1
|
Huang YL, Tsai TH, Shen ZQ, Chan YH, Tu CW, Tung CY, Wang PN, Tsai TF. Transcriptomic predictors of rapid progression from mild cognitive impairment to Alzheimer's disease. Alzheimers Res Ther 2025; 17:3. [PMID: 39754267 DOI: 10.1186/s13195-024-01651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Effective treatment for Alzheimer's disease (AD) remains an unmet need. Thus, identifying patients with mild cognitive impairment (MCI) who are at high-risk of progressing to AD is crucial for early intervention. METHODS Blood-based transcriptomics analyses were performed using a longitudinal study cohort to compare progressive MCI (P-MCI, n = 28), stable MCI (S-MCI, n = 39), and AD patients (n = 49). Statistical DESeq2 analysis and machine learning methods were employed to identify differentially expressed genes (DEGs) and develop prediction models. RESULTS We discovered a remarkable gender-specific difference in DEGs that distinguish P-MCI from S-MCI. Machine learning models achieved high accuracy in distinguishing P-MCI from S-MCI (AUC 0.93), AD from S-MCI (AUC 0.94), and AD from P-MCI (AUC 0.92). An 8-gene signature was identified for distinguishing P-MCI from S-MCI. CONCLUSIONS Blood-based transcriptomic biomarker signatures show great utility in identifying high-risk MCI patients, with mitochondrial processes emerging as a crucial contributor to AD progression.
Collapse
Affiliation(s)
- Yi-Long Huang
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan
| | - Tsung-Hsien Tsai
- Advanced Tech BU, Acer Inc., 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City, 221421, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan
| | - Yun-Hsuan Chan
- Advanced Tech BU, Acer Inc., 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City, 221421, Taiwan
| | - Chih-Wei Tu
- Advanced Tech BU, Acer Inc., 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City, 221421, Taiwan
| | - Chien-Yi Tung
- The National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou, Taipei, 112201, Taiwan.
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Peitou, Taipei, 112, Taiwan.
| | - Ting-Fen Tsai
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan, Miaoli, 350401, Taiwan.
| |
Collapse
|
2
|
Lu F, Shi C, Rao D, Yue W. The Correlations between Volume Loss of Temporal and Subcortical Functional Subregions and Cognitive Impairment at Various Stages of Cognitive Decline. J Integr Neurosci 2024; 23:220. [PMID: 39735962 DOI: 10.31083/j.jin2312220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND The relationship between subregion atrophy in the entire temporal lobe and subcortical nuclei and cognitive decline at various stages of Alzheimer's disease (AD) is unclear. METHODS We selected 711 participants from the AD Neuroimaging Initiative (ADNI) database, which included 195 cases of cognitively normal (CN), 271 cases of early Mild cognitive impairment (MCI) (EMCI), 132 cases of late MCI (LMCI), and 113 cases of AD. we looked at how subregion atrophy in the temporal lobe and subcortical nuclei correlated with cognition at different stages of AD. The volume of the subregions was measured from the human Brainnetome atlas (BNA-246) using voxel-based morphometry and discriminant and correlation analyses were performed. RESULTS Only the left premotor thalamus demonstrated significant shrinkage in individuals with EMCI (p = 0.012). Discriminant analysis revealed that the left rostral Brodmann area 20 has the highest discriminatory ability among all temporal subregions to distinguish patients with AD from CN. While the left caudal hippocampus can efficiently distinguish patients with LMCI from EMCI. While the right rostral Brodmann area 20 was the most effective in distinguishing AD from LMCI. Correlation analysis revealed that the left nucleus accumbens, left caudal area 35/36, and left sensory thalamus had a mild correlation with cognitive scores measured using the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-cog) 13 and Mini-Mental State Examination (MMSE) scores. CONCLUSIONS Our findings show that the right rostral area 20 in the inferior temporal gyrus plays a significant role in cognitive impairment in AD.
Collapse
Affiliation(s)
- Fang Lu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Cailing Shi
- Department of Radiology, Qionglai Medical Centre Hospital, 611530 Chengdu, Sichuan, China
| | - Dingcai Rao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| | - Wenjun Yue
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 637000 Nanchong, Sichuan, China
| |
Collapse
|
3
|
Jeong H, Pan Y, Akhter F, Volkow ND, Zhu D, Du C. Evidence of cortical vascular impairments in early stage of Alzheimer's transgenic mice: Optical imaging. J Cereb Blood Flow Metab 2024:271678X241304893. [PMID: 39696904 DOI: 10.1177/0271678x241304893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder with progressive cognitive decline, remains clinically challenging with limited understanding of etiology and interventions. Clinical studies have reported vascular defects prior to other pathological manifestations of AD, leading to the "Vascular Hypothesis" for the disorder. However, in vivo assessments of cerebral vasculature in AD rodent models have been constrained by limited spatiotemporal resolution or field of view of conventional imaging. We herein employed two in vivo imaging technologies, Dual-Wavelength Imaging and Optical Coherence Doppler Tomography, to evaluate cerebrovascular reactivity (CVR) to vasoconstrictive cocaine and vasodilatory hypercapnia challenges and to detect resting 3D cerebral blood flow (CBF) in living transgenic AD mice at capillary resolution. Results showed that CVR to cocaine and hypercapnia was significantly attenuated in 7-10 months old AD mice vs controls, indicating reduced vascular flexibility and reactivity. Additionally, in the AD mice, arterial CBF velocities were slower and the microvascular density in cortex was decreased compared to controls. These results reveal significant vascular impairments including reduced CVR and resting CBF in early-staged AD mice. Hence, this cutting-edge in vivo optical imaging offers an innovative venue for detecting early neurovascular dysfunction in AD brain with translational potential.
Collapse
Affiliation(s)
- Hyomin Jeong
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Firoz Akhter
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Congwu Du
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
4
|
Li Y, Serras CP, Blumenfeld J, Xie M, Hao Y, Deng E, Chun YY, Holtzman J, An A, Yoon SY, Tang X, Rao A, Woldemariam S, Tang A, Zhang A, Simms J, Lo I, Oskotsky T, Keiser MJ, Huang Y, Sirota M. Data-driven discovery of cell-type-directed network-correcting combination therapy for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627436. [PMID: 39713353 PMCID: PMC11661161 DOI: 10.1101/2024.12.09.627436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by heterogeneous molecular changes across diverse cell types, posing significant challenges for treatment development. To address this, we introduced a cell-type-specific, multi-target drug discovery strategy grounded in human data and real-world evidence. This approach integrates single-cell transcriptomics, drug perturbation databases, and clinical records. Using this framework, letrozole and irinotecan were identified as a potential combination therapy, each targeting AD-related gene expression changes in neurons and glial cells, respectively. In an AD mouse model, this combination therapy significantly improved memory function and reduced AD-related pathologies compared to vehicle and single-drug treatments. Single-nuclei transcriptomic analysis confirmed that the therapy reversed disease-associated gene networks in a cell-type-specific manner. These results highlight the promise of cell-type-directed combination therapies in addressing multifactorial diseases like AD and lay the groundwork for precision medicine tailored to patient-specific transcriptomic and clinical profiles.
Collapse
Affiliation(s)
- Yaqiao Li
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Science and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Carlota Pereda Serras
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Science and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Min Xie
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Elise Deng
- Gladstone Behavior Core, Gladstone Institutes, San Francisco, CA, USA
| | - You Young Chun
- Gladstone Behavior Core, Gladstone Institutes, San Francisco, CA, USA
| | - Julia Holtzman
- Gladstone Behavior Core, Gladstone Institutes, San Francisco, CA, USA
| | - Alice An
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Xinyu Tang
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Alice Tang
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Bioengineering Graduate Program, University of California, San Francisco and University of California, Berkeley, CA, USA
| | - Alex Zhang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Jeffrey Simms
- Gladstone Behavior Core, Gladstone Institutes, San Francisco, CA, USA
| | - Iris Lo
- Gladstone Behavior Core, Gladstone Institutes, San Francisco, CA, USA
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Keiser
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Science and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
- Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Science and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
7
|
Chaumeil J, Morey C. [X chromosome regulation and female functional specificities: Are two Xs better than one?]. Med Sci (Paris) 2024; 40:935-946. [PMID: 39705564 DOI: 10.1051/medsci/2024179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
What if the presence of two X chromosomes confers functional specificities on female cells and contributes to the different susceptibilites of men and women to certain diseases? One of the X chromosomes is randomly silenced in each female cell from the embryonic stage, theoretically making the sexes equal. This silencing of the X chromosome is a unique epigenetic process, affecting an entire chromosome and resulting in mosaic expression of X-linked genes throughout the body. However, some genes escape this process and X-inactivation appears to be somewhat labile in certain cell types. What are the physiological implications of these observations? This question is beginning to be explored, particularly in the immune and nervous systems, where several pathologies have sexual bias.
Collapse
Affiliation(s)
- Julie Chaumeil
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Céline Morey
- UMR7216 - Épigénétique et destin cellulaire, CNRS, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Escarcega RD, M J VK, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Blasco Conesa MP, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. Neurobiol Dis 2024; 204:106747. [PMID: 39617329 DOI: 10.1016/j.nbd.2024.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024] Open
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vijay Kumar M J
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Vasilia E Kyriakopoulos
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Guadalupe J Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
9
|
Escarcega RD, Vijay Kumar MJ, Kyriakopoulos VE, Ortiz GJ, Gusdon AM, Fan H, Peesh P, Conesa MPB, Colpo GD, Ahnstedt HW, Couture L, Kim SH, Hinojosa M, Farrell CM, Marrelli SP, Urayama A, Ganesh BP, Schulz PE, McCullough LD, Tsvetkov AS. Serum metabolome profiling in patients with mild cognitive impairment reveals sex differences in lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623108. [PMID: 39605322 PMCID: PMC11601308 DOI: 10.1101/2024.11.11.623108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) affects more women than men. Although women live longer than men, it is not longevity alone, but other factors, including metabolic changes, that contribute to the higher risk of AD in women. Metabolic pathways have been implicated in AD progression, but studies to date examined targeted pathways, leaving many metabolites unmeasured. Sex is often a neglected biological variable, and most metabolomic studies were not designed to investigate sex differences in metabolomic profiles. Here, we performed untargeted metabolomic profiling of sera from male and female patients with mild cognitive impairment (MCI), a common precursor to AD, and matched controls. We discovered significant metabolic changes in individuals with MCI, and found several pathways that were strongly associated with sex. Peptide energy metabolism demonstrated sexual dimorphism. Lipid pathways exhibited the strongest differences between female and male MCI patients, including specific phosphatidylcholine lipids, lysophospholipids, long-chain fatty acids, and monoacylglycerols. 1-palmitoleoyl glycerol and 1-arachidonoyl glycerol were higher in female MCI subjects than in male MCI subjects with no differences between control males and females. Conversely, specific dicarboxylic fatty acids were lower in female MCI subjects than male MCI subjects. In cultured astrocytes, 1-arachidonoyl glycerol promoted phosphorylation of the transcriptional regulator sphingosine kinase 2, which was inhibited by the transient receptor potential vanilloid 1 receptor antagonists, as well as chromatin remodelling. Overall, we identified novel sex-specific metabolites in MCI patients that could serve as biomarkers of MCI in both sexes, help further define AD etiology, and reveal new potential prevention strategies for AD.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - M. J. Vijay Kumar
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | | | - Guadalupe J. Ortiz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Aaron M. Gusdon
- Department of Neurosurgery, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Huihui Fan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Maria P. Blasco Conesa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriela Delevati Colpo
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Hilda W. Ahnstedt
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Lucy Couture
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Stella H. Kim
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Miriam Hinojosa
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Christine M. Farrell
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Paul E. Schulz
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrey S. Tsvetkov
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- UTHealth Consortium on Aging, the University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
10
|
Price E, Feyertag F, Evans T, Miskin J, Mitrophanous K, Dikicioglu D. What is the real value of omics data? Enhancing research outcomes and securing long-term data excellence. Nucleic Acids Res 2024; 52:12130-12140. [PMID: 39417504 PMCID: PMC11551742 DOI: 10.1093/nar/gkae901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
A wealth of high-throughput biological data, of which omics constitute a significant fraction, has been made publicly available in repositories over the past decades. These data come in various formats and cover a range of species and research areas providing insights into the complexities of biological systems; the public repositories hosting these data serve as multifaceted resources. The potentially greater value of these data lies in their secondary utilization as the deployment of data science and artificial intelligence in biology advances. Here, we critically evaluate challenges in secondary data use, focusing on omics data of human embryonic kidney cell lines available in public repositories. The emerging issues are obstacles faced by secondary data users across diverse domains as they concern platforms and repositories, which accept deposition of data irrespective of their species type. The evolving landscape of data-driven research in biology prompts re-evaluation of open access data curation and submission procedures to ensure that these challenges do not impede novel research opportunities through data exploitation. This paper aims to draw attention to widespread issues with data reporting and encourages data owners to meticulously curate submissions to maximize not only their immediate research impact but also the long-term legacy of datasets.
Collapse
Affiliation(s)
- Eva Price
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Felix Feyertag
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Thomas Evans
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - James Miskin
- Oxford Biomedica (UK) Ltd, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | | | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
12
|
Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E, Satija R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618577. [PMID: 39463993 PMCID: PMC11507907 DOI: 10.1101/2024.10.15.618577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Here we systematically studied the reproducibility of DEGs in previously published Alzheimer's Disease (AD), Parkinson's Disease (PD), and COVID-19 scRNA-seq studies. We found that while transcriptional scores created from differentially expressed genes (DEGs) in individual PD and COVID-19 datasets had moderate predictive power for the case control status of other datasets (mean AUC=0.77 and 0.75, respectively), genes from individual AD datasets had poor predictive power (mean AUC=0.68). We developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative differential expression ranks across datasets. The meta-analysis genes had improved predictive power (AUCs of 0.88, 0.91, and 0.78, respectively). By multiple other metrics, specificity and sensitivity of these genes were substantially higher than those discovered by dataset merging and inverse variance weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and we validate the BCAT1 gene as down-regulated in oligodendrocytes in an AD mouse model. Our analyses show that for heterogeneous diseases, DEGs of individual studies often have low reproducibility, but combining information across multiple datasets promotes the rigorous discovery of reproducible DEGs.
Collapse
Affiliation(s)
- Nathan Nakatsuka
- New York Genome Center; New York, NY 10013
- Center for Genomics and Systems Biology, New York University; New York, NY 10003
- Department of Psychiatry, New York University Grossman School of Medicine; New York, NY 10016
| | - Drew Adler
- Center for Neural Science, New York University; New York, NY 10003
- NYU Neuroscience Institute, New York University; New York, NY 10013
| | - Longda Jiang
- New York Genome Center; New York, NY 10013
- Center for Genomics and Systems Biology, New York University; New York, NY 10003
| | - Austin Hartman
- New York Genome Center; New York, NY 10013
- Center for Genomics and Systems Biology, New York University; New York, NY 10003
| | - Evan Cheng
- Center for Neural Science, New York University; New York, NY 10003
- NYU Neuroscience Institute, New York University; New York, NY 10013
| | - Eric Klann
- Center for Neural Science, New York University; New York, NY 10003
- NYU Neuroscience Institute, New York University; New York, NY 10013
| | - Rahul Satija
- New York Genome Center; New York, NY 10013
- Center for Genomics and Systems Biology, New York University; New York, NY 10003
| |
Collapse
|
13
|
Simmonds E, Leonenko G, Yaman U, Bellou E, Myers A, Morgan K, Brookes K, Hardy J, Salih D, Escott-Price V. Chromosome X-wide association study in case control studies of pathologically confirmed Alzheimer's disease in a European population. Transl Psychiatry 2024; 14:358. [PMID: 39231932 PMCID: PMC11375158 DOI: 10.1038/s41398-024-03058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Although there are several genome-wide association studies available which highlight genetic variants associated with Alzheimer's disease (AD), often the X chromosome is excluded from the analysis. We conducted an X-chromosome-wide association study (XWAS) in three independent studies with a pathologically confirmed phenotype (total 1970 cases and 1113 controls). The XWAS was performed in males and females separately, and these results were then meta-analysed. Four suggestively associated genes were identified which may be of potential interest for further study in AD, these are DDX53 (rs12006935, OR = 0.52, p = 6.9e-05), IL1RAPL1 (rs6628450, OR = 0.36, p = 4.2e-05; rs137983810, OR = 0.52, p = 0.0003), TBX22 (rs5913102, OR = 0.74, p = 0.0003) and SH3BGRL (rs186553004, OR = 0.35, p = 0.0005; rs113157993, OR = 0.52, p = 0.0003), which replicate across at least two studies. The SNP rs5913102 in TBX22 achieves chromosome-wide significance in meta-analysed data. DDX53 shows highest expression in astrocytes, IL1RAPL1 is most highly expressed in oligodendrocytes and neurons and SH3BGRL is most highly expressed in microglia. We have also identified SNPs in the NXF5 gene at chromosome-wide significance in females (rs5944989, OR = 0.62, p = 1.1e-05) but not in males (p = 0.83). The discovery of relevant AD associated genes on the X chromosome may identify AD risk differences and similarities based on sex and lead to the development of sex-stratified therapeutics.
Collapse
Affiliation(s)
- Emily Simmonds
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Ganna Leonenko
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Umran Yaman
- Institute of Neurology, University College London, London, UK
| | - Eftychia Bellou
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Amanda Myers
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Keeley Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - John Hardy
- Institute of Neurology, University College London, London, UK
| | - Dervis Salih
- Institute of Neurology, University College London, London, UK
| | - Valentina Escott-Price
- Dementia Research Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
14
|
Yeung J, DeYoung T, Spring S, de Guzman AE, Elder MW, Beauchamp A, Wong CS, Palmert MR, Lerch JP, Nieman BJ. Sex chromosomes and hormones independently influence healthy brain development but act similarly after cranial radiation. Proc Natl Acad Sci U S A 2024; 121:e2404042121. [PMID: 39207735 PMCID: PMC11388377 DOI: 10.1073/pnas.2404042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The course of normal development and response to pathology are strongly influenced by biological sex. For instance, female childhood cancer survivors who have undergone cranial radiation therapy (CRT) tend to display more pronounced cognitive deficits than their male counterparts. Sex effects can be the result of sex chromosome complement (XX vs. XY) and/or gonadal hormone influence. The contributions of each can be separated using the four-core genotype mouse model (FCG), where sex chromosome complement and gonadal sex are decoupled. While studies of FCG mice have evaluated brain differences in adulthood, it is still unclear how sex chromosome and sex hormone effects emerge through development in both healthy and pathological contexts. Our study utilizes longitudinal MRI with the FCG model to investigate sex effects in healthy development and after CRT in wildtype and immune-modified Ccl2-knockout mice. Our findings in normally developing mice reveal a relatively prominent chromosome effect prepubertally, compared to sex hormone effects which largely emerge later. Spatially, sex chromosome and hormone influences were independent of one another. After CRT in Ccl2-knockout mice, both male chromosomes and male hormones similarly improved brain outcomes but did so more separately than in combination. Our findings highlight the crucial role of sex chromosomes in early development and identify roles for sex chromosomes and hormones after CRT-induced inflammation, highlighting the influences of biological sex in both normal brain development and pathology.
Collapse
Affiliation(s)
- Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto TN 38068, Italy
| | - Madeline W Elder
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - C Shun Wong
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto ON M5T 1P5, Canada
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
15
|
López-Cerdán A, Andreu Z, Hidalgo MR, Soler-Sáez I, de la Iglesia-Vayá M, Mikozami A, Guerini FR, García-García F. An integrated approach to identifying sex-specific genes, transcription factors, and pathways relevant to Alzheimer's disease. Neurobiol Dis 2024; 199:106605. [PMID: 39009097 DOI: 10.1016/j.nbd.2024.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Age represents a significant risk factor for the development of Alzheimer's disease (AD); however, recent research has documented an influencing role of sex in several features of AD. Understanding the impact of sex on specific molecular mechanisms associated with AD remains a critical challenge to creating tailored therapeutic interventions. METHODS The exploration of the sex-based differential impact on disease (SDID) in AD used a systematic review to first select transcriptomic studies of AD with data regarding sex in the period covering 2002 to 2021 with a focus on the primary brain regions affected by AD - the cortex (CT) and the hippocampus (HP). A differential expression analysis for each study and two tissue-specific meta-analyses were then performed. Focusing on the CT due to the presence of significant SDID-related alterations, a comprehensive functional characterization was conducted: protein-protein network interaction and over-representation analyses to explore biological processes and pathways and a VIPER analysis to estimate transcription factor activity. RESULTS We selected 8 CT and 5 HP studies from the Gene Expression Omnibus (GEO) repository for tissue-specific meta-analyses. We detected 389 significantly altered genes in the SDID comparison in the CT. Generally, female AD patients displayed more affected genes than males; we grouped said genes into six subsets according to their expression profile in female and male AD patients. Only subset I (repressed genes in female AD patients) displayed significant results during functional profiling. Female AD patients demonstrated more significant impairments in biological processes related to the regulation and organization of synapsis and pathways linked to neurotransmitters (glutamate and GABA) and protein folding, Aβ aggregation, and accumulation compared to male AD patients. These findings could partly explain why we observe more pronounced cognitive decline in female AD patients. Finally, we detected 23 transcription factors with different activation patterns according to sex, with some associated with AD for the first time. All results generated during this study are readily available through an open web resource Metafun-AD (https://bioinfo.cipf.es/metafun-ad/). CONCLUSION Our meta-analyses indicate the existence of differences in AD-related mechanisms in female and male patients. These sex-based differences will represent the basis for new hypotheses and could significantly impact precision medicine and improve diagnosis and clinical outcomes in AD patients.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain; Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Irene Soler-Sáez
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Akiko Mikozami
- Oral Health/Brain Health/Total health (OBT) Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
16
|
He R, Cheng J, Qiu Y, Hu Y, Liu J, Wang TH, Cao X. IGF1R and FLT1 in female endothelial cells and CHD2 in male microglia play important roles in Alzheimer's disease based on gender difference analysis. Exp Gerontol 2024; 194:112512. [PMID: 38971545 DOI: 10.1016/j.exger.2024.112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE This study investigated sex-specific pathogenesis mechanisms in Alzheimer's disease (AD) using single-nucleus RNA sequencing (snRNA-seq) data. METHODS Data from the Gene Expression Omnibus (GEO) were searched using terms "Alzheimer's Disease", "single cell", and "Homo sapiens". Studies excluding APOE E4 and including comprehensive gender information with 10× sequencing methods were selected, resulting in GSE157827 and GSE174367 datasets from human prefrontal cortex samples. Sex-stratified analyses were conducted on these datasets, and the outcomes of the analysis for GSE157827 were compared with those of GSE174367. The findings were validated using expression profiling from the mouse dataset GSE85162. Furthermore, real-time PCR experiments in mice further confirmed these findings. The Seurat R package was used to identify cell types, and batch effects were mitigated using the Harmony R package. Cell proportions by sex were compared using the Mann-Whitney-Wilcoxon test, and gene expression variability was displayed with an empirical cumulative distribution plot. Differentially expressed genes were identified using the FindMarkers function with the MAST test. Transcription factors were analyzed using the RcisTarget R package. RESULTS Seven cell types were identified: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, and oligodendrocyte progenitor cells. Additionally, five distinct subpopulations of both endothelial and microglial cells were also identified, respectively. Key findings included: (1) In endothelial cells, genes involved in synapse organization, such as Insulin Like Growth Factor 1 Receptor (IGF1R) and Fms Related Receptor Tyrosine Kinase 1(FLT1), showed higher expression in females with AD. (2) In microglial cells, genes in the ribosome pathway exhibited higher expression in males without AD compared to females (with or without AD) and males with AD. (3) Chromodomain Helicase DNA Binding Protein 2 (CHD2) negatively regulated gene expression in the ribosome pathway in male microglia, suppressing AD, this finding was further validated in mice. (4) Differences between Asians and Caucasians were observed based on sex and disease status stratification. CONCLUSIONS IGF1R and FLT1 in endothelial cells contribute to AD in females, while CHD2 negatively regulates ribosome pathway gene expression in male microglia, suppressing AD in humans and mice.
Collapse
Affiliation(s)
- Rong He
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jishuai Cheng
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yue Qiu
- Dermatology Department of Xiangya Hospital, Central South University, Changsha, China
| | - Yiwen Hu
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jia Liu
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Ting-Hua Wang
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Xue Cao
- Laboratory Animal Department, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
17
|
Sorajja N, Chung J, Alcántara C, Wassertheil-Smoller S, Penedo FJ, Ramos AR, Perreira KM, Daviglus ML, Suglia SF, Gallo LC, Liu PY, Redline S, Isasi CR, Sofer T. A sociodemographic index identifies sex-related effects on insomnia in the Hispanic Community Health Study/Study of Latinos. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae064. [PMID: 39314744 PMCID: PMC11417013 DOI: 10.1093/sleepadvances/zpae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/19/2024] [Indexed: 09/25/2024]
Abstract
Study Objectives Sex differences are related to both biological factors and the gendered environment. We constructed measures to model sex-related differences beyond binary sex. Methods Data came from the baseline visit of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We applied the least absolute shrinkage and selection operator penalized logistic regression of male versus female sex over sociodemographic, acculturation, and psychological factors jointly. Two "gendered indices," the gendered index of sociodemographic environment (GISE) and gendered index of psychological and sociodemographic environment, summarizing the sociodemographic environment (GISE) and psychosocial and sociodemographic environment (GIPSE) associated with sex, were calculated by summing these variables, weighted by their regression coefficients. We examined the association of these indices with insomnia, a phenotype with strong sex differences, in sex-adjusted and sex-stratified analyses. Results The distribution of GISE and GIPSE differed by sex with higher values in male individuals. In an association model with insomnia, male sex was associated with a lower likelihood of insomnia (odds ratio [OR] = 0.60, 95% CI [0.53, 0.67]). Including GISE in the model, the association was slightly weaker (OR = 0.63, 95% CI [0.56, 0.70]), and weaker when including instead GIPSE in the association model (OR = 0.78, 95% CI [0.69, 0.88]). Higher values of GISE and of GIPSE, more common in the male sex, were associated with a lower likelihood of insomnia, in analyses adjusted for sex (per 1 standard deviation of the index, GISE OR = 0.92, 95% CI [0.87, 0.99], GIPSE OR = 0.65, 95% CI [0.61, 0.70]). Conclusions New measures such as GISE and GIPSE capture sex-related differences beyond binary sex and have the potential to better model and inform research studies of sleep health.
Collapse
Affiliation(s)
- Natali Sorajja
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Joon Chung
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | - Frank J Penedo
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Peter Y Liu
- Division of Genetics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Carmen R Isasi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tamar Sofer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
18
|
Black CM, Braden AA, Nasim S, Tripathi M, Xiao J, Khan MM. The Association between Long Non-Coding RNAs and Alzheimer's Disease. Brain Sci 2024; 14:818. [PMID: 39199508 PMCID: PMC11353078 DOI: 10.3390/brainsci14080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Neurodegeneration occurs naturally as humans age, but the presence of additional pathogenic mechanisms yields harmful and consequential effects on the brain. Alzheimer's disease (AD), the most common form of dementia, is a composite of such factors. Despite extensive research to identify the exact causes of AD, therapeutic approaches for treating the disease continue to be ineffective, indicating important gaps in our understanding of disease mechanisms. Long non-coding RNAs (lncRNAs) are an endogenous class of regulatory RNA transcripts longer than 200 nucleotides, involved in various regulatory networks, whose dysregulation is evident in several neural and extraneural diseases. LncRNAs are ubiquitously expressed across all tissues with a wide range of functions, including controlling cell differentiation and development, responding to environmental stimuli, and other physiological processes. Several lncRNAs have been identified as potential contributors in worsening neurodegeneration due to altered regulation during abnormal pathological conditions. Within neurological disease, lncRNAs are prime candidates for use as biomarkers and pharmacological targets. Gender-associated lncRNA expression is altered in a gender-dependent manner for AD, suggesting more research needs to be focused on this relationship. Overall, research on lncRNAs and their connection to neurodegenerative disease is growing exponentially, as commercial enterprises are already designing and employing RNA therapeutics. In this review we offer a comprehensive overview of the current state of knowledge on the role of lncRNAs in AD and discuss the potential implications of lncRNA as potential therapeutic targets and diagnostic biomarkers in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Carson M. Black
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Anneliesse A. Braden
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samia Nasim
- Departments of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Manish Tripathi
- Medicine and Oncology, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
| | - Jianfeng Xiao
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Mohammad Moshahid Khan
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
19
|
Luo Y, Wang H, Chen Z, Deng Y, Zhang Y, Hu W. Sex-specific effects of intermittent fasting on hippocampal neurogenesis via the gut-brain axis. Food Funct 2024; 15:8432-8447. [PMID: 39049753 DOI: 10.1039/d4fo00318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Intermittent fasting (IF) is a widely used dietary strategy that has shown several advantageous impacts on general health and aging. IF has recently been linked to the control of neurogenesis, a crucial process for emotional control, memory, and learning, in the hippocampus. Nevertheless, there is little knowledge about the sex-specific impacts of IF on hippocampal neurogenesis and the related mechanisms, which were investigated in this study among both male and female rats, together with analyzing the involvement of the flora-gut-brain axis in facilitating these effects. Our findings show that IF favorably affects hippocampus neurogenesis in female mice relative to male mice, suggesting a sex-specific mechanism. In addition, IF influenced the diversity of the gut microbiota and decreased the synthesis of fructose-1-phosphate (F-1-P), which is believed together with fructose metabolism to be linked to neurological damage and cognitive decline. Collectively, these data indicate that the connection between the flora-gut-brain axis and hippocampus neurogenesis is significant.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhaomin Chen
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Yuqing Deng
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Yuran Zhang
- Department of Biological Science, Jining Medical University, Rizhao, China.
| | - Wenjie Hu
- Department of Biological Science, Jining Medical University, Rizhao, China.
| |
Collapse
|
20
|
Nam Y, Kim J, Jung SH, Woerner J, Suh EH, Lee DG, Shivakumar M, Lee ME, Kim D. Harnessing Artificial Intelligence in Multimodal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine. Annu Rev Biomed Data Sci 2024; 7:225-250. [PMID: 38768397 DOI: 10.1146/annurev-biodatasci-102523-103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The integration of multiomics data with detailed phenotypic insights from electronic health records marks a paradigm shift in biomedical research, offering unparalleled holistic views into health and disease pathways. This review delineates the current landscape of multimodal omics data integration, emphasizing its transformative potential in generating a comprehensive understanding of complex biological systems. We explore robust methodologies for data integration, ranging from concatenation-based to transformation-based and network-based strategies, designed to harness the intricate nuances of diverse data types. Our discussion extends from incorporating large-scale population biobanks to dissecting high-dimensional omics layers at the single-cell level. The review underscores the emerging role of large language models in artificial intelligence, anticipating their influence as a near-future pivot in data integration approaches. Highlighting both achievements and hurdles, we advocate for a concerted effort toward sophisticated integration models, fortifying the foundation for groundbreaking discoveries in precision medicine.
Collapse
Affiliation(s)
- Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Jaesik Kim
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Jakob Woerner
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Erica H Suh
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Dong-Gi Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Matthew E Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Dokyoon Kim
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
21
|
Kim SM, Choi S, Lee G, Oh YH, Son JS, Ko A, Kim JS, Cho Y, Keum N, Park SM. Association of changes in predicted body composition with subsequent risk of dementia. Ann Clin Transl Neurol 2024; 11:1952-1963. [PMID: 39010668 PMCID: PMC11330214 DOI: 10.1002/acn3.52096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE The effect of body composition change on the risk of dementia is not clear. This study analyzed the associations of changes in predicted lean body mass index (pLBMI), predicted appendicular skeletal muscle mass index (pASMI), and predicted body fat mass index (pBFMI) with the risk of dementia. METHODS In this nationwide cohort study, data were obtained from the Korean National Health Insurance Service database. The exposure was defined as changes in pLBMI, pASMI, and pBFMI derived from validated prediction equations. The outcome was dementia, defined based on the dementia diagnosis with prescription of anti-dementia medication. Cox proportional hazards regression analyses were performed to obtain the hazard ratio with a 95% confidence interval for risk of dementia according to changes in predicted body composition. RESULTS A total of 13,215,208 individuals with no prior record of dementia who underwent health screenings twice between 2009-2010 and 2011-2012 were included. A 1-kg/m2 increase in pLBMI and pASMI had an association with reduced risk of dementia (aHR: 0.85, 95% CI 0.84-0.87; aHR: 0.70, 95% CI 0.69-0.72, respectively for men, and aHR: 0.69, 95% CI 0.67-0.71; aHR: 0.59, 95% CI 0.57-0.61, respectively for women). A 1-kg/m2 increase in pBFMI had an association with a raised risk of dementia (aHR: 1.19, 95% CI 1.17-1.21 for men and aHR: 1.53, 95% CI 1.48-1.57 for women). These results remained consistent regardless of sex or weight change. INTERPRETATION Increase in pLBMI or pASMI, or reduction in pBFMI was linked to lower risk of dementia.
Collapse
Affiliation(s)
- Sung Min Kim
- Department of Transdisciplinary MedicineSeoul National University HospitalSeoulSouth Korea
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulSouth Korea
| | - Seulggie Choi
- Department of Internal MedicineSeoul National University HospitalSeoulSouth Korea
| | - Gyeongsil Lee
- Life ClinicSeoulSouth Korea
- KS Healthlink InstituteSeoulSouth Korea
| | - Yun Hwan Oh
- Department of Family Medicine, Chung‐Ang University Gwangmyeong HospitalChung‐Ang University College of MedicineGwangmyeong‐siSouth Korea
| | - Joung Sik Son
- Department of Family MedicineKorea University Guro HospitalSeoulSouth Korea
| | - Ahryoung Ko
- Department of Family Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| | - Ji Soo Kim
- International Healthcare Center, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| | - Yoosun Cho
- Department of Family Medicine, Chung‐Ang University Gwangmyeong HospitalChung‐Ang University College of MedicineGwangmyeong‐siSouth Korea
| | - NaNa Keum
- Department of Food Science and BiotechnologyDongguk University Graduate SchoolSeoulSouth Korea
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Sang Min Park
- Department of Biomedical SciencesSeoul National University Graduate SchoolSeoulSouth Korea
- Department of Family Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulSouth Korea
| |
Collapse
|
22
|
Meng W, Xu J, Huang Y, Wang C, Song Q, Ma A, Song L, Bian J, Ma Q, Yin R. Autoencoder to Identify Sex-Specific Sub-phenotypes in Alzheimer's Disease Progression Using Longitudinal Electronic Health Records. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.07.24310055. [PMID: 39040206 PMCID: PMC11261930 DOI: 10.1101/2024.07.07.24310055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disorder significantly influenced by sex differences, with approximately two-thirds of AD patients being women. Characterizing the sex-specific AD progression and identifying its progression trajectory is a crucial step to developing effective risk stratification and prevention strategies. In this study, we developed an autoencoder to uncover sex-specific sub-phenotypes in AD progression leveraging longitudinal electronic health record (EHR) data from OneFlorida+ Clinical Research Consortium. Specifically, we first constructed temporal patient representation using longitudinal EHRs from a sex-stratified AD cohort. We used a long short-term memory (LSTM)-based autoencoder to extract and generate latent representation embeddings from sequential clinical records of patients. We then applied hierarchical agglomerative clustering to the learned representations, grouping patients based on their progression sub-phenotypes. The experimental results show we successfully identified five primary sex-based AD sub-phenotypes with corresponding progression pathways with high confidence. These sex-specific sub-phenotypes not only illustrated distinct AD progression patterns but also revealed differences in clinical characteristics and comorbidities between females and males in AD development. These findings could provide valuable insights for advancing personalized AD intervention and treatment strategies.
Collapse
Affiliation(s)
- Weimin Meng
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Jie Xu
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Yu Huang
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Cankun Wang
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | - Qianqian Song
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Anjun Ma
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | - Lixin Song
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jiang Bian
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Qin Ma
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, 43210, USA
| | - Rui Yin
- Department of Health Outcomes &Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
23
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
24
|
Badr A, Daily KP, Eltobgy M, Estfanous S, Tan MH, Chun-Tien Kuo J, Whitham O, Carafice C, Gupta G, Amer HM, Shamseldin MM, Yousif A, Deems NP, Fitzgerald J, Yan P, Webb A, Zhang X, Pietrzak M, Ghoneim HE, Dubey P, Barrientos RM, Lee RJ, Kokiko-Cochran ON, Amer AO. Microglia-targeted inhibition of miR-17 via mannose-coated lipid nanoparticles improves pathology and behavior in a mouse model of Alzheimer's disease. Brain Behav Immun 2024; 119:919-944. [PMID: 38718909 DOI: 10.1016/j.bbi.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Neuroinflammation and accumulation of Amyloid Beta (Aβ) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aβ accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aβ burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Kylene P Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Michelle H Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, the United States of America
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Gauruv Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Heba M Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Amir Yousif
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, the United States of America
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, the United States of America
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, the United States of America
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, the United States of America
| | | | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America.
| |
Collapse
|
25
|
Chen YH, Wang ZB, Liu XP, Xu JP, Mao ZQ. Sex differences in the relationship between depression and Alzheimer's disease-mechanisms, genetics, and therapeutic opportunities. Front Aging Neurosci 2024; 16:1301854. [PMID: 38903903 PMCID: PMC11188317 DOI: 10.3389/fnagi.2024.1301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Depression and Alzheimer's disease (AD) are prevalent neuropsychiatric disorders with intriguing epidemiological overlaps. Their interrelation has recently garnered widespread attention. Empirical evidence indicates that depressive disorders significantly contribute to AD risk, and approximately a quarter of AD patients have comorbid major depressive disorder, which underscores the bidirectional link between AD and depression. A growing body of evidence substantiates pervasive sex differences in both AD and depression: both conditions exhibit a higher incidence among women than among men. However, the available literature on this topic is somewhat fragmented, with no comprehensive review that delineates sex disparities in the depression-AD correlation. In this review, we bridge these gaps by summarizing recent progress in understanding sex-based differences in mechanisms, genetics, and therapeutic prospects for depression and AD. Additionally, we outline key challenges in the field, holding potential for improving treatment precision and efficacy tailored to male and female patients' distinct needs.
Collapse
Affiliation(s)
- Yu-Han Chen
- The First Clinical Medical School, Hebei North University, Zhangjiakou, China
| | - Zhi-Bo Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Xi-Peng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North, Zhangjiakou, China
| | - Jun-Peng Xu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Qi Mao
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Lyons CE, Graves SI, Razzoli M, Jeganathan K, Mansk RP, McGonigle S, Sabarinathan N, van Deursen JM, Baker DJ, Bartolomucci A. Chronic Social and Psychological Stress Impact Select Neuropathologies in the PS19 Mouse Model of Tauopathy. Psychosom Med 2024; 86:366-378. [PMID: 37910129 PMCID: PMC10987396 DOI: 10.1097/psy.0000000000001256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Despite advances toward understanding the etiology of Alzheimer's disease (AD), it remains unclear which aspects of this disease are affected by environmental factors. Chronic life stress increases the risk of aging-related diseases including AD. The impact of stress on tauopathies remains understudied. We examined the effects of stress elicited by social (chronic subordination stress [CSS]) or psychological/physical (chronic restraint stress [CRS]) factors on the PS19 mouse model of tauopathy. METHODS Male PS19 mice (average age, 6.3 months) were randomized to receive CSS or CRS, or to remain as singly housed controls. Behavioral tests were used to assess anxiety-like behaviors and cognitive functions. Immunofluorescence staining and Western blotting analysis were used to measure levels of astrogliosis, microgliosis, and tau burden. Immunohistochemistry was used to assess glucocorticoid receptor expression. RESULTS PS19 mice exhibit neuroinflammation (glial fibrillary acidic protein, t tests: p = .0297; allograft inflammatory factor 1, t tests: p = .006) and tau hyperphosphorylation ( t test, p = .0446) in the hippocampus, reduced anxiety (post hoc, p = .046), and cognitive deficits, when compared with wild-type mice. Surprisingly, CRS reduced hippocampal levels of both total tau and phospho-tau S404 ( t test, p = .0116), and attenuated some aspects of both astrogliosis and microgliosis in PS19 mice ( t tests, p = .068-.0003); however, this was not associated with significant changes in neurodegeneration or cognitive function. Anxiety-like behaviors were increased by CRS (post hoc, p = .046). Conversely, CSS impaired spatial learning in Barnes maze without impacting tau phosphorylation or neurodegeneration and having a minimal impact on gliosis. CONCLUSIONS Our results demonstrate that social or psychological stress can differentially impact anxiety-like behavior, select cognitive functions, and some aspects of tau-dependent pathology in PS19 male mice, providing entry points for the development of experimental approaches designed to slow AD progression.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sara I Graves
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Maria Razzoli
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| | - Karthik Jeganathan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rachel P Mansk
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| | - Nivedita Sabarinathan
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Paul F. Glenn Center for the Biology of Aging at Mayo Clinic, Rochester, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Physiology and Biology, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine and Surgery, University of Parma, Italy
| |
Collapse
|
27
|
Eskandari-Sedighi G, Crichton M, Zia S, Gomez-Cardona E, Cortez LM, Patel ZH, Takahashi-Yamashiro K, St Laurent CD, Sidhu G, Sarkar S, Aghanya V, Sim VL, Tan Q, Julien O, Plemel JR, Macauley MS. Alzheimer's disease associated isoforms of human CD33 distinctively modulate microglial cell responses in 5XFAD mice. Mol Neurodegener 2024; 19:42. [PMID: 38802940 PMCID: PMC11129479 DOI: 10.1186/s13024-024-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Microglia play diverse pathophysiological roles in Alzheimer's disease (AD), with genetic susceptibility factors skewing microglial cell function to influence AD risk. CD33 is an immunomodulatory receptor associated with AD susceptibility through a single nucleotide polymorphism that modulates mRNA splicing, skewing protein expression from a long protein isoform (CD33M) to a short isoform (CD33m). Understanding how human CD33 isoforms differentially impact microglial cell function in vivo has been challenging due to functional divergence of CD33 between mice and humans. We address this challenge by studying transgenic mice expressing either of the human CD33 isoforms crossed with the 5XFAD mouse model of amyloidosis and find that human CD33 isoforms have opposing effects on the response of microglia to amyloid-β (Aβ) deposition. Mice expressing CD33M have increased Aβ levels, more diffuse plaques, fewer disease-associated microglia, and more dystrophic neurites compared to 5XFAD control mice. Conversely, CD33m promotes plaque compaction and microglia-plaque contacts, and minimizes neuritic plaque pathology, highlighting an AD protective role for this isoform. Protective phenotypes driven by CD33m are detected at an earlier timepoint compared to the more aggressive pathology in CD33M mice that appears at a later timepoint, suggesting that CD33m has a more prominent impact on microglia cell function at earlier stages of disease progression. In addition to divergent roles in modulating phagocytosis, scRNAseq and proteomics analyses demonstrate that CD33m+ microglia upregulate nestin, an intermediate filament involved in cell migration, at plaque contact sites. Overall, our work provides new functional insights into how CD33, as a top genetic susceptibility factor for AD, modulates microglial cell function.
Collapse
Affiliation(s)
| | | | - Sameera Zia
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - Leonardo M Cortez
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Zain H Patel
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | | | - Gaurav Sidhu
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Vivian Aghanya
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Valerie L Sim
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
28
|
Miramontes S, Pereda Serras C, Woldemariam SR, Khan U, Li Y, Tang AS, Tsoy E, Oskotsky TT, Sirota M. Alzheimer's disease as a women's health challenge: a call for action on integrative precision medicine approaches. NPJ WOMEN'S HEALTH 2024; 2:17. [PMID: 38778871 PMCID: PMC11106001 DOI: 10.1038/s44294-024-00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's Disease (AD) is marked by pronounced sex differences in pathophysiology and progression. However, the field has yet to fully recognize AD as a women's health issue, delaying the development of targeted preventative strategies and treatments. This perspective explores the elements impacting AD in women, identifying sex specificity in risk factors, highlighting new diagnostic approaches with electronic health records, and reviewing key molecular studies to underscore the need for integrative precision medicine approaches. Established AD risk factors such as advancing age, the apolipoprotein E4 allele, and poorer cardiovascular health affect women differently. We also shed light on sociocultural risk factors, focusing on the gender disparities that may play a role in AD development. From a biological perspective, sex differences in AD are apparent in biomarkers and transcriptomics, further emphasizing the need for targeted diagnostics and treatments. The convergence of novel multiomics data and cutting-edge computational tools provides a unique opportunity to study the molecular underpinnings behind sex dimorphism in AD. Thus, precision medicine emerges as a promising framework for understanding AD pathogenesis through the integration of genetics, sex, environment, and lifestyle. By characterizing AD as a women's health challenge, we can catalyze a transformative shift in AD research and care, marked by improved diagnostic accuracy, targeted interventions, and ultimately, enhanced clinical outcomes.
Collapse
Affiliation(s)
- S. Miramontes
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - C. Pereda Serras
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - S. R. Woldemariam
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - U. Khan
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - Y. Li
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - A. S. Tang
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - E. Tsoy
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA USA
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA USA
| | - T. T. Oskotsky
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
| | - M. Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
29
|
Moon C, Schneider A, Cho YE, Zhang M, Dang H, Vu K. Sleep duration, sleep efficiency, and amyloid β among cognitively healthy later-life adults: a systematic review and meta-analysis. BMC Geriatr 2024; 24:408. [PMID: 38714912 PMCID: PMC11076214 DOI: 10.1186/s12877-024-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Abnormal amyloid β (Aβ) deposits in the brain are a hallmark of Alzheimer's disease (AD). Insufficient sleep duration and poor sleep quality are risk factors for developing AD. Sleep may play a role in Aβ regulation, but the magnitude of the relationship between sleep and Aβ deposition remains unclear. This systematic review examines the relationship between sleep (i.e., duration and efficiency) with Aβ deposition in later-life adults. METHODS A search of PubMed, CINAHL, Embase, and PsycINFO generated 5,005 published articles. Fifteen studies met the inclusion criteria for qualitative syntheses; thirteen studies for quantitative syntheses related to sleep duration and Aβ; and nine studies for quantitative syntheses related to sleep efficiency and Aβ. RESULTS Mean ages of the samples ranged from 63 to 76 years. Studies measured Aβ using cerebrospinal fluid, serum, and positron emission tomography scans with two tracers: Carbone 11-labeled Pittsburgh compound B or fluorine 18-labeled. Sleep duration was measured subjectively using interviews or questionnaires, or objectively using polysomnography or actigraphy. Study analyses accounted for demographic and lifestyle factors. Based on 13 eligible articles, our synthesis demonstrated that the average association between sleep duration and Aβ was not statistically significant (Fisher's Z = -0.055, 95% CI = -0.117 ~ 0.008). We found that longer self-report sleep duration is associated with lower Aβ (Fisher's Z = -0.062, 95% CI = -0.119 ~ -0.005), whereas the objectively measured sleep duration was not associated with Aβ (Fisher's Z = 0.002, 95% CI = -0.108 ~ 0.113). Based on 9 eligible articles for sleep efficiency, our synthesis also demonstrated that the average association between sleep efficiency and Aβ was not statistically significant (Fisher's Z = 0.048, 95% CI = -0.066 ~ 0.161). CONCLUSION The findings from this review suggest that shorter self-reported sleep duration is associated with higher Aβ levels. Given the heterogeneous nature of the sleep measures and outcomes, it is still difficult to determine the exact relationship between sleep and Aβ. Future studies with larger sample sizes should focus on comprehensive sleep characteristics and use longitudinal designs to better understand the relationship between sleep and AD.
Collapse
Affiliation(s)
- Chooza Moon
- University of Iowa College of Nursing, 50 Newton Rd, Iowa City, IA, 52242, USA.
| | - Aaron Schneider
- University of Iowa College of Liberal Arts and Sciences Department of Health and Human Physiology, 225 S. Grand Ave., Iowa City, IA, 52240, USA
| | - Young-Eun Cho
- University of Iowa College of Nursing, 50 Newton Rd, Iowa City, IA, 52242, USA
| | - Meina Zhang
- University of Iowa College of Nursing, 50 Newton Rd, Iowa City, IA, 52242, USA
| | - Hellen Dang
- University of Iowa College of Liberal Arts and Sciences Department of Health and Human Physiology, 225 S. Grand Ave., Iowa City, IA, 52240, USA
| | - Kelly Vu
- University of Iowa College of Pharmacy, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| |
Collapse
|
30
|
Jia Y, Du X, Wang Y, Song Q, He L. Sex differences in luteinizing hormone aggravates Aβ deposition in APP/PS1 and Aβ 1-42-induced mouse models of Alzheimer's disease. Eur J Pharmacol 2024; 970:176485. [PMID: 38492878 DOI: 10.1016/j.ejphar.2024.176485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) exhibits a higher incidence rate among older women, and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis during aging is associated with cognitive impairments and the development of dementia. luteinizing hormone (LH) has an important role in CNS function, such as mediating neuronal pregnenolone production, and modulating neuronal plasticity and cognition. The sex differences in LH and its impact on Aβ deposition in AD individuals remain unclear, with no reported specific mechanisms. Here, we show through data mining that LH-related pathways are significantly enriched in female AD patients. Additionally, LH levels are elevated in female AD patients and exhibit a negative correlation with cognitive levels but a positive correlation with AD pathology levels, and females exhibit a greater extent of AD pathology, such as Aβ deposition. In vivo, we observed that the exogenous injection of LH exacerbated behavioral impairments induced by Aβ1-42 in mice. LH injection resulted in worsened neuronal damage and increased Aβ deposition. In SH-SY5Y cells, co-administration of LH with Aβ further exacerbated Aβ-induced neuronal damage. Furthermore, LH can dose-dependently decrease the levels of NEP and LHR proteins while increasing the expression of GFAP and IBA1 in vivo and in vitro. Taken together, these results indicate that LH can exacerbate cognitive impairment and neuronal damage in mice by increasing Aβ deposition. The potential mechanism may involve the reduction of NEP and LHR expression, along with the exacerbation of Aβ-induced inflammation.
Collapse
Affiliation(s)
- Yongming Jia
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinzhe Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanan Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinghua Song
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling He
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
31
|
He K, Li B, Wang J, Wang Y, You Z, Chen X, Chen H, Li J, Huang Q, Guo Q, Huang YH, Guan Y, Chen K, Zhao J, Deng Y, Xie F. APOE ε4 is associated with decreased synaptic density in cognitively impaired participants. Alzheimers Dement 2024; 20:3157-3166. [PMID: 38477490 PMCID: PMC11095422 DOI: 10.1002/alz.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aβ) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.
Collapse
Affiliation(s)
- Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ying Wang
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhiwen You
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xing Chen
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junpeng Li
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yiyun Henry Huang
- PET CenterDepartment of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Kewei Chen
- Banner Alzheimer InstituteArizona State University, University of Arizona and Arizona Alzheimer's ConsortiumPhoenixUSA
| | - Jun Zhao
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
32
|
Balu D, Valencia-Olvera AC, Deshpande A, Narayanam S, Konasani S, Pattisapu S, York JM, Thatcher GRJ, LaDu MJ, Tai LM. Estradiol improves behavior in FAD transgenic mice that express APOE3 but not APOE4 after ovariectomy. Front Endocrinol (Lausanne) 2024; 15:1374825. [PMID: 38742194 PMCID: PMC11089251 DOI: 10.3389/fendo.2024.1374825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aβ42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aβ in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aβ in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aβ pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aβ pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aβ pathology, APOE impacts the response to E2 supplementation post-menopause.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashwini Deshpande
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Saharsh Narayanam
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Sravya Konasani
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Shreya Pattisapu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jason M. York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
de Vries LE, Jongejan A, Monteiro Fortes J, Balesar R, Rozemuller AJM, Moerland PD, Huitinga I, Swaab DF, Verhaagen J. Gene-expression profiling of individuals resilient to Alzheimer's disease reveals higher expression of genes related to metallothionein and mitochondrial processes and no changes in the unfolded protein response. Acta Neuropathol Commun 2024; 12:68. [PMID: 38664739 PMCID: PMC11046840 DOI: 10.1186/s40478-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024] Open
Abstract
Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Aldo Jongejan
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Jennifer Monteiro Fortes
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Rawien Balesar
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Perry D Moerland
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Sorajja N, Chung J, Alcántara C, Wassertheil-Smoller S, Penedo FJ, Ramos AR, Perreira KM, Daviglus ML, Suglia SF, Gallo LC, Liu PY, Redline S, Isasi CR, Sofer T. A sociodemographic index identifies non-biological sex-related effects on insomnia in the Hispanic Community Health Study/Study of Latinos. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.09.24305555. [PMID: 38645067 PMCID: PMC11030294 DOI: 10.1101/2024.04.09.24305555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Sex differences are related to both biological factors and the gendered environment. To untangle sex-related effects on health and disease it is important to model sex-related differences better. Methods Data came from the baseline visit of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), a longitudinal cohort study following 16,415 individuals recruited at baseline from four study sites: Bronx NY, Miami FL, San Diego CA, and Chicago IL. We applied LASSO penalized logistic regression of male versus female sex over sociodemographic, acculturation, and psychological factors jointly. Two "gendered indices", GISE and GIPSE, summarizing the sociodemographic environment (GISE, primary) and psychosocial and sociodemographic environment (GIPSE, secondary) associated with sex, were calculated by summing these variables, weighted by their regression coefficients. We examined the association of these indices with insomnia derived from self-reported symptoms assessed via the Women Health Initiative Insomnia Rating Scale (WHIIRS), a phenotype with strong sex differences, in sex-adjusted and sex-stratified analyses. All analyses were adjusted for age, Hispanic/Latino background, and study center. Results The distribution of GISE and GIPSE differed by sex with higher values in male individuals, even when constructing and validating them on separate, independent, subsets of HCHS/SOL individuals. In an association model with insomnia, male sex was associated with lower likelihood of insomnia (odds ratio (OR)=0.60, 95% CI (0.53, 0.67)). Including GISE in the model, the association was slightly weaker (OR=0.63, 95% CI (0.56, 0.70)), and weaker when including instead GIPSE in the association model (OR=0.78, 95% CI (0.69, 0.88)). Higher values of GISE and of GIPSE, more common in male sex, were associated with lower likelihood of insomnia, in analyses adjusted for sex (per 1 standard deviation of the index, GISE OR= 0.92, 95% CI (0.87, 0.99), GIPSE OR=0.65, 95% CI (0.61, 0.70)). Conclusions New measures such as GISE and GIPSE capture sex-related differences beyond binary sex and have the potential to better model and inform research studies of health. However, such indices do not account for gender identity and may not well capture the environment experienced by intersex and non-binary persons.
Collapse
Affiliation(s)
- Natali Sorajja
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joon Chung
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Sylvia Wassertheil-Smoller
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Frank J Penedo
- Department of Psychology, University of Miami, Miami, Florida, USA
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, Chula Vista, California, USA
| | - Peter Y Liu
- Division of Genetics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Carmen R Isasi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tamar Sofer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
35
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Ghosh M, Lee J, Burke AN, Strong TA, Sagen J, Pearse DD. Sex Dependent Disparities in the Central Innate Immune Response after Moderate Spinal Cord Contusion in Rat. Cells 2024; 13:645. [PMID: 38607084 PMCID: PMC11011714 DOI: 10.3390/cells13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Subacute spinal cord injury (SCI) displays a complex pathophysiology associated with pro-inflammation and ensuing tissue damage. Microglia, the resident innate immune cells of the CNS, in concert with infiltrating macrophages, are the primary contributors to SCI-induced inflammation. However, subpopulations of activated microglia can also possess immunomodulatory activities that are essential for tissue remodeling and repair, including the production of anti-inflammatory cytokines and growth factors that are vital for SCI recovery. Recently, reports have provided convincing evidence that sex-dependent differences exist in how microglia function during CNS pathologies and the extent to which these cells contribute to neurorepair and endogenous recovery. Herein we employed flow cytometry and immunohistochemical methods to characterize the phenotype and population dynamics of activated innate immune cells within the injured spinal cord of age-matched male and female rats within the first week (7 days) following thoracic SCI contusion. This assessment included the analysis of pro- and anti-inflammatory markers, as well as the expression of critical immunomodulatory kinases, including P38 MAPK, and transcription factors, such as NFκB, which play pivotal roles in injury-induced inflammation. We demonstrate that activated microglia from the injured spinal cord of female rats exhibited a significantly diminutive pro-inflammatory response, but enhanced anti-inflammatory activity compared to males. These changes included lower levels of iNOS and TLR4 expression but increased levels of ARG-1 and CD68 in females after SCI. The altered expression of these markers is indicative of a disparate secretome between the microglia of males and females after SCI and that the female microglia possesses higher phagocytic capabilities (increased CD68). The examination of immunoregulatory kinases and transcription factors revealed that female microglia had higher levels of phosphorylated P38Thr180/Tyr182 MAPK and nuclear NFκB pp50Ser337 but lower amounts of nuclear NFκB pp65Ser536, suggestive of an attenuated pro-inflammatory phenotype in females compared to males after SCI. Collectively, this work provides novel insight into some of the sex disparities that exist in the innate immune response after SCI and indicates that sex is an important variable when designing and testing new therapeutic interventions or interpretating positive or negative responses to an intervention.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Jinyoung Lee
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Ashley N. Burke
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Thomas A. Strong
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
| | - Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.); (A.N.B.); (T.A.S.); (J.S.); (D.D.P.)
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
37
|
Kuhn MK, Kang RY, Kim C, Tagay Y, Morris N, Tabdanov ED, Elcheva IA, Proctor EA. Dynamic neuroinflammatory profiles predict Alzheimer's disease pathology in microglia-containing cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567220. [PMID: 38014053 PMCID: PMC10680718 DOI: 10.1101/2023.11.16.567220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Neuroinflammation and the underlying dysregulated immune responses of microglia actively contribute to the progression and, likely, the initiation of Alzheimer's disease (AD). Fine-tuned therapeutic modulation of immune dysfunction to ameliorate disease cannot be achieved without the characterization of diverse microglial states that initiate unique, and sometimes contradictory, immune responses that evolve over time in chronic inflammatory environments. Because of the functional differences between human and murine microglia, untangling distinct, disease-relevant reactive states and their corresponding effects on pathology or neuronal health may not be possible without the use of human cells. In order to profile shifting microglial states in early AD and identify microglia-specific drivers of disease, we differentiated human induced pluripotent stem cells (iPSCs) carrying a familial AD PSEN2 mutation or its isogenic control into cerebral organoids and quantified the changes in cytokine concentrations over time with Luminex XMAP technology. We used partial least squares (PLS) modeling to build cytokine signatures predictive of disease and age to identify key differential patterns of cytokine expression that inform the overall organoid immune milieu and quantified the corresponding changes in protein pathology. AD organoids exhibited an overall reduction in cytokine secretion after an initial amplified immune response. We demonstrate that reduced synapse density observed in the AD organoids is prevented with microglial depletion. Crucially, these differential effects of dysregulated immune signaling occurred without the accumulation of pathological proteins. In this study, we used microglia-containing AD organoids to quantitatively characterize an evolving immune milieu, made up of a diverse of collection of activation patterns and immune responses, to identify how a dynamic, overall neuroinflammatory state negatively impacts neuronal health and the cell-specific contribution of microglia.
Collapse
Affiliation(s)
- Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Rachel Y Kang
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - ChaeMin Kim
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nathan Morris
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Irina A Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
38
|
Lachén-Montes M, Cartas-Cejudo P, Cortés A, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Involvement of Glucosamine 6 Phosphate Isomerase 2 (GNPDA2) Overproduction in β-Amyloid- and Tau P301L-Driven Pathomechanisms. Biomolecules 2024; 14:394. [PMID: 38672412 PMCID: PMC11048700 DOI: 10.3390/biom14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (P.C.-C.); (A.C.); (E.A.-C.); (E.P.); (K.A.); (R.D.-P.); (J.F.-I.)
| |
Collapse
|
39
|
Puris E, Saveleva L, Auriola S, Gynther M, Kanninen KM, Fricker G. Sex-specific changes in protein expression of membrane transporters in the brain cortex of 5xFAD mouse model of Alzheimer's disease. Front Pharmacol 2024; 15:1365051. [PMID: 38572427 PMCID: PMC10989684 DOI: 10.3389/fphar.2024.1365051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Membrane transporters playing an important role in the passage of drugs, metabolites and nutrients across the membranes of the brain cells have been shown to be involved in pathogenesis of Alzheimer's disease (AD). However, little is known about sex-specific changes in transporter protein expression at the brain in AD. Here, we investigated sex-specific alterations in protein expression of three ATP-binding cassette (ABC) and five solute carriers (SLC) transporters in the prefrontal cortex of a commonly used model of familial AD (FAD), 5xFAD mice. Sensitive liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomic analysis was applied for absolute quantification of transporter protein expression. We compared the changes in transporter protein expressions in 7-month-old male and female 5xFAD mice versus sex-matched wild-type mice. The study revealed a significant sex-specific increase in protein expression of ABCC1 (p = 0.007) only in male 5xFAD mice as compared to sex-matched wild-type animals. In addition, the increased protein expression of glucose transporter 1 (p = 0.01), 4F2 cell-surface antigen heavy chain (p = 0.01) and long-chain fatty acid transport protein 1 (p = 0.02) were found only in female 5xFAD mice as compared to sex-matched wild-type animals. Finally, protein expression of alanine/serine/cysteine/threonine transporter 1 was upregulated in both male (p = 0.02) and female (p = 0.002) 5xFAD mice. The study provides important information about sex-specific changes in brain cortical transporter expression in 5xFAD mice, which will facilitate drug development of therapeutic strategies for AD targeting these transporters and drug delivery research.
Collapse
Affiliation(s)
- Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
40
|
Do AN, Ali M, Timsina J, Wang L, Western D, Liu M, Sanford J, Rosende-Roca M, Boada M, Puerta R, Wilson T, Ruiz A, Pastor P, Wyss-Coray T, Cruchaga C, Sung YJ. CSF proteomic profiling with amyloid/tau positivity identifies distinctive sex-different alteration of multiple proteins involved in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304164. [PMID: 38559166 PMCID: PMC10980123 DOI: 10.1101/2024.03.15.24304164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In Alzheimer's disease (AD), the most common cause of dementia, females have higher prevalence and faster progression, but sex-specific molecular findings in AD are limited. Here, we comprehensively examined and validated 7,006 aptamers targeting 6,162 proteins in cerebral spinal fluid (CSF) from 2,077 amyloid/tau positive cases and controls to identify sex-specific proteomic signatures of AD. In discovery (N=1,766), we identified 330 male-specific and 121 female-specific proteomic alternations in CSF (FDR <0.05). These sex-specific proteins strongly predicted amyloid/tau positivity (AUC=0.98 in males; 0.99 in females), significantly higher than those with age, sex, and APOE-ε4 (AUC=0.85). The identified sex-specific proteins were well validated (r≥0.5) in the Stanford study (N=108) and Emory study (N=148). Biological follow-up of these proteins led to sex differences in cell-type specificity, pathways, interaction networks, and drug targets. Male-specific proteins, enriched in astrocytes and oligodendrocytes, were involved in postsynaptic and axon-genesis. The male network exhibited direct connections among 152 proteins and highlighted PTEN, NOTCH1, FYN, and MAPK8 as hubs. Drug target suggested melatonin (used for sleep-wake cycle regulation), nabumetone (used for pain), daunorubicin, and verteporfin for treating AD males. In contrast, female-specific proteins, enriched in neurons, were involved in phosphoserine residue binding including cytokine activities. The female network exhibits strong connections among 51 proteins and highlighted JUN and 14-3-3 proteins (YWHAG and YWHAZ) as hubs. Drug target suggested biperiden (for muscle control of Parkinson's disease), nimodipine (for cerebral vasospasm), quinostatin and ethaverine for treating AD females. Together, our findings provide mechanistic understanding of sex differences for AD risk and insights into clinically translatable interventions.
Collapse
Affiliation(s)
- Anh N Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Western
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Matitee Rosende-Roca
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Merce Boada
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ted Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Agustin Ruiz
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Chumin EJ, Burton CP, Silvola R, Miner EW, Persohn SC, Veronese M, Territo PR. Brain metabolic network covariance and aging in a mouse model of Alzheimer's disease. Alzheimers Dement 2024; 20:1538-1549. [PMID: 38032015 PMCID: PMC10984484 DOI: 10.1002/alz.13538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), the leading cause of dementia worldwide, represents a human and financial impact for which few effective drugs exist to treat the disease. Advances in molecular imaging have enabled assessment of cerebral glycolytic metabolism, and network modeling of brain region have linked to alterations in metabolic activity to AD stage. METHODS We performed 18 F-FDG positron emission tomography (PET) imaging in 4-, 6-, and 12-month-old 5XFAD and littermate controls (WT) of both sexes and analyzed region data via brain metabolic covariance analysis. RESULTS The 5XFAD model mice showed age-related changes in glucose uptake relative to WT mice. Analysis of community structure of covariance networks was different across age and sex, with a disruption of metabolic coupling in the 5XFAD model. DISCUSSION The current study replicates clinical AD findings and indicates that metabolic network covariance modeling provides a translational tool to assess disease progression in AD models.
Collapse
Affiliation(s)
- Evgeny J. Chumin
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
- Indiana University Network Science Institute, Indiana UniversityBloomingtonIndianaUSA
| | - Charles P. Burton
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rebecca Silvola
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | - Ethan W. Miner
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Scott C. Persohn
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Mattia Veronese
- Department of Information EngineeringUniversity of PaduaPaduaItaly
- Department of NeuroimagingKing's College LondonLondonUK
| | - Paul R. Territo
- Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
42
|
Lynch MA. A case for seeking sex-specific treatments in Alzheimer's disease. Front Aging Neurosci 2024; 16:1346621. [PMID: 38414633 PMCID: PMC10897030 DOI: 10.3389/fnagi.2024.1346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
There is no satisfactory explanation for the sex-related differences in the incidence of many diseases and this is also true of Alzheimer's disease (AD), where females have a higher lifetime risk of developing the disease and make up about two thirds of the AD patient population. The importance of understanding the cause(s) that account for this disproportionate distribution cannot be overestimated, and is likely to be a significant factor in the search for therapeutic strategies that will combat the disease and, furthermore, potentially point to a sex-targeted approach to treatment. This review considers the literature in the context of what is known about the impact of sex on processes targeted by drugs that are in clinical trial for AD, and existing knowledge on differing responses of males and females to these drugs. Current knowledge strongly supports the view that trials should make assessing sex-related difference in responses a priority with a focus on exploring the sex-stratified treatments.
Collapse
|
43
|
Lin S, Jiang L, Wei K, Yang J, Cao X, Li C. Sex-Specific Association of Body Mass Index with Hippocampal Subfield Volume and Cognitive Function in Non-Demented Chinese Older Adults. Brain Sci 2024; 14:170. [PMID: 38391744 PMCID: PMC10887390 DOI: 10.3390/brainsci14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Recent research suggests a possible association between midlife obesity and an increased risk of dementia in later life. However, the underlying mechanisms remain unclear. Little is known about the relationship between body mass index (BMI) and hippocampal subfield atrophy. In this study, we aimed to explore the associations between BMI and hippocampal subfield volumes and cognitive function in non-demented Chinese older adults. Hippocampal volumes were assessed using structural magnetic resonance imaging. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). A total of 66 participants were included in the final analysis, with 35 females and 31 males. We observed a significant correlation between BMI and the hippocampal fissure volume in older females. In addition, there was a negative association between BMI and the RBANS total scale score, the coding score, and the story recall score, whereas no significant correlations were observed in older males. In conclusion, our findings revealed sex-specific associations between BMI and hippocampal subfield volumes and cognitive performance, providing valuable insights into the development of effective interventions for the early prevention of cognitive decline.
Collapse
Affiliation(s)
- Shaohui Lin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kai Wei
- Department of Traditional Chinese Medicine, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| | - Junjie Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Clinical Neurocognitive Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200030, China
| |
Collapse
|
44
|
Papazoglou A, Henseler C, Weickhardt S, Teipelke J, Papazoglou P, Daubner J, Schiffer T, Krings D, Broich K, Hescheler J, Sachinidis A, Ehninger D, Scholl C, Haenisch B, Weiergräber M. Sex- and region-specific cortical and hippocampal whole genome transcriptome profiles from control and APP/PS1 Alzheimer's disease mice. PLoS One 2024; 19:e0296959. [PMID: 38324617 PMCID: PMC10849391 DOI: 10.1371/journal.pone.0296959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Sandra Weickhardt
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jenni Teipelke
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Panagiota Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Teresa Schiffer
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Damian Krings
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Catharina Scholl
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Wen L, Bi D, Shen Y. Complement-mediated synapse loss in Alzheimer's disease: mechanisms and involvement of risk factors. Trends Neurosci 2024; 47:135-149. [PMID: 38129195 DOI: 10.1016/j.tins.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The complement system is increasingly recognized as a key player in the synapse loss and cognitive impairments observed in Alzheimer's disease (AD). In particular, the process of complement-dependent synaptic pruning through phagocytosis is over-activated in AD brains, driving detrimental excessive synapse elimination and contributing to synapse loss, which is the strongest neurobiological correlate of cognitive impairments in AD. Herein we review recent advances in characterizing complement-mediated synapse loss in AD, summarize the underlying mechanisms, and discuss the possible involvement of AD risk factors such as aging and various risk genes. We conclude with an overview of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
46
|
Kommaddi RP, Gowaikar R, P A H, Diwakar L, Singh K, Mondal A. Akt activation ameliorates deficits in hippocampal-dependent memory and activity-dependent synaptic protein synthesis in an Alzheimer's disease mouse model. J Biol Chem 2024; 300:105619. [PMID: 38182004 PMCID: PMC10839450 DOI: 10.1016/j.jbc.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Protein kinase-B (Akt) and the mechanistic target of rapamycin (mTOR) signaling pathways are implicated in Alzheimer's disease (AD) pathology. Akt/mTOR signaling pathways, activated by external inputs, enable new protein synthesis at the synapse and synaptic plasticity. The molecular mechanisms impeding new protein synthesis at the synapse in AD pathogenesis remain elusive. Here, we aimed to understand the molecular mechanisms prior to the manifestation of histopathological hallmarks by characterizing Akt1/mTOR signaling cascades and new protein synthesis in the hippocampus of WT and amyloid precursor protein/presenilin-1 (APP/PS1) male mice. Intriguingly, compared to those in WT mice, we found significant decreases in pAkt1, pGSK3β, pmTOR, pS6 ribosomal protein, and p4E-BP1 levels in both post nuclear supernatant and synaptosomes isolated from the hippocampus of one-month-old (presymptomatic) APP/PS1 mice. In synaptoneurosomes prepared from the hippocampus of presymptomatic APP/PS1 mice, activity-dependent protein synthesis at the synapse was impaired and this deficit was sustained in young adults. In hippocampal neurons from C57BL/6 mice, downregulation of Akt1 precluded synaptic activity-dependent protein synthesis at the dendrites but not in the soma. In three-month-old APP/PS1 mice, Akt activator (SC79) administration restored deficits in memory recall and activity-dependent synaptic protein synthesis. C57BL/6 mice administered with an Akt inhibitor (MK2206) resulted in memory recall deficits compared to those treated with vehicle. We conclude that dysregulation of Akt1/mTOR and its downstream signaling molecules in the hippocampus contribute to memory recall deficits and loss of activity-dependent synaptic protein synthesis. In AD mice, however, Akt activation ameliorates deficits in memory recall and activity-dependent synaptic protein synthesis.
Collapse
Affiliation(s)
| | - Ruturaj Gowaikar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Haseena P A
- Centre for Brain Research, Indian Institute of Science, Bangalore, India; Manipal Academy of Higher Education, Manipal, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Kunal Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
47
|
Llera-Oyola J, Carceller H, Andreu Z, Hidalgo MR, Soler-Sáez I, Gordillo F, Gómez-Cabañes B, Roson B, de la Iglesia-Vayá M, Mancuso R, Guerini FR, Mizokami A, García-García F. The role of microRNAs in understanding sex-based differences in Alzheimer's disease. Biol Sex Differ 2024; 15:13. [PMID: 38297404 PMCID: PMC10832236 DOI: 10.1186/s13293-024-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The incidence of Alzheimer's disease (AD)-the most frequent cause of dementia-is expected to increase as life expectancies rise across the globe. While sex-based differences in AD have previously been described, there remain uncertainties regarding any association between sex and disease-associated molecular mechanisms. Studying sex-specific expression profiles of regulatory factors such as microRNAs (miRNAs) could contribute to more accurate disease diagnosis and treatment. METHODS A systematic review identified six studies of microRNA expression in AD patients that incorporated information regarding the biological sex of samples in the Gene Expression Omnibus repository. A differential microRNA expression analysis was performed, considering disease status and patient sex. Subsequently, results were integrated within a meta-analysis methodology, with a functional enrichment of meta-analysis results establishing an association between altered miRNA expression and relevant Gene Ontology terms. RESULTS Meta-analyses of miRNA expression profiles in blood samples revealed the alteration of sixteen miRNAs in female and 22 miRNAs in male AD patients. We discovered nine miRNAs commonly overexpressed in both sexes, suggesting a shared miRNA dysregulation profile. Functional enrichment results based on miRNA profiles revealed sex-based differences in biological processes; most affected processes related to ubiquitination, regulation of different kinase activities, and apoptotic processes in males, but RNA splicing and translation in females. Meta-analyses of miRNA expression profiles in brain samples revealed the alteration of six miRNAs in female and four miRNAs in male AD patients. We observed a single underexpressed miRNA in female and male AD patients (hsa-miR-767-5p); however, the functional enrichment analysis for brain samples did not reveal any specifically affected biological process. CONCLUSIONS Sex-specific meta-analyses supported the detection of differentially expressed miRNAs in female and male AD patients, highlighting the relevance of sex-based information in biomedical data. Further studies on miRNA regulation in AD patients should meet the criteria for comparability and standardization of information.
Collapse
Affiliation(s)
- Jaime Llera-Oyola
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Carlos Simon Foundation-INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Héctor Carceller
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spanish National Network for Research in Mental Health, Madrid, Spain
- Joint Unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, València, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Irene Soler-Sáez
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Fernando Gordillo
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Borja Gómez-Cabañes
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Beatriz Roson
- Carlos Simon Foundation-INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Maria de la Iglesia-Vayá
- Joint Unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, València, Spain
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148, Milan, Italy
| | | | - Akiko Mizokami
- Oral Health/Brain Health/Total Health (OBT) Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| |
Collapse
|
48
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Sayfullaeva J, McLoughlin J, Kwakowsky A. Hormone Replacement Therapy and Alzheimer's Disease: Current State of Knowledge and Implications for Clinical Use. J Alzheimers Dis 2024; 101:S235-S261. [PMID: 39422965 DOI: 10.3233/jad-240899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder responsible for over half of dementia cases, with two-thirds being women. Growing evidence from preclinical and clinical studies underscores the significance of sex-specific biological mechanisms in shaping AD risk. While older age is the greatest risk factor for AD, other distinct biological mechanisms increase the risk and progression of AD in women including sex hormones, brain structural differences, genetic background, immunomodulation and vascular disorders. Research indicates a correlation between declining estrogen levels during menopause and an increased risk of developing AD, highlighting a possible link with AD pathogenesis. The neuroprotective effects of estrogen vary with the age of treatment initiation, menopause stage, and type. This review assesses clinical and observational studies conducted in women, examining the influence of estrogen on cognitive function or addressing the ongoing question regarding the potential use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. This review covers recent literature and discusses the working hypothesis, current use, controversies and challenges regarding HRT in preventing and treating age-related cognitive decline and AD. The available evidence indicates that estrogen plays a significant role in influencing dementia risk, with studies demonstrating both beneficial and detrimental effects of HRT. Recommendations regarding HRT usage should carefully consider the age when the hormonal supplementation is initiated, baseline characteristics such as genotype and cardiovascular health, and treatment duration until this approach can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
Affiliation(s)
- Jessica Sayfullaeva
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - John McLoughlin
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
50
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|