1
|
Geng S, Dai Y, Rolls ET, Liu Y, Zhang Y, Deng L, Chen Z, Feng J, Li F, Cao M. Rightward brain structural asymmetry in young children with autism. Mol Psychiatry 2025:10.1038/s41380-025-02890-9. [PMID: 39815059 DOI: 10.1038/s41380-025-02890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
To understand the neural mechanism of autism spectrum disorder (ASD) and developmental delay/intellectual disability (DD/ID) that can be associated with ASD, it is important to investigate individuals at an early stage with brain, behavioural and also genetic measures, but such research is still lacking. Here, using the cross-sectional sMRI data of 1030 children under 8 years old, we employed developmental normative models to investigate the atypical development of gray matter volume (GMV) asymmetry in individuals with ASD without DD/ID, ASD with DD/ID and individuals with only DD/ID, and their associations with behavioral and clinical measures and transcription profiles. By extracting the individual deviations of patients from the typical controls with normative models, we found a commonly abnormal pattern of GMV asymmetry across all ASD children: more rightward laterality in the inferior parietal lobe and precentral gyrus, and higher individual variability in the temporal pole. Specifically, ASD with DD/ID children showed a severer and more extensive abnormal pattern in GMV asymmetry deviation values, which was linked with both ASD symptoms and verbal IQ. The abnormal pattern of ASD without DD/ID children showed higher and more extensive individual variability, which was linked with ASD symptoms only. DD/ID children showed no significant differences from healthy population in asymmetry. Lastly, the GMV laterality patterns of all patient groups were significantly associated with both shared and unique gene expression profiles. Our findings provide evidence for rightward GMV asymmetry of some cortical regions in young ASD children (1-7 years) in a large sample (1030 cases), show that these asymmetries are related to ASD symptoms, and identify genes that are significantly associated with these differences.
Collapse
Grants
- 81901826, 61932008, 62076068, 82271627, 82125032, 81930095, 81761128035, 82202243, and 82204048 National Natural Science Foundation of China (National Science Foundation of China)
- GWV-10.1-XK07, 2020CXJQ01, 2018YJRC03 Foundation of Shanghai Municipal Commission of Health and Family Planning (Shanghai Municipal Commission of Health and Family Planning Foundation)
Collapse
Affiliation(s)
- Shujie Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Yuan Dai
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
- Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Yuqi Liu
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Lin Deng
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilin Chen
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Fei Li
- Developmental and Behavioral Pediatric Department & Child Primary Care Department, Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
| |
Collapse
|
2
|
Zhao X, Yin R, Chen C, Markett S, Wang X, Xue G, Dong Q, Chen C. Novel Genes Associated With Working Memory Are Identified by Combining Connectome, Transcriptome, and Genome. Hum Brain Mapp 2025; 46:e70114. [PMID: 39777759 PMCID: PMC11705410 DOI: 10.1002/hbm.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Working memory (WM) plays a crucial role in human cognition. Previous candidate and genome-wide association studies have reported many genetic variations associated with WM. However, little research has examined genetic basis of WM by using transcriptome, even though it reflects gene function more directly than does the genome. Here we propose a new approach to exploring the genetic mechanisms of WM by integrating connectome, transcriptome, and genome data in a high-quality dataset comprising 481 Chinese healthy adults. First, relevance vector regression was used to define WM-related brain regions. Second, genes differentially expressed within these regions were identified using the Allen Human Brain Atlas (AHBA) dataset. Finally, two independent datasets were used to validate these genes' contributions to WM. With this method, we identified 24 novel genes and 20 of them were confirmed in the large-scale datasets of ABCD and UK Biobank. These novel genes were enriched in the cellular component of collagen-containing extracellular matrix and the CCL18 signaling pathway. Our method offers an effective approach to integrating multimodal gene discovery and demonstrates the superiority of expression data. This new method and the newly identified genes deserve more attention in the future.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ruochen Yin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chuansheng Chen
- Department of Psychological ScienceUniversity of CaliforniaCaliforniaUSA
| | | | - Xinrui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
3
|
Guo X, Wang X, Zhou R, Cui D, Liu J, Gao L. Altered Temporospatial Variability of Dynamic Amplitude of Low-Frequency Fluctuation in Children with Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06661-3. [PMID: 39663323 DOI: 10.1007/s10803-024-06661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2024] [Indexed: 12/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with altered brain activity. However, little is known about the integrated temporospatial variation of dynamic spontaneous brain activity in ASD. In the present study, resting-state functional magnetic resonance imaging data were analyzed for 105 ASD and 102 demographically-matched typically developmental controls (TC) children obtained from the Autism Brain Imaging Data Exchange database. Using the sliding-window approach, temporal, spatial, and temporospatial variability of dynamic amplitude of low-frequency fluctuation (tvALFF, svALFF, and tsvALFF) were calculated for each participant. Group-comparisons were further performed at global, network, and brain region levels to quantify differences between ASD and TC groups. The relationship between temporospatial dynamic amplitude of low-frequency fluctuation variation alterations and clinical symptoms of ASD was finally explored by a support vector regression model. Relative to TC, we found enhanced tvALFF in visual network (Vis), somatomotor network (SMT), and salience/ventral attention network (SVA) of ASD, and weakened tvALFF in dorsal attention network (DAN) of ASD. Besides, ASD showed decreased svALFF in Vis, SVA, and limbic network (Limbic), and increased svALFF in DAN and default mode network (DMN). Elevated tsvALFF was found in the Vis, SMT, and DMN of ASD. More importantly, the altered tsvALFF from the DMN can predict the symptom severity of ASD. These findings demonstrate altered temporospatial dynamics of the spontaneous brain activity in ASD and provide novel insights into the neural mechanism underlying ASD.
Collapse
Affiliation(s)
- Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Xueting Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Rongjuan Zhou
- Finance Department, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Dong Cui
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Junfeng Liu
- Department of Neurology, West China Hospital Sichuan University, Chengdu, China
| | - Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
4
|
Zhang Y, Lin L, Zhou D, Song Y, Stein A, Zhou S, Xu H, Zhao W, Cong F, Sun J, Li H, Du F. Age-related unstable transient states and imbalanced activation proportion of brain networks in people with autism spectrum disorder: A resting-state fMRI study using coactivation pattern analyses. Netw Neurosci 2024; 8:1173-1191. [PMID: 39735491 PMCID: PMC11674577 DOI: 10.1162/netn_a_00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/07/2024] [Indexed: 12/31/2024] Open
Abstract
The atypical static brain functions related to the executive control network (ECN), default mode network (DMN), and salience network (SN) in people with autism spectrum disorder (ASD) has been widely reported. However, their transient functions in ASD are not clear. We aim to identify transient network states (TNSs) using coactivation pattern (CAP) analysis to characterize the age-related atypical transient functions in ASD. CAP analysis was performed on a resting-state fMRI dataset (78 ASD and 78 healthy control (CON) juveniles, 54 ASD and 54 CON adults). Six TNSs were divided into the DMN-TNSs, ECN-TNSs, and SN-TNSs. The DMN-TNSs were major states with the highest stability and proportion, and the ECN-TNSs and SN-TNSs were minor states. Age-related abnormalities on spatial stability and TNS proportion were found in ASD. The spatial stability of DMN-TNSs was found increasing with age in CON, but was not found in ASD. A lower proportion of DMN-TNSs was found in ASD compared with CON of the same age, and ASD juveniles had a higher proportion of SN-TNSs while ASD adults had a higher proportion of ECN-TNSs. The abnormalities on spatial stability and TNS proportion were related to social deficits. Our results provided new evidence for atypical transient brain functions in people with ASD.
Collapse
Affiliation(s)
- Yunge Zhang
- Central Hospital of Dalian University of Technology, Dalian, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Lin Lin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Dongyue Zhou
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Yang Song
- Central Hospital of Dalian University of Technology, Dalian, China
| | - Abigail Stein
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Shuqin Zhou
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Huashuai Xu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Wei Zhao
- School of Software, Henan Polytechnic University, Jiaozuo, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
- Key Laboratory of Social Computing and Cognitive Intelligence (Dalian University of Technology), Ministry of Education, Dalian, China
| | - Jin Sun
- Dalian Woman and Children’s Medical Group, Dalian, China
| | - Huanjie Li
- Central Hospital of Dalian University of Technology, Dalian, China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Fei Du
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
5
|
Gao Z, Xiao Y, Zhu F, Tao B, Zhao Q, Yu W, Sweeney JA, Gong Q, Lui S. Multilayer network analysis reveals instability of brain dynamics in untreated first-episode schizophrenia. Cereb Cortex 2024; 34:bhae402. [PMID: 39375878 DOI: 10.1093/cercor/bhae402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Although aberrant static functional brain network activity has been reported in schizophrenia, little is known about how the dynamics of neural function are altered in first-episode schizophrenia and are modulated by antipsychotic treatment. The baseline resting-state functional magnetic resonance imaging data were acquired from 122 first-episode drug-naïve schizophrenia patients and 128 healthy controls (HCs), and 44 patients were rescanned after 1-year of antipsychotic treatment. Multilayer network analysis was applied to calculate the network switching rates between brain states. Compared to HCs, schizophrenia patients at baseline showed significantly increased network switching rates. This effect was observed mainly in the sensorimotor (SMN) and dorsal attention networks (DAN), and in temporal and parietal regions at the nodal level. Switching rates were reduced after 1-year of antipsychotic treatment at the global level and in DAN. Switching rates at baseline at the global level and in the inferior parietal lobule were correlated with the treatment-related reduction of negative symptoms. These findings suggest that instability of functional network activity plays an important role in the pathophysiology of acute psychosis in early-stage schizophrenia. The normalization of network stability after antipsychotic medication suggests that this effect may represent a systems-level mechanism for their therapeutic efficacy.
Collapse
Affiliation(s)
- Ziyang Gao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Yuan Xiao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Fei Zhu
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Qiannan Zhao
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Wei Yu
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Cincinnati, OH 45219, United States
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Guoxuexiang 37#, Wuhou, China
| |
Collapse
|
6
|
Gao L, Cao Y, Zhang Y, Liu J, Zhang T, Zhou R, Guo X. Sex differences in the flexibility of dynamic network reconfiguration of autism spectrum disorder based on multilayer network. Brain Imaging Behav 2024; 18:1172-1185. [PMID: 39212890 DOI: 10.1007/s11682-024-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Dynamic network reconfiguration alterations in the autism spectrum disorder (ASD) brain have been frequently reported. However, since the prevalence of ASD in males is approximately 3.8 times higher than that in females, and previous studies of dynamic network reconfiguration of ASD have predominantly used male samples, it is unclear whether sex differences exist in dynamic network reconfiguration in ASD. This study used resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange database, which included balanced samples of 64 males and 64 females with ASD, along with 64 demographically-matched typically developing control (TC) males and 64 TC females. The multilayer network analysis was used to explore the flexibility of dynamic network reconfiguration. The two-way analysis of variance was further performed to examine the sex-related changes in ASD in flexibility of dynamic network reconfiguration. A diagnosis-by-sex interaction effect was identified in the cingulo-opercular network (CON), central executive network (CEN), salience network (SN), and subcortical network (SUB). Compared with TC females, females with ASD showed lower flexibility in CON, CEN, SN, and SUB. The flexibility of CEN and SUB in males with ASD was higher than that in females with ASD. In addition, the flexibility of CON, CEN, SN, and SUB predicted the severity of social communication impairments and stereotyped behaviors and restricted interests only in females with ASD. These findings highlight significant sex differences in the flexibility of dynamic network reconfiguration in ASD and emphasize the importance of further study of sex differences in future ASD research.
Collapse
Affiliation(s)
- Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Yabo Cao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Yigeng Zhang
- Department of Computer Science, University of Houston, Houston, TX, 77204-3010, USA
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Rongjuan Zhou
- Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
7
|
Zhang H, Peng D, Tang S, Bi A, Long Y. Aberrant Flexibility of Dynamic Brain Network in Patients with Autism Spectrum Disorder. Bioengineering (Basel) 2024; 11:882. [PMID: 39329624 PMCID: PMC11428581 DOI: 10.3390/bioengineering11090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders whose pathobiology remains elusive. This study aimed to investigate the possible neural mechanisms underlying ASD using a dynamic brain network model and a relatively large-sample, multi-site dataset. Resting-state functional magnetic resonance imaging data were acquired from 208 ASD patients and 227 typical development (TD) controls, who were drawn from the multi-site Autism Brain Imaging Data Exchange (ABIDE) database. Brain network flexibilities were estimated and compared between the ASD and TD groups at both global and local levels, after adjusting for sex, age, head motion, and site effects. The results revealed significantly increased brain network flexibilities (indicating a decreased stability) at the global level, as well as at the local level within the default mode and sensorimotor areas in ASD patients than TD participants. Additionally, significant ASD-related decreases in flexibilities were also observed in several occipital regions at the nodal level. Most of these changes were significantly correlated with the Autism Diagnostic Observation Schedule (ADOS) total score in the entire sample. These results suggested that ASD is characterized by significant changes in temporal stabilities of the functional brain network, which can further strengthen our understanding of the pathobiology of ASD.
Collapse
Affiliation(s)
- Hui Zhang
- The Department of Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dehong Peng
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shixiong Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Anyao Bi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
8
|
Shan X, Wang P, Yin Q, Li Y, Wang X, Feng Y, Xiao J, Li L, Huang X, Chen H, Duan X. Atypical dynamic neural configuration in autism spectrum disorder and its relationship to gene expression profiles. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02476-w. [PMID: 38861168 DOI: 10.1007/s00787-024-02476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024]
Abstract
Although it is well recognized that autism spectrum disorder (ASD) is associated with atypical dynamic functional connectivity patterns, the dynamic changes in brain intrinsic activity over each time point and the potential molecular mechanisms associated with atypical dynamic temporal characteristics in ASD remain unclear. Here, we employed the Hidden Markov Model (HMM) to explore the atypical neural configuration at every scanning time point in ASD, based on resting-state functional magnetic resonance imaging (rs-fMRI) data from the Autism Brain Imaging Data Exchange. Subsequently, partial least squares regression and pathway enrichment analysis were employed to explore the potential molecular mechanism associated with atypical neural dynamics in ASD. 8 HMM states were inferred from rs-fMRI data. Compared to typically developing, individuals on the autism spectrum showed atypical state-specific temporal characteristics, including number of states and occurrences, mean life time and transition probability between states. Moreover, these atypical temporal characteristics could predict communication difficulties of ASD, and states assoicated with negative activation in default mode network and frontoparietal network, and positive activation in somatomotor network, ventral attention network, and limbic network, had higher predictive contribution. Furthermore, a total of 321 genes was revealed to be significantly associated with atypical dynamic brain states of ASD, and these genes are mainly enriched in neurodevelopmental pathways. Our study provides new insights into characterizing the atypical neural dynamics from a moment-to-moment perspective, and indicates a linkage between atypical neural configuration and gene expression in ASD.
Collapse
Affiliation(s)
- Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Peng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Qing Yin
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Youyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xiaotian Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Yu Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Lei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, MOE Key Lab for Neuro information, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| |
Collapse
|
9
|
Xiao H, Tang D, Zheng C, Yang Z, Zhao W, Guo S. Atypical dynamic network reconfiguration and genetic mechanisms in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110957. [PMID: 38365102 DOI: 10.1016/j.pnpbp.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Brain dynamics underlie complex forms of flexible cognition or the ability to shift between different mental modes. However, the precise dynamic reconfiguration based on multi-layer network analysis and the genetic mechanisms of major depressive disorder (MDD) remains unclear. METHODS Resting-state functional magnetic resonance imaging (fMRI) data were acquired from the REST-meta-MDD consortium, including 555 patients with MDD and 536 healthy controls (HC). A time-varying multi-layer network was constructed, and dynamic modular characteristics were used to investigate the network reconfiguration. Additionally, partial least squares regression analysis was performed using transcriptional data provided by the Allen Human Brain Atlas (AHBA) to identify genes associated with atypical dynamic network reconfiguration in MDD. RESULTS In comparison to HC, patients with MDD exhibited lower global and local recruitment coefficients. The local reduction was particularly evident in the salience and subcortical networks. Spatial transcriptome correlation analysis revealed an association between gene expression profiles and atypical dynamic network reconfiguration observed in MDD. Further functional enrichment analyses indicated that positively weighted reconfiguration-related genes were primarily associated with metabolic and biosynthetic pathways. Additionally, negatively enriched genes were predominantly related to programmed cell death-related terms. CONCLUSIONS Our findings offer robust evidence of the atypical dynamic reconfiguration in patients with MDD from a novel perspective. These results offer valuable insights for further exploration into the mechanisms underlying MDD.
Collapse
Affiliation(s)
- Hairong Xiao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Dier Tang
- School of Mathematics, Jilin University, Changchun 130015, China
| | - Chuchu Zheng
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Zeyu Yang
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, China.
| |
Collapse
|
10
|
Chen Z, Xu T, Liu X, Becker B, Li W, Xia L, Zhao W, Zhang R, Huo Z, Hu B, Tang Y, Xiao Z, Feng Z, Chen J, Feng T. Cortical gradient perturbation in attention deficit hyperactivity disorder correlates with neurotransmitter-, cell type-specific and chromosome- transcriptomic signatures. Psychiatry Clin Neurosci 2024; 78:309-321. [PMID: 38334172 DOI: 10.1111/pcn.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
AIMS This study aimed to illuminate the neuropathological landscape of attention deficit hyperactivity disorder (ADHD) by a multiscale macro-micro-molecular perspective from in vivo neuroimaging data. METHODS The "ADHD-200 initiative" repository provided multi-site high-quality resting-state functional connectivity (rsfc-) neuroimaging for ADHD children and matched typically developing (TD) cohort. Diffusion mapping embedding model to derive the functional connectome gradient detecting biologically plausible neural pattern was built, and the multivariate partial least square method to uncover the enrichment of neurotransmitomic, cellular and chromosomal gradient-transcriptional signatures of AHBA enrichment and meta-analytic decoding. RESULTS Compared to TD, ADHD children presented connectopic cortical gradient perturbations in almost all the cognition-involved brain macroscale networks (all pBH <0.001), but not in the brain global topology. As an intermediate phenotypic variant, such gradient perturbation was spatially enriched into distributions of GABAA/BZ and 5-HT2A receptors (all pBH <0.01) and co-varied with genetic transcriptional expressions (e.g. DYDC2, ATOH7, all pBH <0.01), associated with phenotypic variants in episodic memory and emotional regulations. Enrichment models demonstrated such gradient-transcriptional variants indicated the risk of both cell-specific and chromosome- dysfunctions, especially in enriched expression of oligodendrocyte precursors and endothelial cells (all pperm <0.05) as well enrichment into chromosome 18, 19 and X (pperm <0.05). CONCLUSIONS Our findings bridged brain macroscale neuropathological patterns to microscale/cellular biological architectures for ADHD children, demonstrating the neurobiologically pathological mechanism of ADHD into the genetic and molecular variants in GABA and 5-HT systems as well brain-derived enrichment of specific cellular/chromosomal expressions.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Liu
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lei Xia
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Wenqi Zhao
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhenzhen Huo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Bowen Hu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
12
|
Zhan L, Gao Y, Huang L, Zhang H, Huang G, Wang Y, Sun J, Xie Z, Li M, Jia X, Cheng L, Yu Y. Brain functional connectivity alterations of Wernicke's area in individuals with autism spectrum conditions in multi-frequency bands: A mega-analysis. Heliyon 2024; 10:e26198. [PMID: 38404781 PMCID: PMC10884452 DOI: 10.1016/j.heliyon.2024.e26198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Characterized by severe deficits in communication, most individuals with autism spectrum conditions (ASC) experience significant language dysfunctions, thereby impacting their overall quality of life. Wernicke's area, a classical and traditional brain region associated with language processing, plays a substantial role in the manifestation of language impairments. The current study carried out a mega-analysis to attain a comprehensive understanding of the neural mechanisms underpinning ASC, particularly in the context of language processing. The study employed the Autism Brain Image Data Exchange (ABIDE) dataset, which encompasses data from 443 typically developing (TD) individuals and 362 individuals with ASC. The objective was to detect abnormal functional connectivity (FC) between Wernicke's area and other language-related functional regions, and identify frequency-specific altered FC using Wernicke's area as the seed region in ASC. The findings revealed that increased FC in individuals with ASC has frequency-specific characteristics. Further, in the conventional frequency band (0.01-0.08 Hz), individuals with ASC exhibited increased FC between Wernicke's area and the right thalamus compared with TD individuals. In the slow-5 frequency band (0.01-0.027 Hz), increased FC values were observed in the left cerebellum Crus II and the right lenticular nucleus, pallidum. These results provide novel insights into the potential neural mechanisms underlying communication deficits in ASC from the perspective of language impairments.
Collapse
Affiliation(s)
- Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Yang Yu
- Psychiatry Department, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Gao J, Xu Y, Li Y, Lu F, Wang Z. Comprehensive exploration of multi-modal and multi-branch imaging markers for autism diagnosis and interpretation: insights from an advanced deep learning model. Cereb Cortex 2024; 34:bhad521. [PMID: 38220572 DOI: 10.1093/cercor/bhad521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Autism spectrum disorder is a complex neurodevelopmental condition with diverse genetic and brain involvement. Despite magnetic resonance imaging advances, autism spectrum disorder diagnosis and understanding its neurogenetic factors remain challenging. We propose a dual-branch graph neural network that effectively extracts and fuses features from bimodalities, achieving 73.9% diagnostic accuracy. To explain the mechanism distinguishing autism spectrum disorder from healthy controls, we establish a perturbation model for brain imaging markers and perform a neuro-transcriptomic joint analysis using partial least squares regression and enrichment to identify potential genetic biomarkers. The perturbation model identifies brain imaging markers related to structural magnetic resonance imaging in the frontal, temporal, parietal, and occipital lobes, while functional magnetic resonance imaging markers primarily reside in the frontal, temporal, occipital lobes, and cerebellum. The neuro-transcriptomic joint analysis highlights genes associated with biological processes, such as "presynapse," "behavior," and "modulation of chemical synaptic transmission" in autism spectrum disorder's brain development. Different magnetic resonance imaging modalities offer complementary information for autism spectrum disorder diagnosis. Our dual-branch graph neural network achieves high accuracy and identifies abnormal brain regions and the neuro-transcriptomic analysis uncovers important genetic biomarkers. Overall, our study presents an effective approach for assisting in autism spectrum disorder diagnosis and identifying genetic biomarkers, showing potential for enhancing the diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuhang Xu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
14
|
Saponaro S, Lizzi F, Serra G, Mainas F, Oliva P, Giuliano A, Calderoni S, Retico A. Deep learning based joint fusion approach to exploit anatomical and functional brain information in autism spectrum disorders. Brain Inform 2024; 11:2. [PMID: 38194126 PMCID: PMC10776521 DOI: 10.1186/s40708-023-00217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The integration of the information encoded in multiparametric MRI images can enhance the performance of machine-learning classifiers. In this study, we investigate whether the combination of structural and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD). MATERIAL AND METHODS We analyzed both structural and functional MRI brain scans publicly available within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, including 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the multisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature representation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model training, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classification were identified by the SHAP explainability framework. RESULTS The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging to the Default Mode Network and to the Social Brain. CONCLUSIONS Our results demonstrate that the multimodal joint fusion approach outperforms the classification results obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural and functional brain information.
Collapse
Affiliation(s)
- Sara Saponaro
- Medical Physics School, University of Pisa, Pisa, Italy.
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy.
| | - Francesca Lizzi
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Giacomo Serra
- Department of Physics, University of Cagliari, Cagliari, Italy
- INFN, Cagliari Division, Cagliari, Italy
| | - Francesca Mainas
- INFN, Cagliari Division, Cagliari, Italy
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Piernicola Oliva
- INFN, Cagliari Division, Cagliari, Italy
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Alessia Giuliano
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Sara Calderoni
- Developmental Psychiatry Unit - IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|
15
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
16
|
Tang X, Feng C, Zhao Y, Zhang H, Gao Y, Cao X, Hong Q, Lin J, Zhuang H, Feng Y, Wang H, Shen L. A study of genetic heterogeneity in autism spectrum disorders based on plasma proteomic and metabolomic analysis: multiomics study of autism heterogeneity. MedComm (Beijing) 2023; 4:e380. [PMID: 37752942 PMCID: PMC10518435 DOI: 10.1002/mco2.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic heterogeneity poses a challenge to research and clinical translation of autism spectrum disorder (ASD). In this study, we conducted a plasma proteomic and metabolomic study of children with ASD with and without risk genes (de novo mutation) and controls to explore the impact of genetic heterogeneity on the search for biomarkers for ASD. In terms of the proteomic and metabolomic profiles, the groups of children with ASD carrying and those not carrying de novo mutation tended to cluster and overlap, and integrating them yielded differentially expressed proteins and differential metabolites that effectively distinguished ASD from controls. The mechanisms associated with them focus on several common and previously reported mechanisms. Proteomics results highlight the role of complement, inflammation and immunity, and cell adhesion. The main pathways of metabolic perturbations include amino acid, vitamin, glycerophospholipid, tryptophan, and glutamates metabolic pathways and solute carriers-related pathways. Integrating the two omics analyses revealed that L-glutamic acid and malate dehydrogenase may play key roles in the pathogenesis of ASD. These results suggest that children with ASD may have important underlying common mechanisms. They are not only potential therapeutic targets for ASD but also important contributors to the study of biomarkers for the disease.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Yuxi Zhao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Huajie Zhang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yan Gao
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xueshan Cao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Qi Hong
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Jing Lin
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yuying Feng
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hanghang Wang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyShenzhenP. R. China
| |
Collapse
|
17
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Yue X, Shen Y, Li Y, Zhang G, Li X, Wei W, Bai Y, Shang Y, Xie J, Luo Z, Wang X, Zhang X, Wang M. Regional Dynamic Neuroimaging Changes of Adults with Autism Spectrum Disorder. Neuroscience 2023:S0306-4522(23)00182-3. [PMID: 37270101 DOI: 10.1016/j.neuroscience.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Most neuroimaging studies investigating autism spectrum disorder (ASD) have focused on static brain function, but ignored the dynamic features of spontaneous brain activities in the temporal dimension. Research of dynamic brain regional activities might help to fully investigate the mechanisms of ASD patients. This study aimed to examine potential changes in the dynamic characteristics of regional neural activities in adult ASD patients and to detect whether the changes were associated with Autism Diagnostic Observation Schedule (ADOS) scores. Resting-state functional MRI was obtained on 77 adult ASD patients and 76 healthy controls. The dynamic regional homogeneity (dReHo) and dynamic amplitude of low-frequency fluctuations (dALFF) were compared between the two groups. Correlation analyses were also performed between dReHo and dALFF in areas showing group differences and ADOS scores. In ASD group, significant differences in dReHo were observed in the left middle temporal gyrus (MTG.L). Besides, we found increased dALFF in the left middle occipital gyrus (MOG.L), left superior parietal gyrus (SPG.L), left precuneus (PCUN.L), left inferior temporal gyrus (ITG.L), and right inferior frontal gyrus, orbital part (ORBinf.R). Furthermore, a significant positive correlation was found between dALFF in the PCUN.L and the ADOS_TOTAL scores, ADOS_SOCIAL scores; the dALFF in the ITG.L, SPG.L was positively associated with ADOS_SOCIAL scores. In conclusion, adults with ASD have a wide area of dynamic regional brain function abnormalities. These suggested that dynamic regional indexes might be used as a powerful measure to help us obtain a more comprehensive understanding of neural activity in adult ASD patients.
Collapse
Affiliation(s)
- Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Ying Li
- Department of Rehabilitation Medicine, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Xinxiang Medical University & Henan Provincial People's Hospital, Zhengzhou & Xinxiang, Henan, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaochen Li
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | - Yue Shang
- UCLA Health, State of California, USA
| | - Jiapei Xie
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi Luo
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinhui Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China
| | | | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, China; Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
19
|
Veenstra-VanderWeele J, O'Reilly KC, Dennis MY, Uribe-Salazar JM, Amaral DG. Translational Neuroscience Approaches to Understanding Autism. Am J Psychiatry 2023; 180:265-276. [PMID: 37002692 DOI: 10.1176/appi.ajp.20230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
While autism spectrum disorder affects nearly 2% of children in the United States, little is known with certainty concerning the etiologies and brain systems involved. This is due, in part, to the substantial heterogeneity in the presentation of the core symptoms of autism as well as the great number of co-occurring conditions that are common in autistic individuals. Understanding the neurobiology of autism is further hampered by the limited availability of postmortem brain tissue to determine the cellular and molecular alterations that take place in the autistic brain. Animal models therefore provide great translational value in helping to define the neural systems that constitute the social brain and mediate repetitive behaviors or interests. If they are based on genetic or environmental factors that contribute to autism, organisms from flies to nonhuman primates may serve as models of the neural structure or function of the autistic brain. Ultimately, successful models can also be employed to test the safety and effectiveness of potential therapeutics. This is an overview of the major animal species that are currently used as models of autism, including an appraisal of the advantages and limitations of each.
Collapse
Affiliation(s)
- Jeremy Veenstra-VanderWeele
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - Kally C O'Reilly
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - Megan Y Dennis
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - José M Uribe-Salazar
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| | - David G Amaral
- New York State Psychiatric Institute and Department of Psychiatry, Columbia University, New York (Veenstra-VanderWeele, O'Reilly); Department of Biochemistry and Molecular Medicine, Genome Center (Dennis, Uribe-Salazar), MIND Institute (Dennis, Uribe-Salazar, Amaral), and Department of Psychiatry and Behavioral Sciences (Amaral), University of California, Davis
| |
Collapse
|
20
|
Itahashi T, Yamashita A, Takahara Y, Yahata N, Aoki YY, Fujino J, Yoshihara Y, Nakamura M, Aoki R, Ohta H, Sakai Y, Takamura M, Ichikawa N, Okada G, Okada N, Kasai K, Tanaka SC, Imamizu H, Kato N, Okamoto Y, Takahashi H, Kawato M, Yamashita O, Hashimoto RI. Generalizable neuromarker for autism spectrum disorder across imaging sites and developmental stages: A multi-site study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534053. [PMID: 37034620 PMCID: PMC10081283 DOI: 10.1101/2023.03.26.534053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites (U.S., Belgium, and Japan) and different developmental stages (children and adolescents). Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults (area under the curve [AUC] = 0.70) and Japanese adults (AUC = 0.81). The neuromarker demonstrated significant generalization for children (AUC = 0.66) and adolescents (AUC = 0.71; all P < 0.05 , family-wise-error corrected). We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. These FCs largely centered on social brain regions such as the amygdala, hippocampus, dorsomedial and ventromedial prefrontal cortices, and temporal cortices. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahara
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Laboratory for Drug Discovery and Disease Research, SHIONOGI & CO., LTD, Osaka, Japan
| | - Noriaki Yahata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Y. Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Junya Fujino
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuki Sakai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
- Department of Neurology, Shimane University, Shimane, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
- UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Saori C. Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Division of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Imamizu
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- XNef Incorporation, Kyoto, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
- RIKEN, Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ryu-ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Yang B, Wang M, Zhou W, Wang X, Chen S, Potenza MN, Yuan LX, Dong GH. Disrupted network integration and segregation involving the default mode network in autism spectrum disorder. J Affect Disord 2023; 323:309-319. [PMID: 36455716 DOI: 10.1016/j.jad.2022.11.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Changes in the brain's default mode network (DMN) in the resting state are closely related to autism spectrum disorder (ASD). Module segmentation can effectively elucidate the neural mechanism of ASD and explore intra- and inter-network connections by means of the participation coefficient (PC). We used that resting-state fMRI data from 269 ASD patients and 340 healthy controls (HCs) in the current study. From the results, ASD subjects showed a significantly higher PC of the DMN than HC subjects. This difference was related to lower intra-module connections within the DMN and higher inter-network connections between the DMN and other networks. When the subjects were split into age groups, the results were verified in the 7-12- and 12-18-year-old age groups but not in the young adult group (18-25 years). When the subjects were divided according to different subtypes of ASD, the results were also observed in the classic autism and pervasive developmental disorder groups, but not in the Asperger disorder group. In conclusions, less developed network segregation in the DMN could be a valid biomarker for ASD. This provides network scientists with new insights into the intermodular connectivity configurations of complex networks from different dimensions in a systematic and comprehensive manner.
Collapse
Affiliation(s)
- Bo Yang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Weiran Zhou
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Xiuqin Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | | | - Li-Xia Yuan
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
22
|
Wang Z, Xu Y, Peng D, Gao J, Lu F. Brain functional activity-based classification of autism spectrum disorder using an attention-based graph neural network combined with gene expression. Cereb Cortex 2022; 33:6407-6419. [PMID: 36587290 DOI: 10.1093/cercor/bhac513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex brain neurodevelopmental disorder related to brain activity and genetics. Most of the ASD diagnostic models perform feature selection at the group level without considering individualized information. Evidence has shown the unique topology of the individual brain has a fundamental impact on brain diseases. Thus, a data-constructing method fusing individual topological information and a corresponding classification model is crucial in ASD diagnosis and biomarker discovery. In this work, we trained an attention-based graph neural network (GNN) to perform the ASD diagnosis with the fusion of graph data. The results achieved an accuracy of 79.78%. Moreover, we found the model paid high attention to brain regions mainly involved in the social-brain circuit, default-mode network, and sensory perception network. Furthermore, by analyzing the covariation between functional magnetic resonance imaging data and gene expression, current studies detected several ASD-related genes (i.e. MUTYH, AADAT, and MAP2), and further revealed their links to image biomarkers. Our work demonstrated that the ASD diagnostic framework based on graph data and attention-based GNN could be an effective tool for ASD diagnosis. The identified functional features with high attention values may serve as imaging biomarkers for ASD.
Collapse
Affiliation(s)
- Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yuhang Xu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Dawei Peng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| |
Collapse
|
23
|
Khan YF, Kaushik B, Chowdhary CL, Srivastava G. Ensemble Model for Diagnostic Classification of Alzheimer's Disease Based on Brain Anatomical Magnetic Resonance Imaging. Diagnostics (Basel) 2022; 12:diagnostics12123193. [PMID: 36553199 PMCID: PMC9777931 DOI: 10.3390/diagnostics12123193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's is one of the fast-growing diseases among people worldwide leading to brain atrophy. Neuroimaging reveals extensive information about the brain's anatomy and enables the identification of diagnostic features. Artificial intelligence (AI) in neuroimaging has the potential to significantly enhance the treatment process for Alzheimer's disease (AD). The objective of this study is two-fold: (1) to compare existing Machine Learning (ML) algorithms for the classification of AD. (2) To propose an effective ensemble-based model for the same and to perform its comparative analysis. In this study, data from the Alzheimer's Diseases Neuroimaging Initiative (ADNI), an online repository, is utilized for experimentation consisting of 2125 neuroimages of Alzheimer's disease (n = 975), mild cognitive impairment (n = 538) and cognitive normal (n = 612). For classification, the framework incorporates a Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (K-NN) followed by some variations of Support Vector Machine (SVM), such as SVM (RBF kernel), SVM (Polynomial Kernel), and SVM (Sigmoid kernel), as well as Gradient Boost (GB), Extreme Gradient Boosting (XGB) and Multi-layer Perceptron Neural Network (MLP-NN). Afterwards, an Ensemble Based Generic Kernel is presented where Master-Slave architecture is combined to attain better performance. The proposed model is an ensemble of Extreme Gradient Boosting, Decision Tree and SVM_Polynomial kernel (XGB + DT + SVM). At last, the proposed method is evaluated using cross-validation using statistical techniques along with other ML models. The presented ensemble model (XGB + DT + SVM) outperformed existing state-of-the-art algorithms with an accuracy of 89.77%. The efficiency of all the models was optimized using Grid-based tuning, and the results obtained after such process showed significant improvement. XGB + DT + SVM with optimized parameters outperformed all other models with an efficiency of 95.75%. The implication of the proposed ensemble-based learning approach clearly shows the best results compared to other ML models. This experimental comparative analysis improved understanding of the above-defined methods and enhanced their scope and significance in the early detection of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Baijnath Kaushik
- School of CSE, Shri Mata Vaishno Devi University, Katra 182320, India
| | - Chiranji Lal Chowdhary
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
- Correspondence:
| | - Gautam Srivastava
- Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
- Research Centre for Interneural Computing, China Medical University, Taichung 40402, Taiwan
- Department of Computer Science and Math, Lebanese American University, Beirut 1102, Lebanon
| |
Collapse
|
24
|
Horien C, Floris DL, Greene AS, Noble S, Rolison M, Tejavibulya L, O'Connor D, McPartland JC, Scheinost D, Chawarska K, Lake EMR, Constable RT. Functional Connectome-Based Predictive Modeling in Autism. Biol Psychiatry 2022; 92:626-642. [PMID: 35690495 PMCID: PMC10948028 DOI: 10.1016/j.biopsych.2022.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/08/2023]
Abstract
Autism is a heterogeneous neurodevelopmental condition, and functional magnetic resonance imaging-based studies have helped advance our understanding of its effects on brain network activity. We review how predictive modeling, using measures of functional connectivity and symptoms, has helped reveal key insights into this condition. We discuss how different prediction frameworks can further our understanding of the brain-based features that underlie complex autism symptomatology and consider how predictive models may be used in clinical settings. Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases, that require consideration within the context of this condition. We close by suggesting exciting future directions for predictive modeling in autism.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; MD-PhD Program, Yale School of Medicine, New Haven, Connecticut.
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zürich, Zurich, Switzerland; Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; MD-PhD Program, Yale School of Medicine, New Haven, Connecticut
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Max Rolison
- Yale Child Study Center, New Haven, Connecticut
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - James C McPartland
- Department of Psychology, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Katarzyna Chawarska
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
25
|
Xu Z, Xia M, Wang X, Liao X, Zhao T, He Y. Meta-connectomic analysis maps consistent, reproducible, and transcriptionally relevant functional connectome hubs in the human brain. Commun Biol 2022; 5:1056. [PMID: 36195744 PMCID: PMC9532385 DOI: 10.1038/s42003-022-04028-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Human brain connectomes include sets of densely connected hub regions. However, the consistency and reproducibility of functional connectome hubs have not been established to date and the genetic signatures underlying robust hubs remain unknown. Here, we conduct a worldwide harmonized meta-connectomic analysis by pooling resting-state functional MRI data of 5212 healthy young adults across 61 independent cohorts. We identify highly consistent and reproducible connectome hubs in heteromodal and unimodal regions both across cohorts and across individuals, with the greatest effects observed in lateral parietal cortex. These hubs show heterogeneous connectivity profiles and are critical for both intra- and inter-network communications. Using post-mortem transcriptome datasets, we show that as compared to non-hubs, connectome hubs have a spatiotemporally distinctive transcriptomic pattern dominated by genes involved in the neuropeptide signaling pathway, neurodevelopmental processes, and metabolic processes. These results highlight the robustness of macroscopic connectome hubs and their potential cellular and molecular underpinnings, which markedly furthers our understanding of how connectome hubs emerge in development, support complex cognition in health, and are involved in disease.
Collapse
Affiliation(s)
- Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xindi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
26
|
Wang M, Wang L, Yang B, Yuan L, Wang X, Potenza MN, Dong GH. Disrupted dynamic network reconfiguration of the brain functional networks of individuals with autism spectrum disorder. Brain Commun 2022; 4:fcac177. [PMID: 35950094 PMCID: PMC9356733 DOI: 10.1093/braincomms/fcac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Human and animal studies on brain functions in subjects with autism spectrum disorder have confirmed the aberrant organization of functional networks. However, little is known about the neural features underlying these impairments.
Using community structure analyses (recruitment and integration), the current study explored the functional network features of individuals with autism spectrum disorder from one database (101 individuals with autism spectrum disorder and 120 healthy controls) and tested the replicability in an independent database (50 individuals with autism spectrum disorder and 74 healthy controls). Additionally, the study divided subjects into different age groups and tested the features in different subgroups.
As for recruitment, subjects with autism spectrum disorder had lower coefficients in the default mode network and basal ganglia network than healthy controls. The integration results showed that subjects with autism spectrum disorder had a lower coefficient than healthy controls in the default mode network -medial frontal network and basal ganglia network -limbic networks. The results for the default mode network were mostly replicated in the independent database, but the results for the basal ganglia network were not. The results for different age groups were also analyzed, and the replicability was tested in different databases.
The lower recruitment in subjects with autism spectrum disorder suggests that they are less efficient at engaging these networks when performing relevant tasks. The lower integration results suggest impaired flexibility in cognitive functions in individuals with autism spectrum disorder. All these findings might explain why subjects with autism spectrum disorder show impaired brain networks and have important therapeutic implications for developing potentially effective interventions.
Collapse
Affiliation(s)
- Min Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
| | - Bo Yang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
| | - Lixia Yuan
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, Zhejiang Province , PR China
| | - Xiuqin Wang
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, Zhejiang Province , PR China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine , New Haven, CT , USA
- Connecticut Mental Health Center , New Haven, CT , USA
- Connecticut Council on Problem Gambling , Wethersfield, CT , USA
- Department of Neuroscience and Wu Tsai Institute, Yale University , New Haven, CT , USA
| | - Guang Heng Dong
- Center for Cognition and Brain Disorders, School of Clinical Medicine and the Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang Province , PR China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, Zhejiang Province , PR China
| |
Collapse
|
27
|
Liu Y, Varoquaux G. Understanding Brain Network Dynamics in Autism Begs for Generalization. Biol Psychiatry 2022; 91:916-917. [PMID: 35589311 DOI: 10.1016/j.biopsych.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Yong Liu
- School of Artificial Intelligence and the Center for Artificial Intelligence in Medical Imaging, Beijing University of Posts and Telecommunications, Beijing, China.
| | | |
Collapse
|