1
|
Zhang C, Liu F, Zou Y, Wang C, Zhang H, Wang B, Kan J, McMinn A, Wang H, Wang M. Vertical heterogeneity enhances network complexity and stability of co-occurrence microbes in the eastern Indian Ocean. ENVIRONMENTAL RESEARCH 2024; 263:120225. [PMID: 39448009 DOI: 10.1016/j.envres.2024.120225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Microbes are core to driving biogeochemical cycles and differ between sun-drenched surface and relatively dark deep oceans. However, their distinct contributions to the organization and association of communities are still remaining elusive. Here, their assembly and co-occurrence stability are systematically researched along the surface and vertical gradients in the eastern Indian Ocean. The distribution of surface microbes was grouped tightly with closer phylogenetic distance and broader niche breadth, and separately from those vertical samples. Clear distance-decay of community similarity was observed in surface microbes with lower richness, while more diverse microeukaryotes and prokaryotes were observed in surface and vertical environments, respectively. Co-occurrence microbes along vertical gradients had a more complex network that was dominated by prokaryotes, while exhibited a lower modularity compared to the surface network. Microbial associations along vertical gradients were more stable and resilient, with lower robustness, higher vulnerability, and a relatively consistent fragmentation. Moreover, prokaryotes contribute greatly to the network topology and stability compared to microeukaryotes in surface environments, emphasizing their distinct functions and survival strategies in maintaining community stability across spatial variations. Environmental selection and community differentiation led to the divergence in organization and potential function of microbes. This study shed light on new perspectives on how marine microbes were associated with and influenced by spatial heterogeneity and their distinct roles in community organization in the face of environmental fluctuations.
Collapse
Affiliation(s)
- Chuyu Zhang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Feilong Liu
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yawen Zou
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Can Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Honglei Zhang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Bo Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, PA 19311, USA
| | - Andrew McMinn
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Hualong Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Min Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| |
Collapse
|
2
|
Cao Z, Wang X, Liu H, Yang Z, Zeng Z. Gut microbiota mediate the alleviation effect of Xiehuo-Guzheng granules on β cell dedifferentiation in type 2 diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156151. [PMID: 39437686 DOI: 10.1016/j.phymed.2024.156151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide public health problem characterized by a progressive decline in β cell function. In traditional Chinese medicine (TCM) theory, 'fire' and 'healthy qi deficiency' are important pathogeneses of T2DM, and purging 'fire' and reinforcing the 'healthy qi' (Pinyin name: Xiehuo-Guzheng, XHGZ) are important method of treatment. Over the years, we have observed its benefit for diabetes. However, the underlying mechanisms remain unclear. PURPOSE To investigate the mechanism of XHGZ granules against β cell dedifferentiation in T2DM based on gut microbiota. METHODS Rats with T2DM, induced by intraperitoneal injection of streptozotocin after eight weeks of high-fat diet, were randomly allocated to receive XHGZ granules, metformin, or distilled water for eight consecutive weeks. Changes in metabolic parameters, β cell dedifferentiation, inflammatory cytokines, gut microbiota, and microbial metabolites (lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs)), were detected. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the anti-diabetic effect of XHGZ granule-regulated gut microbiota in pseudo-germ-free T2DM rats. RESULTS XHGZ granules significantly ameliorated hyperglycaemia, improved islet function and pathology, and reduced β cell dedifferentiation and pro-inflammatory cytokines in T2DM rats. 16S rRNA sequencing revealed that XHGZ granules decreased the LPS-containing microbiota (e.g., Colidextribacter, Desulfovibrionaceae, and Morganella) and increased the SCFAs-producing bacteria (e.g., Prevotella, Alloprevotella, and Muribaculaceae) and Lactobacillus_intestinalis. Correspondingly, it strengthened intestinal barrier, lowered LPS, and elevated acetic and butyric acids. Tax4Fun analysis indicated that XHGZ granules restored abnormal metabolism, lipopolysaccharide biosynthesis, and pantothenate and CoA biosynthesis. Moreover, the XHGZ granule-regulated microbiota also exhibited the effects of anti-diabetes, anti-β cell dedifferentiation, and anti-inflammation along with the reduction of LPS and the increase of SCFAs in pseudo-germ-free T2DM rats. CONCLUSION Our results show that XHGZ granules alleviate β cell dedifferentiation via regulating gut microbiota and their metabolites in T2DM, suggesting its potential as a promising complementary treatment for T2DM. As far as we know, there are very few studies on the alleviation of β cell dedifferentiation by TCM, and investigations into the mechanism from the perspective of intestinal flora and microbial metabolites are yet to be reported.
Collapse
Affiliation(s)
- Zebiao Cao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xianzhe Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huijun Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Huangshi Hospital of Traditional Chinese Medicine, Huangshi, Hubei 435000, China
| | - Zhaojun Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Zhili Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; Postdoctoral Research Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
3
|
Klingbeil EA, Schade R, Lee SH, Kirkland R, de La Serre CB. Manipulation of feeding patterns in high fat diet fed rats improves microbiota composition dynamics, inflammation and gut-brain signaling. Physiol Behav 2024; 285:114643. [PMID: 39059597 DOI: 10.1016/j.physbeh.2024.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Chronic consumption of high fat (HF) diets has been shown to increase meal size and meal frequency in rodents, resulting in overeating. Reducing meal frequency and establishing periods of fasting, independently of caloric intake, may improve obesity-associated metabolic disorders. Additionally, diet-driven changes in microbiota composition have been shown to play a critical role in the development and maintenance of metabolic disorders. In this study, we used a pair-feeding paradigm to reduce meal frequency and snacking episodes while maintaining overall intake and body weight in HF fed rats. We hypothesized that manipulation of feeding patterns would improve microbiota composition and metabolic outcomes. Male Wistar rats were placed in three groups consuming either a HF, low fat diet (LF, matched for sugar), or pair-fed HF diet for 7 weeks (n = 11-12/group). Pair-fed animals received the same amount of food consumed by the HF fed group once daily before dark onset (HF-PF). Rats underwent oral glucose tolerance and gut peptide cholecystokinin sensitivity tests. Bacterial DNA was extracted from the feces collected during both dark and light cycles and sequenced via Illumina MiSeq sequencing of the 16S V4 region. Our pair-feeding paradigm reduced meal numbers, especially small meals in the inactive phase, without changing total caloric intake. This shift in feeding patterns reduced relative abundances of obesity-associated bacteria and maintained circadian fluctuations in microbial abundances. These changes were associated with improved gastrointestinal (GI) function, reduced inflammation, and improved glucose tolerance and gut to brain signaling. We concluded from these data that targeting snacking may help improve metabolic outcomes, independently of energy content of the diet and hyperphagia.
Collapse
Affiliation(s)
- E A Klingbeil
- Department of Nutritional Sciences, The University of Texas at Austin, United States
| | - R Schade
- Department of Microbiology and Immunology, Stanford University School of Medicine, United States
| | - S H Lee
- Department of Food Sciences, Sun Moon University, South Korea
| | - R Kirkland
- Office of Research, University of Georgia, United States
| | - C B de La Serre
- Department of Nutritional Sciences, University of Georgia, United States; Department of Biomedical Sciences, Colorado State University, United States.
| |
Collapse
|
4
|
Rahangdale S, Deshmukh P, Sammeta S, Aglawe M, Kale M, Umekar M, Kotagale N, Taksande B. Agmatine modulation of gut-brain axis alleviates dysbiosis-induced depression-like behavior in rats. Eur J Pharmacol 2024; 981:176884. [PMID: 39134294 DOI: 10.1016/j.ejphar.2024.176884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Depression is a global health concern affecting nearly 280 million individuals. It not only imposes a significant burden on economies and healthcare systems but also manifests complex physiological connections and consequences. Agmatine, a putative neuromodulator derived primarily from beneficial gut microbes specially Lactobacillus, has emerged as a potential therapeutic agent for mental health. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of agmatine. Therefore, this study aimed to investigate the potential mechanism of agmatine in antibiotic-induced dysbiosis and depression-like behavior in rats, focusing on its modulation of the gut-brain axis. Depression-like behavior associated with dysbiosis was induced through a seven-day regimen of the broad-spectrum antibiotic, comprising ampicillin and metronidazole and validated through microbial, biochemical, and behavioral alterations. On day 8, antibiotic-treated rats exhibited loose fecal consistency, altered fecal microbiota, and depression-like behavior in forced swim test. Pro-inflammatory cytokines were elevated, while agmatine and monoamine levels decreased in the hippocampus and prefrontal cortex. Antibiotic administration disrupted tight junction proteins in the ileum, affecting gut architecture. Oral administration of agmatine alone or combined with probiotics significantly reversed antibiotic-induced dysbiosis, restoring gut microbiota and mitigating depression-like behaviors. This intervention also restored neuro-inflammatory markers, increased agmatine and monoamine levels, and preserved gut integrity. The study highlights the regulatory role of endogenous agmatine in the gut-brain axis in broad-spectrum antibiotic induced dysbiosis and associated depression-like behavior.
Collapse
Affiliation(s)
- Sandip Rahangdale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Pankaj Deshmukh
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Shivkumar Sammeta
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Manish Aglawe
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S., 44604, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S., 441 002, India.
| |
Collapse
|
5
|
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling. Foods 2024; 13:3102. [PMID: 39410136 PMCID: PMC11476385 DOI: 10.3390/foods13193102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring's acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function.
Collapse
Affiliation(s)
- Dorsilla A. Katimbwa
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
6
|
Ahirwar P, Kozlovskaya V, Pukkanasut P, Nikishau P, Nealy S, Harber G, Michalek SM, Antony L, Wu H, Kharlampieva E, Velu SE. Polymer vesicles for the delivery of inhibitors of cariogenic biofilm. Dent Mater 2024:S0109-5641(24)00272-0. [PMID: 39317560 DOI: 10.1016/j.dental.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The goal of this study is to develop a novel drug delivery platform for the pH-responsive delivery of biofilm inhibitors as a potential avenue to prevent and treat dental caries. METHODS Biofilm and growth inhibition assays were performed in polystyrene microtiter 96-well plates. Docking analysis was performed using the reported GtfB + HA5 co-crystal structure (PDB code: 8fg8) in SeeSAR 13.0.1 software. Polymersome vesicles were assembled from poly(N-vinylpyrrolidone)8-block-poly(dimethylsiloxane)64-block-poly(N-vinylpyrrolidone)8 (PVPON8-PDMS64-PVPON8) triblock copolymer using a nanoprecipitation method. Microbiome analysis of biofilm inhibitors and the in vivo drug release and antivirulence activities of polymersome encapsulated inhibitors have been carried out in a S. mutans induced rat caries model. RESULTS Biofilm inhibitors for HA5 and HA6 have shown species-specific selectivity towards S. mutans and the ability to preserve the oral microbiome in a S. mutans induced dental caries model. The inhibitors were encapsulated into pH-responsive block copolymer vesicles to generate polymersome-encapsulated biofilm inhibitors, and their biofilm and growth inhibitory activities against S. mutans and representative strains of oral commensal streptococci have been assessed. A 4-week treatment of S. mutans UA159 infected gnotobiotic rats with 100 µM of polymersome-encapsulated biofilm inhibitor, PEHA5 showed significant reductions in buccal, sulcal, and proximal caries scores compared to an untreated control group. SIGNIFICANCE Taken together, our data suggests that the biofilm-selective therapy using the polymersome-encapsulated biofilm inhibitors is a viable approach for the prevention and treatment of dental caries while preserving the oral microbiome.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pavel Nikishau
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sarah Nealy
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Linto Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Microbiome Center, Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Global Center for Craniofacial Oral and Dental Disorders, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
8
|
Thabet E, Dief AE, Arafa SAF, Yakout D, Ali MA. Antibiotic-induced gut microbe dysbiosis alters neurobehavior in mice through modulation of BDNF and gut integrity. Physiol Behav 2024; 283:114621. [PMID: 38925433 DOI: 10.1016/j.physbeh.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Gut microbiota is essential for intestinal integrity and brain functions. Herein we aimed to investigate the effects of alteration of gut microbiome using broad-spectrum antibiotics on CD 1 male mice (germ-modified group (GM). Moreover, we co-administrated probiotics with or without antibiotics for four weeks and evaluated if probiotics could reverse these behavioral and intestinal effects. GM, co-administered antibiotics and probiotics, and probiotics-only groups were compared to control mice of the same sex, age, and weight that did not receive either drug (n=12 in all groups). Cultivation of aerobic and anaerobic bacteria was evaluated by fecal culture of all groups. We tested exploratory behavior, anxiety, memory, depression-like behavior, and hippocampal and frontal lobe BDNF protein level alterations in response to antibiotics and its downstream effect on the PI3K/Akt1/Bcl2 pathway. Intestinal integrity was evaluated using gene expression analysis of ZO-1, claudin, and occludin genes. Additionally, the inflammatory TLR4 and p-p38 MAPK pathways in the intestines were investigated. Twice-daily administration of oral antibiotics for four weeks significantly reduced total bacterial count and upregulated TLR4 and p-p38.GM mice showed a significant reduction in BDNF(P =0.04), impaired spatial memory, and long-term memory as evidenced by decreased T maze correct alternation trails and shortened retention time in the passive avoidance test in GM(P =0.01). Passive avoidance showed significantly increased latency after probiotics intake. Depressive-like behavior was more pronounced in GM mice as assessed by the tail suspension test (P =0.01). GM showed significant upregulation(p<0.001) of the TLR4 and p-p38 MAPK pathway. Co-administration of probiotics with antibiotics showed an increase in BDNF levels, and upregulation of the cell survival PI3K/Akt1/Bcl2 pathway, significantly higher relative abundance in the firmucutes members, a significant decrease in the Firmicutes/Bacteroidetes ratio and downregulation of TLR4 and p-p38 MAPK. The tight junction proteins ZO-1, claudin and occludin were downregulated by antibiotic administration for four weeks and restored by probiotics. Collectively, the data suggest that long-term use of antibiotics appears to disrupt the intestinal epithelial barrier and alter neurobehavioral qualities specifically, long-term memory and exploratory drive, possibly through the reduction of BDNF, and probiotics partially reverse these effects. Our study emphasizes the effect of prolonged intake of antibiotics on production of dysbiosis as well as the impact of the antibiotic induced intestinal inflammation on neurobehavioral aspects in mice as the memory and anxiety-like behavior. We also reveal that co-administration of probiotics can reverse these changes.
Collapse
Affiliation(s)
- Eman Thabet
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Abeer E Dief
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Shams A-F Arafa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Dalia Yakout
- Department of Clinical Pharmacology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
9
|
Zhu H, Gu B, Zhao D, Ma Y, Mehmood MA, Li Y, Yang K, Wang Y, He M, Zheng J, Wang N. Wuliangye strong aroma baijiu promotes intestinal homeostasis by improving gut microbiota and regulating intestinal stem cell proliferation and differentiation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7417-7428. [PMID: 38760970 DOI: 10.1002/jsfa.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Wuliangye strong aroma baijiu (hereafter, Wuliangye baijiu) is a traditional Chinese grain liquor containing short-chain fatty acids, ethyl caproate, ethyl lactate, other trace components, and a large proportion of ethanol. The effects of Wuliangye baijiu on intestinal stem cells and intestinal epithelial development have not been elucidated. Here, the role of Wuliangye baijiu in intestinal epithelial regeneration and gut microbiota modulation was investigated by administering a Lieber-DeCarli chronic ethanol liquid diet in a mouse model to mimic long-term (8 weeks') light/moderate alcohol consumption (1.6 g kg-1 day-1) in healthy human adults. RESULTS Wuliangye baijiu promoted colonic crypt proliferation in mice. According to immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses, compared with the ethanol-only treatment, Wuliangye baijiu increased the number of intestinal stem cells and goblet cells and the expression of enteroendocrine cell differentiation markers in the mouse colon. Furthermore, gut microbiota analysis showed an increase in the relative abundance of microbiota related to intestinal homeostasis following Wuliangye baijiu administration. Notably, increased abundance of Bacteroidota, Faecalibaculum, Lachnospiraceae, and Blautia may play an essential role in promoting stem-cell-mediated intestinal epithelial development and maintaining intestinal homeostasis. CONCLUSIONS In summary, these findings suggest that Wuliangye baijiu can be used to regulate intestinal stem cell proliferation and differentiation in mice and to alter gut microbiota distributions, thereby promoting intestinal homeostasis. This research elucidates the mechanism by which Wuliangye baijiu promotes intestinal health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
- Wuliangye Group Co., Ltd., Yibin, China
| | - Baoxiang Gu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Dong Zhao
- Wuliangye Group Co., Ltd., Yibin, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yuzhu Li
- Wuliangye Group Co., Ltd., Yibin, China
| | | | | | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| |
Collapse
|
10
|
Fang X, Liu S, Muhammad B, Zheng M, Ge X, Xu Y, Kan S, Zhang Y, Yu Y, Zheng K, Geng D, Liu CF. Gut microbiota dysbiosis contributes to α-synuclein-related pathology associated with C/EBPβ/AEP signaling activation in a mouse model of Parkinson's disease. Neural Regen Res 2024; 19:2081-2088. [PMID: 38227539 DOI: 10.4103/1673-5374.391191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00042/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinson's disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction. Gastrointestinal dysfunction can precede the onset of motor symptoms by several years. Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson's disease, whether it plays a causal role in motor dysfunction, and the mechanism underlying this potential effect, remain unknown. CCAAT/enhancer binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling, activated by bacterial endotoxin, can promote α-synuclein transcription, thereby contributing to Parkinson's disease pathology. In this study, we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling, α-synuclein-related pathology, and motor symptoms using a rotenone-induced mouse model of Parkinson's disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation. We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier, as well as activation of the C/EBP/AEP pathway, α-synuclein aggregation, and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits. However, treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics. Importantly, we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits, intestinal inflammation, and endotoxemia. Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits, intestinal inflammation, endotoxemia, and intestinal barrier impairment. These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits, C/EBPβ/AEP signaling activation, and α-synuclein-related pathology in a rotenone-induced mouse model of Parkinson's disease. Additionally, our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoli Fang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bilal Muhammad
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shu Kan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yang Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of Neuropsychiatric Disease and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Peng M, Zou R, Yao S, Meng X, Wu W, Zeng F, Chen Z, Yuan S, Zhao F, Liu W. High-intensity interval training and medium-intensity continuous training may affect cognitive function through regulation of intestinal microbial composition and its metabolite LPS by the gut-brain axis. Life Sci 2024; 352:122871. [PMID: 38936602 DOI: 10.1016/j.lfs.2024.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
AIMS The gut-brain axis is the communication mechanism between the gut and the central nervous system, and the intestinal flora and lipopolysaccharide (LPS) play a crucial role in this mechanism. Exercise regulates the gut microbiota composition and metabolite production (i.e., LPS). We aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on cognitive function in C57BL/6 J mice through gut-brain axis regulation of gut microbiota composition and LPS displacement. MAIN METHODS C57BL/6 J male mice were randomly divided into sedentary, HIIT, and MICT groups. After 12 weeks of exercise intervention, the cognitive function of the brain and mRNA levels of related inflammatory factors were measured. RNA sequencing, Golgi staining, intestinal microbial 16 s rDNA sequencing, and ELISA were performed. KEY FINDINGS HIIT and MICT affect brain cognitive function by regulating the gut microbiota composition and its metabolite, LPS, through the gut microbiota-gut-brain axis. HIIT is suspected to have a risk: it can induce "intestinal leakage" by regulating intestinal permeability-related microbiota, resulting in excessive LPS in the blood and brain and activating M1 microglia in the brain, leading to reduced dendritic spine density and affecting cognitive function. SIGNIFICANCE This study revealed a potential link between changes in the gut microbiota and cognitive function. It highlighted the possible risk of HIIT in reducing dendritic spine density and affecting cognitive function.
Collapse
Affiliation(s)
- Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Sisi Yao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Yangtze University College of Arts and Sciences, Jingzhou 434020, China
| | - Fei Zhao
- The First Affiliated Hospital of Hunan Normal University, Changsha 410002, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
12
|
Gao B, Li C, Qu Y, Cai M, Zhou Q, Zhang Y, Lu H, Tang Y, Li H, Shen H. Progress and trends of research on mineral elements for depression. Heliyon 2024; 10:e35469. [PMID: 39170573 PMCID: PMC11336727 DOI: 10.1016/j.heliyon.2024.e35469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To explore the research progress and trends on mineral elements and depression. Methods After querying the MeSH database and referring to the search rules, the search terms were selected and optimized to obtain the target literature collection. We analyzed the general characteristics of the literature, conducted network clustering and co-occurrence analysis, and carried out a narrative review of crucial literature. Results Bipolar disorder was a dominant topic in the retrieved literature, which saw a significant increase in 2010 and 2019-2020. Most studies focused on mineral elements, including lithium, calcium, magnesium, zinc, and copper. The majority of journals and disciplines were in the fields of psychiatry, neuropsychology, neuropharmacology, nutrition, medical informatics, chemistry, and public health. The United States had the highest proportion in terms of paper sources, most-cited articles, high-frequency citations, frontier citations, and high centrality citation. Regarding the influence of academic institutions, the top five were King's College London, the Chinese Academy of Sciences, University of Barcelona, INSERM, and Heidelberg University. Frontier keywords included bipolar disorder, drinking water, (neuro)inflammation, gut microbiota, and systematic analysis. Research on lithium response, magnesium supplementation, and treatment-resistant unipolar depression increased significantly after 2013. Conclusion Global adverse events may have indirectly driven the progress in related research. Although the literature from the United States represents an absolute majority, its influence on academic institutions is relatively weaker. Multiple pieces of evidence support the efficacy of lithium in treating bipolar disorder (BD). A series of key discoveries have led to a paradigm shift in research, leading to increasingly detailed studies on the role of magnesium, calcium, zinc, and copper in the treatment of depression. Most studies on mineral elements remain diverse and inconclusive. The potential toxicity and side effects of some elements warrant careful attention.
Collapse
Affiliation(s)
- Biao Gao
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China
| | - Chenqi Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
- Department of Nutrition, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yicui Qu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Mengyu Cai
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Qicheng Zhou
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yinyin Zhang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongtao Lu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Yuxiao Tang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hongxia Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
13
|
Mabrok HB, Ramadan AA, Hamed IM, Mohamed DA. Obesity as Inducer of Cognitive Function Decline via Dysbiosis of Gut Microbiota in Rats. Brain Sci 2024; 14:807. [PMID: 39199499 PMCID: PMC11353248 DOI: 10.3390/brainsci14080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Diet-induced obesity is a global phenomenon that affects the population worldwide with manifestations at both the phenotypic and genotypic levels. Cognitive function decline is a major global health challenge. The relation between obesity and cognitive function is a debatable issue. The main goal of the current research was to study the implications of obesity on cognitive function and gut microbiota diversity and its impact on plasma and brain metabolic parameters in rats. Obesity was induced in rats by feeding on a high-fat (HF) or a high-fat/high-sucrose (HFHS) diet. The results reveal that both the HF (0.683) and HFHS (0.688) diets were effective as obesity inducers, which was confirmed by a significant increase in the body mass index (BMI). Both diet groups showed dyslipidemia and elevation of oxidative stress, insulin resistance (IR), and inflammatory markers with alterations in liver and kidney functions. Obesity led to a reduction in cognitive function through a reduction in short-term memory by 23.8% and 30.7% in the rats fed HF and HFHS diets, respectively, and learning capacity and visuo-spatial memory reduced by 8.9 and 9.7 s in the rats fed an HF or HFHS diet, respectively. Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria, and Spirochaetes phyla were detected. The Firmicutes/Bacteroidetes ratio (F/B) significantly decreased in the HF group, while it increased in the HFHS group compared to the normal control. The two species, Bacteroides acidifaciens and Bacteroides ovatus, which are associated with IR, were drastically compromised by the high-fat/high-sucrose diet. Some species that have been linked to reduced inflammation showed a sharp decrease in the HFHS group, while Prevotella copri, which is linked to carbohydrate metabolism, was highly enriched. In conclusion: Obesity led to cognitive impairment through changes in short-term and visuo-spatial memory. A metagenomic analysis revealed alterations in the abundance of some microbial taxa associated with obesity, inflammation, and insulin resistance in the HF and HFHS groups.
Collapse
Grants
- a626035bfd925943, 4c6c6a0dc9645904, 175e6bf937114ef5, 18dca4e8f29e587c, aaf09103eb8bd6ee, 3740a1d4a23d772f, 1b07773fd3c8c954, 4f8fa1a570a3a4b7, 490e7e4e51713e71, 1e87a07edec11a96, 7642f29d62c1068b, c06bc3bf279a8491, c78b30a55528e880, e160d996ffb69ed4, 133 Discount Vouchers
Collapse
Affiliation(s)
| | | | | | - Doha A. Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo 12622, Egypt; (H.B.M.); (A.A.R.); (I.M.H.)
| |
Collapse
|
14
|
Wang M, Sun P, Chai X, Liu YX, Li L, Zheng W, Chen S, Zhu X, Zhao S. Reconstituting gut microbiota-colonocyte interactions reverses diet-induced cognitive deficits: The beneficial of eucommiae cortex polysaccharides. Theranostics 2024; 14:4622-4642. [PMID: 39239516 PMCID: PMC11373620 DOI: 10.7150/thno.99468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Consumption of a high-fat diet (HFD) has been implicated in cognitive deficits and gastrointestinal dysfunction in humans, with the gut microbiota emerging as a pivotal mediator of these diet-associated pathologies. The introduction of plant-based polysaccharides into the diet as a therapeutic strategy to alleviate such conditions is gaining attention. Nevertheless, the mechanistic paradigm by which polysaccharides modulate the gut microbiota remains largely undefined. This study investigated the mechanisms of action of Eucommiae cortex polysaccharides (EPs) in mitigating gut dysbiosis and examined their contribution to rectifying diet-related cognitive decline. Methods: Initially, we employed fecal microbiota transplantation (FMT) and gut microbiota depletion to verify the causative role of changes in the gut microbiota induced by HFD in synapse engulfment-dependent cognitive impairments. Subsequently, colonization of the gut of chow-fed mice with Escherichia coli (E. coli) from HFD mice confirmed that inhibition of Proteobacteria by EPs was a necessary prerequisite for alleviating HFD-induced cognitive impairments. Finally, supplementation of HFD mice with butyrate and treatment of EPs mice with GW9662 demonstrated that EPs inhibited the expansion of Proteobacteria in the colon of HFD mice by reshaping the interactions between the gut microbiota and colonocytes. Results: Findings from FMT and antibiotic treatments demonstrated that HFD-induced cognitive impairments pertaining to neuronal spine loss were contingent on gut microbial composition. Association analysis revealed strong associations between bacterial taxa belonging to the phylum Proteobacteria and cognitive performance in mice. Further, introducing E. coli from HFD-fed mice into standard diet-fed mice underscored the integral role of Proteobacteria proliferation in triggering excessive synaptic engulfment-related cognitive deficits in HFD mice. Crucially, EPs effectively counteracted the bloom of Proteobacteria and subsequent neuroinflammatory responses mediated by microglia, essential for cognitive improvement in HFD-fed mice. Mechanistic insights revealed that EPs promoted the production of bacteria-derived butyrate, thereby ameliorating HFD-induced colonic mitochondrial dysfunction and reshaping colonocyte metabolism. This adjustment curtailed the availability of growth substrates for facultative anaerobes, which in turn limited the uncontrolled expansion of Proteobacteria. Conclusions: Our study elucidates that colonocyte metabolic disturbances, which promote Proteobacteria overgrowth, are a likely cause of HFD-induced cognitive deficits. Furthermore, dietary supplementation with EPs can rectify behavioral dysfunctions associated with HFD by modifying gut microbiota-colonocyte interactions. These insights contribute to the broader understanding of the modulatory effects of plant prebiotics on the microbiota-gut-brain axis and suggest a potential therapeutic avenue for diet-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710000, China
| | - Yong-Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Zheng
- College of Resources and Environment Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Hart DW, Sherman MA, Kim M, Pelzel R, Brown JL, Lesné SE. Standard diet and animal source influence hippocampal spatial reference learning and memory in congenic C57BL/6J mice. RESEARCH SQUARE 2024:rs.3.rs-4582616. [PMID: 39070656 PMCID: PMC11276007 DOI: 10.21203/rs.3.rs-4582616/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Assessing learning and memory has become critical to evaluate brain function in health, aging or neurological disease. The hippocampus is crucially involved in these processes as illustrated by H.M.'s remarkable case and by the well-established early symptoms of Alzheimer's disease. Numerous studies have reported the impact of gut microbiota on hippocampal structure and function using pro-, pre- and antibiotics, diet manipulations, germ-free conditions or fecal transfer. However, most diet manipulations have relied on Western diet paradigms (high fat, high energy, high carbohydrates). Here, we compared the impact of two standard diets, 5K52 and 2918 (6% fat, 18% protein, 3.1kcal/g), and how they influenced hippocampal learning and memory in adult 6-month-old congenic C57BL/6J mice from two sources. Results Using a hippocampal-dependent task, we found that 5K52-fed mice performed consistently better than 2918-fed animals in the Barnes circular maze. These behavioral differences were accompanied with marked changes in microbiota, which correlated with spatial memory retention performance. We next tested whether 2918-induced alterations in behavior and microbiome could be rescued by 5K52 diet for 3 months. Changing the 2918 diet to 5K52 diet mid-life improved spatial learning and memory in mice. Shotgun sequencing and principal component analyses revealed significant differences at both phylum and species levels. Multivariate analyses identified Akkermansia muciniphila or Bacteroidales bacterium M11 and Faecalibaculum rodentium as the strongest correlates to spatial memory retention in mice depending on the animal source. In both settings, the observed behavioral differences only affected hippocampal-dependent performance as mice fed with either diet did similarly well on the non-spatial variant of the Y-maze. Conclusions In summary, these findings demonstrate the diverging effects of seemingly equivalent standard diets on hippocampal memory. Based on these results, we strongly recommend the mandatory inclusion of the diet and source of animals used in rodent behavioral studies.
Collapse
|
16
|
Zhang JS, Li S, Cheng X, Tan XC, Huang YL, Dong HJ, Xue R, Zhang Y, Li JC, Feng XX, Deng Y, Zhang YZ. Far-Infrared Therapy Based on Graphene Ameliorates High-Fat Diet-Induced Anxiety-Like Behavior in Obese Mice via Alleviating Intestinal Barrier Damage and Neuroinflammation. Neurochem Res 2024; 49:1735-1750. [PMID: 38530508 DOI: 10.1007/s11064-024-04133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The consumption of a high-fat diet (HFD) has been implicated in the etiology of obesity and various neuropsychiatric disturbances, including anxiety and depression. Compelling evidence suggests that far-infrared ray (FIR) possesses beneficial effects on emotional disorders. However, the efficacy of FIR therapy in addressing HFD-induced anxiety and the underlying mechanisms remain to be elucidated. Here, we postulate that FIR emitted from a graphene-based therapeutic device may mitigate HFD-induced anxiety behaviors. The graphene-FIR modify the gut microbiota in HFD-mice, particularly by an enriched abundance of beneficial bacteria Clostridiaceae and Erysipelotrichaceae, coupled with a diminution of harmful bacteria Lachnospiraceae, Anaerovoracaceae, Holdemania and Marvinbryantia. Graphene-FIR also improved intestinal barrier function, as evidenced by the augmented expression of the tight junction protein occludin and G protein-coupled receptor 43 (GPR43). In serum level, we observed the decreased free fatty acids (FFA), lipopolysaccharides (LPS), diamine oxidase (DAO) and D-lactate, and increased the glucagon-like peptide-2 (GLP-2) levels in graphene-FIR mice. Simultaneously, inflammatory cytokines IL-6, IL-1β, and TNF-α manifested a decrease subsequent to graphene-FIR treatment in both peripheral and central system. Notably, graphene-FIR inhibited over expression of astrocytes and microglia. We further noticed that the elevated the BDNF and decreased TLR4 and NF-κB expression in graphene-FIR group. Overall, our study reveals that graphene-FIR rescued HFD-induced anxiety via improving the intestine permeability and the integrity of blood-brain barrier, and reduced inflammatory response by down regulating TLR4/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Jin-Shui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shuo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Cheng
- Hebei North University, Hebei, 075000, China
| | - Xiao-Cui Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yu-Long Huang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Hua-Jin Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Rui Xue
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing-Cao Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiao-Xing Feng
- Grahope New Materials Technologies Inc., Shenzhen, 518063, China
| | - Yun Deng
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - You-Zhi Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
17
|
Yang X, Zhou Y, Tan S, Tian X, Meng X, Li Y, Zhou B, Zhao G, Ge X, He C, Cheng W, Zhang Y, Zheng K, Yin K, Yu Y, Pan W. Alterations in gut microbiota contribute to cognitive deficits induced by chronic infection of Toxoplasma gondii. Brain Behav Immun 2024; 119:394-407. [PMID: 38608743 DOI: 10.1016/j.bbi.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shimin Tan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaokang Tian
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xianran Meng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yiling Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Beibei Zhou
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yumei Zhang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China.
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
18
|
Xu Q, Sun L, Chen Q, Jiao C, Wang Y, Li H, Xie J, Zhu F, Wang J, Zhang W, Xie L, Wu H, Zuo Z, Chen X. Gut microbiota dysbiosis contributes to depression-like behaviors via hippocampal NLRP3-mediated neuroinflammation in a postpartum depression mouse model. Brain Behav Immun 2024; 119:220-235. [PMID: 38599497 DOI: 10.1016/j.bbi.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024] Open
Abstract
Postpartum depression (PPD) is a severe mental disorder that affects approximately 10---20% of women after childbirth. The precise mechanism underlying PPD pathogenesis remains elusive, thus limiting the development of therapeutics. Gut microbiota dysbiosis is considered to contribute to major depressive disorder. However, the associations between gut microbiota and PPD remain unanswered. Here, we established a mouse PPD model by sudden ovarian steroid withdrawal after hormone-simulated pseudopregnancy-human (HSP-H) in ovariectomy (OVX) mouse. Ovarian hormone withdrawal induced depression-like and anxiety-like behaviors and an altered gut microbiota composition. Fecal microbiota transplantation (FMT) from PPD mice to antibiotic cocktail-treated mice induced depression-like and anxiety-like behaviors and neuropathological changes in the hippocampus of the recipient mice. FMT from healthy mice to PPD mice attenuated the depression-like and anxiety-like behaviors as well as the inflammation mediated by the NOD-like receptor protein (NLRP)-3/caspase-1 signaling pathway both in the gut and the hippocampus, increased fecal short-chain fatty acids (SCFAs) levels and alleviated gut dysbiosis with increased SCFA-producing bacteria and reduced Akkermansia in the PPD mice. Also, downregulation of NLRP3 in the hippocampus mitigated depression-like behaviors in PPD mice and overexpression of NLRP3 in the hippocampal dentate gyrus induced depression-like behaviors in naïve female mice. Intriguingly, FMT from healthy mice failed to alleviate depression-like behaviors in PPD mice with NLRP3 overexpression in the hippocampus. Our results highlighted the NLRP3 inflammasome as a key component within the microbiota-gut-brain axis, suggesting that targeting the gut microbiota may be a therapeutic strategy for PPD.
Collapse
Affiliation(s)
- Qi Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lihong Sun
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuan Wang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiaqian Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Fangfang Zhu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiangling Wang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wen Zhang
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
19
|
Minaya DM, Kim JS, Kirkland R, Allen J, Cullinan S, Maclang N, de Lartigue G, de La Serre CB. Transfer with microbiota from lean donors prevents excessive weight gain and restores gut-brain vagal signaling in obese rats maintained on a high fat diet. RESEARCH SQUARE 2024:rs.3.rs-4438240. [PMID: 38853960 PMCID: PMC11160927 DOI: 10.21203/rs.3.rs-4438240/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background The collection of microorganisms, mainly bacteria, which live in the gastrointestinal (GI) tract are collectible known as the gut microbiota. GI bacteria play an active role in regulation of the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and recent studies have shown that high fat (HF) diets induce detrimental changes, known as dysbiosis, in the GI bacterial makeup. HF diet induced microbiota dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if restoring normal microbiota in obesity can improve gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male Sprague-Dawley rats were maintained on regular chow, or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using an antibiotic cocktail. The animals were then divided into four groups (n=10 each): LF - control group on regular chow, LF-LF - chow fed animals that received antibiotics and microbiota from chow fed animals, HF-LF - HF fed animals that received microbiota from chow fed animals, and HF-HF - HF fed animals that received microbiota from HF fed animals. Animals were gavaged with donor microbiota for three consecutive days on week one and once a week thereafter for three more weeks. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. Results We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. We did not observe significant changes in the density of vagal afferents terminating in the brainstem among the groups, however, HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. Conclusions We concluded from these data that normalizing microbiota composition in obese rats improves gut-brain communication and restores normal feeding patterns which was associated with a reduction in weight gain.
Collapse
Affiliation(s)
- Dulce M. Minaya
- Department of Nutritional Science, University of Georgia, Athens, GA
| | | | - Rebecca Kirkland
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Jillian Allen
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Sitara Cullinan
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Neil Maclang
- Department of Nutritional Science, University of Georgia, Athens, GA
| | | | | |
Collapse
|
20
|
Tamura H, Miyazaki A, Kawamura T, Gotoh H, Yamamoto N, Narita M. Chronic ingestion of soy peptide supplementation reduces aggressive behavior and abnormal fear memory caused by juvenile social isolation. Sci Rep 2024; 14:11557. [PMID: 38773352 PMCID: PMC11109177 DOI: 10.1038/s41598-024-62534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.
Collapse
Affiliation(s)
- Hideki Tamura
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan.
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.
| | - Akiko Miyazaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Takashi Kawamura
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Hikaru Gotoh
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Minoru Narita
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Department of Pharmacy, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
21
|
Li L, He S, Liao B, Wang M, Lin H, Hu B, Lan X, Shu Z, Zhang C, Yu M, Zou Z. Orally Administrated Hydrogel Harnessing Intratumoral Microbiome and Microbiota-Related Immune Responses for Potentiated Colorectal Cancer Treatment. RESEARCH (WASHINGTON, D.C.) 2024; 7:0364. [PMID: 38721274 PMCID: PMC11077293 DOI: 10.34133/research.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 10/08/2024]
Abstract
The intestinal and intratumoral microbiota are closely associated with tumor progression and response to antitumor treatments. The antibacterial or tumor microenvironment (TME)-modulating approaches have been shown to markedly improve antitumor efficacy, strategies focused on normalizing the microbial environment are rarely reported. Here, we reported the development of an orally administered inulin-based hydrogel with colon-targeting and retention effects, containing hollow MnO2 nanocarrier loaded with the chemotherapeutic drug Oxa (Oxa@HMI). On the one hand, beneficial bacteria in the colon specifically metabolized Oxa@HMI, resulting in the degradation of inulin and the generation of short-chain fatty acids (SCFAs). These SCFAs play a crucial role in modulating microbiota and stimulating immune responses. On the other hand, the hydrogel matrix underwent colon microbiota-specific degradation, enabling the targeted release of Oxa and production of reactive oxygen species in the acidic TME. In this study, we have established, for the first time, a microbiota-targeted drug delivery system Oxa@HMI that exhibited high efficiency in colorectal cancer targeting and colon retention. Oxa@HMI promoted chemotherapy efficiency and activated antitumor immune responses by intervening in the microbial environment within the tumor tissue, providing a crucial clinical approach for the treatment of colorectal cancer that susceptible to microbial invasion.
Collapse
Affiliation(s)
- Lei Li
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Shouhua He
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Boyi Liao
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Manchun Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Huimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Ben Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Xinyue Lan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Zhilin Shu
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Chao Zhang
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| | - Meng Yu
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
22
|
Fromm E, Zinger L, Pellerin F, Di Gesu L, Jacob S, Winandy L, Aguilée R, Parthuisot N, Iribar A, White J, Bestion E, Cote J. Warming effects on lizard gut microbiome depend on habitat connectivity. Proc Biol Sci 2024; 291:20240220. [PMID: 38654642 PMCID: PMC11040258 DOI: 10.1098/rspb.2024.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.
Collapse
Affiliation(s)
- Emma Fromm
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66055-090, Belém, Pará, Brazil
| | - Félix Pellerin
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Lucie Di Gesu
- Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
| | - Staffan Jacob
- Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
| | - Laurane Winandy
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
- High Fens Scientific Station, Freshwater and Oceanic Science Unit of Research (FOCUS), University of Liege, Liege, Belgium
| | - Robin Aguilée
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Nathalie Parthuisot
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Amaia Iribar
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Joël White
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
- École Nationale Supérieure de Formation de l'Enseignement Agricole, 2 Route de Narbonne, 31320 Castanet-Tolosan, France
| | - Elvire Bestion
- Station d'Écologie Théorique et Expérimentale (SETE), UAR2029, CNRS, Moulis, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
23
|
Reveles KR, Hickmott AJ, Strey KA, Mustoe AC, Arroyo JP, Power ML, Ridenhour BJ, Amato KR, Ross CN. Developing the Common Marmoset as a Translational Geroscience Model to Study the Microbiome and Healthy Aging. Microorganisms 2024; 12:852. [PMID: 38792682 PMCID: PMC11123169 DOI: 10.3390/microorganisms12050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging data support associations between the depletion of the healthy gut microbiome and aging-related physiological decline and disease. In humans, fecal microbiota transplantation (FMT) has been used successfully to restore gut microbiome structure and function and to treat C. difficile infections, but its application to healthy aging has been scarcely investigated. The marmoset is an excellent model for evaluating microbiome-mediated changes with age and interventional treatments due to their relatively shorter lifespan and many social, behavioral, and physiological functions that mimic human aging. Prior work indicates that FMT is safe in marmosets and may successfully mediate gut microbiome function and host health. This narrative review (1) provides an overview of the rationale for FMT to support healthy aging using the marmoset as a translational geroscience model, (2) summarizes the prior use of FMT in marmosets, (3) outlines a protocol synthesized from prior literature for studying FMT in aging marmosets, and (4) describes limitations, knowledge gaps, and future research needs in this field.
Collapse
Affiliation(s)
- Kelly R. Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
| | - Alexana J. Hickmott
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Kelsey A. Strey
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
| | - Aaryn C. Mustoe
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Juan Pablo Arroyo
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Michael L. Power
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA;
| | - Benjamin J. Ridenhour
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA;
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA;
| | - Corinna N. Ross
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
24
|
Lu M, Shi J, Li X, Liu Y, Liu Y. Long-term intake of thermo-induced oxidized oil results in anxiety-like and depression-like behaviors: involvement of microglia and astrocytes. Food Funct 2024; 15:4037-4050. [PMID: 38533894 DOI: 10.1039/d3fo05302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Frequent consumption of fried foods has been strongly associated with a higher risk of anxiety and depression, particularly among young individuals. The existing evidence has indicated that acrylamide produced from starchy foods at high temperatures can induce anxious behavior. However, there is limited research on the nerve damage caused by thermo-induced oxidized oil (TIOO). In this study, we conducted behavioral tests on mice and found that prolonged consumption of TIOO led to significant anxiety behavior and a tendency toward depression. TIOO primarily induced these two emotional disorders by affecting the differentiation of microglia, the level of inflammatory factors, the activation of astrocytes, and glutamate circulation in brain tissue. By promoting the over-differentiation of microglia into M1 microglia, TIOO disrupted their differentiation balance, resulting in an up-regulation of inflammatory factors (IL-1β, IL-6, TNF-α, NOS2) in M1 microglia and a down-regulation of neuroprotective factors IL-4/IL-10 in M2 microglia, leading to nerve damage. Moreover, TIOO activated astrocytes, accelerating their proliferation and causing GFAP precipitation, which damaged astrocytes. Meanwhile, TIOO stimulates the secretion of the BDNF and reduces the level of the glutamate receptor GLT-1 in astrocytes, leading to a disorder in the glutamate-glutamine cycle, further exacerbating nerve damage. In conclusion, this study suggests that long-term intake of thermo-induced oxidized oil can trigger symptoms of anxiety and depression.
Collapse
Affiliation(s)
- Meishan Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Jiachen Shi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanjun Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
- Future Food (Bai Ma) Research Institute, 111 Baima Road, Lishui District, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Schoenthaler SJ, Prescott SL, Logan AC. Homicide or Happiness: Did Folate Fortification and Public Health Campaigns Influence Homicide Rates and the Great American Crime Decline? Nutrients 2024; 16:1075. [PMID: 38613108 PMCID: PMC11013728 DOI: 10.3390/nu16071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The last several years have witnessed a remarkable growth in research directed at nutrition and behavior, with increased interest in the field of nutritional criminology. It is becoming clear that dietary patterns and specific nutrients play an important role in cognition and behavior, including those related to aggression, violence, and antisocial activity. Included in this expanding knowledge base is the recognition that folate, through multiple pathways, including enzymatic reactions and gut microbiome ecology, plays a critical role in central nervous system functioning. These mechanistic advances allow for a retrospective analysis of a topic that remains unexplained-the sudden and unpredicted drop in homicide and other violent crime rates in the United States and other nations in the 1990s. Here, we revisit this marked reduction in homicide rates through the lens of the coincident public health campaign (and subsequent mandatory fortification) to increase folic acid intake. Based on objectively measured blood folate levels through the National Health and Nutrition Examination Surveys, there is little doubt that tissue folate witnessed a dramatic rise at the national level from 1988 through 2000. Drawing from accumulated and emerging research on the neurobehavioral aspects of folate, it is our contention that this relatively sudden and massive increase in tissue folate levels may have contributed to reductions in violent crime in the United States.
Collapse
Affiliation(s)
- Stephen J. Schoenthaler
- Department of Criminal Justice, College of the Arts, Humanities & Social Sciences, California State University, Turlock, CA 95202, USA;
| | - Susan L. Prescott
- Nova Institute for Health, Baltimore, MD 21231, USA
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
26
|
Chang M, Chang KT, Chang F. Just a gut feeling: Faecal microbiota transplant for treatment of depression - A mini-review. J Psychopharmacol 2024; 38:353-361. [PMID: 38532577 DOI: 10.1177/02698811241240308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
BACKGROUND The microbiota-gut-brain axis (MGBA) allows bidirectional crosstalk between the brain and gut microbiota (GM) and is believed to contribute to regulating mood/cognition/behaviour/metabolism/health and homeostasis. Manipulation of GM through faecal microbiota transplant (FMT) is a new, exciting and promising treatment for major depressive disorder (MDD). AIMS This mini-review examines current research into GM and FMT as a therapy for depression. METHODS Original research articles published in Medline/Cochrane Library/PubMed/EMBASE/PsycINFO databases/National Institute of Health website Clinicaltrials.gov/controlled-trials.com were searched. Full articles included in reference lists were evaluated. We summarise current data on GM and depression and discuss communication through the MGBA and the interaction of antidepressants and GM through this. We review compositions of dysbiosis in depressed cohorts, focusing on future directions in the treatment of MDD. RESULTS Studies have demonstrated significant gut dysbiosis in depressed patients compared to healthy cohorts, with overgrowth of pro-inflammatory microbiota, reduction in anti-inflammatory species and reduced overall stability and taxonomic richness. FMT allows the introduction of healthy microbiota into the gastrointestinal tract, facilitating the restoration of eubiosis. CONCLUSION The GM plays an integral role in human health and disease through its communication with the rest of the body via the MGBA. FMT may provide a means to transfer the healthy phenotype into the recipient and this concept in humans is attracting enormous attention as a prospective treatment for psychopathologies, such as MDD, in the future. It may be possible to manipulate the GM in a number of ways, but further research is needed to determine the exact likelihood and profiles involved in the development and amelioration of MDD in humans, as well as the long-term effects and potential risks of this procedure.
Collapse
Affiliation(s)
- Minna Chang
- Epsom and St Helier Hospital University and Hospital Trust, Sutton, Carshalton, UK
| | | | - Fuju Chang
- King's College London, Gastrointestinal Research Group, School of Cancer and Pharmaceutical Sciences, Strand, London, UK
| |
Collapse
|
27
|
He J, Hou T, Wang Q, Wang Q, Jiang Y, Chen L, Xu J, Qi Y, Jia D, Gu Y, Gao L, Yu Y, Wang L, Kang L, Si J, Wang L, Chen S. L-arginine metabolism ameliorates age-related cognitive impairment by Amuc_1100-mediated gut homeostasis maintaining. Aging Cell 2024; 23:e14081. [PMID: 38236004 PMCID: PMC11019123 DOI: 10.1111/acel.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Aging-induced cognitive impairment is associated with a loss of metabolic homeostasis and plasticity. An emerging idea is that targeting key metabolites is sufficient to impact the function of other organisms. Therefore, more metabolism-targeted therapeutic intervention is needed to improve cognitive impairment. We first conducted untargeted metabolomic analyses and 16S rRNA to identify the aging-associated metabolic adaption and intestinal microbiome change. Untargeted metabolomic analyses of plasma revealed L-arginine metabolic homeostasis was altered during the aging process. Impaired L-arginine metabolic homeostasis was associated with low abundance of intestinal Akkermansia muciniphila (AKK) colonization in mice. Long-term supplementation of AKK outer membranes protein-Amuc_1100, rescued the L-arginine level and restored cognitive impairment in aging mice. Mechanically, Amuc_1100 acted directly as a source of L-arginine and enriched the L-arginine-producing bacteria. In aged brain, Amuc_1100 promoted the superoxide dismutase to alleviated oxidation stress, and increased nitric oxide, derivatives of L-arginine, to improve synaptic plasticity. Meanwhile, L-arginine repaired lipopolysaccharide-induced intestinal barrier damage and promoted growth of colon organoid. Our findings indicated that aging-related cognitive impairment was closely associated with the disorders of L-arginine metabolism. AKK-derived Amuc_1100, as a potential postbiotic, targeting the L-arginine metabolism, might provide a promising therapeutic strategy to maintain the intestinal homeostasis and cognitive function in aging.
Collapse
Affiliation(s)
- Jiamin He
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Tongyao Hou
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Qiwen Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Qingyi Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Yao Jiang
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Luyi Chen
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of General PracticeSir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jilei Xu
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Yadong Qi
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Dingjiacheng Jia
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yanrou Gu
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of Gastroenterology, Wenzhou People's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lidan Gao
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's HospitalWenzhouChina
| | - Yingcong Yu
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of Gastroenterology, Wenzhou People's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lan Wang
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Lijun Kang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain‐Machine Integration, School of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina
| | - Jianmin Si
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| | - Liangjing Wang
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shujie Chen
- Department of GastroenterologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Prevention and Treatment Research Center for Senescent DiseaseZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
28
|
Cuartero MI, García-Culebras A, Nieto-Vaquero C, Fraga E, Torres-López C, Pradillo J, Lizasoain I, Moro MÁ. The role of gut microbiota in cerebrovascular disease and related dementia. Br J Pharmacol 2024; 181:816-839. [PMID: 37328270 DOI: 10.1111/bph.16167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
In recent years, increasing evidence suggests that commensal microbiota may play an important role not only in health but also in disease including cerebrovascular disease. Gut microbes impact physiology, at least in part, by metabolizing dietary factors and host-derived substrates and then generating active compounds including toxins. The purpose of this current review is to highlight the complex interplay between microbiota, their metabolites. and essential functions for human health, ranging from regulation of the metabolism and the immune system to modulation of brain development and function. We discuss the role of gut dysbiosis in cerebrovascular disease, specifically in acute and chronic stroke phases, and the possible implication of intestinal microbiota in post-stroke cognitive impairment and dementia, and we identify potential therapeutic opportunities of targeting microbiota in this context. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- María Isabel Cuartero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Carmen Nieto-Vaquero
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Enrique Fraga
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Cristina Torres-López
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jesús Pradillo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ignacio Lizasoain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María Ángeles Moro
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
29
|
Yang X, Yu Z, An L, Jing X, Yuan M, Xu T, Yu Z, Xu B, Lu M. Electroacupuncture stimulation ameliorates cognitive impairment induced by long-term high-fat diet by regulating microglial BDNF. Brain Res 2024; 1825:148710. [PMID: 38103878 DOI: 10.1016/j.brainres.2023.148710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Long-term high-fat diet (HFD) in adolescents leads to impaired hippocampal function and increases the risk of cognitive impairment. Studies have shown that HFD activates hippocampal microglia and induces hippocampal inflammation, which is an important factor for cognitive impairment. Electroacupuncture stimulation (ES), a nerve stimulation therapy, is anti-inflammatory. This study explored its therapeutic potential and mechanism of action in obesity-related cognitive impairment. 4-week-old C57 mice were given either normal or HFD for 22 weeks. At 19 weeks, some of the HFD mice were treated with ES and nigericin sodium salt. The cognitive behavior was assessed through Morris water maze test at 23 weeks. Western blotting was used to detect the expression levels of pro-inflammatory molecules IL-1β and IL-1R, synaptic plasticity related proteins synaptophysin and Postsynaptic Density-95 (PSD-95), and apoptotic molecules (Caspase-3 and Bcl-2), in the hippocampus. The number, morphology, and status of microglia, along with the brain-derived neurotrophic factor(BDNF) content, were analyzed using immunofluorescence. ES treatment improved cognitive deficits in HFD model mice, and decreased the expressions of microglial activation marker, CD68, and microglial BDNF. Inhibition of proinflammatory cytokine, IL-1β, and IL-1R promoted PSD-95 and synaptophysin expressions. Peripheral NLRP3 inflammasome agonist injections exacerbated the cognitive deficits in HFD mice and promoted the expressions of IL-1β and IL-1R in the hippocampus. The microglia showed obvious morphological damage and apoptosis. Collectively, our findings suggest that ES inhibits inflammation, regulates microglial BDNF, and causes remodeling of hippocampal function in mice to counteract obesity-like induced cognitive impairment. Overexcitation of peripheral inflammasome complexes induces hippocampal microglia apoptosis, which hinders the effects of ES.
Collapse
Affiliation(s)
- Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li An
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Mengqian Yuan
- Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
30
|
Hajra D, Kirthivasan N, Chakravortty D. Symbiotic Synergy from Sponges to Humans: Microflora-Host Harmony Is Crucial for Ensuring Survival and Shielding against Invading Pathogens. ACS Infect Dis 2024; 10:317-336. [PMID: 38170903 DOI: 10.1021/acsinfecdis.3c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gut microbiota plays several roles in the host organism's metabolism and physiology. This phenomenon holds across different species from different kingdoms and classes. Different species across various classes engage in continuous crosstalk via various mechanisms with their gut microbiota, ensuring homeostasis of the host. In this Review, the diversity of the microflora, the development of the microflora in the host, its regulations by the host, and its functional implications on the host, especially in the context of dysbiosis, are discussed across different organisms from sponges to humans. Overall, our review aims to address the indispensable nature of the microbiome in the host's survival, fitness, and protection against invading pathogens.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Nikhita Kirthivasan
- Undergraduate Programme, Indian Institute of Science, Bangalore, Karnataka-560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, Karnataka-560012, India
| |
Collapse
|
31
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
32
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
33
|
Kadyan S, Park G, Hochuli N, Miller K, Wang B, Nagpal R. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice. Front Nutr 2024; 11:1322201. [PMID: 38352704 PMCID: PMC10864001 DOI: 10.3389/fnut.2024.1322201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. Methods Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussion Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.
Collapse
Affiliation(s)
- Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
34
|
Prescott SL, Logan AC, D’Adamo CR, Holton KF, Lowry CA, Marks J, Moodie R, Poland B. Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:120. [PMID: 38397611 PMCID: PMC10888116 DOI: 10.3390/ijerph21020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
There is mounting concern over the potential harms associated with ultra-processed foods, including poor mental health and antisocial behavior. Cutting-edge research provides an enhanced understanding of biophysiological mechanisms, including microbiome pathways, and invites a historical reexamination of earlier work that investigated the relationship between nutrition and criminal behavior. Here, in this perspective article, we explore how this emergent research casts new light and greater significance on previous key observations. Despite expanding interest in the field dubbed 'nutritional psychiatry', there has been relatively little attention paid to its relevancy within criminology and the criminal justice system. Since public health practitioners, allied mental health professionals, and policymakers play key roles throughout criminal justice systems, a holistic perspective on both historical and emergent research is critical. While there are many questions to be resolved, the available evidence suggests that nutrition might be an underappreciated factor in prevention and treatment along the criminal justice spectrum. The intersection of nutrition and biopsychosocial health requires transdisciplinary discussions of power structures, industry influence, and marketing issues associated with widespread food and social inequalities. Some of these discussions are already occurring under the banner of 'food crime'. Given the vast societal implications, it is our contention that the subject of nutrition in the multidisciplinary field of criminology-referred to here as nutritional criminology-deserves increased scrutiny. Through combining historical findings and cutting-edge research, we aim to increase awareness of this topic among the broad readership of the journal, with the hopes of generating new hypotheses and collaborations.
Collapse
Affiliation(s)
- Susan L. Prescott
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia;
- Nova Institute for Health, Baltimore, MD 21231, USA;
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- The ORIGINS Project, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Alan C. Logan
- Nova Institute for Health, Baltimore, MD 21231, USA;
| | - Christopher R. D’Adamo
- Nova Institute for Health, Baltimore, MD 21231, USA;
- Department of Family and Community Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Kathleen F. Holton
- Departments of Health Studies and Neuroscience, Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA;
| | - Christopher A. Lowry
- Department of Psychology and Neuroscience, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - John Marks
- Department of Criminal Justice, Louisiana State University of Alexandria, Alexandria, LA 71302, USA;
| | - Rob Moodie
- School of Population and Global Health (MSPGH), University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Blake Poland
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5R 0A3, Canada;
| |
Collapse
|
35
|
Liang Y, Liu D, Li Y, Hou H, Li P, Ma X, Li P, Zhan J, Wang P. Maternal polysorbate 80 intake promotes offspring metabolic syndrome through vertical microbial transmission in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168624. [PMID: 37979881 DOI: 10.1016/j.scitotenv.2023.168624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Polysorbate 80 (P80) is an emulsifier extensively produced, consumed and discharged into the environment, consequently making human exposure inevitable. Despite evidence suggesting that P80 intake causes metabolic syndrome (MS) in mammals via microbial perturbation, limited data exist on its transgenerational impacts on offspring. In this study, we found that maternal P80 treatment impaired intestinal barrier integrity, leading to metabolic endotoxemia, low-grade inflammation and MS-related symptoms in C57BL/6J female offspring. Further analysis of the gut microbiome revealed MS-related changes in the offspring of P80-treated dams. Fecal microbiota transplantation experiment confirmed the crucial role of the altered microbiome in offspring in the transgenerational impacts of P80. Furthermore, we found that the P80-induced microbial alterations were directly transmitted from P80-treated mothers to their offspring and that interrupting vertical microbial transmission through cesarean section and foster nursing blocked the transgenerational impacts of P80 on the offspring microbiome and metabolic health. Moreover, maternal pectin supplementation also effectively mitigated P80-induced microbial alterations and MS-associated phenotypes in offspring. Together, our results indicated that maternal P80 intake could impair offspring metabolic health through the mother-to-offspring transmission of the microbiome, and maternal pectin supplementation might be a promising strategy for reducing the adverse effects of P80.
Collapse
Affiliation(s)
- Yiran Liang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, People's Republic of China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Haonan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
36
|
Dworsky-Fried M, Tchida JA, Krnel R, Ismail N. Enduring sex-dependent implications of pubertal stress on the gut-brain axis and mental health. Front Behav Neurosci 2024; 17:1285475. [PMID: 38274549 PMCID: PMC10808663 DOI: 10.3389/fnbeh.2023.1285475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The gut-brain axis (GBA) is a network responsible for the bidirectional communication between the central nervous system and the gastrointestinal tract. This multifaceted system is comprised of a complex microbiota, which may be altered by both intrinsic and extrinsic factors. During critical periods of development, these intrinsic and extrinsic factors can cause long-lasting sex-dependent changes in the GBA, which can affect brain structure and function. However, there is limited understanding of how the GBA is altered by stress and how it may be linked to the onset of mental illness during puberty. This article reviews current literature on the relationships between the GBA, the effects of stress during puberty, and the implications for mental health.
Collapse
Affiliation(s)
| | - Jessica A. Tchida
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca Krnel
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- LIFE Research Institute, Ottawa, ON, Canada
| |
Collapse
|
37
|
Bin-Khattaf RM, Al-Dbass AM, Alonazi M, Bhat RS, Al-Daihan S, El-Ansary AK. In a rodent model of autism, probiotics decrease gut leakiness in relation to gene expression of GABA receptors: Emphasize how crucial the gut-brain axis. Transl Neurosci 2024; 15:20220354. [PMID: 39380963 PMCID: PMC11459612 DOI: 10.1515/tnsci-2022-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Objective Rodent models may help investigations on the possible link between autism spectrum disorder and increased permeability of the gastrointestinal (GI) tract since autistic patients frequently manifested GI troubles as comorbidities. Methods Forty young male western Albino rats, weighing approximately 60-70 g and aged 3-4 weeks, were used. In each of the six experimental groups, eight animals were treated as follows. The mice in the control group (I) received phosphate-buffered saline orally. For 3 days, the animals in the propionic acid (PPA)-treated groups (II and III) were given an oral neurotoxic dose of PPA (250 mg/kg body weight each day). Group II was euthanized after 3 days; however, Group III was left alive to be euthanized alongside the other groups. The animals were kept at 22 ± 1°C and allowed to access water and normal food as needed. Identical dosages of PPA were given to the rats in the three treatment groups (IV, V, and VI), and for 3 weeks, they were given the following treatments: 0.2 g/kg body weight of pure Bifidobacterium infantis, a probiotic mixture of PROTEXIN®, Somerset, UK and pure Lactobacillus bulgaricus, respectively. The six groups underwent measurements of serum zonulin and occludin as variables associated with leaky gut, glutathione, malondialdehyde, and catalase as oxidative stress-related variables, with gamma-aminobutyric acid (GABA) receptor gene expression. Results This study demonstrated the potential effects of pure or mixed probiotics in lowering zonulin and occludin as markers of increased intestinal permeability, enhancing GABA receptor expression, and reducing oxidative stress as neurotoxic effects of PPA. Conclusions This study demonstrates that various probiotics protect gut barrier function and could be used to alleviate increased intestinal permeability caused by oxidative stress and impaired GABA signaling as a result of PPA neurotoxicity, addressing the clinical implications of probiotic supplements.
Collapse
Affiliation(s)
- Rawan M. Bin-Khattaf
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Abeer M. Al-Dbass
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mona Alonazi
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Sooad Al-Daihan
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Afaf K. El-Ansary
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi, 110281, United Arab Emirates
| |
Collapse
|
38
|
Zhou H, Yu B, Sun J, Chen H, Liu Z, Ge L, Chen D. Comparison of maternal and neonatal gut microbial community and function in a porcine model. Anim Biotechnol 2023; 34:2972-2978. [PMID: 36165762 DOI: 10.1080/10495398.2022.2126367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Our knowledge of the difference in maternal and neonatal gut microbiota composition is not fully understood. Using the Bama miniature pig model, the bacterial community in the feces from sows and piglets was analyzed on an IonS5TMXL platform targeting the single-end reads strategy. Results revealed that the maternal and neonatal bacteria profile in the pig model was distinct. Compared with the piglets, sows had higher proportions of bacteria in Spirochetes, Clostridiales, and Spirochaetales (p < 0.10) and had a lower abundance of bacteria in Tyzzerella (p < 0.05) and Alistipes (p < 0.10). Meanwhile, the proportions of bacteria in Oscillibacter and the index of Chao1, Shannon, and observed_species increased in the sows compared with those in the piglets (p < 0.05). Moreover, the abundance of bacteria associated with the human disease was higher (p < 0.05) and the population of bacteria associated with cellular processes was lower (p < 0.05) in the piglets compared with those in the sows. Collectively, the diversity and beneficial bacteria populations in the sow fecal microbiota exhibit more than those in the piglets. This study indicates that maternal fecal microbiota may be a beneficial source of transplanted bacteria to promote healthy function in neonates.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
39
|
Grabrucker S, Marizzoni M, Silajdžić E, Lopizzo N, Mombelli E, Nicolas S, Dohm-Hansen S, Scassellati C, Moretti DV, Rosa M, Hoffmann K, Cryan JF, O’Leary OF, English JA, Lavelle A, O’Neill C, Thuret S, Cattaneo A, Nolan YM. Microbiota from Alzheimer's patients induce deficits in cognition and hippocampal neurogenesis. Brain 2023; 146:4916-4934. [PMID: 37849234 PMCID: PMC10689930 DOI: 10.1093/brain/awad303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 08/19/2023] [Indexed: 10/19/2023] Open
Abstract
Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Laboratory of Neuroimaging and Alzheimer’s Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Nicola Lopizzo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sebastian Dohm-Hansen
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | | | | | - Melissa Rosa
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
| | - Karina Hoffmann
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Jane A English
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- INFANT Research Centre, University College Cork, T12 DC4A Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Cora O’Neill
- APC Microbiome Ireland, University College Cork, Ireland
- School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King’s College London, SE5 9NU London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
40
|
Liu W, Jiang H, Liu X, Zheng Y, Liu Y, Pan F, Yu F, Li Z, Gu M, Du Q, Li X, Zhang H, Han D. Altered intestinal microbiota enhances adenoid hypertrophy by disrupting the immune balance. Front Immunol 2023; 14:1277351. [PMID: 38090578 PMCID: PMC10715246 DOI: 10.3389/fimmu.2023.1277351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Adenoid hypertrophy (AH) is a common upper respiratory disorder in children. Disturbances of gut microbiota have been implicated in AH. However, the interplay of alteration of gut microbiome and enlarged adenoids remains elusive. Methods 119 AH children and 100 healthy controls were recruited, and microbiome profiling of fecal samples in participants was performed using 16S rRNA gene sequencing. Fecal microbiome transplantation (FMT) was conducted to verify the effects of gut microbiota on immune response in mice. Results In AH individuals, only a slight decrease of diversity in bacterial community was found, while significant changes of microbial composition were observed between these two groups. Compared with HCs, decreased abundances of Akkermansia, Oscillospiraceae and Eubacterium coprostanoligenes genera and increased abundances of Bacteroides, Faecalibacterium, Ruminococcus gnavus genera were revealed in AH patients. The abundance of Bacteroides remained stable with age in AH children. Notably, a microbial marker panel of 8 OTUs were identified, which discriminated AH from HC individuals with an area under the curve (AUC) of 0.9851 in the discovery set, and verified in the geographically different validation set, achieving an AUC of 0.9782. Furthermore, transfer of mice with fecal microbiota from AH patients dramatically reduced the proportion of Treg subsets within peripheral blood and nasal-associated lymphoid tissue (NALT) and promoted the expansion of Th2 cells in NALT. Conclusion These findings highlight the effect of the altered gut microbiota in the AH pathogenesis.
Collapse
Affiliation(s)
- Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huier Jiang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yue Zheng
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Pathology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meizhen Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Medical School, Guangxi University, Nanning, China
| |
Collapse
|
41
|
Herrera G, Silvero C MJ, Becerra MC, Lasaga M, Scimonelli T. Modulatory role of α-MSH in hippocampal-dependent memory impairment, synaptic plasticity changes, oxidative stress, and astrocyte reactivity induced by short-term high-fat diet intake. Neuropharmacology 2023; 239:109688. [PMID: 37591460 DOI: 10.1016/j.neuropharm.2023.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
High-fat diet (HFD) consumption is associated with cognitive deficits and neurodegenerative diseases. Since the hippocampus is extremely sensitive to pathophysiological changes, neuroinflammation and the concomitant oxidative stress induced by HFD can significantly interfere with hippocampal-dependent functions related to learning and memory. The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) mediates neuroprotective actions in the central nervous system and can reverse the effects of neuroinflammation in cognitive functions that depend on the hippocampus. In this study, we used male Wistar rats to evaluate the effect of short-term HFD intake (5 days) plus a mild immune challenge, Lipopolysaccharide (LPS 10 μg/kg) on contextual fear, changes in structural plasticity, oxidative stress, and astrocyte reactivation in the hippocampus. We also determined the possible modulatory role of α-MSH. HFD consumption was associated with an increase in markers of oxidative stress (Advanced oxidation protein products and Malondialdehyde) in the dorsal hippocampus (DH). We also found changes in hippocampal structural synaptic plasticity, observing a decrease in total spine in the DH after HFD plus LPS. We observed astrocyte proliferation and a significant increase in the percentage of the area occupied by GFAP. Treatment with α-MSH (0.1 μg/0.25 μl) in the DH reversed the effect of short-term HFD plus LPS on contextual fear memory, oxidative stress, and spine density. α-MSH also reduced astrocyte proliferation. Our present results indicate that HFD consumption for a short period sensitizes the central nervous system (CNS) to a subsequent immune challenge and impairs contextual fear memory and that α-MSH could have a modulatory protective effect.
Collapse
Affiliation(s)
- Guadalupe Herrera
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET. Departamento de Farmacología Otto Orshinger, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - M Jazmín Silvero C
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica UNITEFA-CONICET. Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Cecilia Becerra
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica UNITEFA-CONICET. Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Teresa Scimonelli
- Instituto de Farmacología Experimental de Córdoba, IFEC-CONICET. Departamento de Farmacología Otto Orshinger, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
42
|
Mohamed DI, Abo Nahas HH, Elshaer AM, El-Waseef DAEDA, El-Kharashi OA, Mohamed SMY, Sabry YG, Almaimani RA, Almasmoum HA, Altamimi AS, Ibrahim IAA, Alshawwa SZ, Jaremko M, Emwas AH, Saied EM. Unveiling the interplay between NSAID-induced dysbiosis and autoimmune liver disease in children: insights into the hidden gateway to autism spectrum disorders. Evidence from ex vivo, in vivo, and clinical studies. Front Cell Neurosci 2023; 17:1268126. [PMID: 38026692 PMCID: PMC10644687 DOI: 10.3389/fncel.2023.1268126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorders (ASD) represent a diverse group of neuropsychiatric conditions, and recent evidence has suggested a connection between ASD and microbial dysbiosis. Immune and gastrointestinal dysfunction are associated with dysbiosis, and there are indications that modulating the microbiota could improve ASD-related behaviors. Additionally, recent findings highlighted the significant impact of microbiota on the development of autoimmune liver diseases, and the occurrence of autoimmune liver disease in children with ASD is noteworthy. In the present study, we conducted both an in vivo study and a clinical study to explore the relationship between indomethacin-induced dysbiosis, autoimmune hepatitis (AIH), and the development of ASD. Our results revealed that indomethacin administration induced intestinal dysbiosis and bacterial translocation, confirmed by microbiological analysis showing positive bacterial translocation in blood cultures. Furthermore, indomethacin administration led to disturbed intestinal permeability, evidenced by the activation of the NLRP3 inflammasomes pathway and elevation of downstream biomarkers (TLR4, IL18, caspase 1). The histological analysis supported these findings, showing widened intestinal tight junctions, decreased mucosal thickness, inflammatory cell infiltrates, and collagen deposition. Additionally, the disturbance of intestinal permeability was associated with immune activation in liver tissue and the development of AIH, as indicated by altered liver function, elevated ASMA and ANA in serum, and histological markers of autoimmune hepatitis. These results indicate that NSAID-induced intestinal dysbiosis and AIH are robust triggers for ASD existence. These findings were further confirmed by conducting a clinical study that involved children with ASD, autoimmune hepatitis (AIH), and a history of NSAID intake. Children exposed to NSAIDs in early life and complicated by dysbiosis and AIH exhibited elevated serum levels of NLRP3, IL18, liver enzymes, ASMA, ANA, JAK1, and IL6. Further, the correlation analysis demonstrated a positive relationship between the measured parameters and the severity of ASD. Our findings suggest a potential link between NSAIDs, dysbiosis-induced AIH, and the development of ASD. The identified markers hold promise as indicators for early diagnosis and prognosis of ASD. This research highlights the importance of maintaining healthy gut microbiota and supports the necessity for further investigation into the role of dysbiosis and AIH in the etiology of ASD.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Asmaa M. Elshaer
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Soha M. Y. Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmine Gamal Sabry
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulmalik S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Advanced Nanofabrication Imaging and Characterization Center, King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
43
|
Watanabe C, Oyanagi E, Aoki T, Hamada H, Kawashima M, Yamagata T, Kremenik MJ, Yano H. Antidepressant properties of voluntary exercise mediated by gut microbiota. Biosci Biotechnol Biochem 2023; 87:1407-1419. [PMID: 37667506 DOI: 10.1093/bbb/zbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
Although regular exercise has been reported to prevent depression, it has not been clarified whether the gut microbiota is involved in the factors that prevent depression through exercise. We investigated the effects of voluntary exercise on the gut microbiota and the prevention of depression-like behaviors using mice. C57BL/6 J male mice were subjected to 10 weeks of sedentary control or wheel running, then they were subjected to social defeat stress (SDS). Exercise attenuated that sucrose drinking was decreased by SDS treatment. Exercise increased the expression of Bdnf and decreased expression of Zo-1 and Claudin5 in the brain. Fecal Turicibacter, Allobaculum, and Clostridium sensu stricto, and propionate in the cecum were decreased by the exercise. Voluntary exercise-induced antidepressant properties might be partially caused by suppression of serotonin uptake into gut microbiota and increase the permeability of the blood-brain barrier via reduced propionate production.
Collapse
Affiliation(s)
- Chihiro Watanabe
- Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Takafumi Aoki
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Hiroki Hamada
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Masato Kawashima
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Takashi Yamagata
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Michel J Kremenik
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Hiromi Yano
- Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| |
Collapse
|
44
|
Lane JM, Wright RO, Eggers S. The interconnection between obesity and executive function in adolescence: The role of the gut microbiome. Neurosci Biobehav Rev 2023; 153:105337. [PMID: 37524139 PMCID: PMC10592180 DOI: 10.1016/j.neubiorev.2023.105337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
In the United States, adolescent obesity is a growing epidemic associated with maladaptive executive functioning. Likewise, data link the microbiome to obesity. Emerging microbiome research has demonstrated an interconnection between the gut microbiome and the brain, indicating a bidirectional communication system within the gut-microbiome-brain axis in the pathophysiology of obesity. This narrative review identifies and summarizes relevant research connecting adolescent obesity as it relates to three core domains of executive functioning and the contribution of the gut microbiome in the relationship between obesity and executive functions in adolescence. The review suggests that (1) the interconnection between obesity, executive function, and the gut microbiome is a bidirectional connection, and (2) the gut microbiome may mediate the neurobiological pathways between obesity and executive function deficits. The findings of this review provide valuable insights into obesity-associated executive function deficits and elucidate the possible mediation role of the gut microbiome.
Collapse
Affiliation(s)
- Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
45
|
Gu YY, Cui XB, Jiang J, Zhang YX, Liu MH, Cheng SB, Li YY, Liu LL, Liao RX, Zhao P, Jin W, Jia YH, Wang J, Zhou FH. Dingxin recipe Ⅲ ameliorates hyperlipidemia injury in SD rats by improving the gut barrier, particularly the SCFAs/GPR43 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116483. [PMID: 37059245 DOI: 10.1016/j.jep.2023.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dingxin Recipe Ⅲ (DXR Ⅲ) is a traditional Chinese medicine compound used for hyperlipidemia treatment in clinical practice. However, its curative effects and pharmacological mechanisms in hyperlipidemia have not been clarified to date. AIM OF THE STUDY Studies have demonstrated that gut barrier was strongly implicated in lipid deposition. Based on gut barrier and lipid metabolism, this study examined the effects and molecular mechanisms of DXR Ⅲ in hyperlipidemia. MATERIALS AND METHODS The bioactive compounds of DXR Ⅲ were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and its effects were evaluated in high-fat diet-fed rats. Specifically, the serum levels of lipids and hepatic enzymes were measured using the appropriate kits; colon and liver sections were obtained for histological analyses; gut microbiota and metabolites were analyzed by 16S rDNA sequencing and liquid chromatography-MS/MS; and the expression of genes and proteins was determined by real-time quantitative polymerase chain reaction and western blotting and immunohistochemistry, respectively. The pharmacological mechanisms of DXR Ⅲ were further explored by fecal microbiota transplantation and short-chain fatty acid (SCFAs)-based interventions. RESULTS DXR Ⅲ treatment significantly downregulated serum lipid levels, mitigated hepatocyte steatosis and improved lipid metabolism. Moreover, DXR Ⅲ improved the gut barrier, specifically by improving the physical barrier in the colon, causing part composition changes in the gut microbiota, and increasing the serum SCFAs level. DXR Ⅲ also upregulated the expression of colon GPR43/GPR109A. Fecal microbiota transplantation from rats treated with DXR Ⅲ downregulated part hyperlipidemia-related phenotypes, while the SCFAs intervention significantly improved most of the hyperlipidemia-related phenotypes and upregulated the expression of GPR43. Moreover, both DXR Ⅲ and SCFAs upregulated the expression of colon ABCA1. CONCLUSION DXR Ⅲ protects against hyperlipidemia by improving the gut barrier, particularly the SCFAs/GPR43 pathway.
Collapse
Affiliation(s)
- Yu-Yan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Bing Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ya-Xin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meng-Hua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai-Bo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Ye Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Ling Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rong-Xin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yu-Hua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Feng-Hua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
46
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
47
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
48
|
He Q, Zhang LL, Li D, Wu J, Guo YX, Fan J, Wu Q, Wang HP, Wan Z, Xu JY, Qin LQ. Lactoferrin alleviates Western diet-induced cognitive impairment through the microbiome-gut-brain axis. Curr Res Food Sci 2023; 7:100533. [PMID: 37351541 PMCID: PMC10282426 DOI: 10.1016/j.crfs.2023.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Lactoferrin (Lf) has been shown to benefit cognitive function in several animal models. To elucidate the underlying mechanisms, male C57BL/6J mice were randomly divided into the control (CON), Western-style diets (WD), lactoferrin (Lf), and Lf + antibiotics (AB) groups. The Lf group was intragastrically administered with Lf, and the Lf + AB group additionally drank a solution with antibiotics. After 16 weeks of intervention, Lf improved the cognitive function as indicated by behavioral tests. Lf also increased the length and curvature of postsynaptic density and upregulated the related protein expression, suggesting improved hippocampal neurons and synapses. Lf suppressed microglia activation and proliferation as revealed by immunofluorescence analysis. Lf decreased the serum levels of pro-inflammatory cytokines and downregulated their protein expressions in the hippocampus region. Lf also inhibited the activation of NF-κB/NLRP3 inflammasomes in the hippocampus. Meanwhile, Lf upregulated the expression of tight junction proteins, and increased the abundance of Bacteroidetes at phylum and Roseburia at genus, which are beneficial for gut barrier and cognitive function. The antibiotics eliminated the effects of long-term Lf intervention on cognitive impairment in the Lf + AB group, suggesting that gut microbiota participated in Lf action. Short-term Lf intervention (2 weeks) prevented WD-induced gut microbiota alteration without inducing behavioral changes, supporting the timing sequence of gut microbiota to the brain. Thus, Lf intervention alleviated cognitive impairment by inhibiting microglial activation and neuroinflammation through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jiangxue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jingbo Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Laboratory Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Qingyang Wu
- School of Life Science, Chinese University of Hong Kong, 7th Floor, Yasumoto International Academic Park, 999077, China
| | - Hai-Peng Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
49
|
Tang Q, Shen D, Dai P, Liu J, Zhang M, Deng K, Li C. Pectin alleviates the pulmonary inflammatory response induced by PM 2.5 from a pig house by modulating intestinal microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115099. [PMID: 37285678 DOI: 10.1016/j.ecoenv.2023.115099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate whether dietary fiber pectin can alleviate PM2.5-induced pulmonary inflammation and the potential mechanism. PM2.5 samples were collected from a nursery pig house. The mice were divided into three groups: the control group, PM2.5 group and PM2.5 + pectin group. The mice in the PM2.5 group were intratracheally instilled with PM2.5 suspension twice a week for four consecutive weeks, and those in the PM2.5 + pectin group were subject to the same PM2.5 exposure, but fed with a basal diet supplemented with 5% pectin. The results showed that body weight and feed intake were not different among the treatments (p > 0.05). However, supplementation with pectin relieved PM2.5-induced pulmonary inflammation, presenting as slightly restored lung morphology, decreased mRNA expression levels of IL-1β, IL-6 and IL-17 in the lung, decreased MPO content in bronchoalveolar lavage fluid (BLAF), and even decreased protein levels of IL-1β and IL-6 in the serum (p < 0.05). Dietary pectin altered the composition of the intestinal microbiota, increasing the relative abundance of Bacteroidetes and decreasing the ratio of Firmicutes/Bacteroidetes. At the genus level, short-chain fatty acid (SCFA)-producing bacteria, such as Bacteroides, Anaerotruncus, Prevotella 2, Parabacteroides, Ruminococcus 2 and Butyricimonas, were enriched in the PM2.5 +pectin group. Accordingly, dietary pectin increased the concentrations of SCFAs, including acetate, propionate, butyrate and valerate, in mice. In conclusion, dietary fermentable fiber pectin can relieve PM2.5-induced pulmonary inflammation via alteration of intestinal microbiota composition and SCFA production. This study provides a new insight into reducing the health risk associated with PM2.5 exposure.
Collapse
Affiliation(s)
- Qian Tang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 210038, China; Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dan Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pengyuan Dai
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junze Liu
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Minyang Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 210038, China
| | - Kaidong Deng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, Jiangsu 210038, China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
50
|
Cai Y, Liu P, Zhou X, Yuan J, Chen Q. Probiotics therapy show significant improvement in obesity and neurobehavioral disorders symptoms. Front Cell Infect Microbiol 2023; 13:1178399. [PMID: 37249983 PMCID: PMC10213414 DOI: 10.3389/fcimb.2023.1178399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is a complex metabolic disease, with cognitive impairment being an essential complication. Gut microbiota differs markedly between individuals with and without obesity. The microbial-gut-brain axis is an important pathway through which metabolic factors, such as obesity, affect the brain. Probiotics have been shown to alleviate symptoms associated with obesity and neurobehavioral disorders. In this review, we evaluated previously published studies on the effectiveness of probiotic interventions in reducing cognitive impairment, depression, and anxiety associated with obesity or a high-fat diet. Most of the probiotics studied have beneficial health effects on obesity-induced cognitive impairment and anxiety. They positively affect immune regulation, the hypothalamic-pituitary-adrenal axis, hippocampal function, intestinal mucosa protection, and glucolipid metabolism regulation. Probiotics can influence changes in the composition of the gut microbiota and the ratio between various flora. However, probiotics should be used with caution, particularly in healthy individuals. Future research should further explore the mechanisms underlying the gut-brain axis, obesity, and cognitive function while overcoming the significant variation in study design and high risk of bias in the current evidence.
Collapse
|