1
|
Pasam T, Padhy HP, Dandekar MP. Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators. Neurochem Res 2024; 50:3. [PMID: 39541016 DOI: 10.1007/s11064-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Considerable studies augured the potential of gut microbiota-based interventions in brain injury-associated complications. Based on our earlier study results, we envisaged the sex-specific neuroprotective effect of Lactobacillus helveticus by remodeling of gut-brain axis. In this study, we investigated the effect of L. helveticus on neurological complications in a mouse model of controlled cortical impact (CCI). Adult, male and female, C57BL/6 mice underwent CCI surgery and received L. helveticus treatment for six weeks. Sensorimotor function was evaluated via neurological severity score and rotarod test. Long-term effects on anxiety-like behavior and cognition were assessed using the elevated-zero maze (EZM) and novel object recognition test (NORT). Brain perilesional area, blood, colon, and fecal samples were collected post-CCI for molecular biology analysis. CCI-operated mice displayed significant neurological impairments at 1-, 3-, 5-, and 7-days post-injury (dpi) and exhibited altered behavior in EZM and NORT compared to sham-operated mice. However, these behavioral changes were ameliorated in mice receiving L. helveticus. GFAP, Iba-1, TNF-α, and IL-1β expressions and corticotrophin-releasing hormone (CRH) levels were elevated in the perilesional cortex of CCI-operated male/female mice. These elevated biomarkers and decreased BDNF levels in both male/female mice were modified by L. helveticus treatment. Additionally, L. helveticus treatment restored altered short-chain fatty acids (SCFAs) levels in fecal samples and improved intestinal integrity but did not affect decreased plasma levels of progesterone and testosterone in CCI mice. These results indicate that L. helveticus exerts beneficial effects in the CCI mouse model by mitigating inflammation and remodeling of gut microbiota-brain mediators.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
2
|
Andreeva VA, Arnault N, Chambaron S, Samieri C, Brindisi MC, Duquenne P, Hercberg S, Galan P, Touvier M, Fezeu LK. Mental Multimorbidity Among General-Population Adults: Sex-Specific Sociodemographic Profiles of Anxiety, Insomnia, and Eating Disorders. Int J Public Health 2024; 69:1607546. [PMID: 39529858 PMCID: PMC11550948 DOI: 10.3389/ijph.2024.1607546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Objective To determine the prevalence and sociodemographic profiles of mental morbidity and multimorbidity. Methods A descriptive analysis was performed with data from 25,269 women and 8,389 men from the French NutriNet-Santé general-population cohort. Participants were split into 8 groups: 1. No mental morbidity; 2. Pure anxiety; 3. Pure insomnia; 4. Pure eating disorders (ED); 5. Comorbid anxiety and insomnia; 6. Comorbid anxiety and ED; 7. Comorbid insomnia and ED; 8. Multimorbid anxiety, insomnia, and ED. Data were weighted using the 2016 French Census and analyzed with Chi2 tests. Results 40.6% of the participants had ≥1 mental disorder; 2.3% had all 3 disorders. Most pure and comorbid disorders were more common in women than in men. The multimorbidity group had the largest proportions of men who were overweight (52.1%) and current smokers (23.2%). Men with insomnia and ED were the most likely to have obesity (45.8%) and low physical activity (44.3%). Women with ≥2 disorders were the most likely to be current smokers. Conclusion The findings could inform research, prevention, and public health guidelines for multimorbidity.
Collapse
Affiliation(s)
- Valentina A. Andreeva
- Nutritional Epidemiology Research Group, Sorbonne Paris Nord University and University of Paris, INSERM/INRAE/CNAM, Epidemiology and Statistics Research Center, Bobigny, France
| | - Nathalie Arnault
- Nutritional Epidemiology Research Group, Sorbonne Paris Nord University and University of Paris, INSERM/INRAE/CNAM, Epidemiology and Statistics Research Center, Bobigny, France
| | - Stéphanie Chambaron
- Center for Taste and Feeding Behavior, CNRS/INRAE/Agro Institute, University of Bourgogne, Dijon, France
| | - Cécilia Samieri
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center UMR1219, Bordeaux, France
| | - Marie-Claude Brindisi
- Center for Taste and Feeding Behavior, CNRS/INRAE/Agro Institute, University of Bourgogne, Dijon, France
| | - Pauline Duquenne
- Nutritional Epidemiology Research Group, Sorbonne Paris Nord University and University of Paris, INSERM/INRAE/CNAM, Epidemiology and Statistics Research Center, Bobigny, France
| | - Serge Hercberg
- Nutritional Epidemiology Research Group, Sorbonne Paris Nord University and University of Paris, INSERM/INRAE/CNAM, Epidemiology and Statistics Research Center, Bobigny, France
| | - Pilar Galan
- Nutritional Epidemiology Research Group, Sorbonne Paris Nord University and University of Paris, INSERM/INRAE/CNAM, Epidemiology and Statistics Research Center, Bobigny, France
| | - Mathilde Touvier
- Nutritional Epidemiology Research Group, Sorbonne Paris Nord University and University of Paris, INSERM/INRAE/CNAM, Epidemiology and Statistics Research Center, Bobigny, France
| | - Leopold K. Fezeu
- Nutritional Epidemiology Research Group, Sorbonne Paris Nord University and University of Paris, INSERM/INRAE/CNAM, Epidemiology and Statistics Research Center, Bobigny, France
| |
Collapse
|
3
|
Merino del Portillo M, Clemente-Suárez VJ, Ruisoto P, Jimenez M, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Rubio-Zarapuz A, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional Modulation of the Gut-Brain Axis: A Comprehensive Review of Dietary Interventions in Depression and Anxiety Management. Metabolites 2024; 14:549. [PMID: 39452930 PMCID: PMC11509786 DOI: 10.3390/metabo14100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mental health is an increasing topic of focus since more than 500 million people in the world suffer from depression and anxiety. In this multifactorial disorder, parameters such as inflammation, the state of the microbiota and, therefore, the patient's nutrition are receiving more attention. In addition, food products are the source of many essential ingredients involved in the regulation of mental processes, including amino acids, neurotransmitters, vitamins, and others. For this reason, this narrative review was carried out with the aim of analyzing the role of nutrition in depression and anxiety disorders. To reach the review aim, a critical review was conducted utilizing both primary sources, such as scientific publications and secondary sources, such as bibliographic indexes, web pages, and databases. The search was conducted in PsychINFO, MedLine (Pubmed), Cochrane (Wiley), Embase, and CinAhl. The results show a direct relationship between what we eat and the state of our nervous system. The gut-brain axis is a complex system in which the intestinal microbiota communicates directly with our nervous system and provides it with neurotransmitters for its proper functioning. An imbalance in our microbiota due to poor nutrition will cause an inflammatory response that, if sustained over time and together with other factors, can lead to disorders such as anxiety and depression. Changes in the functions of the microbiota-gut-brain axis have been linked to several mental disorders. It is believed that the modulation of the microbiome composition may be an effective strategy for a new treatment of these disorders. Modifications in nutritional behaviors and the use of ergogenic components are presented as important non-pharmacological interventions in anxiety and depression prevention and treatment. It is desirable that the choice of nutritional and probiotic treatment in individual patients be based on the results of appropriate biochemical and microbiological tests.
Collapse
Affiliation(s)
- Mariana Merino del Portillo
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Pamplona, Spain;
| | - Manuel Jimenez
- Departamento de Didáctica de la Educación Física y Salud, Universidad Internacional de La Rioja, 26006 Logroño, Spain;
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Ana Isabel Beltran-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, 28240 Madrid, Spain
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | | | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.M.d.P.); (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| |
Collapse
|
4
|
Xu M, Feng G, Fang J. Microcapsules based on biological macromolecules for intestinal health: A review. Int J Biol Macromol 2024; 276:133956. [PMID: 39029830 DOI: 10.1016/j.ijbiomac.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.
Collapse
Affiliation(s)
- Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| |
Collapse
|
5
|
Fu Y, Cheng HW. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024; 14:1017. [PMID: 39199404 PMCID: PMC11352350 DOI: 10.3390/biom14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Liu P, Jing L, Guo F, Xu Y, Cheng J, Liu S, Liu L, Liu Z, Zhang K, Sun N. Characteristics of gut microbiota and its correlation with hs-CRP and somatic symptoms in first-episode treatment-naive major depressive disorder. J Affect Disord 2024; 356:664-671. [PMID: 38615845 DOI: 10.1016/j.jad.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Most patients with major depressive disorder (MDD) have somatic symptoms, but little studies pay attention in the microbial-inflammatory mechanisms of these somatic symptoms. Our study aimed to investigate alterations in gut microbiota and its correlation with inflammatory marker levels and somatic symptoms in first-episode treatment-naive MDD. METHODS Subjects contained 160 MDD patients and 101 healthy controls (HCs). MDD patients were divided into MDD with somatic symptoms group (MDDS) and MDD without somatic symptoms group (MDDN) based on Somatic Self-rating Scale (SSS). 16S ribosomal RNA sequencing were performed to analyze the composition of the fecal microbiota. The inflammatory factors were measured using enzyme linked immunosorbent assay (ELISA). Correlation among the altered gut microbiota, inflammatory factor and severity of clinical symptoms were analysized. RESULTS Relative to HCs, MDD patients had higher levels of high-sensitivity C-reactive protein (hs-CRP) as well as disordered α-diversity and β-diversity of gut microbiota. Linear discriminant effect size (LEfSe) analysis showed that MDD patients had higher proportions of Bifidobacterium, Blautia, Haemophilus and lower proportions of Bacteroides, Faecalibacterium, Roseburia, Dialister, Sutterella, Parabacteroides, Bordetella, and Phascolarctobacterium from the genus aspect. Furthermore, correlation analysis showed Bacteroides and Roseburia had negative correlations with the hs-CRP, HAMD-24, the total and factor scores of SSS in all participants. Further, compared with MDDN, the Pielous evenness was higher in MDDS. Random Forest (RF) analysis showed 20 most important genera discriminating MDD-S and MDDN, HCs. The ROC analysis showed that the AUC was 0.90 and 0.81 combining these genera respectively. CONCLUSION Our study manifested MDD patients showed disordered gut microbiota and elevated hs-CRP levels, and altered gut microbiota was closely associated with hs-CRP, depressive symptoms, and somatic symptoms.
Collapse
Affiliation(s)
- Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Medical University, Taiyuan 030001, PR China
| | - Lin Jing
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Medical University, Taiyuan 030001, PR China
| | - Fengtao Guo
- Shanxi Medical University, Taiyuan 030001, PR China
| | - Yunfan Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Medical University, Taiyuan 030001, PR China
| | - Junxiang Cheng
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Medical University, Taiyuan 030001, PR China
| | - Shasha Liu
- Shanxi Medical University, Taiyuan 030001, PR China
| | - Lixin Liu
- Shanxi Medical University, Taiyuan 030001, PR China; Experimental Center of Science and Research, The First Hospital of Shanxi Medical University, PR China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Medical University, Taiyuan 030001, PR China.
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
7
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
8
|
Wang C, Zhu H, Li Y, Zhang Y, Ye Y, Zhong Y, Qiu S, Xiong X, Jian Z. Bibliometric analysis of the gut microbiota and stroke from 2002 to 2022. Heliyon 2024; 10:e30424. [PMID: 38765104 PMCID: PMC11101820 DOI: 10.1016/j.heliyon.2024.e30424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Stroke is the fifth leading cause of death worldwide, and the functional status of the gut plays a key role in patients' prognosis. Recent publications have explored the gut association with stroke, but few articles have been published that specifically address a comprehensive bibliometric analysis of the gut microbiota and its association with stroke. To address this gap, we used bibliometric methods to examine the landscape of research concerning the gut and stroke over approximately two decades, utilizing the Web of Science Core Collection (WoSCC). On November 1, 2022, a search was conducted for English-language articles published between 2002 and 2022, with only including original articles. Visual and statistical analyses were performed using CiteSpace, VOSviewer, and Bibliometrix 4.1.0 Package. After screening relevant articles, the results revealed that the number of articles published in this field has progressively increased during the last two decades. In particular, the total number of publications rapidly increased year by year from 2014. Among them, China ranked first in the world with a total of 227 publications. Authorship analysis highlighted Wang Z as the most prolific author, with 18 publications and an H-index of 14, highlighting significant contributions to this field. Meanwhile, the Southern Medical University of China was identified as the most productive institution. Moreover, analysis of keywords revealed that 'cerebral ischemia', 'intestinal microbiota', 'gut microbiota', and 'trimethylamine N-oxide' were popular topics searched, and research on the relationship between stroke and the gut continues to be a research hotspot. In summary, this study presents an overview of the progress and emerging trends in research on the relationship between stroke and gut health over the past two decades, providing a valuable resource for researchers aiming to understand the current state of the field and identify potential directions for future studies.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Sheng Qiu
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, 313000, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| |
Collapse
|
9
|
Mosquera FEC, Lizcano Martinez S, Liscano Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024; 16:1352. [PMID: 38732599 PMCID: PMC11085935 DOI: 10.3390/nu16091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.
Collapse
Affiliation(s)
- Freiser Eceomo Cruz Mosquera
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Santiago Lizcano Martinez
- Área Servicio de Alimentación, Área Nutrición Clínica Hospitalización UCI Urgencias Y Equipo de Soporte nutricional, Clínica Nuestra, Cali 760041, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
10
|
Binda S, Tremblay A, Iqbal UH, Kassem O, Le Barz M, Thomas V, Bronner S, Perrot T, Ismail N, Parker J. Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here? Microorganisms 2024; 12:634. [PMID: 38674579 PMCID: PMC11052108 DOI: 10.3390/microorganisms12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.
Collapse
Affiliation(s)
- Sylvie Binda
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Umar Haris Iqbal
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Ola Kassem
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Mélanie Le Barz
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Vincent Thomas
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Tara Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - J.Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
11
|
Kopera AF, Khiew YC, Amer Alsamman M, Mattar MC, Olsen RS, Doman DB. Depression and the Aberrant Intestinal Microbiome. Gastroenterol Hepatol (N Y) 2024; 20:30-40. [PMID: 38405047 PMCID: PMC10885418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Depression is one of the most common mental health disorders affecting adults in the United States. The current treatment is the combination of pharmacotherapy and psychotherapy. Recently, the evidence linking gut microbiome dysregulation to the development of depression has grown. The pathophysiology is currently poorly understood, although leading hypotheses include involvement of the hypothalamic-pituitary-adrenal axis, a bidirectional relationship between the gut microbiome and the central nervous system, and production of signaling molecules by the gut microbiome. Available and emerging treatments of the aberrant microbiome include antidepressants, antibiotics, diet modification, probiotics, and fecal microbiota transplant. This article explores the interconnectivity of gut microbiota and depression and treatments targeted toward the gut, reviews the gastroenterologist's potential role in managing gut dysbiosis in patients with depression, and highlights research topics to be addressed to create evidence-based guidelines.
Collapse
Affiliation(s)
- Ann F. Kopera
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Yii Chun Khiew
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Mohd Amer Alsamman
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Mark C. Mattar
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Raena S. Olsen
- Department of Gastroenterology, MedStar Health Gastroenterology at Silver Spring, Silver Spring, Maryland
| | - David B. Doman
- Department of Gastroenterology, MedStar Health Gastroenterology at Silver Spring, Silver Spring, Maryland
| |
Collapse
|
12
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
Yao L, Liang K, Huang L, Chi X. Relationship between fruit and vegetable consumption and internet addiction with insomnia and depression as multiple mediators during the COVID-19 pandemic: a three-wave longitudinal study in Chinese college students. BMC Psychiatry 2023; 23:939. [PMID: 38093234 PMCID: PMC10720225 DOI: 10.1186/s12888-023-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The relationships between fruit and vegetable consumption (FV) and Internet addiction (IA) in college students still remained unknown together with the internal mechanisms. Given the limitations of previous cross-sectional design, longitudinal research was necessary to be conducted to explore more precise correlations. Using the three-wave data in a longitudinal design, this study aimed to explore the association between FV and IA among Chinese college students and potential multiple mediators of insomnia and depression during the COVID-19 pandemic. METHODS A total of 579 college students were recruited during three waves (T1: August 2020; T2: November 2020; T3: February 2021). FV (T1), insomnia (T2), depression (T2) and IA (T3) symptoms were reported. The descriptive statistics of the sociodemographic characteristics and correlation analyses of the study variables were calculated. The significance of the mediation effects was measured conducting a bootstrap method with SPSS PROCESS macro. RESULTS FV was negatively correlated with IA, and lower FV predicted higher risk of IA. Depression mediated the association between FV and subsequent IA. Insomnia and depression were multiple mediators, which in turn mediated the links between FV and subsequent IA. CONCLUSIONS The three-wave longitudinal study has revealed that FV had indirect effects on IA through individual mediating factor of depression and multiple mediating roles of insomnia and depression sequentially. The policy makers, educators and researchers should pay attention to the impact of the interventions from healthy diet, in order to optimize the coping strategies for preventing college students from IA.
Collapse
Affiliation(s)
- Liqing Yao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Faculty of Medicine, Medical Sciences Division, Macau University of Science and Technology, Macau, China
| | - Kaixin Liang
- School of Psychology, Shenzhen University, Shenzhen, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau, China
| | - Liuyue Huang
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau, China
| | - Xinli Chi
- School of Psychology, Shenzhen University, Shenzhen, China.
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen, China.
| |
Collapse
|
14
|
He J, Li H, Jia J, Liu Y, Zhang N, Wang R, Qu W, Liu Y, Jia L. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. MOLECULAR BIOMEDICINE 2023; 4:45. [PMID: 38032415 PMCID: PMC10689341 DOI: 10.1186/s43556-023-00157-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
Collapse
Affiliation(s)
- Jikai He
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Haijun Li
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jiaqi Jia
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Wenhao Qu
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yanqi Liu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010050, Inner Mongolia, China.
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China.
| |
Collapse
|
15
|
Grace S, Bradbury J, Avila C, Twohill L, Morgan-Basnett S. A Novel Nutrient Intervention of Probiotics, Glutamine, and Fish Oil in Psychological Distress: A Concurrent Multiple Baseline Design. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:665-673. [PMID: 37115569 DOI: 10.1089/jicm.2022.0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Objectives: The aim of this study was to investigate whether a combination of nutrients designed to promote gut and brain health also lowers psychological distress. The hypothesis is that a probiotic with fish oil, and glutamine supplement will reduce psychological distress. Design: A multiple baseline design was used to collect data from seven naturopathic patients in private naturopathic clinics in Australia. Patients were between 18 and 65 years of age, and had a Kessler-10 (K10) score between 16 and 30 and symptoms associated with mild gastrointestinal discomfort experienced several times most weeks for 3 months. They were randomized into one of three pathways to stagger the introduction of the intervention. Interventions: Participants received either a supplement incorporating a probiotic formulation (including Lactobacillus rhamnosus), a glutamine powder formulation, and fish oil, or matched placebos. The primary outcome measure was psychological distress as measured by the K10 scale of psychological distress. Results: The data showed a general trend toward lower K10 scores during the active phase compared with the baseline phase, with a marked reduction in the variances between phases. After controlling for time and baseline values, no significant difference between the phases for the K10 and the Perceived Stress Scale was found, but there was still a significant reduction in symptoms on the Gastrointestinal Symptom Rating Scale. Conclusions: A combination of a probiotic formulation, a glutamine powder formulation, and fish oil did not affect psychological distress and perceived stress, but had a significant beneficial effect on gastrointestinal symptoms in patients with high distress and concurrent gut symptomology. Clinical trial registration number: ACTRN12620000928910.
Collapse
Affiliation(s)
- Sandra Grace
- Faculty of Health, Southern Cross University, Australia
| | | | - Cathy Avila
- Faculty of Health, Southern Cross University, Australia
| | | | | |
Collapse
|
16
|
Shi S, Zhang S, Kong L. Effects of Treatment with Probiotics on Cognitive Function and Regulatory Role of Cortisol and IL-1β in Adolescent Patients with Major Depressive Disorder. Life (Basel) 2023; 13:1829. [PMID: 37763233 PMCID: PMC10532456 DOI: 10.3390/life13091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to investigate the effects of probiotics on cognitive function and the regulation of cortisol and IL-1β in adolescents with depression. All 180 participants were randomly assigned to a study group (treated with probiotics combined with sertraline hydrochloride) and a control group (treated with sertraline hydrochloride). The repetitive Neuropsychological State Test (RBANS) and Hamilton Depression Scale (HAMD) were administered to MDD patients. The levels of serum cortisol and IL-1β were detected using an ELISA kit. Except for speech function, factors including immediate memory, visual span, attention function, delayed memory, and the RBANS in the study group were significantly higher than those in the control group. The levels of cortisol and interleukin-1β in the study group were significantly downregulated compared to those in the control group. Except for speech function, the cortisol level was negatively correlated with the RBANS total score and other factors in the study group. Interleukin-1β was also negatively correlated with the RBANS total score and each factor score. Cortisol and interleukin-1β were predictors of the RBANS total score, which explained 46.80% of the variance. Cortisol had significant predictive effects on attention function and delayed memory, and interleukin-1β had significant predictive effects on visual span and speech function. It could be concluded that probiotics could improve cognitive function in adolescents with depression by regulating cortisol and IL-1β levels.
Collapse
Affiliation(s)
- Shaoli Shi
- Psychiatry Department, The 5th People’s Hospital of Luoyang, Luoyang 471027, China;
| | - Shuyou Zhang
- Intervention Center of Mental Crisis, No.904 Hospital, Changzhou 213003, China;
| | - Lingming Kong
- Intervention Center of Mental Crisis, No.904 Hospital, Changzhou 213003, China;
| |
Collapse
|
17
|
Zong M, Tong X, Farid MS, Chang C, Guo Y, Lian L, Zeng X, Pan D, Wu Z. Enhancement of gum Arabic/casein microencapsulation on the survival of Lactiplantibacillus plantarum in the stimulated gastrointestinal conditions. Int J Biol Macromol 2023; 246:125639. [PMID: 37394217 DOI: 10.1016/j.ijbiomac.2023.125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Probiotic products that contain lactobacilli have long histories of safe use as Lactobacillus strains have many physiological functions in the gastrointestinal tract (GIT). However, the viability of probiotics can be affected by food processing and the adverse environment. This study investigated the O/W (Oil-in-water emulsions) emulsions formed by coagulation of casein/GA (Gum Arabic) complexes for Lactiplantibacillus plantarum microencapsulation, and the stability of the strains during gastrointestinal environment were also determined. The results showed that the particle size of the emulsion decreased from 9.72 μm to 5.48 μm when the GA concentration increased from 0 to 2 (w/v), and the emulsion particles were found to be more uniform as observed by CLSM (Confocal Laser Scanning Microscope). The surface of this microencapsulated casein/GA composite forms smooth, dense agglomerates and has high viscoelasticity, which effectively improved casein's emulsifying activity (8.66 ± 0.17 m2/g). After the casein/GA complexes microencapsulation, a higher viable count was detected after gastrointestinal digestion in vitro, and the activity of L. plantarum is more stable (about 7.51 log CFU/mL) during 35 days of storage at 4 °C. The results of study will help to design lactic acid bacteria encapsulation systems based on the GIT environment for the oral delivery strategy.
Collapse
Affiliation(s)
- Manli Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Xin Tong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Muhammad Salman Farid
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Chun Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yuxing Guo
- School of Food Science & Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Liwei Lian
- Ningbo Dairy Group, Ningbo, 315211, Zhejiang, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
18
|
Madabushi JS, Khurana P, Gupta N, Gupta M. Gut Biome and Mental Health: Do Probiotics Work? Cureus 2023; 15:e40293. [PMID: 37448433 PMCID: PMC10337499 DOI: 10.7759/cureus.40293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Mental health conditions have been linked closely to an imbalance of microbiota in the gut, leading to disruption of the microbiome (dysbiosis). Several neurotransmitters, such as GABA (gamma-aminobutyric acid), serotonin, and glutamate, are produced in the gut, which are associated with anxiety and depressive symptoms. Mental health and the gut have been linked closely, and many mental illnesses have been associated with gut dysbiosis. Probiotics are marketed to improve gut health, act as mood enhancers, and be effective in reducing stress as unregulated over-the-counter supplements. Given healthcare disparities and patient-doctor gaps across the globe, this review aims to appraise the literature on probiotics for the prevention and treatment of mental disorders. PubMed and Google Scholar databases were searched till March 2023 using the MeSH words "prebiotics," "probiotics," "synbiotics," and "psychobiotics." Out of 207 studies, 26 studies met the inclusion criteria and were included in the review. Studies suggest probiotics could be an effective and economical adjunct therapy; however, due to weak study design and low power, the results are inconclusive. Their use is not without risks, and healthcare providers need close supervision until more robust longitudinal studies are conducted to appraise their efficacy and safety profiles.
Collapse
Affiliation(s)
| | | | - Nihit Gupta
- Psychiatry, Dayton Children's Hospital, Dayton, USA
| | - Mayank Gupta
- Psychiatry and Behavioral Sciences, Southwood Psychiatric Hospital, Pittsburgh, USA
| |
Collapse
|
19
|
Tejkalová H, Jakob L, Kvasnová S, Klaschka J, Sechovcová H, Mrázek J, Páleníček T, Fliegerová KO. The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon 2023; 9:e15417. [PMID: 37123951 PMCID: PMC10130227 DOI: 10.1016/j.heliyon.2023.e15417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.
Collapse
Affiliation(s)
- Hana Tejkalová
- National Institute of Mental Health; Klecany, Czech Republic
| | - Lea Jakob
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
- Corresponding author. National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic,
| | - Simona Kvasnová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science of the Czech Academy of Sciences, Czech Republic
| | - Hana Sechovcová
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
- Czech University of Life Sciences in Prague, Czech Republic
| | - Jakub Mrázek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health; Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Czech Republic
| | | |
Collapse
|
20
|
Scott RT, Sanders LM, Antonsen EL, Hastings JJA, Park SM, Mackintosh G, Reynolds RJ, Hoarfrost AL, Sawyer A, Greene CS, Glicksberg BS, Theriot CA, Berrios DC, Miller J, Babdor J, Barker R, Baranzini SE, Beheshti A, Chalk S, Delgado-Aparicio GM, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Kalantari J, Khezeli K, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Garcia Martin H, Mason CE, Matar M, Mias GI, Myers JG, Nelson C, Oribello J, Parsons-Wingerter P, Prabhu RK, Qutub AA, Rask J, Saravia-Butler A, Saria S, Singh NK, Snyder M, Soboczenski F, Soman K, Van Valen D, Venkateswaran K, Warren L, Worthey L, Yang JH, Zitnik M, Costes SV. Biomonitoring and precision health in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00617-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
21
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
22
|
The intestinal barrier in disorders of the central nervous system. Lancet Gastroenterol Hepatol 2023; 8:66-80. [PMID: 36334596 DOI: 10.1016/s2468-1253(22)00241-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
The intestinal barrier, which primarily consists of a mucus layer, an epithelial barrier, and a gut vascular barrier, has a crucial role in health and disease by facilitating nutrient absorption and preventing the entry of pathogens. The intestinal barrier is in close contact with gut microbiota on its luminal side and with enteric neurons and glial cells on its tissue side. Mounting evidence now suggests that the intestinal barrier is compromised not only in digestive disorders, but also in disorders of the central nervous system (CNS), such as Parkinson's disease, autism spectrum disorder, depression, multiple sclerosis, and Alzheimer's disease. After providing an overview of the structure and functions of the intestinal barrier, we review existing preclinical and clinical studies supporting the notion that intestinal barrier dysfunction is present in neurological, neurodevelopmental, and psychiatric disorders. On the basis of this evidence, we discuss the mechanisms that possibly link gut barrier dysfunction and CNS disorders and the potential impact that evaluating enteric barriers in brain disorders could have on clinical practice, in terms of novel diagnostic and therapeutic strategies, in the near future.
Collapse
|
23
|
Jia H, Yiyun C, Zhiguo W, Yousong S, Min Z, Yifan S, Na Z, Feng J, Yiru F, Daihui P. Associations between gastrointestinal symptoms, medication use, and spontaneous drug discontinuation in patients with major depressive disorder in China. J Affect Disord 2022; 319:462-468. [PMID: 36055529 DOI: 10.1016/j.jad.2022.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/31/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The study was designed to investigate the associations between gastrointestinal (GI) symptoms, medication use, and spontaneous drug discontinuation (SDD) in patients with major depressive disorder (MDD). METHODS This cross-sectional study included 3256 MDD patients from the National Survey on Symptomatology of Depression (NSSD). Differences in the sociodemographic factors, clinical characteristics, medication use, and self-reported reasons for SDD were compared in patients with different frequencies of GI symptoms. A multiple logistic regression analysis was employed to assess the contribution of GI symptoms to the risk of spontaneous drug discontinuation. RESULTS MDD patients with a higher frequency of GI symptoms were prone to have higher proportions of mood stabilizer and benzodiazepine uses (ps for trend < 0.001) but a lower proportion of SNRI use (pfor trend < 0.001). With the increase in GI symptoms, patients were prone to report worries about long-term side effects (pfor trend < 0.001), with the patients stating ineffective treatments (pfor trend = 0.002) and intolerance of adverse drug reactions (pfor trend = 0.022) as the reasons for SDD. Compared with those patients without GI symptoms, all of the MDD patients with GI symptom frequencies of several days (OR = 1.317; 95 % CI: 1.045-1.660), more than half of all days (OR = 1.305; 95 % CI: 1.005-1.695), and nearly every day (OR = 1.820; 95 %: 1.309-2.531) had an increased risk of SDD. CONCLUSION GI symptoms are highly associated with drug discontinuation in MDD patients. These findings may have important implications for clinical treatment options, as well as for drug adherence management, in MDD patients.
Collapse
Affiliation(s)
- Huang Jia
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Cai Yiyun
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China
| | - Wu Zhiguo
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Su Yousong
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhang Min
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Shi Yifan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Zhu Na
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Shanghai Pudong New Area Mental Health Center, Shanghai 200122, PR China
| | - Jin Feng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Fang Yiru
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Peng Daihui
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| |
Collapse
|
24
|
Long J, Wang J, Li Y, Chen S. Gut microbiota in ischemic stroke: Where we stand and challenges ahead. Front Nutr 2022; 9:1008514. [DOI: 10.3389/fnut.2022.1008514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Gut microbiota is increasingly recognized to affect host health and disease, including ischemic stroke (IS). Here, we systematically review the current understanding linking gut microbiota as well as the associated metabolites to the pathogenesis of IS (e.g., oxidative stress, apoptosis, and neuroinflammation). Of relevance, we highlight that the implications of gut microbiota-dependent intervention could be harnessed in orchestrating IS.
Collapse
|
25
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. A New Concept of Associations between Gut Microbiota, Immunity and Central Nervous System for the Innovative Treatment of Neurodegenerative Disorders. Metabolites 2022; 12:1052. [PMID: 36355135 PMCID: PMC9692629 DOI: 10.3390/metabo12111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.
Collapse
|
26
|
Ahmed E, Hens K. Microbiome in Precision Psychiatry: An Overview of the Ethical Challenges Regarding Microbiome Big Data and Microbiome-Based Interventions. AJOB Neurosci 2022; 13:270-286. [PMID: 34379050 DOI: 10.1080/21507740.2021.1958096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There has been a spurt in both fundamental and translational research that examines the underlying mechanisms of the human microbiome in psychiatric disorders. The personalized and dynamic features of the human microbiome suggest the potential of its manipulation for precision psychiatry in ways to improve mental health and avoid disease. However, findings in the field of microbiome also raise philosophical and ethical questions. From a philosophical point of view, they may yet be another attempt at providing a biological cause for phenomena that ultimately cannot be so easily localized. From an ethical point of view, it is relevant that the human gut microbiome comprises data on the individual's lifestyle, disease history, previous medications, and mental health. Massive datasets of microbiome sequences are collected to facilitate comparative studies to identify specific links between the microbiome and mental health. Although this emerging research domain may show promise for psychiatric patients, it is surrounded by ethical challenges regarding patient privacy, health risks, effects on personal identity, and concerns about responsibility. This narrative overview displays the roles and advances of microbiome research in psychiatry and discusses the philosophical and ethical implications of microbiome big data and microbiome-based interventions for psychiatric patients. We also investigate whether these issues are really "new," or "old wine in new bottles."
Collapse
Affiliation(s)
- Eman Ahmed
- University of Antwerp.,Suez Canal University
| | | |
Collapse
|
27
|
Wong YS, Osborne NJ. Biodiversity Effects on Human Mental Health via Microbiota Alterations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11882. [PMID: 36231182 PMCID: PMC9565733 DOI: 10.3390/ijerph191911882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The biodiversity hypothesis postulates that the natural environment positively affects human physical and mental health. We evaluate the latest evidence and propose new tools to examine the halobiont environment. We chose to target our review at neuropsychiatric disorders, including depression, anxiety, autism, dementia, multiple sclerosis, etc. because a green prescription (exposure to green spaces) was shown to benefit patients with neuropsychiatric disorders. Specifically, our review consists of three mini reviews on the associations exploring: (1) ecological biodiversity and human microbiota; (2) human microbiota and neuropsychiatric disorders; (3) ecological biodiversity and neuropsychiatric disorders. We conclude that the environment could directly transfer microbes to humans and that human studies support the gut microbiota as part of the pathophysiology of neuropsychiatric disorders. Overall, the results from the three mini reviews consistently support the biodiversity hypothesis. These findings demonstrated the plausibility of biodiversity exerting mental health effects through biophysiological mechanisms instead of psychological mechanisms alone. The idea can be further tested with novel biodiversity measurements and research on the effects of a green prescription.
Collapse
Affiliation(s)
- Yee Sang Wong
- School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Nicholas John Osborne
- School of Public Health, The University of Queensland, Herston, QLD 4006, Australia
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia
- European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro TR1 3HD, Cornwall, UK
| |
Collapse
|
28
|
Yuan Q, Gong H, Du M, Li T, Mao X. Milk fat globule membrane supplementation to obese rats during pregnancy and lactation promotes neurodevelopment in offspring via modulating gut microbiota. Front Nutr 2022; 9:945052. [PMID: 36046136 PMCID: PMC9421050 DOI: 10.3389/fnut.2022.945052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pre-pregnancy obesity and high-fat diet (HFD) during pregnancy and lactation are associated with neurodevelopmental delay in offspring. This study aimed to investigate whether milk fat globule membrane (MFGM) supplementation in obese dams could promote neurodevelopment in offspring. Obese female rats induced by HFD were supplemented with MFGM during pregnancy and lactation. Maternal HFD exposure significantly delayed the maturation of neurological reflexes and inhibited neurogenesis in offspring, which were significantly recovered by maternal MFGM supplementation. Gut microbiota analysis revealed that MFGM supplementation modulated the diversity and composition of gut microbiota in offspring. The abundance of pro-inflammatory bacteria such as Escherichia shigella and Enterococcus were down-regulated, and the abundance of bacteria with anti-inflammatory and anti-obesity functions, such as Akkermansia and Lactobacillus were up-regulated. Furthermore, MFGM alleviated neuroinflammation by decreasing the levels of lipopolysaccharides (LPS) and pro-inflammatory cytokines in the circulation and brain, as well as inhibiting the activation of microglia. Spearman’s correlation analysis suggested that there existed a correlation between gut microbiota and inflammation-related indexes. In conclusion, maternal MFGM supplementation promotes neurodevelopment partly via modulating gut microbiota in offspring.
Collapse
Affiliation(s)
- Qichen Yuan
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| | - Han Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xueying Mao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines 2022; 10:biomedicines10092162. [PMID: 36140263 PMCID: PMC9496097 DOI: 10.3390/biomedicines10092162] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is among the most prevalent mental disorders worldwide. Factors causing the pathogenesis of MDD include gut microbiota (GM), which interacts with the host through the gut–brain axis. In previous studies of GM in MDD patients, 16S rRNA sequencing was used, which provided information about composition but not about function. In our study, we analyzed whole metagenome sequencing data to assess changes in both the composition and functional profile of GM. We looked at the GM of 36 MDD patients, compared with that of 38 healthy volunteers. Comparative taxonomic analysis showed decreased abundances of Faecalibacterium prausnitzii, Roseburia hominis, and Roseburia intestinalis, and elevated abundances of Escherichia coli and Ruthenibacterium lactatiformans in the GM of MDD patients. We observed decreased levels of bacterial genes encoding key enzymes involved in the production of arginine, asparagine, glutamate, glutamine, melatonin, acetic, butyric and conjugated linoleic acids, and spermidine in MDD patients. These genes produced signature pairs with Faecalibacterium prausntizii and correlated with decreased levels of this species in the GM of MDD patients. These results show the potential impact of the identified biomarker bacteria and their metabolites on the pathogenesis of MDD, and should be confirmed in future metabolomic studies.
Collapse
|
30
|
Slykerman RF, Li E. A randomized trial of probiotic supplementation in nurses to reduce stress and viral illness. Sci Rep 2022; 12:14742. [PMID: 36042251 PMCID: PMC9427766 DOI: 10.1038/s41598-022-19104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies demonstrate how the gut microbiota influence psychological health and immunity to viral infections through their actions along multiple dynamic pathways in the body. Considerable interest exists in probiotics to reduce stress and illness symptoms through beneficial effects in the gut, but translating pre-clinical evidence from animal models into humans remains challenging. We conducted a large trial in nurses working during the 2020 COVID19 pandemic year to establish whether daily ingestion of the probiotic Lactobacillus rhamnosus HN001 reduced perceived stress and the number of days participants reported symptoms of a viral illness. Our results showed no significant difference in perceived stress or the average number of illness days between probiotic supplemented nurses and the placebo group. Stress and viral illness symptoms reduced during the study for all participants, a trajectory likely influenced by societal-level factors. The powerful effect of a well-managed public health response to the COVID19 pandemic and the elimination of COVID19 from the community in 2020 may have altered the trajectory of stress levels and reduced circulating viral infections making it difficult to detect any effect of probiotic supplementation. Our study highlights the challenge in controlling environmental factors in human trials.
Collapse
Affiliation(s)
- Rebecca F Slykerman
- Department of Psychological Medicine, University of Auckland, Building 507, 22-30 Park Avenue, Grafton, Auckland, 1023, New Zealand.
| | - Eileen Li
- A Better Start - National Science Challenge University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Kumar Palepu MS, Dandekar MP. Remodeling of microbiota gut-brain axis using psychobiotics in depression. Eur J Pharmacol 2022; 931:175171. [PMID: 35926568 DOI: 10.1016/j.ejphar.2022.175171] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Depression is a multifaceted psychiatric disorder mainly orchestrated by dysfunction of neuroendocrine, neurochemical, immune, and metabolic systems. The interconnection of gut microbiota perturbation with the central nervous system disorders has been well documented in recent times. Indeed, alteration of commensal intestinal microflora is noted in several psychiatric disorders such as anxiety and depression, which are presumed to be routed through the enteric nervous system, autonomic nervous system, endocrine, and immune system. This review summarises the new mechanisms underlying the crosstalk between gut microbiota and brain involved in the management of depression. Depression-induced changes in the commensal intestinal microbiota are majorly linked with the disruption of gut integrity, hyperinflammation, and modulation of short-chain fatty acids, neurotransmitters, kynurenine metabolites, endocannabinoids, brain-derived neurotropic factors, hypothalamic-pituitary-adrenal axis, and gut peptides. The restoration of gut microbiota with prebiotics, probiotics, postbiotics, synbiotics, and fermented foods (psychobiotics) has gained a considerable attention for the management of depression. Recent evidence also propose the role of gut microbiota in the process of treatment-resistant depression. Thus, remodeling of the microbiota-gut-brain axis using psychobiotics appears to be a promising therapeutic approach for the reversal of psychiatric disorders, and it is imperative to decipher the underlying mechanisms for gut-brain crosstalk.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
32
|
Tan JS, Ren JM, Fan L, Wei Y, Hu S, Zhu SS, Yang Y, Cai J. Genetic Predisposition of Anti-Cytomegalovirus Immunoglobulin G Levels and the Risk of 9 Cardiovascular Diseases. Front Cell Infect Microbiol 2022; 12:884298. [PMID: 35832381 PMCID: PMC9272786 DOI: 10.3389/fcimb.2022.884298] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Background Accumulating evidence has indicated that persistent human cytomegalovirus (HCMV) infection is associated with several cardiovascular diseases including atherosclerosis and coronary artery disease. However, whether there is a causal association between the level of anti-HCMV immune response and the risk of cardiovascular diseases remains unknown. Methods Single-nucleotide polymorphisms associated with anti-cytomegalovirus immunoglobulin (Ig) G levels were used as instrumental variables to estimate the causal effect of anti-cytomegalovirus IgG levels on 9 cardiovascular diseases (including atrial fibrillation, coronary artery disease, hypertension, heart failure, peripheral artery disease, pulmonary embolism, deep vein thrombosis of the lower extremities, rheumatic valve diseases, and non-rheumatic valve diseases). For each cardiovascular disease, Mendelian randomization (MR) analyses were performed. Inverse variance-weighted meta-analysis (IVW) with a random-effects model was used as a principal analysis. In addition to this, the weighted median approach and MR-Egger method were used for further sensitivity analysis. Results In the IVW analysis, genetically predicted anti-cytomegalovirus IgG levels were suggestively associated with coronary artery disease with an odds ratio (OR) of 1.076 [95% CI, 1.009–1.147; p = 0.025], peripheral artery disease (OR 1.709; 95% CI, 1.039–2.812; p = 0.035), and deep vein thrombosis (OR 1.002; 95% CI, 1.000–1.004; p = 0.025). In the further analysis, similar causal associations were obtained from weighted median analysis and MR-Egger analysis with lower precision. No notable heterogeneities and horizontal pleiotropies were observed (p > 0.05). Conclusions/Interpretation Our findings first provide direct evidence that genetic predisposition of anti-cytomegalovirus IgG levels increases the risk of coronary artery disease, peripheral artery disease, and deep vein thrombosis.
Collapse
Affiliation(s)
- Jiang-Shan Tan
- Emergency Center, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Meng Ren
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Luyun Fan
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhao Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Song Hu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Song Zhu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmin Yang
- Emergency Center, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yangmin Yang, ; Jun Cai,
| | - Jun Cai
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yangmin Yang, ; Jun Cai,
| |
Collapse
|
33
|
Liu J, Liu C, Gao Z, Zhou L, Gao J, Luo Y, Liu T, Fan X. GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Front Cell Infect Microbiol 2022; 12:911259. [PMID: 35811667 PMCID: PMC9257030 DOI: 10.3389/fcimb.2022.911259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is considered a heterogeneous neurodevelopmental disorder characterized by significant social, communication, and behavioral impairments. The gut microbiota is increasingly considered a promising therapeutic target in ASD. Farnesoid X receptor (FXR) has recently been shown to modulate the gut microbiota. We hypothesized that FXR agonist GW4064 could ameliorate behavioral deficits in an animal model for autism: BTBR T+Itpr3tf/J (BTBR) mouse. As expected, administration of GW4064 rescued the sociability of BTBR mice in the three-chamber sociability test and male-female social reciprocal interaction test, while no effects were observed in C57BL/6J mice. We also found that GW4064 administration increased fecal microbial abundance and counteracted the common ASD phenotype of a high Firmicutes to Bacteroidetes ratio in BTBR mice. In addition, GW4064 administration reversed elevated Lactobacillus and decreased Allobaculum content in the fecal matter of BTBR animals. Our findings show that GW4064 administration alleviates social deficits in BTBR mice and modulates selective aspects of the composition of the gut microbiota, suggesting that GW4064 supplementation might prove a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tianyao Liu, ; Xiaotang Fan,
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tianyao Liu, ; Xiaotang Fan,
| |
Collapse
|
34
|
Eltokhi A, Sommer IE. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front Neurosci 2022; 16:852506. [PMID: 35546876 PMCID: PMC9081810 DOI: 10.3389/fnins.2022.852506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Depression is a severe mental disorder that places a significant economic burden on public health. The reciprocal link between the trillions of bacteria in the gut, the microbiota, and depression is a controversial topic in neuroscience research and has drawn the attention of public interest and press coverage in recent years. Mounting pieces of evidence shed light on the role of the gut microbiota in depression, which is suggested to involve immune, endocrine, and neural pathways that are the main components of the microbiota-gut-brain axis. The gut microbiota play major roles in brain development and physiology and ultimately behavior. The bidirectional communication between the gut microbiota and brain function has been extensively explored in animal models of depression and clinical research in humans. Certain gut microbiota strains have been associated with the pathophysiology of depression. Therefore, oral intake of probiotics, the beneficial living bacteria and yeast, may represent a therapeutic approach for depression treatment. In this review, we summarize the findings describing the possible links between the gut microbiota and depression, focusing mainly on the inflammatory markers and sex hormones. By discussing preclinical and clinical studies on probiotics as a supplementary therapy for depression, we suggest that probiotics may be beneficial in alleviating depressive symptoms, possibly through immune modulation. Still, further comprehensive studies are required to draw a more solid conclusion regarding the efficacy of probiotics and their mechanisms of action.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
35
|
Li H, Wang P, Zhou Y, Zhao F, Gao X, Wu C, Wu T, Jiang L, Zhang D. Correlation between intestinal microbiotal imbalance and 5-HT metabolism, immune inflammation in chronic unpredictable mild stress male rats. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12806. [PMID: 35535862 PMCID: PMC9744555 DOI: 10.1111/gbb.12806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
To explore the role of intestinal microbiota on the occurrence of depression-like behavior. Twenty male adult Wistar rats were randomly divided into control and experimental groups. Depression-like behavior of the rats was validated using sucrose preference test (SPT) and forced swimming test (FST) after chronic unpredictable mild stress (CUMS) for 3 weeks. Fecal microbiota was analyzed through 16S rRNA sequence analysis. The levels of 5-HT and inflammatory factors in the colon, brain and sera were measured using enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR) and western blotting analyses. The percentage of different types of immune cells in the peripheral blood was determined through flow cytometry. CUMS caused depression-like symptoms, including anhedonia and desperate behavior. Significant differences were found in the structure and abundance of intestinal microbiota. CUMS intervention significantly increased the levels of 5-HT and Tph1 in the colon and decreased the level of Scl6a4. The concentrations of 5-HT and Tph2 in the prefrontal and hippocampal tissues were lower, while IDO1 was higher. Certain cytokines, such as IL-6, IL-1 and TNF-ɑ, were significantly elevated in peripheral blood, while the percentage of CD3+ CD4+ double-positive cells and CD4+ /CD8+ ratio were downregulated in the CUMS group. Pearson correlation analysis showed that intestinal microbiota was significantly associated with not only the metabolism of 5-HT in intestinal and brain tissues, but also with the proportion of immune cells and certain cytokines. Stress can lead to disturbances in the intestinal microbial structure, which may contribute to depression by interfering with 5-HT metabolism and immune inflammatory responses.
Collapse
Affiliation(s)
- Huawei Li
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Peng Wang
- Department of UrologyQingdao Municipal Hospital, Qingdao UniversityQingdaoShandong ProvinceChina
| | - Yunping Zhou
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Fei Zhao
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Xue Gao
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Chunfeng Wu
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Tianxia Wu
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Liping Jiang
- School of NursingQingdao UniversityQingdaoShandong ProvinceChina
| | - Dianliang Zhang
- Center of Colon and RectumQingdao Municipal Hospital, Qingdao UniversityQingdaoShandong ProvinceChina
| |
Collapse
|
36
|
Cang W, Wu J, Ding R, Wang W, Li N, Shi H, Shi L, Lee Y, Wu R. Potential of Probiotics as an Adjunct for Patients with Major Depressive Disorder. Mol Nutr Food Res 2022; 66:e2101057. [PMID: 35286767 DOI: 10.1002/mnfr.202101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/12/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is an enfeebling disease with a lifetime incidence of 20%. While accumulating studies implicate a correlation between the disease and gut microbiota, data show that not every patient responded to probiotic treatments. To comprehensively assess the potential role of probiotics in MDD, this study first summarizes the current pathological hypothesis of the disease from a life-stage perspective, focuses on the potential role of "depression gut microbiota." Currently available managements are then briefly summarized and novel bio-materials having potential therapeutic effects on MDD are also evaluated. To harness the positive effect of probiotics, prebiotics, and postbiotics, clinical evidence and their applications on MDD patients are listed. Factors that may counteract the pre/probiotic applications, such as diet, physiology, gender difference, and use of antibiotics and antidepressants are also discussed. The endocannabinoid (eCBs) system may be promising targets for probiotic therapy. More evidence is needed to demonstrate the hierarchical factors in the complex network driving the disease, and probiotic can be one promising adjunct for patients with MDD.
Collapse
Affiliation(s)
- Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Ruixue Ding
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, P. R. China
| | - Na Li
- Children's Neurorehabilitation Laboratory, Shenyang Children's Hospital, Shenyang, 110033, P. R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| | - Yuankun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, P. R. China.,Engineering Research Center of Food Fermentation Technology, Liaoning, 110866, P. R. China.,Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, P. R. China
| |
Collapse
|
37
|
Jones KA, Richard AJ, Salbaum JM, Newman S, Carmouche R, Webb S, Bruce-Keller AJ, Stephens JM, Campagna SR. Cross-Omics Analysis of Fenugreek Supplementation Reveals Beneficial Effects Are Caused by Gut Microbiome Changes Not Mammalian Host Physiology. Int J Mol Sci 2022; 23:3654. [PMID: 35409014 PMCID: PMC8998956 DOI: 10.3390/ijms23073654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Herbal remedies are increasing in popularity as treatments for metabolic conditions such as obesity and Type 2 Diabetes. One potential therapeutic option is fenugreek seeds (Trigonella foenum-graecum), which have been used for treating high cholesterol and Type 2 diabetes. A proposed mechanism for these benefits is through alterations in the microbiome, which impact mammalian host metabolic function. This study used untargeted metabolomics to investigate the fenugreek-induced alterations in the intestinal, liver, and serum profiles of mice fed either a 60% high-fat or low-fat control diet each with or without fenugreek supplementation (2% w/w) for 14 weeks. Metagenomic analyses of intestinal contents found significant alterations in the relative composition of the gut microbiome resulting from fenugreek supplementation. Specifically, Verrucomicrobia, a phylum containing beneficial bacteria which are correlated with health benefits, increased in relative abundance with fenugreek. Metabolomics partial least squares discriminant analysis revealed substantial fenugreek-induced changes in the large intestines. However, it was observed that while the magnitude of changes was less, significant modifications were present in the liver tissues resulting from fenugreek supplementation. Further analyses revealed metabolic processes affected by fenugreek and showed broad ranging impacts in multiple pathways, including carnitine biosynthesis, cholesterol and bile acid metabolism, and arginine biosynthesis. These pathways may play important roles in the beneficial effects of fenugreek.
Collapse
Affiliation(s)
- Katarina A. Jones
- Department of Chemistry, University of Tennessee, Knoxville, TN 37916, USA;
| | - Allison J. Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (A.J.R.); (J.M.S.); (S.N.); (R.C.); (S.W.); (A.J.B.-K.); (J.M.S.)
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (A.J.R.); (J.M.S.); (S.N.); (R.C.); (S.W.); (A.J.B.-K.); (J.M.S.)
| | - Susan Newman
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (A.J.R.); (J.M.S.); (S.N.); (R.C.); (S.W.); (A.J.B.-K.); (J.M.S.)
| | - Richard Carmouche
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (A.J.R.); (J.M.S.); (S.N.); (R.C.); (S.W.); (A.J.B.-K.); (J.M.S.)
| | - Sara Webb
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (A.J.R.); (J.M.S.); (S.N.); (R.C.); (S.W.); (A.J.B.-K.); (J.M.S.)
| | - Annadora J. Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (A.J.R.); (J.M.S.); (S.N.); (R.C.); (S.W.); (A.J.B.-K.); (J.M.S.)
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; (A.J.R.); (J.M.S.); (S.N.); (R.C.); (S.W.); (A.J.B.-K.); (J.M.S.)
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37916, USA;
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN 37916, USA
| |
Collapse
|
38
|
Guzzardi MA, Ederveen THA, Rizzo F, Weisz A, Collado MC, Muratori F, Gross G, Alkema W, Iozzo P. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain Behav Immun 2022; 100:311-320. [PMID: 34920092 DOI: 10.1016/j.bbi.2021.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
| | | | - Gabriele Gross
- Medical and Scientific Affairs, Nutrition, RB Mead Johnson Nutrition Institute, Nijmegen, the Netherlands.
| | - Wynand Alkema
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
39
|
Liu P, Gao M, Liu Z, Zhang Y, Tu H, Lei L, Wu P, Zhang A, Yang C, Li G, Sun N, Zhang K. Gut Microbiome Composition Linked to Inflammatory Factors and Cognitive Functions in First-Episode, Drug-Naive Major Depressive Disorder Patients. Front Neurosci 2022; 15:800764. [PMID: 35153660 PMCID: PMC8831735 DOI: 10.3389/fnins.2021.800764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/30/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The microbiota-gut-brain axis, especially the inflammatory pathway, may play a critical role in the pathogenesis of cognitive impairment in major depressive disorder (MDD). However, studies on the microbiota-inflammatory-cognitive function axis in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and explore the correlation between gut microbiota and inflammatory factors, cognitive function in MDD patients. METHOD Study participants included 66 first-episode, drug naïve MDD patients as well as 43 healthy subjects (HCs). The composition of fecal microbiota was evaluated using16S rRNA sequencing and bioinformatics analysis. The cytokines such as hs-CRP, IL-1β, IL-6, IL-10, and TNF-α in peripheral blood were detected via enzyme linked immunosorbent assay (ELISA); assessment of cognitive functions was performed using the Color Trail Test (CTT), The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop Color-Word Test (SCWT). RESULTS We found that compared with HCs, MDD patients had cognitive impairments and showed different α-diversity and β-diversity of gut microbiota composition. LDA effect size (LEfSe) analysis found MDD have higher Deinococcaceae and lower Bacteroidaceae, Turicibacteraceae, Clostridiaceae and Barnesiellaceae at family level. Deinococcus and Odoribacter was higher in the MDD group, however, Bacteroides, Alistipes, Turicibacter, Clostridium, Roseburia, and Enterobacter were lower at genus level. Furthermore, In MDD patients, the Bacteroidaceae and Bacteroides were both positively correlated with hsCRP, CCT1, CCT2. Alistipes was positively correlated with IL-6, Word time, Color time, Word-Color time, Color-Word time and negatively correlated with Delayed Memory, Total score and Standardized score. Turicibacteraceae and Turicibacter were both negatively correlated with IL-1β and IL-6. CONCLUSION The present findings confirm that the gut microbiota in MDD patients have altered gut microbes that are closely associated with inflammatory factors and cognitive function in MDD patients.
Collapse
Affiliation(s)
- Penghong Liu
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Tu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Lei
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Peiyi Wu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
40
|
Reid G, Dhir R, Bron PA. Fixing Functional GI Disorders Using Microbes: Easier Said Than Done. Front Endocrinol (Lausanne) 2022; 13:804179. [PMID: 35360061 PMCID: PMC8963371 DOI: 10.3389/fendo.2022.804179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
- *Correspondence: Gregor Reid,
| | | | | |
Collapse
|
41
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
42
|
Psychological intervention to treat distress: An emerging frontier in cancer prevention and therapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188665. [PMID: 34896258 DOI: 10.1016/j.bbcan.2021.188665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Psychological distress, such as chronic depression and anxiety, is a topical problem. In the context of cancer patients, prevalence rates of psychological distress are four-times higher than in the general population and often confer worse outcomes. In addition to evidence from epidemiological studies confirming the links between psychological distress and cancer progression, a growing body of cellular and molecular studies have also revealed the complex signaling networks which are modulated by psychological distress-derived chronic stress during cancer progression. In this review, aiming to uncover the intertwined networks of chronic stress-driven oncogenesis and progression, we summarize physiological stress response pathways, like the HPA, SNS, and MGB axes, that modulate the release of stress hormones with potential carcinogenic properties. Furthermore, we discuss in detail the mechanisms behind these chronic stimulations contributing to the initiation and progression of cancer through direct regulation of cancer hallmarks-related signaling or indirect promotion of cancer risk factors (including obesity, disordered circadian rhythms, and premature senescence), suggesting a novel research direction into cancer prevention and therapy on the basis of psychological interventions.
Collapse
|
43
|
Huang M, Liu J, Liu K, Chen J, Wei Z, Feng Z, Wu Y, Fong M, Tian R, Wang B, Budjan C, Zhuang P, Wan G, Kong XJ. Microbiome-Specific Statistical Modeling Identifies Interplay Between Gastrointestinal Microbiome and Neurobehavioral Outcomes in Patients With Autism: A Case Control Study. Front Psychiatry 2021; 12:682454. [PMID: 34744810 PMCID: PMC8563626 DOI: 10.3389/fpsyt.2021.682454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with unclear mechanisms of pathogenesis. Gastrointestinal microbiome alterations were found to correlate with ASD core symptoms, but its specific role in ASD pathogenesis has not been determined. In this study, we used a case-control strategy that simultaneously compared the ASD gastrointestinal microbiome with that from age-sex matched controls and first-degree relative controls, using a statistical framework accounting for confounders such as age. Enterobacteriaceae (including Escherichia/Shigella) and Phyllobacterium were significantly enriched in the ASD group, with their relative abundances all following a pattern of ASD > first degree relative control > healthy control, consistent with our hypothesis of living environment and shared microbial and immunological exposures as key drivers of ASD gastrointestinal microbiome dysbiosis. Using multivariable omnibus testing, we identified clinical factors including ADOS scores, dietary habits, and gastrointestinal symptoms that covary with overall microbiome structure within the ASD cohort. A microbiome-specific multivariate modeling approach (MaAsLin2) demonstrated microbial taxa, such as Lachnoclostridium and Tyzzerella, are significantly associated with ASD core symptoms measured by ADOS. Finally, we identified alterations in predicted biological functions, including tryptophan and tyrosine biosynthesis/metabolism potentially relevant to the pathophysiology of the gut-brain-axis. Overall, our results identified gastrointestinal microbiome signature changes in patients with ASD, highlighted associations between gastrointestinal microbiome and clinical characteristics related to the gut-brain axis and identified contributors to the heterogeneity of gastrointestinal microbiome within the ASD population.
Collapse
Affiliation(s)
- Minshi Huang
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jun Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Jierong Chen
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhe Feng
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yuyu Wu
- YuNing Clinic, Taipei, Taiwan
| | - Michelle Fong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Ruiyi Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Bryan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | - Patrick Zhuang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Guobin Wan
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
44
|
Hlalukana N, Magengelele M, Malgas S, Pletschke BI. Enzymatic Conversion of Mannan-Rich Plant Waste Biomass into Prebiotic Mannooligosaccharides. Foods 2021; 10:2010. [PMID: 34574120 PMCID: PMC8468410 DOI: 10.3390/foods10092010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/16/2023] Open
Abstract
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered "wastes", which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). MOS can be produced from the degradation of mannan. Mannan has a main backbone consisting of β-1,4-linked mannose residues (which may be interspersed by glucose residues) with galactose substituents. Endo-β-1,4-mannanases cleave the mannan backbone at cleavage sites determined by the substitution pattern and thus give rise to different MOS products. These MOS products serve as prebiotics to stimulate various types of intestinal bacteria and cause them to produce fermentation products in different parts of the gastrointestinal tract which benefit the host. This article reviews recent advances in understanding the exploitation of plant residual biomass via the enzymatic production and characterization of MOS, and the influence of MOS on beneficial gut microbiota and their biological effects (i.e., immune modulation and lipidemic effects) as observed on human and animal health.
Collapse
Affiliation(s)
| | | | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (N.H.); (M.M.); (B.I.P.)
| | | |
Collapse
|
45
|
Yolken RH, Kinnunen PM, Vapalahti O, Dickerson F, Suvisaari J, Chen O, Sabunciyan S. Studying the virome in psychiatric disease. Schizophr Res 2021; 234:78-86. [PMID: 34016507 DOI: 10.1016/j.schres.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
An overlooked aspect of current microbiome studies is the role of viruses in human health. Compared to bacterial studies, laboratory and analytical methods to study the entirety of viral communities in clinical samples are rudimentary and need further refinement. In order to address this need, we developed Virobiome-Seq, a sequence capture method and an accompanying bioinformatics analysis pipeline, that identifies viral reads in human samples. Virobiome-Seq is able to enrich for and detect multiple types of viruses in human samples, including novel subtypes that diverge at the sequence level. In addition, Virobiome-Seq is able to detect RNA transcripts from DNA viruses and may provide a sensitive method for detecting viral activity in vivo. Since Virobiome-Seq also yields the viral sequence, it makes it possible to investigate associations between viral genotype and psychiatric illness. In this proof of concept study, we detected HIV1, Torque Teno, Pegi, Herpes and Papilloma virus sequences in Peripheral Blood Mononuclear Cells, plasma and stool samples collected from individuals with psychiatric disorders. We also detected the presence of numerous novel circular RNA viruses but were unable to determine whether these viruses originate from the sample or represent contaminants. Despite this challenge, we demonstrate that our knowledge of viral diversity is incomplete and opportunities for novel virus discovery exist. Virobiome-Seq will enable a more sophisticated analysis of the virome and has the potential of uncovering complex interactions between viral activity and psychiatric disease.
Collapse
Affiliation(s)
- Robert H Yolken
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Paula M Kinnunen
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HUS Diagnostic Center, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Jaana Suvisaari
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Ou Chen
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
46
|
Faraj J, Takanti V, Tavakoli HR. The Gut-Brain Axis: Literature Overview and Psychiatric Applications. Fed Pract 2021; 38:356-362. [PMID: 34733087 PMCID: PMC8560095 DOI: 10.12788/fp.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Literature exploring the relationship between the intestinal microbiome and its effects on general health and well-being has grown significantly in recent years, and our knowledge of this subject continues to grow. Mounting evidence indicates that the intestinal microbiome is a potential target for therapeutic intervention in psychiatric illness and in neurodegenerative disorders such as Alzheimer disease. It is reasonable to consider modulating not just a patient's neurochemistry, behavior, or cognitive habits, but also their intestinal microbiome in an effort to improve psychiatric symptoms. OBSERVATIONS In this review paper, we show that intestinal microbiota possess the ability to directly influence both physical and mental well-being; therefore, should be included in future discussions regarding psychiatric treatment. CONCLUSIONS Clinicians are encouraged to consider patients' gut health when evaluating and treating psychiatric conditions, such as anxiety and depression. Optimization and diversification of gut flora through the use of psychobiotics-probiotics that confer mental health benefits-may soon become standard practice in conjunction with traditional psychiatric treatment modalities such as pharmacotherapy and psychotherapy.
Collapse
Affiliation(s)
- Janine Faraj
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Varun Takanti
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Hamid R Tavakoli
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| |
Collapse
|
47
|
Zheng S, Zhu Y, Wu W, Zhang Q, Wang Y, Wang Z, Yang F. A correlation study of intestinal microflora and first-episode depression in Chinese patients and healthy volunteers. Brain Behav 2021; 11:e02036. [PMID: 33960717 PMCID: PMC8413750 DOI: 10.1002/brb3.2036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This research examines the intestinal-associated flora of patients with depression compared with healthy volunteers to identify the characteristics and differences of flora associated with depression. It provides a theoretical basis for the prevention and treatment of depression through intestinal micro-ecological regulation. METHODS We recruited 30 patients with depression to participate in the patient group (PG), and 30 volunteers were recruited for the healthy control group (HG) from the Beijing Hui-long-guan Hospital. Thereafter, the 16S rRNA high-throughput sequencing method, using the Hamilton Depression Scale, was applied to analyze patient and healthy groups. RESULTS PG and HG microflora were different regarding phylum, Family, Genus, and Order. The results showed that Barnesiella was the dominant flora in depression patients, while Lachnospiraceae and Alloprevotella were the dominant bacteria in healthy participants. The proportion of Betaproteobateria (Proteobacteria), Alcaligenaceae (proinflammatory), Peptostreptococcaceae, Catenibacterium, Romboutsia, Sutterella, and Burkholderiales in the anxiety-negative depressed group was significantly higher than in the anxiety-positive group; and the proportion of Anaerostipes (inflammation) and Faecalibacterium (anti-inflammatory) bacteria was significantly lower than that of patients with anxiety. CONCLUSION Results showed there were differences in intestinal micro-ecology between patients with depression and healthy volunteers. We found that the level of inflammation-related bacteria in anxiety-positive patients was lower than that in anxiety-negative patients. These results enrich the knowledge of relationships between depression and intestinal flora and provide a theoretical basis for probiotics to assist in the treatment of depression.
Collapse
Affiliation(s)
- Shaojun Zheng
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Yubing Zhu
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weidong Wu
- Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Qi Zhang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yongqian Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| |
Collapse
|
48
|
Bodden C, Hannan AJ, Reichelt AC. Of 'junk food' and 'brain food': how parental diet influences offspring neurobiology and behaviour. Trends Endocrinol Metab 2021; 32:566-578. [PMID: 33941448 DOI: 10.1016/j.tem.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
Unhealthy lifestyles and mental health problems are increasingly prevalent globally. Not only are 'junk food'-induced overweight and obesity risk factors for the development of brain disorders but they are also associated intergenerationally with ill health. Here, we reflect on the current knowledge of how maternal and paternal diet influences offspring brain development and behaviour, potentially predisposing children to mental health problems. Mounting evidence indicates diet-induced maternal and paternal programming of infant metabolism and neurobehavioural function, with potential downstream effects on mental health and resilience. Beyond the central nervous system (CNS), the microbiota-gut-brain axis has emerged as an important mediator of host physiology. We discuss how intergenerational seeding of the gut microbiome via parental lineage can influence offspring gut health and neurobiology.
Collapse
Affiliation(s)
- Carina Bodden
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
49
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
50
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|