independent cohorts underwent resting-state functional magnetic resonance scans. The MATRICS Consensus Cognitive Battery (MCCB) was used to assess cognitive function. Partial correlation analysis was performed between abnormal ReHo values and the severity of symptoms and cognitive deficits. RESULTS Compared with healthy controls, ReHo values increased in right superior frontal cortex and decreased in right anterior cingulate cortex (ACC), left middle occipital gyrus (MOG), left cuneus, right posterior cingulate cortex (PCC), and right superior occipital gyrus in schizophrenia patients. ReHo values in ACC, PCC and superior occipital gyrus were correlated with PANSS scores. In addition, ReHo values in ACC and MOG were negatively correlated with working memory; left cuneus was positively correlated with multiple cognitive domains (speed of processing, attention/vigilance and social cognition); PCC was positively correlated with verbal learning; right superior occipital gyrus was positively correlated with speed of processing and social cognition. CONCLUSION In conclusion, we found widespread ReHo alterations and cognitive dysfunction in FES. And the pathophysiology mechanism of a wide range of cognitive deficits may be related to abnormal spontaneous brain activity.
Collapse
Affiliation(s)
- Yuyan Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weiyan Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gangrui Hei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Ye Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujun Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoyi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingmei Xiao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Xueqin Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Shuzhan Gao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Tiannan Shao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
35
|
Neural alterations of emotion processing in atypical trajectories of psychotic-like experiences. NPJ SCHIZOPHRENIA 2022; 8:40. [PMID: 35853901 PMCID: PMC9261083 DOI: 10.1038/s41537-022-00250-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
AbstractThe aim of this study was to investigate the neural bases of facial emotion processing before the onset of clinical psychotic symptoms in youth belonging to well-defined developmental trajectories of psychotic-like experiences (PLEs). A unique sample of 86 youths was recruited from a population-based sample of over 3800 adolescents who had been followed from 13 to 17 years of age. Three groups were identified based on validated developmental trajectories: a control trajectory with low and decreasing PLEs, and two atypical trajectories with moderate to elevated baseline PLEs that subsequently decreased or increased. All had functional magnetic resonance imaging data collected during a facial emotion processing task. Functional activation and connectivity data were analyzed for different contrasts. The increasing PLE trajectory displayed more positive psychotic symptoms while the decreasing trajectory exhibited more negative symptoms relative to the control group. During face processing, both atypical trajectories displayed decreased activations of the right inferior frontal gyrus (IFG), while the increasing trajectory displayed a negative signal in the precentral gyrus. The increasing PLE trajectory also displayed impaired connectivity between the amygdala, ventromedial prefrontal cortex, and cerebellum, and between the IFG, precuneus, and temporal regions, while the decreasing trajectory exhibited reduced connectivity between the amygdala and visual regions during emotion processing. Both atypical PLE trajectories displayed alterations in brain regions involved in attention salience. While the increasing trajectory with more positive symptoms exhibited dysconnectivity in areas that influence emotion salience and face perception, the decreasing trajectory with more negative symptoms had impairments in visual information integration areas. These group-specific features might account for the differential symptom expression.
Collapse
|
36
|
Oliver LD, Hawco C, Viviano JD, Voineskos AN. From the Group to the Individual in Schizophrenia Spectrum Disorders: Biomarkers of Social Cognitive Impairments and Therapeutic Translation. Biol Psychiatry 2022; 91:699-708. [PMID: 34799097 DOI: 10.1016/j.biopsych.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/11/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022]
Abstract
People with schizophrenia spectrum disorders (SSDs) often experience persistent social cognitive impairments, associated with poor functional outcome. There are currently no approved treatment options for these debilitating symptoms, highlighting the need for novel therapeutic strategies. Work to date has elucidated differential social processes and underlying neural circuitry affected in SSDs, which may be amenable to modulation using neurostimulation. Further, advances in functional connectivity mapping and electric field modeling may be used to identify individualized treatment targets to maximize the impact of brain stimulation on social cognitive networks. Here, we review literature supporting a roadmap for translating functional connectivity biomarker discovery to individualized treatment development for social cognitive impairments in SSDs. First, we outline the relevance of social cognitive impairments in SSDs. We review machine learning approaches for dimensional brain-behavior biomarker discovery, emphasizing the importance of individual differences. We synthesize research showing that brain stimulation techniques, such as repetitive transcranial magnetic stimulation, can be used to target relevant networks. Further, functional connectivity-based individualized targeting may enhance treatment response. We then outline recent approaches to account for neuroanatomical variability and optimize coil positioning to individually maximize target engagement. Overall, the synthesized literature provides support for the utility and feasibility of this translational approach to precision treatment. The proposed roadmap to translate biomarkers of social cognitive impairments to individualized treatment is currently under evaluation in precision-guided trials. Such a translational approach may also be applicable across conditions and generalizable for the development of individualized neurostimulation targeting other behavioral deficits.
Collapse
Affiliation(s)
- Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Joseph D Viviano
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Eken A, Akaslan DS, Baskak B, Münir K. Diagnostic Classification of Schizophrenia and Bipolar Disorder by Using Dynamic Functional Connectivity: an fNIRS Study. J Neurosci Methods 2022; 376:109596. [DOI: 10.1016/j.jneumeth.2022.109596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
|
38
|
Zhang L, Bai Y, Cui X, Cao G, Dan L, Yin H. Negative emotions and brain: negative emotions mediates the association between structural and functional variations in emotional-related brain regions and sleep quality. Sleep Med 2022; 94:8-16. [DOI: 10.1016/j.sleep.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|
39
|
Picó-Pérez M, Vieira R, Fernández-Rodríguez M, De Barros MAP, Radua J, Morgado P. Multimodal meta-analysis of structural gray matter, neurocognitive and social cognitive fMRI findings in schizophrenia patients. Psychol Med 2022; 52:614-624. [PMID: 35129109 DOI: 10.1017/s0033291721005523] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging research has shown that patients with schizophrenia (SCZ) present brain structural and functional alterations, but the results across imaging modalities and task paradigms are difficult to reconcile. Specifically, no meta-analyses have tested whether the same brain systems that are structurally different in SCZ patients are also involved in neurocognitive and social cognitive tasks. To answer this, we conducted separate meta-analyses of voxel-based morphometry, neurocognitive functional magnetic resonance imaging (fMRI), and social cognitive fMRI studies. Next, with a multimodal approach, we identified the common alterations across meta-analyses. Further exploratory meta-analyses were performed taking into account several clinical variables (illness duration, medication status, and symptom severity). A cluster covering the dorsomedial prefrontal cortex (dmPFC) and the supplementary motor area (SMA), and the right inferior frontal gyrus (IFG), presented shared structural and neurocognitive-related activation decreases, while the right angular gyrus presented shared decreases between structural and social cognitive-related activation. The exploratory meta-analyses replicated to some extent these findings, while new regions of alterations appeared in patient subgroups with specific clinical features. In conclusion, we found task-specific correlates of brain structure and function in SCZ, which help summarize and integrate a growing literature.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Marcos Fernández-Rodríguez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Antónia Pereira De Barros
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| |
Collapse
|
40
|
Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5 years. Brain Struct Funct 2022; 227:1655-1672. [PMID: 35174416 DOI: 10.1007/s00429-022-02462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Studies demonstrated that faces with threatening emotional expressions are better remembered than non-threatening faces. However, whether this memory advantage persists over years and which neural systems underlie such an effect remains unknown. Here, we employed an individual difference approach to examine whether the neural activity during incidental encoding was associated with differential recognition of faces with emotional expressions (angry, fearful, happy, sad and neutral) after a retention interval of > 1.5 years (N = 89). Behaviorally, we found a better recognition for threatening (angry, fearful) versus non-threatening (happy and neutral) faces after a delay of > 1.5 years, which was driven by forgetting of non-threatening faces compared with immediate recognition after encoding. Multivariate principal component analysis (PCA) on the behavioral responses further confirmed the discriminative recognition performance between threatening and non-threatening faces. A voxel-wise whole-brain analysis on the concomitantly acquired functional magnetic resonance imaging (fMRI) data during incidental encoding revealed that neural activity in bilateral inferior occipital gyrus (IOG) and ventromedial prefrontal/orbitofrontal cortex (vmPFC/OFC) was associated with the individual differences in the discriminative emotional face recognition performance measured by an innovative behavioral pattern similarity analysis (BPSA). The left fusiform face area (FFA) was additionally determined using a regionally focused analysis. Overall, the present study provides evidence that threatening facial expressions lead to persistent face recognition over periods of > 1.5 years, and that differential encoding-related activity in the medial prefrontal cortex and occipito-temporal cortex may underlie this effect.
Collapse
|
41
|
Martínez A, Tobe RH, Gaspar PA, Malinsky D, Dias EC, Sehatpour P, Lakatos P, Patel GH, Bermudez DH, Silipo G, Javitt DC. Disease-Specific Contribution of Pulvinar Dysfunction to Impaired Emotion Recognition in Schizophrenia. Front Behav Neurosci 2022; 15:787383. [PMID: 35237135 PMCID: PMC8883821 DOI: 10.3389/fnbeh.2021.787383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
One important aspect for managing social interactions is the ability to perceive and respond to facial expressions rapidly and accurately. This ability is highly dependent upon intact processing within both cortical and subcortical components of the early visual pathways. Social cognitive deficits, including face emotion recognition (FER) deficits, are characteristic of several neuropsychiatric disorders including schizophrenia (Sz) and autism spectrum disorders (ASD). Here, we investigated potential visual sensory contributions to FER deficits in Sz (n = 28, 8/20 female/male; age 21–54 years) and adult ASD (n = 20, 4/16 female/male; age 19–43 years) participants compared to neurotypical (n = 30, 8/22 female/male; age 19–54 years) controls using task-based fMRI during an implicit static/dynamic FER task. Compared to neurotypical controls, both Sz (d = 1.97) and ASD (d = 1.13) participants had significantly lower FER scores which interrelated with diminished activation of the superior temporal sulcus (STS). In Sz, STS deficits were predicted by reduced activation of early visual regions (d = 0.85, p = 0.002) and of the pulvinar nucleus of the thalamus (d = 0.44, p = 0.042), along with impaired cortico-pulvinar interaction. By contrast, ASD participants showed patterns of increased early visual cortical (d = 1.03, p = 0.001) and pulvinar (d = 0.71, p = 0.015) activation. Large effect-size structural and histological abnormalities of pulvinar have previously been documented in Sz. Moreover, we have recently demonstrated impaired pulvinar activation to simple visual stimuli in Sz. Here, we provide the first demonstration of a disease-specific contribution of impaired pulvinar activation to social cognitive impairment in Sz.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- *Correspondence: Antígona Martínez,
| | - Russell H. Tobe
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Pablo A. Gaspar
- Department of Psychiatry, Biomedical Neurosciences Institute, IMHAY, University of Chile, Santiago, Chile
| | - Daniel Malinsky
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Elisa C. Dias
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Pejman Sehatpour
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Peter Lakatos
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Gaurav H. Patel
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Dalton H. Bermudez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Gail Silipo
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Daniel C. Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
42
|
Osborne KJ, Kraus B, Curran T, Earls H, Mittal VA. An Event-Related Potential Investigation of Early Visual Processing Deficits During Face Perception in Youth at Clinical High Risk for Psychosis. Schizophr Bull 2022; 48:90-99. [PMID: 34111294 PMCID: PMC8781328 DOI: 10.1093/schbul/sbab068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Impairments in early visual face perception are well documented in patients with schizophrenia. Specifically, event-related potential (ERP) research in patients with schizophrenia has demonstrated deficits in early sensory processing of stimulus properties (P1 component) and the structural encoding of faces (N170 component). However, it is not well understood if similar impairments are present in individuals at clinical high risk (CHR) for psychosis (ie, those in the putative prodromal stage of the illness). Thus, it is unknown if face perception deficits are the result of illness onset or are present in the high-risk period for the illness. The present study used the ERP technique to examine neural activation when viewing facial emotion expressions and objects in 44 CHR and 47 control adolescents and young adults (N = 91). P1 amplitude was similar across groups, indicating that early sensory processing impairments did not substantially contribute to face perception deficits in CHR youth. CHR youth exhibited reduced N170 amplitude compared to controls when viewing faces but not objects, implicating a specific deficit in the structural encoding of faces rather than a general perceptual deficit. Further, whereas controls demonstrated the expected face-selective N170 effect (ie, larger amplitude for faces than objects), CHR youth did not, which suggests that facial emotion expressions do not elicit the expected preferential perceptual processing for critical social information in individuals at CHR for psychosis. Together, these findings provide valuable information regarding the specific impairments contributing to face perception deficits in the high-risk period where treatment stands to aid in preventing illness progression.
Collapse
Affiliation(s)
- K Juston Osborne
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Brian Kraus
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Tim Curran
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, CO, USA
| | - Holly Earls
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, CO, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychiatry, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Medical Social Sciences, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
43
|
Narita Z, Yang K, Kuga H, Piancharoen P, Etyemez S, Faria A, Mihaljevic M, Longo L, Namkung H, Coughlin JM, Nestadt G, Nucifora FC, Sedlak TW, Schaub R, Crawford J, Schretlen DJ, Miyata J, Ishizuka K, Sawa A. Face processing of social cognition in patients with first episode psychosis: Its deficits and association with the right subcallosal anterior cingulate cortex. Schizophr Res 2021; 238:99-107. [PMID: 34649085 DOI: 10.1016/j.schres.2021.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
The clinical importance of social cognition is well acknowledged in patients with psychosis, in particular those with first episode psychosis (FEP). Nevertheless, its brain substrates and circuitries remain elusive, lacking precise analysis between multimodal brain characteristics and behavioral sub-dimensions within social cognition. In the present study, we examined face processing of social cognition in 71 FEP patients and 77 healthy controls (HCs). We looked for a possible correlation between face processing and multimodal MRI characteristics such as resting-state functional connectivity (rsFC) and brain volume. We observed worse recognition accuracy, longer recognition response time, and longer memory response time in FEP patients when compared with HCs. Of these, memory response time was selectively correlated with specific rsFCs, which included the right subcallosal sub-region of BA24 in the ACC (scACC), only in FEP patients. The volume of this region was also correlated with memory response time in FEP patients. The scACC is functionally and structurally important in FEP-associated abnormalities of face processing measures in social cognition.
Collapse
Affiliation(s)
- Zui Narita
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Hironori Kuga
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Peeraya Piancharoen
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Andreia Faria
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marina Mihaljevic
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Luisa Longo
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jennifer M Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Frederik C Nucifora
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Thomas W Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Rebecca Schaub
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jeff Crawford
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David J Schretlen
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| |
Collapse
|
44
|
Leathem LD, Currin DL, Montoya AK, Karlsgodt KH. Socioemotional mechanisms of loneliness in subclinical psychosis. Schizophr Res 2021; 238:145-151. [PMID: 34688116 PMCID: PMC8896506 DOI: 10.1016/j.schres.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 01/31/2023]
Abstract
Loneliness is an important predictor of physical and mental health in the general population and in individuals across the psychosis spectrum, including those experiencing subclinical psychotic-like experiences (PLEs). However, the mechanisms underlying loneliness in the psychosis spectrum are not well understood. Emotion processing deficits are well described across the psychosis spectrum, and socioemotional processing biases are critical for the development and maintenance of loneliness through altered social appraisal, including judgements of rejection. Therefore, we propose that PLEs are associated with increased loneliness, and the relationship is mediated by alterations in socioemotional processing. We also explored how this pathway may be affected by mood and anxiety symptoms, which have been associated with loneliness across the psychosis spectrum. As part of the Human Connectome Project, generally healthy adults (n = 1180) reported symptomatology and social functioning and completed the Penn Emotion Recognition Task to assess efficiency in identifying emotions. We found that higher reported PLEs were associated with elevated levels of loneliness and perceived rejection and that these factors were linked by multiple independent pathways. First, anxiety/depression and emotion processing efficiency independently mediated the PLE-loneliness relationship. Second, we found that the association between PLEs and loneliness was serially mediated through inefficient emotion recognition then higher levels of perceived rejection. These separable mechanisms of increased loneliness in subclinical psychosis have implications for treatment and continued study of social functioning in the psychosis spectrum.
Collapse
Affiliation(s)
- Logan D. Leathem
- Department of Psychology, University of California, Los Angeles, United States of America,Corresponding author at: Department of Psychology, UCLA, 502 Portola Plaza, 1285 Psychology Building, Los Angeles, CA 90095, United States of America. (L.D. Leathem)
| | - Danielle L. Currin
- Department of Psychology, University of California, Los Angeles, United States of America
| | - Amanda K. Montoya
- Department of Psychology, University of California, Los Angeles, United States of America
| | - Katherine H. Karlsgodt
- Department of Psychology, University of California, Los Angeles, United States of America,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States of America
| |
Collapse
|
45
|
Patel GH, Arkin SC, Ruiz-Betancourt D, DeBaun H, Strauss NE, Bartel LP, Grinband J, Martinez A, Berman RA, Leopold DA, Javitt DC. What you see is what you get: visual scanning failures of naturalistic social scenes in schizophrenia. Psychol Med 2021; 51:2923-2932. [PMID: 32498743 PMCID: PMC7751380 DOI: 10.1017/s0033291720001646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Impairments in social cognition contribute significantly to disability in schizophrenia patients (SzP). Perception of facial expressions is critical for social cognition. Intact perception requires an individual to visually scan a complex dynamic social scene for transiently moving facial expressions that may be relevant for understanding the scene. The relationship of visual scanning for these facial expressions and social cognition remains unknown. METHODS In 39 SzP and 27 healthy controls (HC), we used eye-tracking to examine the relationship between performance on The Awareness of Social Inference Test (TASIT), which tests social cognition using naturalistic video clips of social situations, and visual scanning, measuring each individual's relative to the mean of HC. We then examined the relationship of visual scanning to the specific visual features (motion, contrast, luminance, faces) within the video clips. RESULTS TASIT performance was significantly impaired in SzP for trials involving sarcasm (p < 10-5). Visual scanning was significantly more variable in SzP than HC (p < 10-6), and predicted TASIT performance in HC (p = 0.02) but not SzP (p = 0.91), differing significantly between groups (p = 0.04). During the visual scanning, SzP were less likely to be viewing faces (p = 0.0001) and less likely to saccade to facial motion in peripheral vision (p = 0.008). CONCLUSIONS SzP show highly significant deficits in the use of visual scanning of naturalistic social scenes to inform social cognition. Alterations in visual scanning patterns may originate from impaired processing of facial motion within peripheral vision. Overall, these results highlight the utility of naturalistic stimuli in the study of social cognition deficits in schizophrenia.
Collapse
Affiliation(s)
- Gaurav H. Patel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | | | - Laura P. Bartel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | - Jack Grinband
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | - Daniel C. Javitt
- Columbia University Medical Center
- New York State Psychiatric Institute
- Nathan Kline Institute
| |
Collapse
|
46
|
Zhu Y, Xu L, Wang W, Guo Q, Chen S, Zhang C, Zhang T, Hu X, Enck P, Li C, Sheng J, Wang J. Gender differences in attentive bias during social information processing in schizophrenia: An eye-tracking study. Asian J Psychiatr 2021; 66:102871. [PMID: 34619492 DOI: 10.1016/j.ajp.2021.102871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Interpersonal communication is a specific scenario in which patients with psychiatric symptoms may manifest different behavioral patterns due to psychopathology. This was a pilot study by eye-tracking technology to investigate attentive bias during social information processing in schizophrenia. We enrolled 39 patients with schizophrenia from Shanghai Mental Health Center and 42 age-, gender- and education-matched healthy controls. The experiment was a free-viewing task, in which pictures with three types of degree of interpersonal communication were shown. We used two measures: 1) initial fixation duration, 2) total gaze duration. The Positive and Negative Syndrome Scale (PANSS) was used to determine symptom severity. The ratio of first fixation duration for pictures of communicating vs. non-communicating persons was significantly lower in patients than in controls (Mann-Whitney U = 512, p = 0.004). We found that male patients showed a significantly lower ratio of first fixation duration than male controls (Mann-Whitney U = 190, p = 0.028), while it was marginally lower in female patients than female controls (Mann-Whitney U = 77, p = 0.057). The ratio of first fixation duration for pictures of communicating persons vs. no persons was negatively correlated with PANSS negative symptoms in male patients (rho = -0.458, p = 0.024). In contrast, it was negatively correlated with PANSS positive symptoms in female patients (-0.701, p = 0.004). These findings suggest altered attentive bias during social information processing with a pattern of avoidance at first sight towards pictures of communicating persons in schizophrenia. It is worthwhile to note that social functioning impairment is associated with the severity of symptoms.
Collapse
Affiliation(s)
- Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wenzheng Wang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shan Chen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Caidi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaochen Hu
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Paul Enck
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jianhua Sheng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
47
|
Deng W, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Mathalon DH, McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Woods SW, Walker EF, Joormann J, Cannon T. Depression Predicts Global Functional Outcomes in Individuals at Clinical High Risk for Psychosis. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2021; 3:163-171. [PMID: 36101655 PMCID: PMC9175802 DOI: 10.1176/appi.prcp.20210023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives While co-morbid depression is associated with poor functional outcome among patients with schizophrenia, whether depression similarly predicts poorer outcomes in individuals at clinical high-risk for psychosis (CHR-P) is not clear. The present study aimed to examine depressive symptoms in relation to long-term global functional outcomes in the North American Prodrome Longitudinal Study cohort (NAPLS2). Methods CHR individuals were evaluated clinically at baseline and at 12- and 24-month follow-ups for depressive and prodromal symptom severity as well as general functioning. Regression models were built to investigate whether baseline positive and depressive symptom scores predicted longitudinal improvement in global functioning. Results A total of 406 CHR individuals completed the 12-month follow-up assessment and 259 CHR individuals completed the 24-month assessment. Baseline depressive symptoms in the CHR-P population were found to predict better global functional outcomes at 2 years. Furthermore, the degree of recovery of depressive symptoms in the first year following baseline completely mediated the association between depressive symptoms at baseline and functional improvement at 2 years. Conclusions Presence of affective symptoms within the CHR-P population has different implications for prognosis compared with patients with schizophrenia. The present findings support the view that among those at risk for psychosis, depressive symptoms at baseline predict a more favorable course of functional recovery, and highlight the potential importance of treating co-occurring depressive symptoms at an early stage of psychosis risk.
Collapse
Affiliation(s)
- Wisteria Deng
- Department of PsychologyYale UniversityNew HavenConnecticut
| | - Jean Addington
- Department of PsychiatryHotchkiss Brain InstituteCalgaryCanada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California, Los AngelesLos Angeles
| | | | | | | | | | - Diana O. Perkins
- Department of PsychiatryUniversity of North CarolinaChapel HillNorth Carolina
| | - Larry J. Seidman
- Department of PsychiatryHarvard Medical SchoolBoston
- Massachusetts General HospitalBoston
| | - Ming T. Tsuang
- Department of PsychiatryUniversity of California, San DiegoLa JollaCalifornia
| | - Scott W. Woods
- Department of PsychiatryYale UniversityNew HavenConnecticut
| | | | - Jutta Joormann
- Department of PsychologyYale UniversityNew HavenConnecticut
| | - Tyrone Cannon
- Department of PsychologyYale UniversityNew HavenConnecticut
| |
Collapse
|
48
|
Smucny J, Carter CS, Maddock RJ. Medial Prefrontal Cortex Glutamate Is Reduced in Schizophrenia and Moderated by Measurement Quality: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2021; 90:643-651. [PMID: 34344534 PMCID: PMC9303057 DOI: 10.1016/j.biopsych.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Magnetic resonance spectroscopy studies measuring brain glutamate separately from glutamine are helping elucidate schizophrenia pathophysiology. An expanded literature and improved methodologies motivate an updated meta-analysis examining effects of measurement quality and other moderating factors in characterizing abnormal glutamate levels in schizophrenia. METHODS Searching previous meta-analyses and the MEDLINE database identified 83 proton magnetic resonance spectroscopy datasets published through March 25, 2020. Three quality metrics were extracted-Cramér-Rao lower bound (CRLB), line width, and coefficient of variation. Pooled effect sizes (Hedges' g) were calculated with random-effects, inverse variance-weighted models. Moderator analyses were conducted using quality metrics, field strength, echo time, medication, age, and stage of illness. RESULTS Across 36 datasets (2086 participants), medial prefrontal cortex glutamate was significantly reduced in patients (g = -0.19, confidence interval [CI] = -0.07 to -0.32). CRLB and coefficient of variation quality subgroups significantly moderated this effect. Glutamate was significantly more reduced in studies with lower CRLB or coefficient of variation (g = -0.44, CI = -0.29 to -0.60, and g = -0.43, CI = -0.29 to -0.57, respectively). Studies using echo time ≤20 ms also showed significantly greater reduction in glutamate (g = -0.41, CI = -0.26 to -0.55). Across 11 hippocampal datasets, group differences and moderator effects were nonsignificant. Group effects in thalamus and dorsolateral prefrontal cortex were also nonsignificant. CONCLUSIONS High-quality measurements reveal consistently reduced medial prefrontal cortex glutamate in schizophrenia. Stricter CRLB criteria and reduced nuisance variance may increase the sensitivity of future studies examining additional regions and the pathophysiological significance of abnormal glutamate levels in schizophrenia.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California.
| |
Collapse
|
49
|
An Effortful Approach to Social Affiliation in Schizophrenia: Preliminary Evidence of Increased Theta and Alpha Connectivity during a Live Social Interaction. Brain Sci 2021; 11:brainsci11101346. [PMID: 34679410 PMCID: PMC8534160 DOI: 10.3390/brainsci11101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
People with schizophrenia often experience a profound lack of motivation for social affiliation—a facet of negative symptoms that detrimentally impairs functioning. However, the mechanisms underlying social affiliative deficits remain poorly understood, particularly under realistic social contexts. Here, we investigated subjective reports and electroencephalography (EEG) functional connectivity in schizophrenia during a live social interaction. Individuals with schizophrenia (n = 16) and healthy controls (n = 29) completed a face-to-face interaction with a confederate while having EEG recorded. Participants were randomly assigned to either a Closeness condition designed to elicit feelings of closeness through self-disclosure or a Small-Talk condition with minimal disclosure. Compared to controls, patients reported lower positive emotional experiences and feelings of closeness across conditions, but they showed comparably greater subjective affiliative responses for the Closeness (vs. Small-Talk) condition. Additionally, patients in the Closeness (vs. Small-Talk) condition displayed a global increase in connectivity in theta and alpha frequency bands that was not observed for controls. Importantly, greater theta and alpha connectivity was associated with greater subjective affiliative responding, greater negative symptoms, and lower disorganized symptoms in patients. Collectively, findings indicate that patients, because of pronounced negative symptoms, utilized a less efficient, top-down mediated strategy to process social affiliation.
Collapse
|
50
|
Madeira N, Martins R, Valente Duarte J, Costa G, Macedo A, Castelo-Branco M. A fundamental distinction in early neural processing of implicit social interpretation in schizophrenia and bipolar disorder. NEUROIMAGE-CLINICAL 2021; 32:102836. [PMID: 34619651 PMCID: PMC8498462 DOI: 10.1016/j.nicl.2021.102836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Social cognition impairment is a key phenomenon in serious mental disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). Although genetic and neurobiological studies have suggested common neural correlates, here we hypothesized that a fundamental dissociation of social processing occurs at an early level in these conditions. METHODS Based on the hypothesis that key structures in the social brain, namely the temporoparietal junction, should present distinctive features in SCZ and BPD during low-level social judgment, we conducted a case-control study in SCZ (n = 20) and BPD (n = 20) patients and controls (n = 20), using task-based fMRI during a Theory of Mind (ToM) visual paradigm leading to interpretation of social meaning based on simple geometric figures. RESULTS We found opposite neural responses in two core ToM regions: SCZ patients showed social content-related deactivation (relative to controls and BPD) of the right supramarginal gyrus, while the opposite pattern was found in BPD; reverse patterns, relative to controls and SCZ, were found in the left posterior superior temporal gyrus, a region involved in inferring other's intentions. Receiver-operating-characteristic curve analysis showed 88% accuracy in discriminating the two clinical groups based on these neural responses. CONCLUSIONS These contrasting activation patterns of the temporoparietal junction in SCZ and BPD represent mechanistic differences of social cognitive dysfunction that may be explored as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Nuno Madeira
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC) - Department of Psychiatry, Portugal
| | - Ricardo Martins
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - João Valente Duarte
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - Gabriel Costa
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| | - António Macedo
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; Centro Hospitalar e Universitário de Coimbra (CHUC) - Department of Psychiatry, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Portugal; University of Coimbra, Faculty of Medicine (FMUC) - Institute of Psychological Medicine, Portugal; University of Coimbra, Faculty of Medicine (FMUC), Portugal
| |
Collapse
|