1
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Li D, Sun N, Guo Y, Huang S, Yin C, Xiao Y, Ma W. Investigating the Effects of Perampanel on Autophagy-mediated Regulation of GluA2 and PSD95 in Epilepsy. Mol Neurobiol 2024; 61:9210-9221. [PMID: 38602656 DOI: 10.1007/s12035-024-04136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures. Despite various treatment approaches, a significant number of patients continue to experience uncontrolled seizures, leading to refractory epilepsy. The emergence of novel anti-epileptic drugs, such as perampanel (PER), has provided promising options for effective epilepsy treatment. However, the specific mechanisms underlying the therapeutic effects of PER remain unclear. This study aimed to investigate the intrinsic molecular regulatory mechanisms involved in the downregulation of GluA2, a key subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, following epileptic seizures. Primary mouse hippocampal neurons were cultured and subjected to an epilepsy cell model. The expression levels of GluA2 and autophagy-related proteins were assessed using Western blotting and real-time fluorescent quantitative PCR. Immunofluorescence and immunohistochemistry techniques were employed to investigate the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Additionally, status epilepticus animal models were established to further validate the findings. The epilepsy cell model exhibited a significant decrease in GluA2 expression, accompanied by elevated levels of autophagy-related proteins. Immunofluorescence analysis revealed the nuclear translocation of CRTC1, which correlated with the expression of autophagy-related genes. Treatment with an autophagy inhibitor reversed the decreased expression of GluA2 in the epilepsy cell model. Furthermore, the calcium/calmodulin-dependent protein phosphatase inhibitor FK506 and CaN overexpression affected the dephosphorylation and nuclear translocation of CRTC1, consequently influencing GluA2 expression. Animal model results further supported the involvement of these molecular mechanisms in epilepsy. Our findings suggest that the downregulation of GluA2 following epileptic seizures involves the activation of autophagy and the regulation of CRTC1 nuclear translocation. These intrinsic molecular regulatory mechanisms provide potential targets for developing novel therapeutic strategies to alleviate refractory epilepsy and preserve cognitive functions in patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Na Sun
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Yingying Guo
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Shaoping Huang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China.
| | - Weijun Ma
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Hale WD, Montaño Romero A, Gonzalez CU, Jayaraman V, Lau AY, Huganir RL, Twomey EC. Allosteric competition and inhibition in AMPA receptors. Nat Struct Mol Biol 2024; 31:1669-1679. [PMID: 38834914 PMCID: PMC11563869 DOI: 10.1038/s41594-024-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
Excitatory neurotransmission is principally mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic glutamate receptors (AMPARs). Negative allosteric modulators are therapeutic candidates that inhibit AMPAR activation and can compete with positive modulators to control AMPAR function through unresolved mechanisms. Here we show that allosteric inhibition pushes AMPARs into a distinct state that prevents both activation and positive allosteric modulation. We used cryo-electron microscopy to capture AMPARs bound to glutamate, while a negative allosteric modulator, GYKI-52466, and positive allosteric modulator, cyclothiazide, compete for control of the AMPARs. GYKI-52466 binds in the ion channel collar and inhibits AMPARs by decoupling the ligand-binding domains from the ion channel. The rearrangement of the ligand-binding domains ruptures the cyclothiazide site, preventing positive modulation. Our data provide a framework for understanding allostery of AMPARs and for rational design of therapeutics targeting AMPARs in neurological diseases.
Collapse
Affiliation(s)
- W Dylan Hale
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandra Montaño Romero
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuauhtemoc U Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Edward C Twomey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| |
Collapse
|
4
|
Fenton TA, Haouchine OY, Hallam EB, Smith EM, Jackson KC, Rahbarian D, Canales CP, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-related intellectual disability. Transl Psychiatry 2024; 14:405. [PMID: 39358332 PMCID: PMC11447000 DOI: 10.1038/s41398-024-03077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability (ID), motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicating the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered, identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data that was collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated that primary neurons from Syngap1+/- mice displayed: 1) increased network firing activity, 2) greater bursts, 3) and shorter inter-burst intervals between peaks, by utilizing high density microelectrode arrays (HD-MEA). Our work bridges in vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Elizabeth B Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Kiya C Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Alex S Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
5
|
Katsanevaki D, Till SM, Buller-Peralta I, Nawaz MS, Louros SR, Kapgal V, Tiwari S, Walsh D, Anstey NJ, Petrović NG, Cormack A, Salazar-Sanchez V, Harris A, Farnworth-Rowson W, Sutherland A, Watson TC, Dimitrov S, Jackson AD, Arkell D, Biswal S, Dissanayake KN, Mizen LAM, Perentos N, Jones MW, Cousin MA, Booker SA, Osterweil EK, Chattarji S, Wyllie DJA, Gonzalez-Sulser A, Hardt O, Wood ER, Kind PC. Key roles of C2/GAP domains in SYNGAP1-related pathophysiology. Cell Rep 2024; 43:114733. [PMID: 39269903 DOI: 10.1016/j.celrep.2024.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Mutations in SYNGAP1 are a common genetic cause of intellectual disability (ID) and a risk factor for autism. SYNGAP1 encodes a synaptic GTPase-activating protein (GAP) that has both signaling and scaffolding roles. Most pathogenic variants of SYNGAP1 are predicted to result in haploinsufficiency. However, some affected individuals carry missense mutations in its calcium/lipid binding (C2) and GAP domains, suggesting that many clinical features result from loss of functions carried out by these domains. To test this hypothesis, we targeted the exons encoding the C2 and GAP domains of SYNGAP. Rats heterozygous for this deletion exhibit reduced exploration and fear extinction, altered social investigation, and spontaneous seizures-key phenotypes shared with Syngap heterozygous null rats. Together, these findings indicate that the reduction of SYNGAP C2/GAP domain function is a main feature of SYNGAP haploinsufficiency. This rat model provides an important system for the study of ID, autism, and epilepsy.
Collapse
Affiliation(s)
- Danai Katsanevaki
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Sally M Till
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Ingrid Buller-Peralta
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Mohammad Sarfaraz Nawaz
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Susana R Louros
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Vijayakumar Kapgal
- Centre for Brain Development and Repair, Instem, Bangalore 560065, India; The University of Transdisciplinary Health Sciences and Technology, Bangalore 560065, India
| | - Shashank Tiwari
- Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Darren Walsh
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Natasha J Anstey
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Nina G Petrović
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Alison Cormack
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Vanesa Salazar-Sanchez
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Anjanette Harris
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - William Farnworth-Rowson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Andrew Sutherland
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Thomas C Watson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Siyan Dimitrov
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Adam D Jackson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Daisy Arkell
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | | | - Kosala N Dissanayake
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Lindsay A M Mizen
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Nikolas Perentos
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Matt W Jones
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, UK
| | - Michael A Cousin
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Emily K Osterweil
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Sumantra Chattarji
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Oliver Hardt
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India; Department of Psychology, McGill University, Montreal, QC H3A 1G1, Canada
| | - Emma R Wood
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Peter C Kind
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India.
| |
Collapse
|
6
|
Kim HJ, Kim M, Jang S, Cho JS, Kim SY, Cho A, Kim H, Lim BC, Chae JH, Choi J, Kim KJ, Kim W. SYNGAP1-related developmental and epileptic encephalopathy: Genotypic and phenotypic characteristics and longitudinal insights. Am J Med Genet A 2024; 194:e63606. [PMID: 38563110 DOI: 10.1002/ajmg.a.63606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
The clinical and genetic characteristics of SYNGAP1 mutations in Korean pediatric patients are not well understood. We retrospectively analyzed 13 individuals with SYNGAP1 mutations from a longitudinal aspect. Clinical data, genetic profiles, and electroencephalography (EEG) patterns were examined. Genotypic analyses included gene panels and whole-exome sequencing. All patients exhibited global developmental delay from early infancy, with motor development eventually reaching independent ambulation by 3 years of age. Language developmental delay varied significantly from nonverbal to simple sentences, which plateaued in all patients. Patients with the best language outcomes typically managed 2-3-word sentences, corresponding to a developmental age of 2-3 years. Epilepsy developed in 77% of patients, with onset consistently following developmental delays at a median age of 31 months. Longitudinal EEG data revealed a shift from occipital to frontal epileptiform discharges with age, suggesting a correlation with synaptic maturation. These findings suggest that the critical developmental plateau occurs between the ages of 2 and 5 years and is potentially influenced by epilepsy. By analyzing longitudinal data, our study contributes to a deeper understanding of SYNGAP1-related DEE, provides potential EEG biomarkers, and underlines the importance of early diagnosis and intervention to address this complex disorder.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Minhye Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Seoyun Jang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Jae So Cho
- Department of Clinical Genomics, Seoul National University Hospital, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Clinical Genomics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Anna Cho
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Clinical Genomics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jieun Choi
- Department of Pediatrics, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - WooJoong Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish models of SYNGAP1-related disorder. Front Mol Neurosci 2024; 17:1401746. [PMID: 39050824 PMCID: PMC11266194 DOI: 10.3389/fnmol.2024.1401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Background and aims SYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab mutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutant syngap1 alleles. Limitations Syngap1 loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouse Syngap1 homozygotes die at birth, zebrafish syngap1ab-/- survive to adulthood and are fertile, thus some aspects of symptoms in people with SYNGAP1-Related Disorder are not likely to be reflected in zebrafish. Conclusion Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, St. John’s University, Queens, NY, United States
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, United States
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
8
|
Fenton TA, Haouchine OY, Hallam EL, Smith EM, Jackson KC, Rahbarian D, Canales C, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-Related Intellectual Disability. RESEARCH SQUARE 2024:rs.3.rs-4067746. [PMID: 38562838 PMCID: PMC10984035 DOI: 10.21203/rs.3.rs-4067746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability, motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicting the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated primary neurons from Syngap1+/- mice displayed increased network firing activity, greater bursts, and shorter inter-burst intervals between peaks by employing high density microelectrode arrays (HD-MEA). Our work bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Elizabeth L Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Kiya C. Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Cesar Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Alexander S. Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| |
Collapse
|
9
|
Jimenez-Gomez A, Nguyen MX, Gill JS. Understanding the role of AMPA receptors in autism: insights from circuit and synapse dysfunction. Front Psychiatry 2024; 15:1304300. [PMID: 38352654 PMCID: PMC10861716 DOI: 10.3389/fpsyt.2024.1304300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.
Collapse
Affiliation(s)
- Andres Jimenez-Gomez
- Neurodevelopmental Disabilities Program, Department of Neurology, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Megan X. Nguyen
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
10
|
Wang SJ, Zhao MY, Zhao PC, Zhang W, Rao GW. Research Status, Synthesis and Clinical Application of Antiepileptic Drugs. Curr Med Chem 2024; 31:410-452. [PMID: 36650655 DOI: 10.2174/0929867330666230117160632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023]
Abstract
According to the 2017 ILAE's official definition, epilepsy is a slow brain disease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new antiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepileptic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity relationship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.
Collapse
Affiliation(s)
- Si-Jie Wang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Min-Yan Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
11
|
Guo M, Wang T, Zhang T, Zhai H, Xu G. Effects of high-frequency transcranial magnetic stimulation on theta-gamma oscillations and coupling in the prefrontal cortex of rats during working memory task. Med Biol Eng Comput 2023; 61:3209-3223. [PMID: 37828414 DOI: 10.1007/s11517-023-02940-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
High-frequency rTMS has been widely used to improve working memory (WM) impairment; however, the underlying neurophysiological mechanisms are unclear. We evaluated the effect of high-frequency rTMS on behaviors relevant to WM as well as coupling between theta and gamma oscillations in the prefrontal cortex (PFC) of rats. Accordingly, Wistar rats received high-frequency rTMS daily for 14 days (5 Hz, 10 Hz, and 15 Hz stimulation; 600 pulses; n = 6 per group), whereas the control group received sham stimulation. Electrophysiological signals were recorded simultaneously to obtain the local field potential (LFP) from the PFC, while the rats performed T-maze tasks for the evaluation of WM. Phase-amplitude coupling (PAC) was utilized to determine the effect of high-frequency rTMS on the theta-gamma coupling of LFPs. We observed that rats in the rTMS groups needed a smaller number of training days to complete the WM task as compared to the control group. High-frequency rTMS reinforced the coupling connection strength in the PFC of rats. Notably, the effect of rTMS at 15 Hz was the most effective among the three frequencies, i.e., 5 Hz, 10 Hz, and 15 Hz. The results suggested that rTMS can improve WM impairment in rats by modulating the coupling of theta and gamma rhythms. Hence, the current study provides a scientific basis for the optimization of TMS models, which would be relevant for clinical application.
Collapse
Affiliation(s)
- Miaomiao Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China.
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China.
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Tian Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
| | - Tianheng Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
- School of Mechanical and Electrical Engineering, Shijiazhuang University, Shijiazhuang, 050035, Hebei, China
| | - Haodi Zhai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
- School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin, 300130, China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
12
|
Hale WD, Romero AM, Gonzalez CU, Jayaraman V, Lau AY, Huganir RL, Twomey EC. Allosteric Competition and Inhibition in AMPA Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569057. [PMID: 38076818 PMCID: PMC10705377 DOI: 10.1101/2023.11.28.569057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Excitatory neurotransmission is principally mediated by AMPA-subtype ionotropic glutamate receptors (AMPARs). Dysregulation of AMPARs is the cause of many neurological disorders and how therapeutic candidates such as negative allosteric modulators inhibit AMPARs is unclear. Here, we show that non-competitive inhibition desensitizes AMPARs to activation and prevents positive allosteric modulation. We dissected the noncompetitive inhibition mechanism of action by capturing AMPARs bound to glutamate and the prototypical negative allosteric modulator, GYKI-52466, with cryo-electron microscopy. Noncompetitive inhibition by GYKI-52466, which binds in the transmembrane collar region surrounding the ion channel, negatively modulates AMPARs by decoupling glutamate binding in the ligand binding domain from the ion channel. Furthermore, during allosteric competition between negative and positive modulators, negative allosteric modulation by GKYI-52466 outcompetes positive allosteric modulators to control AMPAR function. Our data provide a new framework for understanding allostery of AMPARs and foundations for rational design of therapeutics targeting AMPARs in neurological diseases.
Collapse
Affiliation(s)
- W. Dylan Hale
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Alejandra Montaño Romero
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Cuauhtemoc U. Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
| | - Albert Y. Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Edward C. Twomey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA USA
| |
Collapse
|
13
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish autism models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.557316. [PMID: 37786701 PMCID: PMC10541574 DOI: 10.1101/2023.09.20.557316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background and Aims SYNGAP1 disorder is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab larvae are hyperactive compared to wild type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, with overall movement increasing with the number of mutant syngap1 alleles. Conclusions Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL USA
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL USA
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL USA
| |
Collapse
|
14
|
Silverman JL, Fenton T, Haouchine O, Hallam E, Smith E, Jackson K, Rahbarian D, Canales C, Adhikari A, Nord A, Ben-Shalom R. Hyperexcitability and translational phenotypes in a preclinical model of SYNGAP1 mutations. RESEARCH SQUARE 2023:rs.3.rs-3246655. [PMID: 37790402 PMCID: PMC10543290 DOI: 10.21203/rs.3.rs-3246655/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1 -related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1+/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1+/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1 RI-D, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.
Collapse
Affiliation(s)
- Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao M, Kwon SE. Interneuron-Targeted Disruption of SYNGAP1 Alters Sensory Representations in the Neocortex and Impairs Sensory Learning. J Neurosci 2023; 43:6212-6226. [PMID: 37558489 PMCID: PMC10476640 DOI: 10.1523/jneurosci.1997-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
SYNGAP1 haploinsufficiency in humans leads to severe neurodevelopmental disorders characterized by intellectual disability, autism, epilepsy, and sensory processing deficits. However, the circuit mechanisms underlying these disorders are not well understood. In mice, a decrease of SynGAP levels results in cognitive deficits by interfering with the development of excitatory glutamatergic connections. Recent evidence suggests that SynGAP also plays a crucial role in the development and function of GABAergic inhibitory interneurons. Nevertheless, it remains uncertain whether and to what extent the expression of SYNGAP1 in inhibitory interneurons contributes to cortical circuit function and related behaviors. The activity of cortical neurons has not been measured simultaneously with behavior. To address these gaps, we recorded from layer 2/3 neurons in the primary whisker somatosensory cortex (wS1) of mice while they learned to perform a whisker tactile detection task. Our results demonstrate that mice with interneuron-specific SYNGAP1 haploinsufficiency exhibit learning deficits characterized by heightened behavioral responses in the absence of relevant sensory input and premature responses to unrelated sensory stimuli not associated with reward acquisition. These behavioral deficits are accompanied by specific circuit abnormalities within wS1. Interneuron-specific SYNGAP1 haploinsufficiency increases detrimental neuronal correlations directly related to task performance and enhances responses to irrelevant sensory stimuli unrelated to the reward acquisition. In summary, our findings indicate that a reduction of SynGAP in inhibitory interneurons impairs sensory representation in the primary sensory cortex by disrupting neuronal correlations, which likely contributes to the observed cognitive deficits in mice with pan-neuronal SYNGAP1 haploinsufficiency.SIGNIFICANCE STATEMENT SYNGAP1 haploinsufficiency leads to severe neurodevelopmental disorders. The exact nature of neural circuit dysfunction caused by SYNGAP1 haploinsufficiency remains poorly understood. SynGAP plays a critical role in the function of GABAergic inhibitory interneurons as well as glutamatergic pyramidal neurons in the neocortex. Whether and how decreasing SYNGAP1 level in inhibitory interneurons disrupts a behaviorally relevant circuit remains unclear. We measure neural activity and behavior in mice learning a perceptual task. Mice with interneuron-targeted disruption of SYNGAP1 display increased detrimental neuronal correlations and elevated responses to irrelevant sensory inputs, which are related to impaired task performance. These results show that cortical interneuron dysfunction contributes to sensory deficits in SYNGAP1 haploinsufficiency with important implications for identifying therapeutic targets.
Collapse
Affiliation(s)
- Meiling Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sung Eun Kwon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
16
|
Gupta S, Hwang Y, Ludwig N, Henry J, Kadam SD. Case report: Off-label use of low-dose perampanel in a 25-month-old girl with a pathogenic SYNGAP1 variant. Front Neurol 2023; 14:1221161. [PMID: 37662032 PMCID: PMC10469904 DOI: 10.3389/fneur.2023.1221161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Preclinical studies in a mouse model have shown that SYNGAP1 haploinsufficiency results in an epilepsy phenotype with excessive GluA2-AMPA insertion specifically on the soma of fast-spiking parvalbumin-positive interneurons associated with significant dysfunction of cortical gamma homeostasis that was rescued by perampanel (PER), an AMPA receptor blocker. In this single case, we aimed to investigate the presence of dysregulated cortical gamma in a toddler with a pathogenic SYNGAP1 variant and report on the effect of low-dose PER on electroencephalogram (EEG) and clinical profile. Methods Clinical data from physician's clinic notes; genetic testing reports; developmental scores from occupational therapy, physical therapy, speech and language therapy evaluations; and applied behavioral analysis reports were reviewed. Developmental assessments and EEG analysis were done pre- and post-PER. Results Clinically, the patient showed improvements in the developmental profile and sleep quality post-PER. EEG spectral power analysis in our patient revealed a loss of gamma power modulation with behavioral-state transitions similar to what was observed in Syngap1+/- mice. Furthermore, the administration of low-dose PER rescued the dysfunctional cortical gamma homeostasis, similar to the preclinical study. However, as in the epileptic mice, PER did not curb epileptiform discharges or clinical seizures. Conclusion Similar to the Syngap1+/- mice, cortical gamma homeostasis was dysregulated in the patient. This dysfunction was rescued by PER. These encouraging results necessitate further validation of gamma dysregulation as a potential translational EEG biomarker in SYNAP1-DEE. Low-dose PER can be explored as a therapeutic option through clinical trials.
Collapse
Affiliation(s)
- Siddharth Gupta
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yun Hwang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Natasha Ludwig
- Department of Neuropsychology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavior Psychology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julia Henry
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Shilpa D. Kadam
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| |
Collapse
|
17
|
Davidson EA, Holingue C, Jimenez-Gomez A, Dallman JE, Moshiree B. Gastrointestinal Dysfunction in Genetically Defined Neurodevelopmental Disorders. Semin Neurol 2023; 43:645-660. [PMID: 37586397 PMCID: PMC10895389 DOI: 10.1055/s-0043-1771460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Gastrointestinal symptoms are common in most forms of neurodevelopment disorders (NDDs) such as in autism spectrum disorders (ASD). The current patient-reported outcome measures with validated questionnaires used in the general population of children without NDDS cannot be used in the autistic individuals. We explore here the multifactorial pathophysiology of ASD and the role of genetics and the environment in this disease spectrum and focus instead on possible diagnostics that could provide future objective insight into the connection of the gut-brain-microbiome in this disease entity. We provide our own data from both humans and a zebrafish model of ASD called Phelan-McDermid Syndrome. We hope that this review highlights the gaps in our current knowledge on many of these profound NDDs and that it provides a future framework upon which clinicians and researchers can build and network with other interested multidisciplinary specialties.
Collapse
Affiliation(s)
| | - Calliope Holingue
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andres Jimenez-Gomez
- Neuroscience Center, Joe DiMaggio Children’s Hospital, Hollywood, Florida
- Department of Child Neurology, Florida Atlantic University Stiles - Nicholson Brain Institute, Jupiter, Florida
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, Miami, Florida
| | - Baharak Moshiree
- Atrium Health, Wake Forest Medical University, Charlotte, North Carolina
| |
Collapse
|
18
|
Fenton TA, Haouchine OY, Hallam EL, Smith EM, Jackson KC, Rahbarian D, Canales C, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical model of SYNGAP1 mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550093. [PMID: 37546838 PMCID: PMC10402099 DOI: 10.1101/2023.07.24.550093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1 +/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1 +/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1R-ID, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.
Collapse
|
19
|
Roberts NS, Handy MJ, Ito Y, Hashimoto K, Jensen FE, Talos DM. Anti-seizure efficacy of perampanel in two established rodent models of early-life epilepsy. Epilepsy Behav 2023; 143:109194. [PMID: 37119576 DOI: 10.1016/j.yebeh.2023.109194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 05/01/2023]
Abstract
Early-life seizures can be refractory to conventional antiseizure medications (ASMs) and can also result in chronic epilepsy and long-term behavioral and cognitive deficits. Treatments targeting age-specific mechanisms contributing to epilepsy would be of clinical benefit. One such target is the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subtype of excitatory glutamate receptor, which is upregulated in the developing brain. Perampanel is a non-competitive, selective AMPAR antagonist that is FDA-approved for focal onset seizures (FOS) or primary generalized tonic-clonic seizures (PGTC) in children and adults. However, the efficacy of perampanel treatment in epilepsy patients younger than 4 years has been less documented. We thus tested the efficacy of perampanel in two early-life seizure models: (1) a rat model of hypoxia-induced neonatal seizures and (2) a mouse model of Dravet syndrome with hyperthermia-induced seizures. Pretreatment with perampanel conferred dose-dependent protection against early-life seizures in both experimental models. These findings suggest that AMPAR-mediated hyperexcitability could be involved in the pathophysiology of early-life seizures, which may be amenable to treatment with perampanel.
Collapse
Affiliation(s)
- Nicholas S Roberts
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus J Handy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshimasa Ito
- Formerly: Neurology Business Group, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Keisuke Hashimoto
- Deep Human Biology Learning, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
王 晓, 田 亚, 陈 晨, 彭 镜. [Autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations: a report of 8 cases and literature review]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:489-496. [PMID: 37272175 PMCID: PMC10247193 DOI: 10.7499/j.issn.1008-8830.2301054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/29/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVES To summarize the clinical phenotype and genetic characteristics of children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations. METHODS A retrospective analysis was performed on the medical data of 8 children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations who were diagnosed and treated in the Department of Pediatrics, Xiangya Hospital of Central South University. RESULTS The mean age of onset was 9 months for the 8 children. All children had moderate-to-severe developmental delay (especially delayed language development), among whom 7 children also had seizures. Among these 8 children, 7 had novel heterozygous mutations (3 with frameshift mutations, 2 with nonsense mutations, and 2 with missense mutations) and 1 had 6p21.3 microdeletion. According to the literature review, there were 48 Chinese children with mental retardation caused by SYNGAP1 gene mutations (including the children in this study), among whom 40 had seizures, and the mean age of onset of seizures was 31.4 months. Frameshift mutations (15/48, 31%) and nonsense mutations (19/48, 40%) were relatively common in these children. In terms of treatment, among the 33 children with a history of epileptic medication, 28 (28/33, 85%) showed response to valproic acid antiepileptic treatment and 16 (16/33, 48%) achieved complete seizure control after valproic acid monotherapy or combined therapy. CONCLUSIONS Children with autosomal dominant mental retardation type 5 caused by SYNGAP1 gene mutations tend to have an early age of onset, and most of them are accompanied by seizures. These children mainly have frameshift and nonsense mutations. Valproic acid is effective for the treatment of seizures in most children.
Collapse
|
21
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
22
|
Maurer JJ, Choi A, An I, Sathi N, Chung S. Sleep disturbances in autism spectrum disorder: Animal models, neural mechanisms, and therapeutics. Neurobiol Sleep Circadian Rhythms 2023; 14:100095. [PMID: 37188242 PMCID: PMC10176270 DOI: 10.1016/j.nbscr.2023.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Sleep is crucial for brain development. Sleep disturbances are prevalent in children with autism spectrum disorder (ASD). Strikingly, these sleep problems are positively correlated with the severity of ASD core symptoms such as deficits in social skills and stereotypic behavior, indicating that sleep problems and the behavioral characteristics of ASD may be related. In this review, we will discuss sleep disturbances in children with ASD and highlight mouse models to study sleep disturbances and behavioral phenotypes in ASD. In addition, we will review neuromodulators controlling sleep and wakefulness and how these neuromodulatory systems are disrupted in animal models and patients with ASD. Lastly, we will address how the therapeutic interventions for patients with ASD improve various aspects of sleep. Together, gaining mechanistic insights into the neural mechanisms underlying sleep disturbances in children with ASD will help us to develop better therapeutic interventions.
Collapse
|
23
|
Nissenkorn A, Kluger G, Schubert-Bast S, Bayat A, Bobylova M, Bonanni P, Ceulemans B, Coppola A, Di Bonaventura C, Feucht M, Fuchs A, Gröppel G, Heimer G, Herdt B, Kulikova S, Mukhin K, Nicassio S, Orsini A, Panagiotou M, Pringsheim M, Puest B, Pylaeva O, Ramantani G, Tsekoura M, Ricciardelli P, Lerman Sagie T, Stark B, Striano P, van Baalen A, De Wachter M, Cerulli Irelli E, Cuccurullo C, von Stülpnagel C, Russo A. Perampanel as precision therapy in rare genetic epilepsies. Epilepsia 2023; 64:866-874. [PMID: 36734057 DOI: 10.1111/epi.17530] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Perampanel, an antiseizure drug with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Epilepsies with loss of γ-aminobutyric acid inhibition (e.g., SCN1A), overactive excitatory neurons (e.g., SCN2A, SCN8A), and variants in glutamate receptors (e.g., GRIN2A) hold special interest. We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. METHODS This multicenter project was based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel were collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. RESULTS A total of 137 patients with 79 different etiologies, aged 2 months to 61 years (mean = 15.48 ± 9.9 years), were enrolled. The mean dosage was 6.45 ± 2.47 mg, and treatment period was 2.0 ± 1.78 years (1.5 months-8 years). Sixty-two patients (44.9%) were treated for >2 years. Ninety-eight patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61% ± 34.36%. Sixty patients (43.5%) sustained >75% reduction in seizure frequency, including 38 (27.5%) with >90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, and NEU1. Eleven of 17 (64.7%) patients with Dravet syndrome due to an SCN1A pathogenic variant were responders to perampanel treatment; 35.3% of them had >90% seizure reduction. Other etiologies remarkable for >90% reduction in seizures were GNAO1 and PIGA. Fourteen patients had a continuous spike and wave during sleep electroencephalographic pattern, and in six subjects perampanel reduced epileptiform activity. SIGNIFICANCE Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1, and POLG, suggesting a targeted effect related to glutamate transmission.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gerhard Kluger
- Epilepsy Center for Children and Adolescents, Schön Clinic Vogtareuth, Vogtareuth, Germany
- Research Institute for Rehabilitation, Transition, and Palliation, PMU Salzburg, Salzburg, Austria
| | | | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Marya Bobylova
- Svt. Lucka's Institute of Child Neurology and Epilepsy, Moscow, Russian Federation
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, Eugenio Medea, Scientific Institute for Research and Health Care, Treviso, Italy
| | - Berten Ceulemans
- Pediatric Neurology, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | | | - Martha Feucht
- Center for Rare and Complex Epilepsies, full member of EpiCARE, Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Anne Fuchs
- SPZ Suhl SRH Central Clinic Suhl, Pediatric Clinic, Suhl, Germany
| | - Gudrun Gröppel
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Gali Heimer
- Pediatric Neurology Unit, Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Sviatlana Kulikova
- Republican Research and Clinical Center of Neurology and Neurosurgery, Minsk, Belarus
| | - Konstantin Mukhin
- Svt. Lucka's Institute of Child Neurology and Epilepsy, Moscow, Russian Federation
| | - Stefania Nicassio
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| | - Alessandro Orsini
- Pediatric Neurology, Pediatric Department, Pisa University Hospital, University Hospital of Pisa, Pisa, Italy
| | | | - Milka Pringsheim
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Clinic Vogtareuth, Vogtareuth, Germany
| | - Burkhard Puest
- Department of Neuropediatrics, Wilhelmstift Catholic Children's Hospital, Hamburg, Germany
| | - Olga Pylaeva
- Svt. Lucka's Institute of Child Neurology and Epilepsy, Moscow, Russian Federation
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maria Tsekoura
- Department of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland
| | - Paolo Ricciardelli
- Neurology Service of the Pediatric Unit, Ravenna Hospital, Ravenna, Italy
| | - Tally Lerman Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brigit Stark
- Department of Pediatrics and Adolescent Medicine, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Pasquale Striano
- Giannina Gaslini Institute, Scientific Institute for Research and Health Care, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel University (CAU), Kiel, Germany
| | - Matthias De Wachter
- Pediatric Neurology, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | | | - Claudia Cuccurullo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | - Celina von Stülpnagel
- Research Institute for Rehabilitation, Transition, and Palliation, PMU Salzburg, Salzburg, Austria
- Pediatric Office Dr. Brückmann, Brannenburg, Germany
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Angelo Russo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| |
Collapse
|
24
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
25
|
Kilinc M, Arora V, Creson TK, Rojas C, Le AA, Lauterborn J, Wilkinson B, Hartel N, Graham N, Reich A, Gou G, Araki Y, Bayés À, Coba M, Lynch G, Miller CA, Rumbaugh G. Endogenous Syngap1 alpha splice forms promote cognitive function and seizure protection. eLife 2022; 11:e75707. [PMID: 35394425 PMCID: PMC9064290 DOI: 10.7554/elife.75707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function variants in SYNGAP1 cause a developmental encephalopathy defined by cognitive impairment, autistic features, and epilepsy. SYNGAP1 splicing leads to expression of distinct functional protein isoforms. Splicing imparts multiple cellular functions of SynGAP proteins through coding of distinct C-terminal motifs. However, it remains unknown how these different splice sequences function in vivo to regulate neuronal function and behavior. Reduced expression of SynGAP-α1/2 C-terminal splice variants in mice caused severe phenotypes, including reduced survival, impaired learning, and reduced seizure latency. In contrast, upregulation of α1/2 expression improved learning and increased seizure latency. Mice expressing α1-specific mutations, which disrupted SynGAP cellular functions without altering protein expression, promoted seizure, disrupted synapse plasticity, and impaired learning. These findings demonstrate that endogenous SynGAP isoforms with α1/2 spliced sequences promote cognitive function and impart seizure protection. Regulation of SynGAP-αexpression or function may be a viable therapeutic strategy to broadly improve cognitive function and mitigate seizure.
Collapse
Affiliation(s)
- Murat Kilinc
- Graduate School of Chemical and Biological Sciences, The Scripps Research InstituteJupiterUnited States
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Vineet Arora
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Thomas K Creson
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Camilo Rojas
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Aliza A Le
- Department of Anatomy and Neurobiology, The University of CaliforniaIrvineUnited States
| | - Julie Lauterborn
- Department of Anatomy and Neurobiology, The University of CaliforniaIrvineUnited States
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern CaliforniaLos AngelesUnited States
| | - Nicholas Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern CaliforniaLos AngelesUnited States
| | - Adrian Reich
- Bioinformatics and Statistics Core, The Scripps Research InstituteJupiterUnited States
| | - Gemma Gou
- Molecular Physiology of the Synapse Laboratory, Institut d'Investigació Biomèdica Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Yoichi Araki
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Institut d'Investigació Biomèdica Sant PauBarcelonaSpain
| | - Marcelo Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Gary Lynch
- Department of Anatomy and Neurobiology, The University of CaliforniaIrvineUnited States
| | - Courtney A Miller
- Graduate School of Chemical and Biological Sciences, The Scripps Research InstituteJupiterUnited States
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| | - Gavin Rumbaugh
- Graduate School of Chemical and Biological Sciences, The Scripps Research InstituteJupiterUnited States
- Departments of Neuroscience and Molecular Medicine, The Scripps Research InstituteJupiterUnited States
| |
Collapse
|
26
|
Kadam SD. Symphony Conductors Lose the Baton: Role of Fast-Spiking Interneurons in Orchestrating DS. Epilepsy Curr 2021; 21:192-193. [PMID: 34867101 PMCID: PMC8609584 DOI: 10.1177/15357597211003550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Impaired Theta-Gamma Coupling Indicates Inhibitory Dysfunction and Seizure Risk in a Dravet Syndrome Mouse Model Jansen NA, Perez C, Schenke M, et al. J Neurosci. 2021;41(3):524-537. doi:org/10.1523/JNEUROSCI.2132-20.2020 Dravet syndrome (DS) is an epileptic encephalopathy that still lacks biomarkers for epileptogenesis and its treatment. Dysfunction of NaV1.1 sodium channels, which are chiefly expressed in inhibitory interneurons, explains the epileptic phenotype. Understanding the network effects of these cellular deficits may help predict epileptogenesis. Here, we studied theta–gamma coupling as a potential marker for altered inhibitory functioning and epileptogenesis in a DS mouse model. We found that cortical theta–gamma coupling was reduced in both male and female juvenile DS mice and persisted only if spontaneous seizures occurred. Theta–gamma coupling was partly restored by cannabidiol. Locally disrupting NaV1.1 expression in the hippocampus or cortex yielded early attenuation of theta–gamma coupling, which in the hippocampus associated with fast ripples, and which was replicated in a computational model when voltage-gated sodium currents were impaired in basket cells. Our results indicate attenuated theta–gamma coupling as a promising early indicator of inhibitory dysfunction and seizure risk in DS.
Collapse
|
27
|
Carreño-Muñoz MI, Chattopadhyaya B, Agbogba K, Côté V, Wang S, Lévesque M, Avoli M, Michaud JL, Lippé S, Di Cristo G. Sensory processing dysregulations as reliable translational biomarkers in SYNGAP1 haploinsufficiency. Brain 2021; 145:754-769. [PMID: 34791091 DOI: 10.1093/brain/awab329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy, however whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.
Collapse
Affiliation(s)
- Maria Isabel Carreño-Muñoz
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Kristian Agbogba
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada
| | - Valérie Côté
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Siyan Wang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Jacques L Michaud
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah Lippé
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Verma V, Kumar MJV, Sharma K, Rajaram S, Muddashetty R, Manjithaya R, Behnisch T, Clement JP. Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1 +/- mice. Exp Brain Res 2021; 240:289-309. [PMID: 34739555 DOI: 10.1007/s00221-021-06254-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1+/- mice might be due to abnormalities in K+-Cl- co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1+/- recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14-15 as illustrated by decreased Cl- reversal potential in Syngap1+/- mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14-15. The GSK-3β inhibitor, 6-bromoindirubin-3'-oxime (6BIO) that crosses the blood-brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1+/- mice. In summary, altered GABAergic function in Syngap1+/- mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kavita Sharma
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Sridhar Rajaram
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ravi Muddashetty
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.,Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Thomas Behnisch
- Institutes of Brain Sciences, Fudan University, Shanghai, 200032, China
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
29
|
Myers KA, Scheffer IE. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu Rev Pharmacol Toxicol 2021; 62:641-662. [PMID: 34579535 DOI: 10.1146/annurev-pharmtox-052120-084449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Division of Child Neurology, Department of Pediatrics, and Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec H4A 3J1, Canada;
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; .,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia.,The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
30
|
Mayo S, Gómez-Manjón I, Fernández-Martínez FJ, Camacho A, Martínez F, Benito-León J. Candidate Genes for Eyelid Myoclonia with Absences, Review of the Literature. Int J Mol Sci 2021; 22:ijms22115609. [PMID: 34070602 PMCID: PMC8199219 DOI: 10.3390/ijms22115609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/11/2023] Open
Abstract
Eyelid myoclonia with absences (EMA), also known as Jeavons syndrome (JS) is a childhood onset epileptic syndrome with manifestations involving a clinical triad of absence seizures with eyelid myoclonia (EM), photosensitivity (PS), and seizures or electroencephalogram (EEG) paroxysms induced by eye closure. Although a genetic contribution to this syndrome is likely and some genetic alterations have been defined in several cases, the genes responsible for have not been identified. In this review, patients diagnosed with EMA (or EMA-like phenotype) with a genetic diagnosis are summarized. Based on this, four genes could be associated to this syndrome (SYNGAP1, KIA02022/NEXMIF, RORB, and CHD2). Moreover, although there is not enough evidence yet to consider them as candidate for EMA, three more genes present also different alterations in some patients with clinical diagnosis of the disease (SLC2A1, NAA10, and KCNB1). Therefore, a possible relationship of these genes with the disease is discussed in this review.
Collapse
Affiliation(s)
- Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (I.G.-M.); (F.J.F.-M.)
- Correspondence: ; Tel.: +34-91-779-2603
| | - Irene Gómez-Manjón
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (I.G.-M.); (F.J.F.-M.)
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Fco. Javier Fernández-Martínez
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (I.G.-M.); (F.J.F.-M.)
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Camacho
- Department of Neurology, Division of Pediatric Neurology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, 28041 Madrid, Spain;
| | - Francisco Martínez
- Traslational Research in Genetics, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Julián Benito-León
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
31
|
Lo Barco T, Kaminska A, Solazzi R, Cancés C, Barcia G, Chemaly N, Fontana E, Desguerre I, Canafoglia L, Hachon Le Camus C, Losito E, Villard L, Eisermann M, Dalla Bernardina B, Villeneuve N, Nabbout R. SYNGAP1-DEE: A visual sensitive epilepsy. Clin Neurophysiol 2021; 132:841-850. [PMID: 33639450 DOI: 10.1016/j.clinph.2021.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To further delineate the electroclinical features of individuals with SYNGAP1 pathogenic variants. METHODS Participants with pathogenic SYNGAP1 variants and available video-electroencephalogram (EEG) recordings were recruited within five European epilepsy reference centers. We obtained molecular and clinical data, analyzed EEG recordings and archived video-EEGs of seizures and detailed characteristics of interictal and ictal EEG patterns for every patient. RESULTS We recruited 15 previously unreported patients and analyzed 72 EEGs. Two distinct EEG patterns emerged, both triggered by eye closure. Pattern 1 (14/15 individuals) consisted of rhythmic posterior/diffuse delta waves appearing with eye-closure and persisting until eye opening (strongly suggestive of fixation-off sensitivity). Pattern 2 (9/15 individuals) consisted of diffuse polyspike-and-wave discharges triggered by eye closure (eye-closure sensitivity). Both patterns presented in 8/15. Including archived video-EEG clips of seizures from 9/15 patients, we analyzed 254 seizures. Of 224 seizures experienced while awake, 161 (72%) occurred at or following eye closure. In 119/161, pattern 1 preceded an atypical absence, myoclonic seizure or myoclonic absence; in 42/161, pattern 2 was associated with eyelid myoclonia, absences and myoclonic or atonic seizures. CONCLUSIONS Fixation-off and eye closure were the main triggers for seizures in this SYNGAP1 cohort. SIGNIFICANCE Combining these clinical and electroencephalographic features could help guide genetic diagnosis.
Collapse
Affiliation(s)
- Tommaso Lo Barco
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France; Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Italy; PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Italy.
| | - Anna Kaminska
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, AP-HP, Paris, France
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Claude Cancés
- Department of Pediatric Neurology, Toulouse Children Hospital, Toulouse University Hospital, Toulouse, France
| | - Giulia Barcia
- Fédération de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France; Department of Paediatric Neurology, Necker-Enfants Malades Hospital, University of Paris, AP-HP, Paris, France
| | - Elena Fontana
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Italy; Research Center for Pediatric Epilepsies Verona, Verona, Italy
| | - Isabelle Desguerre
- Department of Paediatric Neurology, Necker-Enfants Malades Hospital, University of Paris, AP-HP, Paris, France
| | - Laura Canafoglia
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caroline Hachon Le Camus
- Department of Pediatric Neurology, Toulouse Children Hospital, Toulouse University Hospital, Toulouse, France
| | - Emma Losito
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Laurent Villard
- Pediatric Neurology Department, Timone Children Hospital, Reference Center for Rare Epilepsies, APHM, Marseille, France
| | - Monika Eisermann
- Department of Clinical Neurophysiology, Necker-Enfants-Malades Hospital, AP-HP, Paris, France
| | | | - Nathalie Villeneuve
- Pediatric Neurology Department, Timone Children Hospital, Reference Center for Rare Epilepsies, APHM, Marseille, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France; Department of Paediatric Neurology, Necker-Enfants Malades Hospital, University of Paris, AP-HP, Paris, France.
| |
Collapse
|
32
|
Jiang Y, Li D, Du Z, Li J, Lu R, Zhou Q, Wang Q, Zhu H. Perampanel Stimulates Mitochondrial Biogenesis in Neuronal Cells through Activation of the SIRT1/PGC-1α Signaling Pathway. ACS Chem Neurosci 2021; 12:323-329. [PMID: 33415987 DOI: 10.1021/acschemneuro.0c00658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial biogenesis plays an important role in maintaining mitochondrial integrity in the central nervous system. Perampanel is an antiepilepsy reagent, which has been recently reported to exert neuroprotective effects. In the present study, we aim to investigate the protective effects of perampanel on mitochondrial biogenesis and mitochondrial bioenergetics in human neuronal cells. The human SH-SY-5Y neuronal cells were incubated with 1 and 2 μM perampanel for 24 h. The ratio of mtDNA to nDNA (mtDNA/nDNA) and the gene expression levels of Tomm20, Timm50, Atp5c1, and complex I subunit NDUFB8 were determined using real-time PCR and the Western blot analysis. Spare respiratory capacity was indicated using maximum oxygen consumption rates (OCRs) calculated as a percentage of baseline OCR and ATP concentrations, which were determined using a luciferin/luciferase ATP bioluminescence kit. The siRNA against PGC-1α was designed and transfected to knock down the expression of PGC-1α. Our results indicate that perampanel stimulated mitochondrial biogenesis by increasing mtDNA/nDNA, gene expressions of Tomm20, Timm50, Atp5c1, and the protein level of the complex I subunit NDUFB8. Additionally, perampanel improved mitochondrial bioenergetics by increasing spare respiratory capacity and ATP production. Importantly, perampanel increased the expressions of PGC-1α, NRF1, TFAM, and SIRT1. Importantly, the effects of perampanel in mitochondrial biogenesis were abolished by the knockdown of PGC-1α or blockage of SIRT1 with its specific inhibitor EX-527. These findings suggest that perampanel might improve mitochondrial biogenesis in neuronal cells by activating the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, No. 156, Qianrong Road, Wuxi, Jiangsu 214151, China
| | - Da Li
- Department of Mental Rehabilitation, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Zhiqiang Du
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, No. 156, Qianrong Road, Wuxi, Jiangsu 214151, China
| | - Jie Li
- Department of Mental Rehabilitation, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| | - Rongrong Lu
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, No. 156, Qianrong Road, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, No. 156, Qianrong Road, Wuxi, Jiangsu 214151, China
| | - Qi Wang
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, No. 156, Qianrong Road, Wuxi, Jiangsu 214151, China
| | - Haohao Zhu
- Department of Pharmacy, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, No. 156, Qianrong Road, Wuxi, Jiangsu 214151, China
- Department of Mental Rehabilitation, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi Tongren Rehabilitation Hospital, Wuxi, Jiangsu 214151, China
| |
Collapse
|
33
|
Aten S, Kalidindi A, Yoon H, Rumbaugh G, Hoyt KR, Obrietan K. SynGAP is expressed in the murine suprachiasmatic nucleus and regulates circadian-gated locomotor activity and light-entrainment capacity. Eur J Neurosci 2020; 53:732-749. [PMID: 33174316 DOI: 10.1111/ejn.15043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master circadian clock. The phasing of the SCN oscillator is locked to the daily solar cycle, and an intracellular signaling cassette from the small GTPase Ras to the p44/42 mitogen-activated protein kinase (ERK/MAPK) pathway is central to this entrainment process. Here, we analyzed the expression and function of SynGAP-a GTPase-activating protein that serves as a negative regulator of Ras signaling-within the murine SCN. Using a combination of immunohistochemical and Western blotting approaches, we show that SynGAP is broadly expressed throughout the SCN. In addition, temporal profiling assays revealed that SynGAP expression is regulated over the circadian cycle, with peak expression occurring during the circadian night. Further, time-of-day-gated expression of SynGAP was not observed in clock arrhythmic BMAL1 null mice, indicating that the daily oscillation in SynGAP is driven by the inherent circadian timing mechanism. We also show that SynGAP phosphorylation at serine 1138-an event that has been found to modulate its functional efficacy-is regulated by clock time and is responsive to photic input. Finally, circadian phenotypic analysis of Syngap1 heterozygous mice revealed enhanced locomotor activity, increased sensitivity to light-evoked clock entrainment, and elevated levels of light-evoked MAPK activity, which is consistent with the role of SynGAP as a negative regulator of MAPK signaling. These findings reveal that SynGAP functions as a modulator of SCN clock entrainment, an effect that may contribute to sleep and circadian abnormalities observed in patients with SYNGAP1 gene mutations.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Anisha Kalidindi
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Hyojung Yoon
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Gavin Rumbaugh
- Scripps Research, Department of Neuroscience, Jupiter, FL, USA.,Scripps Research, Department of Molecular Medicine, Jupiter, FL, USA
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|