1
|
Serretti A, Baune BT. Transdiagnostic Effects of Schizophrenia Polygenic Scores on Treatment Outcomes in Major Psychiatric Disorders. Neuropsychiatr Dis Treat 2025; 21:547-562. [PMID: 40098640 PMCID: PMC11912901 DOI: 10.2147/ndt.s514514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
Schizophrenia polygenic risk scores (SCZ PRS) have emerged as important tools for modulating factors not only in schizophrenia but also in major psychiatric disorders, such as major depression (MDD) and bipolar disorder (BD). Initially developed to capture the common variant risk for SCZ, accumulating evidence highlights the transdiagnostic impact of SCZ PRS on clinical severity, treatment response, and functional outcomes. This review synthesizes recent findings on the relationship between SCZ PRS and treatment outcomes across SCZ, BD, and MDD. A higher SCZ PRS is associated with poorer treatment outcomes, including treatment resistance or non-remission to antidepressants in MDD, reduced antipsychotic response in SCZ, and diminished lithium efficacy in BD. SCZ PRS is also linked to persistent negative symptoms, cognitive impairments, and long-term illness severity in SCZ. While the effect sizes are generally modest, integration of SCZ PRS with environmental factors, multiomics, and neuroimaging may enhance predictive accuracy. Despite variability in reported associations, the overarching evidence supports a transdiagnostic influence of SCZ PRS on disease trajectories and treatment responses. As a promising component of precision psychiatry, SCZ PRS holds potential for guiding more targeted and effective interventions. Future research should focus on combining SCZ PRS with multimodal approaches to fully realize its clinical utility.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Lenk HÇ, Koch E, O'Connell KS, Smith RL, Akkouh IA, Djurovic S, Andreassen OA, Molden E. Genome-wide association analysis of treatment resistant schizophrenia for variant discovery and polygenic assessment. Hum Genomics 2024; 18:108. [PMID: 39334510 PMCID: PMC11438281 DOI: 10.1186/s40246-024-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Treatment resistant schizophrenia (TRS) is broadly defined as inadequate response to adequate treatment and is associated with a substantial increase in disease burden. Clozapine is the only approved treatment for TRS, showing superior clinical effect on overall symptomatology compared to other drugs, and is the prototype of atypical antipsychotics. Risperidone, another atypical antipsychotic with a more distinctive dopamine 2 antagonism, is commonly used in treatment of schizophrenia. Here, we conducted a genome-wide association study on patients treated with clozapine (TRS) vs. risperidone (non-TRS) and investigated whether single variants and/or polygenic risk score for schizophrenia are associated with TRS status. We hypothesized that patients who are treated with clozapine and risperidone might exhibit distinct neurobiological phenotypes that match pharmacological profiles of these drugs and can be explained by genetic differences. The study population (n = 1286) was recruited from a routine therapeutic drug monitoring (TDM) service between 2005 and 2022. History of a detectable serum concentration of clozapine and risperidone (without TDM history of clozapine) defined the TRS (n = 478) and non-TRS (n = 808) group, respectively. RESULTS We identified a suggestive association between TRS and a common variant within the LINC00523 gene with a significance just below the genome-wide threshold (rs79229764 C > T, OR = 4.89; p = 1.8 × 10-7). Polygenic risk score for schizophrenia was significantly associated with TRS (OR = 1.4, p = 2.1 × 10-6). In a large post-mortem brain sample from schizophrenia donors (n = 214; CommonMind Consortium), gene expression analysis indicated that the rs79229764 variant allele might be involved in the regulation of GPR88 and PUDP, which plays a role in striatal neurotransmission and intellectual disability, respectively. CONCLUSIONS We report a suggestive genetic association at the rs79229764 locus with TRS and show that genetic liability for schizophrenia is positively associated with TRS. These results suggest a candidate locus for future follow-up studies to elucidate the molecular underpinnings of TRS. Our findings further demonstrate the value of both single variant and polygenic association analyses for TRS prediction.
Collapse
Affiliation(s)
- Hasan Çağın Lenk
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Precision Psychiatry, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elise Koch
- Centre for Precision Psychiatry, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- Centre for Precision Psychiatry, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ibrahim A Akkouh
- Centre for Precision Psychiatry, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Centre for Precision Psychiatry, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Kämpe A, Suvisaari J, Lähteenvuo M, Singh T, Ahola-Olli A, Urpa L, Haaki W, Hietala J, Isometsä E, Jukuri T, Kampman O, Kieseppä T, Lahdensuo K, Lönnqvist J, Männynsalo T, Paunio T, Niemi-Pynttäri J, Suokas K, Tuulio-Henriksson A, Veijola J, Wegelius A, Daly M, Taylor J, Kendler KS, Palotie A, Pietiläinen O. Genetic contribution to disease-course severity and progression in the SUPER-Finland study, a cohort of 10,403 individuals with psychotic disorders. Mol Psychiatry 2024; 29:2733-2741. [PMID: 38556557 PMCID: PMC11420086 DOI: 10.1038/s41380-024-02516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Genetic factors contribute to the susceptibility of psychotic disorders, but less is known how they affect psychotic disease-course development. Utilizing polygenic scores (PGSs) in combination with longitudinal healthcare data with decades of follow-up we investigated the contributing genetics to psychotic disease-course severity and diagnostic shifts in the SUPER-Finland study, encompassing 10 403 genotyped individuals with a psychotic disorder. To longitudinally track the study participants' past disease-course severity, we created a psychiatric hospitalization burden metric using the full-coverage and nation-wide Finnish in-hospital registry (data from 1969 and onwards). Using a hierarchical model, ranking the psychotic diagnoses according to clinical severity, we show that high schizophrenia PGS (SZ-PGS) was associated with progression from lower ranked psychotic disorders to schizophrenia (OR = 1.32 [1.23-1.43], p = 1.26e-12). This development manifested already at psychotic illness onset as a higher psychiatric hospitalization burden, the proxy for disease-course severity. In schizophrenia (n = 5 479), both a high SZ-PGS and a low educational attainment PGS (EA-PGS) were associated with increased psychiatric hospitalization burden (p = 1.00e-04 and p = 4.53e-10). The SZ-PGS and the EA-PGS associated with distinct patterns of hospital usage. In individuals with high SZ-PGS, the increased hospitalization burden was composed of longer individual hospital stays, while low EA-PGS associated with shorter but more frequent hospital visits. The negative effect of a low EA-PGS was found to be partly mediated via substance use disorder, a major risk factor for hospitalizations. In conclusion, we show that high SZ-PGS and low EA-PGS both impacted psychotic disease-course development negatively but resulted in different disease-course trajectories.
Collapse
Affiliation(s)
- Anders Kämpe
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Department of Molecular Medicine and surgery (MMK), Karolinska Institutet, Stockholm, Sweden.
| | - Jaana Suvisaari
- National Institute for Health and Welfare, Department of Mental Health and Substance Abuse Services, Helsinki, Finland
| | - Markku Lähteenvuo
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Forensic Psychiatry, University of Eastern Finland School of Medicine, Niuvanniemi hospital, Kuopio, Finland
| | - Tarjinder Singh
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Ari Ahola-Olli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Lea Urpa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Willehard Haaki
- Department of Psychiatry, University of Turku, Turku, Finland
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku, Turku, Finland
| | - Erkki Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Jukuri
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Olli Kampman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Psychiatry, The Wellbeing Services County of Ostrobothnia, Ostrobothnia, Finland
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
- Department of Clinical Medicine (Psychiatry), Faculty of Medicine, University of Turku, Turku, Finland
| | - Tuula Kieseppä
- Hospital District of Helsinki and Uusimaa, Helsinki, Finland
| | | | - Jouko Lönnqvist
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Männynsalo
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Paunio
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Niemi-Pynttäri
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Suokas
- Tampere University, Tampere, Finland
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | | | - Juha Veijola
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Asko Wegelius
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mark Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
- Broad Institute Harvard, Program in Medical and Population Genetics, Cambridge, MA, USA
| | - Jacob Taylor
- Harvard Medical School, Department of Medicine, Boston, USA
| | - Kenneth S Kendler
- Virginia Institute of Psychiatric and Behavioral Genetics, Richmond, VA, USA
- Medical College of Virginia/Virginia Commonwealth University, Department of Psychiatry, Richmond, VA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Olli Pietiläinen
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Sharew NT, Clark SR, Schubert KO, Amare AT. Pharmacogenomic scores in psychiatry: systematic review of current evidence. Transl Psychiatry 2024; 14:322. [PMID: 39107294 PMCID: PMC11303815 DOI: 10.1038/s41398-024-02998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
In the past two decades, significant progress has been made in the development of polygenic scores (PGSs). One specific application of PGSs is the development and potential use of pharmacogenomic- scores (PGx-scores) to identify patients who can benefit from a specific medication or are likely to experience side effects. This systematic review comprehensively evaluates published PGx-score studies in psychiatry and provides insights into their potential clinical use and avenues for future development. A systematic literature search was conducted across PubMed, EMBASE, and Web of Science databases until 22 August 2023. This review included fifty-three primary studies, of which the majority (69.8%) were conducted using samples of European ancestry. We found that over 90% of PGx-scores in psychiatry have been developed based on psychiatric and medical diagnoses or trait variants, rather than pharmacogenomic variants. Among these PGx-scores, the polygenic score for schizophrenia (PGSSCZ) has been most extensively studied in relation to its impact on treatment outcomes (32 publications). Twenty (62.5%) of these studies suggest that individuals with higher PGSSCZ have negative outcomes from psychotropic treatment - poorer treatment response, higher rates of treatment resistance, more antipsychotic-induced side effects, or more psychiatric hospitalizations, while the remaining studies did not find significant associations. Although PGx-scores alone accounted for at best 5.6% of the variance in treatment outcomes (in schizophrenia treatment resistance), together with clinical variables they explained up to 13.7% (in bipolar lithium response), suggesting that clinical translation might be achieved by including PGx-scores in multivariable models. In conclusion, our literature review found that there are still very few studies developing PGx-scores using pharmacogenomic variants. Research with larger and diverse populations is required to develop clinically relevant PGx-scores, using biology-informed and multi-phenotypic polygenic scoring approaches, as well as by integrating clinical variables with these scores to facilitate their translation to psychiatric practice.
Collapse
Affiliation(s)
- Nigussie T Sharew
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Mental Health, Northern Adelaide Local Health Network, SA Health, Adelaide, Australia
- Headspace Adelaide Early Psychosis - Sonder, Adelaide, SA, Australia
| | - Azmeraw T Amare
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Singh S, Stocco G, Theken KN, Dickson A, Feng Q, Karnes JH, Mosley JD, El Rouby N. Pharmacogenomics polygenic risk score: Ready or not for prime time? Clin Transl Sci 2024; 17:e13893. [PMID: 39078255 PMCID: PMC11287822 DOI: 10.1111/cts.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Pharmacogenomic Polygenic Risk Scores (PRS) have emerged as a tool to address the polygenic nature of pharmacogenetic phenotypes, increasing the potential to predict drug response. Most pharmacogenomic PRS have been extrapolated from disease-associated variants identified by genome wide association studies (GWAS), although some have begun to utilize genetic variants from pharmacogenomic GWAS. As pharmacogenomic PRS hold the promise of enabling precision medicine, including stratified treatment approaches, it is important to assess the opportunities and challenges presented by the current data. This assessment will help determine how pharmacogenomic PRS can be advanced and transitioned into clinical use. In this review, we present a summary of recent evidence, evaluate the current status, and identify several challenges that have impeded the progress of pharmacogenomic PRS. These challenges include the reliance on extrapolations from disease genetics and limitations inherent to pharmacogenomics research such as low sample sizes, phenotyping inconsistencies, among others. We finally propose recommendations to overcome the challenges and facilitate the clinical implementation. These recommendations include standardizing methodologies for phenotyping, enhancing collaborative efforts, developing new statistical methods to capitalize on drug-specific genetic associations for PRS construction. Additional recommendations include enhancing the infrastructure that can integrate genomic data with clinical predictors, along with implementing user-friendly clinical decision tools, and patient education. Ethical and regulatory considerations should address issues related to patient privacy, informed consent and safe use of PRS. Despite these challenges, ongoing research and large-scale collaboration is likely to advance the field and realize the potential of pharmacogenomic PRS.
Collapse
Affiliation(s)
- Sonal Singh
- Merck & Co., IncSouth San FranciscoCaliforniaUSA
| | - Gabriele Stocco
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
- Institute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Katherine N. Theken
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alyson Dickson
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - QiPing Feng
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jason H. Karnes
- Department of Pharmacy Practice and Science, R. Ken Coit College of PharmacyUniversity of ArizonaTucsonArizonaUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jonathan D. Mosley
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nihal El Rouby
- Division of Pharmacy Practice and Adminstrative Sciences, James L Winkle College of PharmacyUniversity of CincinnatiCincinnatiOhioUSA
- St. Elizabeth HealthcareEdgewoodKentuckyUSA
| |
Collapse
|
7
|
Koch E, Kämpe A, Alver M, Sigurðarson S, Einarsson G, Partanen J, Smith RL, Jaholkowski P, Taipale H, Lähteenvuo M, Steen NE, Smeland OB, Djurovic S, Molden E, Sigurdsson E, Stefánsson H, Stefánsson K, Palotie A, Milani L, O'Connell KS, Andreassen OA. Polygenic liability for antipsychotic dosage and polypharmacy - a real-world registry and biobank study. Neuropsychopharmacology 2024; 49:1113-1119. [PMID: 38184734 PMCID: PMC11109158 DOI: 10.1038/s41386-023-01792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Genomic prediction of antipsychotic dose and polypharmacy has been difficult, mainly due to limited access to large cohorts with genetic and drug prescription data. In this proof of principle study, we investigated if genetic liability for schizophrenia is associated with high dose requirements of antipsychotics and antipsychotic polypharmacy, using real-world registry and biobank data from five independent Nordic cohorts of a total of N = 21,572 individuals with psychotic disorders (schizophrenia, bipolar disorder, and other psychosis). Within regression models, a polygenic risk score (PRS) for schizophrenia was studied in relation to standardized antipsychotic dose as well as antipsychotic polypharmacy, defined based on longitudinal prescription registry data as well as health records and self-reported data. Meta-analyses across the five cohorts showed that PRS for schizophrenia was significantly positively associated with prescribed (standardized) antipsychotic dose (beta(SE) = 0.0435(0.009), p = 0.0006) and antipsychotic polypharmacy defined as taking ≥2 antipsychotics (OR = 1.10, CI = 1.05-1.21, p = 0.0073). The direction of effect was similar in all five independent cohorts. These findings indicate that genotypes may aid clinically relevant decisions on individual patients´ antipsychotic treatment. Further, the findings illustrate how real-world data have the potential to generate results needed for future precision medicine approaches in psychiatry.
Collapse
Affiliation(s)
- Elise Koch
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Anders Kämpe
- Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maris Alver
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | | | - Juulia Partanen
- Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Robert L Smith
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Piotr Jaholkowski
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Heidi Taipale
- Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Stockholm, Sweden
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Nils Eiel Steen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Engilbert Sigurdsson
- Faculty of Medicine, University of Iceland and Department of Psychiatry, Landspitali, National University Hospital, Reykjavík, Iceland
| | | | | | - Aarno Palotie
- Institute for Molecular Medicine, Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kevin S O'Connell
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Lock SK, Legge SE, Kappel DB, Willcocks IR, Helthuis M, Jansen J, Walters JTR, Owen MJ, O'Donovan MC, Pardiñas AF. Mediation and longitudinal analysis to interpret the association between clozapine pharmacokinetics, pharmacogenomics, and absolute neutrophil count. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:74. [PMID: 37853043 PMCID: PMC10585000 DOI: 10.1038/s41537-023-00404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Clozapine is effective at reducing symptoms of treatment-resistant schizophrenia, but it can also induce several adverse outcomes including neutropenia and agranulocytosis. We used linear mixed-effect models and structural equation modelling to determine whether pharmacokinetic and genetic variables influence absolute neutrophil count in a longitudinal UK-based sample of clozapine users not currently experiencing neutropenia (N = 811). Increased daily clozapine dose was associated with elevated neutrophil count, amounting to a 133 cells/mm3 rise per standard deviation increase in clozapine dose. One-third of the total effect of clozapine dose was mediated by plasma clozapine and norclozapine levels, which themselves demonstrated opposing, independent associations with absolute neutrophil count. Finally, CYP1A2 pharmacogenomic activity score was associated with absolute neutrophil count, supporting lower neutrophil levels in CYP1A2 poor metabolisers during clozapine use. This information may facilitate identifying at-risk patients and then introducing preventative interventions or individualised pharmacovigilance procedures to help mitigate these adverse haematological reactions.
Collapse
Affiliation(s)
- Siobhan K Lock
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Djenifer B Kappel
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Isabella R Willcocks
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | - John Jansen
- Leyden Delta B.V., Nijmegen, The Netherlands
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Qubad M, Bittner RA. Second to none: rationale, timing, and clinical management of clozapine use in schizophrenia. Ther Adv Psychopharmacol 2023; 13:20451253231158152. [PMID: 36994117 PMCID: PMC10041648 DOI: 10.1177/20451253231158152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 03/31/2023] Open
Abstract
Despite its enduring relevance as the single most effective and important evidence-based treatment for schizophrenia, underutilization of clozapine remains considerable. To a substantial degree, this is attributable to a reluctance of psychiatrists to offer clozapine due to its relatively large side-effect burden and the complexity of its use. This underscores the necessity for continued education regarding both the vital nature and the intricacies of clozapine treatment. This narrative review summarizes all clinically relevant areas of evidence, which support clozapine's wide-ranging superior efficacy - for treatment-resistant schizophrenia (TRS) and beyond - and make its safe use eminently feasible. Converging evidence indicates that TRS constitutes a distinct albeit heterogeneous subgroup of schizophrenias primarily responsive to clozapine. Most importantly, the predominantly early onset of treatment resistance and the considerable decline in response rates associated with its delayed initiation make clozapine an essential treatment option throughout the course of illness, beginning with the first psychotic episode. To maximize patients' benefits, systematic early recognition efforts based on stringent use of TRS criteria, a timely offer of clozapine, thorough side-effect screening and management as well as consistent use of therapeutic drug monitoring and established augmentation strategies for suboptimal responders are crucial. To minimize permanent all-cause discontinuation, re-challenges after neutropenia or myocarditis should be considered. Owing to clozapine's unique efficacy, comorbid conditions including substance use and most somatic disorders should not dissuade but rather encourage clinicians to consider clozapine. Moreover, treatment decisions need to be informed by the late onset of clozapine's full effects, which for reduced suicidality and mortality rates may not even be readily apparent. Overall, the singular extent of its efficacy combined with the high level of patient satisfaction continues to distinguish clozapine from all other available antipsychotics.
Collapse
Affiliation(s)
- Mishal Qubad
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Robert A. Bittner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Pardiñas AF, Kappel DB, Roberts M, Tipple F, Shitomi-Jones LM, King A, Jansen J, Helthuis M, Owen MJ, O'Donovan MC, Walters JTR. Pharmacokinetics and pharmacogenomics of clozapine in an ancestrally diverse sample: a longitudinal analysis and genome-wide association study using UK clinical monitoring data. Lancet Psychiatry 2023; 10:209-219. [PMID: 36804072 PMCID: PMC10824469 DOI: 10.1016/s2215-0366(23)00002-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND The antipsychotic, clozapine, is the only licensed drug against the treatment-resistant symptoms that affect 20-30% of people with schizophrenia. Clozapine is markedly underprescribed, partly because of concerns about its narrow therapeutic range and adverse drug reaction profile. Both concerns are linked to drug metabolism, which varies across populations globally and is partly genetically determined. Our study aimed to use a cross-ancestry genome-wide association study (GWAS) design to investigate variations in clozapine metabolism within and between genetically inferred ancestral backgrounds, to discover genomic associations to clozapine plasma concentrations, and to assess the effects of pharmacogenomic predictors across different ancestries. METHODS In this GWAS, we analysed data from the UK Zaponex Treatment Access System clozapine monitoring service as part of the CLOZUK study. We included all available individuals with clozapine pharmacokinetic assays requested by their clinicians. We excluded people younger than 18 years, or whose records contained clerical errors, or with blood drawn 6-24 h after dose, a clozapine or norclozapine concentration less than 50 ng/mL, a clozapine concentration of more than 2000 ng/mL, a clozapine-to-norclozapine ratio outside of the 0·5-3·0 interval, or a clozapine dose of more than 900 mg/day. Using genomic information, we identified five biogeographical ancestries: European, sub-Saharan African, north African, southwest Asian, and east Asian. We did pharmacokinetic modelling, a GWAS, and a polygenic risk score association analysis using longitudinal regression analysis with three primary outcome variables: two metabolite plasma concentrations (clozapine and norclozapine) and the clozapine-to-norclozapine ratio. FINDINGS 19 096 pharmacokinetic assays were available for 4760 individuals in the CLOZUK study. After data quality control, 4495 individuals (3268 [72·7%] male and 1227 [27·3%] female; mean age 42·19 years [range 18-85]) linked to 16 068 assays were included in this study. We found a faster average clozapine metabolism in people of sub-Saharan African ancestry than in those of European ancestry. By contrast, individuals with east Asian or southwest Asian ancestry were more likely to be slow clozapine metabolisers than those with European ancestry. Eight pharmacogenomic loci were identified in the GWAS, seven with significant effects in non-European groups. Polygenic scores generated from these loci were associated with clozapine outcome variables in the whole sample and within individual ancestries; the maximum variance explained was 7·26% for the metabolic ratio. INTERPRETATION Longitudinal cross-ancestry GWAS can discover pharmacogenomic markers of clozapine metabolism that, individually or as polygenic scores, have consistent effects across ancestries. Our findings suggest that ancestral differences in clozapine metabolism could be considered for optimising clozapine prescription protocols for diverse populations. FUNDING UK Academy of Medical Sciences, UK Medical Research Council, and European Commission.
Collapse
Affiliation(s)
- Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| | - Djenifer B Kappel
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Milly Roberts
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Francesca Tipple
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Lisa M Shitomi-Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|