1
|
Larionova E, Rebreikina A, Martynova O. Electrophysiological signatures of spelling sensitivity development from primary school age to adulthood. Sci Rep 2024; 14:7585. [PMID: 38555413 PMCID: PMC10981698 DOI: 10.1038/s41598-024-58219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Recognizing spelling errors is important for correct writing and reading, and develops over an extended period. The neural bases of the development of orthographic sensitivity remain poorly understood. We investigated event-related potentials (ERPs) associated with spelling error recognition when performing the orthographic decision task with correctly spelled and misspelled words in children aged 8-10 years old, early adolescents aged 11-14 years old, and adults. Spelling processing in adults included an early stage associated with the initial recognition of conflict between orthography and phonology (reflected in the N400 time window) and a later stage (reflected in the P600 time window) related to re-checking the spelling. In children 8-10 years old, there were no differences in ERPs to correct and misspelled words; in addition, their behavioral scores were worse than those of early adolescents, implying that the ability to quickly recognize the correct spelling is just beginning to develop at this age. In early adolescents, spelling recognition was reflected only at the later stage, corresponding to the P600 component. At the behavioral level, they were worse than adults at recognizing misspelled words. Our data suggest that orthographic sensitivity can develop beyond 14 years.
Collapse
Affiliation(s)
- Ekaterina Larionova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Anna Rebreikina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
2
|
Lutz CG, Coraj S, Fraga-González G, Brem S. The odd one out - Orthographic oddball processing in children with poor versus typical reading skills in a fast periodic visual stimulation EEG paradigm. Cortex 2024; 172:185-203. [PMID: 38354469 DOI: 10.1016/j.cortex.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
The specialization of left ventral occipitotemporal brain regions to automatically process word forms develops with reading acquisition and is diminished in children with poor reading skills (PR). Using a fast periodic visual oddball stimulation (FPVS) design during electroencephalography (EEG), we examined the level of sensitivity and familiarity to word form processing in ninety-two children in 2nd and 3rd grade with varying reading skills (n = 35 for PR, n = 40 for typical reading skills; TR). To test children's level of "sensitivity", false font (FF) and consonant string (CS) oddballs were embedded in base presentations of word (W) stimuli. "Familiarity" was examined by presenting letter string oddballs with increasing familiarity (CS, pseudoword - PW, W) in FF base stimuli. Overall, our results revealed stronger left-hemispheric coarse sensitivity effects ("FF in W" > "CS in W") in TR than in PR in both topographic and oddball frequency analyses. Further, children distinguished between orthographically legal and illegal ("W/PW in FF" > "CS in FF") but not yet between lexical and non-lexical ("W in FF" vs "PW in FF") word forms. Although both TR and PR exhibit visual sensitivity and can distinguish between orthographically legal and illegal letter strings, they still struggle with nuanced lexical distinctions. Moreover, the strength of sensitivity is linked to reading proficiency. Our work adds to established knowledge in the field to characterize the relationship between print tuning and reading skills and suggests differences in the developmental progress to automatically process word forms.
Collapse
Affiliation(s)
- Christina G Lutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Seline Coraj
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Family Larsson-Rosenquist Foundation Center for Neurodevelopment, Growth, and Nutrition of the Newborn, Department of Neonatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Switzerland.
| |
Collapse
|
3
|
Wang F, Kaneshiro B, Toomarian EY, Gosavi RS, Hasak LR, Moron S, Nguyen QTH, Norcia AM, McCandliss BD. Progress in elementary school reading linked to growth of cortical responses to familiar letter combinations within visual word forms. Dev Sci 2024; 27:e13435. [PMID: 37465984 DOI: 10.1111/desc.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Learning to read depends on the ability to extract precise details of letter combinations, which convey critical information that distinguishes tens of thousands of visual word forms. To support fluent reading skill, one crucial neural developmental process is one's brain sensitivity to statistical constraints inherent in combining letters into visual word forms. To test this idea in early readers, we tracked the impact of two years of schooling on within-subject longitudinal changes in cortical responses to three different properties of words: coarse tuning for print, and fine tuning to either familiar letter combinations within visual word forms or whole word representations. We then examined how each related to growth in reading skill. Three stimulus contrasts-words versus pseudofonts, words versus pseudowords, pseudowords versus nonwords-were presented while high-density EEG Steady-State Visual Evoked Potentials (SSVEPs, n = 31) were recorded. Internalization of abstract visual word form structures over two years of reading experience resulted in a near doubling of SSVEP amplitude, with increasing left lateralization. Longitudinal changes (decreases) in brain responses to such word form structural information were linked to the growth in reading skills, especially in rapid automatic naming of letters. No such changes were observed for whole word representation processing and coarse tuning for print. Collectively, these findings indicate that sensitivity to visual word form structure develops rapidly through exposure to print and is linked to growth in reading skill. RESEARCH HIGHLIGHTS: Longitudinal changes in cognitive responses to coarse print tuning, visual word from structure, and whole word representation were examined in early readers. Visual word form structure processing demonstrated striking patterns of growth with nearly doubled in EEG amplitude and increased left lateralization. Longitudinal changes (decreases) in brain responses to visual word form structural information were linked to the growth in rapid automatic naming for letters. No longitudinal changes were observed for whole word representation processing and coarse tuning for print.
Collapse
Affiliation(s)
- Fang Wang
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Blair Kaneshiro
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Elizabeth Y Toomarian
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Radhika S Gosavi
- Graduate School of Education, Stanford University, Stanford, California, USA
- Synapse School, Menlo Park, California, USA
| | - Lindsey R Hasak
- Graduate School of Education, Stanford University, Stanford, California, USA
| | - Suanna Moron
- Graduate School of Education, Stanford University, Stanford, California, USA
| | | | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford, California, USA
| | - Bruce D McCandliss
- Graduate School of Education, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Su WC, Colacot R, Ahmed N, Nguyen T, George T, Gandjbakhche A. The use of functional near-infrared spectroscopy in tracking neurodevelopmental trajectories in infants and children with or without developmental disorders: a systematic review. Front Psychiatry 2023; 14:1210000. [PMID: 37779610 PMCID: PMC10536152 DOI: 10.3389/fpsyt.2023.1210000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Understanding the neurodevelopmental trajectories of infants and children is essential for the early identification of neurodevelopmental disorders, elucidating the neural mechanisms underlying the disorders, and predicting developmental outcomes. Functional Near-Infrared Spectroscopy (fNIRS) is an infant-friendly neuroimaging tool that enables the monitoring of cerebral hemodynamic responses from the neonatal period. Due to its advantages, fNIRS is a promising tool for studying neurodevelopmental trajectories. Although many researchers have used fNIRS to study neural development in infants/children and have reported important findings, there is a lack of synthesized evidence for using fNIRS to track neurodevelopmental trajectories in infants and children. The current systematic review summarized 84 original fNIRS studies and showed a general trend of age-related increase in network integration and segregation, interhemispheric connectivity, leftward asymmetry, and differences in phase oscillation during resting-state. Moreover, typically developing infants and children showed a developmental trend of more localized and differentiated activation when processing visual, auditory, and tactile information, suggesting more mature and specialized sensory networks. Later in life, children switched from recruiting bilateral auditory to a left-lateralized language circuit when processing social auditory and language information and showed increased prefrontal activation during executive functioning tasks. The developmental trajectories are different in children with developmental disorders, with infants at risk for autism spectrum disorder showing initial overconnectivity followed by underconnectivity during resting-state; and children with attention-deficit/hyperactivity disorders showing lower prefrontal cortex activation during executive functioning tasks compared to their typically developing peers throughout childhood. The current systematic review supports the use of fNIRS in tracking the neurodevelopmental trajectories in children. More longitudinal studies are needed to validate the neurodevelopmental trajectories and explore the use of these neurobiomarkers for the early identification of developmental disorders and in tracking the effects of interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Nárai Á, Nemecz Z, Vidnyánszky Z, Weiss B. Lateralization of orthographic processing in fixed-gaze and natural reading conditions. Cortex 2022; 157:99-116. [PMID: 36279756 DOI: 10.1016/j.cortex.2022.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Lateralized processing of orthographic information is a hallmark of proficient reading. However, how this finding obtained for fixed-gaze processing of orthographic stimuli translates to ecologically valid reading conditions remained to be clarified. To address this shortcoming, here we assessed the lateralization of early orthographic processing in fixed-gaze and natural reading conditions using concurrent eye-tracking and EEG data recorded from young adults without reading difficulties. Sensor-space analyses confirmed the well-known left-lateralized negative-going deflection of fixed-gaze EEG activity throughout the period of early orthographic processing. At the same time, fixation-related EEG activity exhibited left-lateralized followed by right-lateralized processing of text stimuli during natural reading. A strong positive relationship was found between the early leftward lateralization in fixed-gaze and natural reading conditions. Using source-space analyses, early left-lateralized brain activity was obtained in lateraloccipital and posterior ventral occipito-temporal cortices reflecting letter-level processing in both conditions. In addition, in the same time interval, left-lateralized source activity was found also in premotor and parietal brain regions during natural reading. While brain activity remained left-lateralized in later stages representing word-level processing in posterior and middle ventral temporal regions in the fixed-gaze condition, fixation-related source activity became stronger in the right hemisphere in medial and more anterior ventral temporal brain regions indicating higher-level processing of orthographic information. Although our results show a strong positive relationship between the lateralization of letter-level processing in the two reading modes and suggest lateralized brain activity as a general marker for processing of orthographic information, they also clearly indicate the need for reading research in ecologically valid conditions to identify the neural basis of visuospatial attentional, oculomotor and higher-level processes specific to natural reading.
Collapse
Affiliation(s)
- Ádám Nárai
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Zsuzsanna Nemecz
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest H-1064, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest H-1064, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Béla Weiss
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest H-1117, Hungary.
| |
Collapse
|
6
|
Andria S, Madi-Tarabya B, Khateb A. Behavioral and electrophysiological analyses of written word processing in spoken and literary Arabic: New insights into the diglossia question. Eur J Neurosci 2022; 56:4819-4836. [PMID: 35900122 PMCID: PMC9546070 DOI: 10.1111/ejn.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022]
Abstract
Diglossia in Arabic describes the existence and the use of two varieties of the same language: spoken Arabic (SA) and literary Arabic (LA). SA, the dialect first spoken by Arabic native speakers, is used in non‐formal situations for everyday conversations, and varies from one region to another in the Arabic world. LA, acquired later in life when the children learn to read and write at school, is used for formal purposes such as media, speeches in public and religious sermons. Previous research showed that, in the auditory modality, SA words are processed faster than LA ones. In the visual modality, written LA words are processed faster than SA ones, the latter comparing with low‐frequency words. This study analysed event‐related potentials (ERPs) during the processing of high‐frequency (LAHF), LA low‐frequency (LALF) and SA high‐frequency words (SAHF) in a visual lexical decision task. Faster reaction times were observed for LAHF, followed by SAHF and then by LALF. ERPs showed a modulation of the early components starting from the P100 component and of the late P600 component, supposedly related to memory processes. These findings, indicating that processing written SAHF words was largely comparable with processing of LALF, are discussed in the context of Arabic diglossia.
Collapse
Affiliation(s)
- Samer Andria
- The Unit for the Study of Arabic Language, Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel.,Dept of Learning Disabilities, Faculty of Education, University of Haifa, Israel
| | - Bahaa Madi-Tarabya
- The Unit for the Study of Arabic Language, Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel.,Dept of Learning Disabilities, Faculty of Education, University of Haifa, Israel
| | - Asaid Khateb
- The Unit for the Study of Arabic Language, Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel.,Dept of Learning Disabilities, Faculty of Education, University of Haifa, Israel
| |
Collapse
|
7
|
Amora KK, Tretow A, Verwimp C, Tijms J, Leppänen PHT, Csépe V. Typical and Atypical Development of Visual Expertise for Print as Indexed by the Visual Word N1 (N170w): A Systematic Review. Front Neurosci 2022; 16:898800. [PMID: 35844207 PMCID: PMC9279737 DOI: 10.3389/fnins.2022.898800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
The visual word N1 (N170w) is an early brain ERP component that has been found to be a neurophysiological marker for print expertise, which is a prelexical requirement associated with reading development. To date, no other review has assimilated existing research on reading difficulties and atypical development of processes reflected in the N170w response. Hence, this systematic review synthesized results and evaluated neurophysiological and experimental procedures across different studies about visual print expertise in reading development. Literature databases were examined for relevant studies from 1995 to 2020 investigating the N170w response in individuals with or without reading disorders. To capture the development of the N170w related to reading, results were compared between three different age groups: pre-literate children, school-aged children, and young adults. The majority of available N170w studies (N = 69) investigated adults (n = 31) followed by children (school-aged: n = 21; pre-literate: n = 4) and adolescents (n = 1) while some studies investigated a combination of these age groups (n = 12). Most studies were conducted with German-speaking populations (n = 17), followed by English (n = 15) and Chinese (n = 14) speaking participants. The N170w was primarily investigated using a combination of words, pseudowords, and symbols (n = 20) and mostly used repetition-detection (n = 16) or lexical-decision tasks (n = 16). Different studies posed huge variability in selecting electrode sites for analysis; however, most focused on P7, P8, and O1 sites of the international 10–20 system. Most of the studies in adults have found a more negative N170w in controls than poor readers, whereas in children, the results have been mixed. In typical readers, N170w ranged from having a bilateral distribution to a left-hemispheric dominance throughout development, whereas in young, poor readers, the response was mainly right-lateralized and then remained in a bilateral distribution. Moreover, the N170w latency has varied according to age group, with adults having an earlier onset yet with shorter latency than school-aged and pre-literate children. This systematic review provides a comprehensive picture of the development of print expertise as indexed by the N170w across age groups and reading abilities and discusses theoretical and methodological differences and challenges in the field, aiming to guide future research.
Collapse
Affiliation(s)
- Kathleen Kay Amora
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Modern Philology and Social Sciences, Multilingualism Doctoral School, University of Pannonia, Veszprém, Hungary
- *Correspondence: Kathleen Kay Amora ;
| | - Ariane Tretow
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Cara Verwimp
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | - Jurgen Tijms
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands
- Rudolf Berlin Center, Amsterdam, Netherlands
| | | | - Valéria Csépe
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
- Institute for Hungarian and Applied Linguistics, University of Pannonia, Veszprém, Hungary
| |
Collapse
|
8
|
Weiss B, Nárai Á, Vidnyánszky Z. Lateralization of early orthographic processing during natural reading is impaired in developmental dyslexia. Neuroimage 2022; 258:119383. [PMID: 35709947 DOI: 10.1016/j.neuroimage.2022.119383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/08/2022] [Accepted: 06/12/2022] [Indexed: 01/08/2023] Open
Abstract
Skilled reading requires specialized visual cortical processing of orthographic information and its impairment has been proposed as a potential correlate of compromised reading in dyslexia. However, which stage of orthographic information processing during natural reading is disturbed in dyslexics remains unexplored. Here we addressed this question by simultaneously measuring the eye movements and EEG of dyslexic and control young adults during natural reading. Isolated meaningful sentences were presented at five inter-letter spacing levels spanning the range from minimal to extra-large spacing, and participants were instructed to read the text silently at their own pace. Control participants read faster, performed larger saccades and shorter fixations compared to dyslexics. While reading speed peaked around the default letter spacing, saccade amplitude increased and fixation duration decreased with the increase of letter spacing in both groups. Lateralization of occipito-temporal fixation-related EEG activity (FREA) was found in three consecutive time intervals corresponding to early orthographic processing in control readers. Importantly, the lateralization in the time range of the first negative left occipito-temporal FREA peak was specific for first fixations and exhibited an interaction effect between reading ability and letter spacing. The interaction originated in the significant decrease of FREA lateralization at extra-large compared to default letter spacing in control readers and the lack of lateralization in both letter spacing conditions in the case of dyslexics. These findings suggest that expertise-driven hemispheric functional specialization for early orthographic processing thought to be responsible for letter identity extraction during natural reading is compromised in dyslexia.
Collapse
Affiliation(s)
- Béla Weiss
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2., Budapest H-1117, Hungary.
| | - Ádám Nárai
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2., Budapest H-1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Magyar tudósok körútja 2., Budapest H-1117, Hungary.
| |
Collapse
|
9
|
Evidence from ERP and Eye Movements as Markers of Language Dysfunction in Dyslexia. Brain Sci 2022; 12:brainsci12010073. [PMID: 35053816 PMCID: PMC8774244 DOI: 10.3390/brainsci12010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Developmental dyslexia is a complex reading disorder involving genetic and environmental factors. After more than a century of research, its etiology remains debated. Two hypotheses are often put forward by scholars to account for the causes of dyslexia. The most common one, the linguistic hypothesis, postulates that dyslexia is due to poor phonological awareness. The alternative hypothesis considers that dyslexia is caused by visual-attentional deficits and abnormal eye movement patterns. This article reviews a series of selected event-related brain potential (ERP) and eye movement studies on the reading ability of dyslexic individuals to provide an informed state of knowledge on the etiology of dyslexia. Our purpose is to show that the two abovementioned hypotheses are not necessarily mutually exclusive, and that dyslexia should rather be considered as a multifactorial deficit.
Collapse
|
10
|
Spinelli G, Colombo L, Lupker SJ. Consonant and vowel transposition effects during reading development: A study on Italian children and adults. Q J Exp Psychol (Hove) 2021; 75:2023-2042. [PMID: 34841965 DOI: 10.1177/17470218211066301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, Colombo, Spinelli, and Lupker, using a masked transposed letter (TL) priming paradigm, investigated whether consonant/vowel (CV) status is important early in orthographic processing. In four experiments with Italian and English adults, they found equivalent TL priming effects for CC, CV, and VC transpositions. Here, we investigated that question with younger readers (aged 7-10) and adults, as well as whether masked TL priming effects might have a phonological basis. That is, because young children are likely to use phonological recoding in reading, the question was whether they would show TL priming that is affected by CV status. In Experiment 1, target words were preceded by primes in which two letters (either CV, VC, or CC) were transposed versus substituted (SL). We found significant TL priming effects, with an increasing developmental trend but, again, no letter type by priming interaction. In Experiment 2, the transpositions/substitutions involved only pairs of vowels with those vowels having either diphthong or hiatus status. The difference between these two types of vowel clusters is only phonological; thus, the question was, "Would TL priming interact with this factor?" TL priming was again found with an increasing trend with age, but there was no vowel cluster by priming interaction. There was, however, an overall vowel cluster effect (slower responding to words with hiatuses) which decreased with age. The results suggest that TL priming only taps the orthographic level, and that CV status only becomes important at a later phonological level.
Collapse
Affiliation(s)
- Giacomo Spinelli
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Lucia Colombo
- Dipartimento di Psicologia Generale, University of Padua, Padova, Italy
| | - Stephen J Lupker
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Jasińska KK, Shuai L, Lau ANL, Frost S, Landi N, Pugh KR. Functional connectivity in the developing language network in 4-year-old children predicts future reading ability. Dev Sci 2021; 24:e13041. [PMID: 33032375 PMCID: PMC8186432 DOI: 10.1111/desc.13041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
Understanding how pre-literate children's language abilities and neural function relate to future reading ability is important for identifying children who may be at-risk for reading problems. Pre-literate children are already proficient users of spoken language and their developing brain networks for language become highly overlapping with brain networks that emerge during literacy acquisition. In the present longitudinal study, we examined language abilities, and neural activation and connectivity within the language network in pre-literate children (mean age = 4.2 years). We tested how language abilities, brain activation, and connectivity predict children's reading abilities 1 year later (mean age = 5.2 years). At Time 1, children (n = 37) participated in a functional near infrared spectroscopy (fNIRS) experiment of speech processing (listening to words and pseudowords) and completed a standardized battery of language and cognitive assessments. At Time 2, children (n = 28) completed standardized reading assessments. Using psychophysiological interaction (PPI) analyses, we observed significant connectivity between the left IFG and right STG in pre-literate children, which was modulated by task (i.e., listening to words). Neural activation in left IFG and STG and increased task-modulated connectivity between the left IFG and right STG was predictive of multiple reading outcomes. Increased connectivity was associated later with increased reading ability.
Collapse
Affiliation(s)
- Kaja K. Jasińska
- Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
- Haskins Laboratories, New Haven, CT, USA
| | - Lan Shuai
- Haskins Laboratories, New Haven, CT, USA
| | - Airey N. L. Lau
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
| | | | - Nicole Landi
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
- Yale University, New Haven, CT, USA
| | - Kenneth R. Pugh
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
- Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Complex Time-Dependent ERP Hemispheric Asymmetries during Word Matching in Phonological, Semantic and Orthographical Matching Judgment Tasks. Symmetry (Basel) 2021. [DOI: 10.3390/sym13010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Language-induced asymmetry to single word reading has been well investigated in past research. Less known are the complex processes and related asymmetries occurring when a word is compared with the previous one, according to specific tasks. To this end, we used a paradigm based on 80 sequential word pair comparisons and three blocked tasks: phonological, semantic and orthographical matching judgment. Participants had to decide whether the target word (W2) did or did not match the prime word (W1), presented 2 sec before, according to the task. The event-related potentials (ERPs) evoked by W2 in 20 participants have been analyzed. The first negative wave, the Recognition Potential (RP), peaking at about 120 ms over parietal sites, showed greater amplitude at left sites in all tasks, thus revealing the typical left-lateralization. At frontal sites, only the phonological task showed left lateralization. The following N400 (300–450 ms) showed an interesting interaction: Match trials elicited greater left asymmetry on frontal regions to phonological than to semantic than to visual-perceptual tasks, whereas mismatch trials induced an inverted asymmetry, marked by greater amplitude over right frontal sites, regardless of the task. Concerning the late N400 (450–600 ms), phonological and semantic tasks showed an overlapping pattern, with left lateralization in match and right lateralization in mismatch conditions. Results point to complex task- and time-dependent hemispheric asymmetries in word matching.
Collapse
|
13
|
Ríos‐López P, Molinaro N, Bourguignon M, Lallier M. Development of neural oscillatory activity in response to speech in children from 4 to 6 years old. Dev Sci 2020; 23:e12947. [PMID: 32043677 PMCID: PMC7685108 DOI: 10.1111/desc.12947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/18/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Recent neurophysiological theories propose that the cerebral hemispheres collaborate to resolve the complex temporal nature of speech, such that left-hemisphere (or bilateral) gamma-band oscillatory activity would specialize in coding information at fast rates (phonemic information), whereas right-hemisphere delta- and theta-band activity would code for speech's slow temporal components (syllabic and prosodic information). Despite the relevance that neural entrainment to speech might have for reading acquisition and for core speech perception operations such as the perception of intelligible speech, no study had yet explored its development in young children. In the current study, speech-brain entrainment was recorded via EEG in a cohort of children at three different time points since they were 4-5 to 6-7 years of age. Our results showed that speech-brain entrainment occurred only at delta frequencies (0.5 Hz) at all testing times. The fact that, from the longitudinal perspective, coherence increased in bilateral temporal electrodes suggests that, contrary to previous hypotheses claiming for an innate right-hemispheric bias for processing prosodic information, at 7 years of age the low-frequency components of speech are processed in a bilateral manner. Lastly, delta speech-brain entrainment in the right hemisphere was related to an indirect measure of intelligibility, providing preliminary evidence that the entrainment phenomenon might support core linguistic operations since early childhood.
Collapse
Affiliation(s)
- Paula Ríos‐López
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
| | - Nicola Molinaro
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Mathieu Bourguignon
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
- Laboratoire de Cartographie fonctionnelle du CerveauUniversite libre de BruxellesBrusselsBelgium
| | - Marie Lallier
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
| |
Collapse
|
14
|
Electrophysiological correlates of the Categorization Working Memory Span task in older adults. Behav Brain Res 2020; 393:112809. [PMID: 32679163 DOI: 10.1016/j.bbr.2020.112809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 11/23/2022]
Abstract
Older adults typically show poor performance in tasks assessing working memory (WM), a crucial cognitive mechanism. The present study examined the electrophysiological correlates of a classic complex WM task often used in studies involving older adults, the Categorization Working Memory Span task (CWMS), by means of event-related potentials. Thirty-five healthy, right-handed older adults (64-75 years) were presented the CWMS task while a 38-channel EEG was measured, and the N1, P1, and word recognition potential (RP) were analyzed on four regions of interest (ROIs) of 5 electrodes each. Additionally, late positive components (P200 and P300) were analyzed in midline ROIs of 3 electrodes each. Participants also executed an n-back task (2-back condition) and an objective performance-based task (the Ability to solve Problems in Everyday life [APE]). At a behavioral level, significant correlations were found between the CWMS, the 2-back, and the APE tests. At a physiological level, N1 and word RP showed greater bilateral amplitude in posterior electrodes, but the better the CWMS and the 2-back performance, the greater the RP amplitude on posterior left sites. The CWMS task induced a clear P200 component, but its amplitude was not correlated with participants' behavioral performance. Altogether, notwithstanding that the bilateral RP pattern elicited by the CWMS is a clear marker of WM processing in older adults, better elderly performers on this complex WM test showed greater left hemisphere dominance to the automatic word RP.
Collapse
|
15
|
Loberg O, Hautala J, Hämäläinen JA, Leppänen PHT. Influence of reading skill and word length on fixation-related brain activity in school-aged children during natural reading. Vision Res 2019; 165:109-122. [PMID: 31710840 DOI: 10.1016/j.visres.2019.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 10/25/2022]
Abstract
Word length is one of the main determinants of eye movements during reading and has been shown to influence slow readers more strongly than typical readers. The influence of word length on reading in individuals with different reading skill levels has been shown in separate eye-tracking and electroencephalography studies. However, the influence of reading difficulty on cortical correlates of word length effect during natural reading is unknown. To investigate how reading skill is related to brain activity during natural reading, we performed an exploratory analysis on our data set from a previous study, where slow reading (N = 27) and typically reading (N = 65) 12-to-13.5-year-old children read sentences while co-registered ET-EEG was recorded. We extracted fixation-related potentials (FRPs) from the sentences using the linear deconvolution approach. We examined standard eye-movement variables and deconvoluted FRP estimates: intercept of the response, categorical effect of first fixation versus additional fixation and continuous effect of word length. We replicated the pattern of stronger word length effect in eye movements for slow readers. We found a difference between typical readers and slow readers in the FRP intercept, which contains activity that is common to all fixations, within a fixation time-window of 50-300 ms. For both groups, the word length effect was present in brain activity during additional fixations; however, this effect was not different between groups. This suggests that stronger word length effect in the eye movements of slow readers might be mainly due re-fixations, which are more probable due to the lower efficiency of visual processing.
Collapse
Affiliation(s)
- Otto Loberg
- Department of Psychology, University of Jyväskylä, Finland.
| | | | | | | |
Collapse
|
16
|
Spironelli C, Romeo Z, Maffei A, Angrilli A. Comparison of automatic visual attention in schizophrenia, bipolar disorder, and major depression: Evidence from P1 event-related component. Psychiatry Clin Neurosci 2019; 73:331-339. [PMID: 30882991 DOI: 10.1111/pcn.12840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/08/2019] [Accepted: 03/10/2019] [Indexed: 01/12/2023]
Abstract
AIM The ability to discern commonalities and differences in the neurobiology of functional psychoses represents a key element to unmasking shared vulnerability across different psychiatric conditions. The present study sought to compare the automatic visual attention mechanisms in three psychiatric disorders considered to distribute along the continuum of psychosis severity: schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). To this end, the visual P1 event-related potential component, a cortical correlate of automatic visual attention, was measured during an ecological task based on visual word pair presentation. METHODS Four samples of participants, 18 SCZ, 20 BD, 28 MDD, and 30 healthy controls, were recruited and submitted to the same procedure and stimuli. The P1 evoked by visual word presentation was recorded through a 38-electrode electroencephalography cap. Words were presented on a computer screen serially as pairs, and participants had to decide whether they rhymed or not. RESULTS P1 was larger at posterior sites in SCZ compared with BD, healthy control, and MDD participants. BD patients showed the lowest P1 compared with all other groups. Positive Pearson's correlations were found in SCZ patients between P1 amplitude on left posterior sites and both hallucination severity and worse task performance. CONCLUSION The three investigated psychiatric samples showed different automatic visual attention patterns: SCZ patients exhibited the greatest cognitive impairment correlated with the amplitude of P1, MDD patients revealed a normal component, and BD showed a compensated euthymic response different from results of past literature in untreated patients.
Collapse
Affiliation(s)
- Chiara Spironelli
- Department of General Psychology, University of Padua, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | | | - Antonio Maffei
- Department of General Psychology, University of Padua, Padua, Italy
| | - Alessandro Angrilli
- Department of General Psychology, University of Padua, Padua, Italy.,Padua Neuroscience Center, Padua, Italy.,IN-CNR Institute of Neuroscience CNR, Padua, Italy
| |
Collapse
|
17
|
van Setten ER, Maurits NM, Maassen BA. N1 lateralization and dyslexia: An event-related potential study in children with a familial risk of dyslexia. DYSLEXIA (CHICHESTER, ENGLAND) 2019; 25:84-102. [PMID: 30407716 PMCID: PMC6587992 DOI: 10.1002/dys.1604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/30/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
The rapid automatic specialized processing of printed words is signalled by the left-lateralization of the N1 component in the visual event-related potential (ERP). In the present study, we have investigated whether differences in N1 lateralization can be observed between Dutch children with and without (a familial risk of) dyslexia around the age of 12 years using a linguistic judgement task. Forty-five participants were included in the ERP analysis, 18 in the low familial risk group without dyslexia, 15 in the high familial risk group without dyslexia, and 12 in the high familial risk group with dyslexia. The results showed that although the N1 peaked slightly earlier in the left hemisphere, the N1 amplitude was right-lateralized in all groups. Moreover, there were no group differences in N1 amplitude or latency, and there was no relationship between reading (related) test scores and N1 characteristics. The results of the present study and our previous findings in adults suggest that print-tuning lateralization is a process that is still developing in adolescence. Because other studies did find N1 lateralization in younger readers with a print versus nonprint contrast, the current results seem to indicate that differences in N1 lateralization also depend on the experimental paradigm.
Collapse
Affiliation(s)
- Ellie R.H. van Setten
- Center for Language and Cognition Groningen (CLCG), Faculty of ArtsUniversity of GroningenGroningenThe Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Natasha M. Maurits
- Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Neurology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ben A.M. Maassen
- Center for Language and Cognition Groningen (CLCG), Faculty of ArtsUniversity of GroningenGroningenThe Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
18
|
Yu HH, Gu SM, Yao FM, Wang ZR, Fu WQ. Electrophysiological Characteristics in Depressive Personality Disorder: An Event-Related Potential Study. Front Psychol 2019; 9:2711. [PMID: 30687171 PMCID: PMC6335292 DOI: 10.3389/fpsyg.2018.02711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the neurophysiological characteristics of young people with depressive personality disorder using event-related potentials (ERP). To explore the effects of visual-emotional words on ERP, mainly N350, we recruited 19 individuals with a depressive personality disorder and 10 healthy controls. ERP were recorded while the subjects took decisions on target words that were classified into three categories: emotionally positive, negative, and neutral. The ERP signals were then separately averaged according to the subjects' classifications. Data analysis showed that the amplitude of N350 was larger in response to positive and negative words than to neutral words. The latency of N350 was longer in negative words, in contrast with positive and neutral words. However, no difference was found between the two groups. These results suggest that neurophysiological characteristics of young people with a depressive personality disorder in visual-emotional word processing have not yet been influenced by their personality traits. To some extent, N350 reflected semantic processes and was not sensitive to participants' mood state.
Collapse
Affiliation(s)
- Hong-Hua Yu
- Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Si-meng Gu
- School of Psychology, Jiangsu University Medical Center, Zhenjiang, China
| | - Fang-Min Yao
- Department of Psychology, Medical College of Suzhou University, Suzhou, China
| | - Zhi-Ren Wang
- Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Wen-Qing Fu
- Department of Psychology, Medical College of Suzhou University, Suzhou, China
| |
Collapse
|
19
|
Arnett AB, Hudac CM, DesChamps TD, Cairney BE, Gerdts J, Wallace AS, Bernier RA, Webb SJ. Auditory perception is associated with implicit language learning and receptive language ability in autism spectrum disorder. BRAIN AND LANGUAGE 2018; 187:1-8. [PMID: 30312833 PMCID: PMC7970711 DOI: 10.1016/j.bandl.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 09/25/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is associated with language impairment as well as atypical auditory sensory processing. The current study investigated associations among auditory perception, implicit language learning and receptive language ability in youth with ASD. METHODS We measured auditory event related potentials (ERP) during an artificial language statistical learning task in 76 youth with ASD and 27 neurotypical (NT) controls. Participants with ASD had a broad range of cognitive and language abilities. RESULTS NT youth showed evidence of implicit learning via attenuated P1 amplitude in the left hemisphere. In contrast, among youth with ASD, implicit learning elicited bilateral attenuation that was increasingly evident with greater receptive language skill. CONCLUSIONS Efficient early auditory perception reflects language learning and is a marker of language ability among youth with ASD. Atypical lateralization of word learning is evident in ASD across a broad range of receptive language abilities.
Collapse
Affiliation(s)
- Anne B Arnett
- University of Washington, Department of Psychiatry & Behavioral Sciences, United States.
| | - Caitlin M Hudac
- University of Washington, Department of Psychiatry & Behavioral Sciences, United States
| | | | - Brianna E Cairney
- University of Washington, Department of Psychiatry & Behavioral Sciences, United States
| | - Jennifer Gerdts
- University of Washington, Department of Psychiatry & Behavioral Sciences, United States
| | - Arianne S Wallace
- University of Washington, Department of Psychiatry & Behavioral Sciences, United States
| | - Raphael A Bernier
- University of Washington, Department of Psychiatry & Behavioral Sciences, United States
| | - Sara J Webb
- University of Washington, Department of Psychiatry & Behavioral Sciences, United States; Seattle Children's Hospital Research Institute, United States
| |
Collapse
|
20
|
Ocklenburg S, Friedrich P, Fraenz C, Schlüter C, Beste C, Güntürkün O, Genç E. Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. SCIENCE ADVANCES 2018; 4:eaar6830. [PMID: 30009258 PMCID: PMC6040861 DOI: 10.1126/sciadv.aar6830] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
The left hemispheric advantage in speech perception is reflected in faster neurophysiological processing. On the basis of postmortem data, it has been suggested that asymmetries in the organization of the intrinsic microcircuitry of the posterior temporal lobe may produce this leftward timing advantage. However, whether this hypothetical structure-function relationship exists in vivo has never been empirically validated. To test this assumption, we used in vivo neurite orientation dispersion and density imaging to quantify microcircuitry in terms of axon and dendrite complexity of the left and right planum temporale in 98 individuals. We found that a higher density of dendrites and axons in the temporal speech area is associated with faster neurophysiological processing of auditory speech, as reflected by electroencephalography. Our results imply that a higher density and higher number of synaptic contacts in the left posterior temporal lobe increase temporal precision and decrease latency of neurophysiological processes in this brain region.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Patrick Friedrich
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christoph Fraenz
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Caroline Schlüter
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Erhan Genç
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
21
|
Dinga S, Wu D, Huang S, Wu C, Wang X, Shi J, Hu Y, Liang C, Zhang F, Lu M, Leiken K, Xiang J. Neuromagnetic correlates of audiovisual word processing in the developing brain. Int J Psychophysiol 2018; 128:7-21. [PMID: 29580903 DOI: 10.1016/j.ijpsycho.2018.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
Abstract
The brain undergoes enormous changes during childhood. Little is known about how the brain develops to serve word processing. The objective of the present study was to investigate the maturational changes of word processing in children and adolescents using magnetoencephalography (MEG). Responses to a word processing task were investigated in sixty healthy participants. Each participant was presented with simultaneous visual and auditory word pairs in "match" and "mismatch" conditions. The patterns of neuromagnetic activation from MEG recordings were analyzed at both sensor and source levels. Topography and source imaging revealed that word processing transitioned from bilateral connections to unilateral connections as age increased from 6 to 17 years old. Correlation analyses of language networks revealed that the path length of word processing networks negatively correlated with age (r = -0.833, p < 0.0001), while the connection strength (r = 0.541, p < 0.01) and the clustering coefficient (r = 0.705, p < 0.001) of word processing networks were positively correlated with age. In addition, males had more visual connections, whereas females had more auditory connections. The correlations between gender and path length, gender and connection strength, and gender and clustering coefficient demonstrated a developmental trend without reaching statistical significance. The results indicate that the developmental trajectory of word processing is gender specific. Since the neuromagnetic signatures of these gender-specific paths to adult word processing were determined using non-invasive, objective, and quantitative methods, the results may play a key role in understanding language impairments in pediatric patients in the future.
Collapse
Affiliation(s)
- Samantha Dinga
- Psychology Department, University of Rochester, 500 Joseph C Wilson Blvd, Rochester, NY 14627, USA; MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Di Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Shuyang Huang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Caiyun Wu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Jingping Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Jiangsu, China
| | - Yue Hu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Liang
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Fawen Zhang
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Meng Lu
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Kimberly Leiken
- MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Jing Xiang
- MEG Center, Department of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA.
| |
Collapse
|
22
|
Spironelli C, Angrilli A. Supine posture affects cortical plasticity in elderly but not young women during a word learning-recognition task. Biol Psychol 2017; 127:180-190. [PMID: 28559204 DOI: 10.1016/j.biopsycho.2017.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
The present research investigated the hypothesis that elderly and horizontal body position contribute to impair learning capacity. To this aim, 30 young (mean age: 23.2 years) and 20 elderly women (mean age: 82.8 years) were split in two equal groups, one assigned to the Seated Position (SP), and the other to the horizontal Bed Rest position (hBR). In the Learning Phase, participants were shown 60 words randomly distributed, and in the subsequent Recognition Phase they had to recognize them mixed with a sample of 60 new words. Behavioral analyses showed age-group effects, with young women exhibiting faster response times and higher accuracy rates than elderly women, but no interaction of body position with age group was found. Analysis of the RP component (250-270ms) revealed greater negativity in the left Occipital gyrus/Cuneus of both sitting age-groups, but significantly left-lateralized RP in left Lingual gyrus only in young bedridden women. Elderly hBR women showed a lack of left RP lateralization, the main generator being located in the right Cuneus. Young participants had the typical old/new effect (450-800ms) in different portions of left Frontal gyri/Uncus, whereas elderly women showed no differences in stimulus processing and its location. EEG alpha activity analyzed during a 3min resting state, soon after the recognition task, revealed greater alpha amplitude (i.e., cortical inhibition) in posterior sites of hBR elderly women, a result in line with their inhibited posterior RP. In elderly women the left asymmetry of RP was positively correlated with both greater accuracy and faster responses, thus pointing to a dysfunctional role, rather than a compensatory shift, of the observed right RP asymmetry in this group. This finding may have important clinical implications, with particular regard to the long-term side-effects of forced Bed Rest on elderly patients.
Collapse
Affiliation(s)
- Chiara Spironelli
- Department of General Psychology, University of Padova, via Venezia 8, 35131 Padova, Italy.
| | - Alessandro Angrilli
- Department of General Psychology, University of Padova, via Venezia 8, 35131 Padova, Italy; CNR Institute of Neuroscience, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
23
|
Xue J, Liu T, Marmolejo-Ramos F, Pei X. Age of Acquisition Effects on Word Processing for Chinese Native Learners' English: ERP Evidence for the Arbitrary Mapping Hypothesis. Front Psychol 2017; 8:818. [PMID: 28572785 PMCID: PMC5435808 DOI: 10.3389/fpsyg.2017.00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
The present study aimed at distinguishing processing of early learned L2 words from late ones for Chinese natives who learn English as a foreign language. Specifically, we examined whether the age of acquisition (AoA) effect arose during the arbitrary mapping from conceptual knowledge onto linguistic units. The behavior and ERP data were collected when 28 Chinese-English bilinguals were asked to perform semantic relatedness judgment on word pairs, which represented three stages of word learning (i.e., primary school, junior and senior high schools). A 3 (AoA: early vs. intermediate vs. late) × 2 (regularity: regular vs. irregular) × 2 (semantic relatedness: related vs. unrelated) × 2 (hemisphere: left vs. right) × 3 (brain area: anterior vs. central vs. posterior) within-subjects design was adopted. Results from the analysis of N100 and N400 amplitudes showed that early learned words had an advantage in processing accuracy and speed; there is a tendency that the AoA effect was more pronounced for irregular word pairs and in the semantic related condition. More important, ERP results showed early acquired words induced larger N100 amplitudes for early AoA words in the parietal area and more negative-going N400 than late acquire words in the frontal and central regions. The results indicate the locus of the AoA effect might derive from the arbitrary mapping between word forms and semantic concepts, and early acquired words have more semantic interconnections than late acquired words.
Collapse
Affiliation(s)
- Jin Xue
- School of Foreign Studies, University of Science and Technology BeijingBeijing, China
| | - Tongtong Liu
- School of English Language, Literature and Culture, Beijing International Studies UniversityBeijing, China
| | - Fernando Marmolejo-Ramos
- Department of Psychology, Stockholm UniversityStockholm, Sweden
- Faculty of Health Sciences, The University of Adelaide, AdelaideSA, Australia
| | - Xuna Pei
- School of English Language, Literature and Culture, Beijing International Studies UniversityBeijing, China
| |
Collapse
|
24
|
Lateralization of language function in epilepsy patients: A high-density scalp-derived event-related potentials (ERP) study. Clin Neurophysiol 2017; 128:472-479. [DOI: 10.1016/j.clinph.2016.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022]
|
25
|
Charollais A, Lempereur A, Simon V, Seraffin C, Lalonde R, Stumpf MH, Rebai M, Bannier D. ERP variabilities as a function of reading maturation. Neurophysiol Clin 2016; 46:313-315. [DOI: 10.1016/j.neucli.2015.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/29/2015] [Indexed: 11/27/2022] Open
|
26
|
van Setten ERH, Martinez-Ferreiro S, Maurits NM, Maassen BAM. Print-Tuning Lateralization and Handedness: an Event-Related Potential Study in Dyslexic Higher Education Students. DYSLEXIA (CHICHESTER, ENGLAND) 2016; 22:64-82. [PMID: 26639313 DOI: 10.1002/dys.1519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/20/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
Despite their ample reading experience, higher education students with dyslexia still show deficits in reading and reading-related skills. Lateralized print tuning, the early sensitivity to print of the left parietal cortex signalled by the N1 event-related potential (ERP) component, differs between beginning dyslexic readers and controls. For adults, the findings are mixed. The present study aims to investigate whether print tuning, as indexed by the N1 component, differs between 24 students with dyslexia and 15 non-dyslexic controls. Because handedness has been linked to lateralization, first, a separate analysis was conducted including only right-handed participants (n = 12 in both groups), like in most previous studies. ERPs were measured during a judgement task, requiring visual, phonological, or semantic judgments. In both groups, the N1 was earlier and stronger in the left than in the right hemisphere. However, when only strongly right-handed participants were evaluated, the N1 was less left-lateralized for participants with dyslexia as compared with controls. Participants with dyslexia had longer reaction times during the ERP experiment and performed worse on many reading (-related) tasks. These findings suggest that abnormal print tuning can still be found among higher education students with dyslexia and that handedness should be regarded in the study of print tuning.
Collapse
Affiliation(s)
- Ellie R H van Setten
- Center for Language and Cognition Groningen (CLCG), Faculty of Arts, University of Groningen, Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Silvia Martinez-Ferreiro
- Center for Language and Cognition Groningen (CLCG), Faculty of Arts, University of Groningen, Groningen, The Netherlands
- Biolinguistics Initiative Barcelona, Faculty of Arts, University of Barcelona, Barcelona, Spain
| | - Natasha M Maurits
- Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben A M Maassen
- Center for Language and Cognition Groningen (CLCG), Faculty of Arts, University of Groningen, Groningen, The Netherlands
- Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Coch D, Meade G. N1 and P2 to words and wordlike stimuli in late elementary school children and adults. Psychophysiology 2015; 53:115-28. [PMID: 26473497 DOI: 10.1111/psyp.12567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
Abstract
In an investigation of the development of fine-tuning for word processing across the late elementary school years as indexed by the posterior N1 and P2 components of the ERP waveform, third, fourth, and fifth graders and a comparison group of adults viewed words, pseudowords, nonpronounceable letter strings, and false font strings in a semantic categorization task. In adults, N1 was larger to and P2 was later to words as compared to pseudowords, a finely tuned effect of lexicality reflecting specialization for word processing. In contrast, in each group of children, N1 was larger to letter strings than false font strings and P2 was larger to false font strings than letter strings, reflecting coarse encoding for orthography. In regression analyses, scores on standardized behavioral test measures of orthographic knowledge, decoding skill, and fluency predicted N1 amplitude; these effects were not significant with age included as a separate predictor. None of the behavioral scores, in models including or not including age, predicted P2 amplitude. In direct comparisons between groups, there were multiple differences between the child and adult groups for both N1 and P2 amplitude effects, and only a single significant difference between two child groups. Overall, the findings suggest a lengthy developmental time course for the fine-tuning of early word processing as indexed by N1 and P2.
Collapse
Affiliation(s)
- Donna Coch
- Department of Education, Dartmouth College, Hanover, New Hampshire, USA
| | - Gabriela Meade
- Department of Education, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
28
|
Brain plasticity in aphasic patients: intra- and inter-hemispheric reorganisation of the whole linguistic network probed by N150 and N350 components. Sci Rep 2015. [PMID: 26217919 PMCID: PMC4649892 DOI: 10.1038/srep12541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The present study examined linguistic plastic reorganization of language through Evoked Potentials in a group of 17 non-fluent aphasic patients who had suffered left perisylvian focal lesions, and showed a good linguistic recovery. Language reorganisation was probed with three linguistic tasks (Phonological, Semantic, Orthographic), the early word recognition potential (N150) and the later phonological-related component (N350). Results showed the typical left-lateralised posterior N150 in healthy controls (source: left Fusiform Gyrus), that was bilateral (Semantic) or right sided (Phonological task) in patients (sources: right Inferior/Middle Temporal and Fusiform Gyri). As regards N350, controls revealed different intra- and inter-hemispheric linguistic activation across linguistic tasks, whereas patients exhibited greater activity in left intact sites, anterior and posterior to the damaged area, in all tasks (sources: Superior Frontal Gyri). A comprehensive neurofunctional model is presented, describing how complete intra- and inter-hemispheric reorganisation of the linguistic networks occurs after aphasic damage in the strategically dominant left perisylvian linguistic centres.
Collapse
|
29
|
Selpien H, Siebert C, Genc E, Beste C, Faustmann PM, Güntürkün O, Ocklenburg S. Left dominance for language perception starts in the extrastriate cortex: An ERP and sLORETA study. Behav Brain Res 2015; 291:325-333. [PMID: 26048428 DOI: 10.1016/j.bbr.2015.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
Abstract
While it is well known that the left hemisphere is more efficient than the right in most tasks involving perception of speech stimuli, the neurophysiological pathways leading to these lateralised performance differences are as yet rather unclear. In particular, the question whether language lateralisation depends on semantic processing or is already evident in early perceptual stimulus processing has not been answered unequivocally. In the present study, we therefore recorded event-related potentials (ERPs) during tachistoscopic presentation of horizontally or vertically presented verbal stimuli in the left (LVF) and the right visual field (RVF). Participants were asked to indicate, whether the presented stimulus was a word or a non-word. On the behavioural level, participants showed stronger hemispheric asymmetries for horizontal, than for vertical stimulus presentation. In addition, ERP asymmetries were also modulated by stimulus presentation format, as the electrode by visual field interactions for P1 and N1 were stronger after vertical, than after horizontal stimulus presentation. Moreover, sLORETA revealed that ERP left-right asymmetries were mainly driven by the extrastriate cortex and reading-associated areas in the parietal cortex. Taken together, the present study shows electrophysiological support for the assumption that language lateralisation during speech perception arises from a left dominance for the processing of early perceptual stimulus aspects.
Collapse
Affiliation(s)
- Helene Selpien
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Germany.
| | - Carsten Siebert
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Germany
| | - Erhan Genc
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Germany
| |
Collapse
|
30
|
Broadway JM, Franklin MS, Schooler JW. Early event-related brain potentials and hemispheric asymmetries reveal mind-wandering while reading and predict comprehension. Biol Psychol 2015; 107:31-43. [DOI: 10.1016/j.biopsycho.2015.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
|
31
|
Vogel SE, Goffin C, Ansari D. Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: an fMR-adaptation study. Dev Cogn Neurosci 2015; 12:61-73. [PMID: 25555264 PMCID: PMC6989778 DOI: 10.1016/j.dcn.2014.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/16/2022] Open
Abstract
The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS) becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number). Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation.
Collapse
Affiliation(s)
- Stephan E Vogel
- Numerical Cognition Laboratory, Department of Psychology, The University of Western Ontario, London, ON, Canada; Section of Educational Neuroscience, Department of Psychology, University of Graz, Graz, Austria
| | - Celia Goffin
- Numerical Cognition Laboratory, Department of Psychology, The University of Western Ontario, London, ON, Canada
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
32
|
Hasko S, Groth K, Bruder J, Bartling J, Schulte-Körne G. What does the brain of children with developmental dyslexia tell us about reading improvement? ERP evidence from an intervention study. Front Hum Neurosci 2014; 8:441. [PMID: 25018723 PMCID: PMC4071643 DOI: 10.3389/fnhum.2014.00441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/01/2014] [Indexed: 01/22/2023] Open
Abstract
Intervention is key to managing developmental dyslexia (DD), but not all children with DD benefit from treatment. Some children improve (improvers, IMP), whereas others do not improve (non-improvers, NIMP). Neurobiological differences between IMP and NIMP have been suggested, but studies comparing IMP and NIMP in childhood are missing. The present study examined whether ERP patterns change with treatment and differ between IMP and NIMP. We investigated the ERPs of 28 children with DD and 25 control children (CON) while performing a phonological lexical decision (PLD) task before and after a 6-month intervention. After intervention children with DD were divided into IMP (n = 11) and NIMP (n = 17). In the PLD–task children were visually presented with words, pseudohomophones, pseudowords, and false fonts and had to decide whether the presented stimulus sounded like an existing German word or not. Prior to intervention IMP showed higher N300 amplitudes over fronto-temporal electrodes compared to NIMP and CON and N400 amplitudes were attenuated in both IMP and NIMP compared to CON. After intervention N300 amplitudes of IMP were comparable to those of CON and NIMP. This suggests that the N300, which has been related to phonological access of orthographic stimuli and integration of orthographic and phonological representations, might index a compensatory mechanism or precursor that facilitates reading improvement. The N400, which is thought to reflect grapheme-phoneme conversion or the access to the orthographic lexicon increased in IMP from pre to post and was comparable to CON after intervention. Correlations between N300 amplitudes pre, growth in reading ability and N400 amplitudes post indicated that higher N300 amplitudes might be important for reading improvement and increase in N400 amplitudes. The results suggest that children with DD, showing the same cognitive profile might differ regarding their neuronal profile which could further influence reading improvement.
Collapse
Affiliation(s)
- Sandra Hasko
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich Munich, Germany
| | - Katarina Groth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich Munich, Germany
| | - Jennifer Bruder
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich Munich, Germany
| | - Jürgen Bartling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich Munich, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich Munich, Germany
| |
Collapse
|
33
|
Sela I. Visual and auditory synchronization deficits among dyslexic readers as compared to non-impaired readers: a cross-correlation algorithm analysis. Front Hum Neurosci 2014; 8:364. [PMID: 24959125 PMCID: PMC4051190 DOI: 10.3389/fnhum.2014.00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 05/13/2014] [Indexed: 11/29/2022] Open
Abstract
Visual and auditory temporal processing and crossmodal integration are crucial factors in the word decoding process. The speed of processing (SOP) gap (Asynchrony) between these two modalities, which has been suggested as related to the dyslexia phenomenon, is the focus of the current study. Nineteen dyslexic and 17 non-impaired University adult readers were given stimuli in a reaction time (RT) procedure where participants were asked to identify whether the stimulus type was only visual, only auditory or crossmodally integrated. Accuracy, RT, and Event Related Potential (ERP) measures were obtained for each of the three conditions. An algorithm to measure the contribution of the temporal SOP of each modality to the crossmodal integration in each group of participants was developed. Results obtained using this model for the analysis of the current study data, indicated that in the crossmodal integration condition the presence of the auditory modality at the pre-response time frame (between 170 and 240 ms after stimulus presentation), increased processing speed in the visual modality among the non-impaired readers, but not in the dyslexic group. The differences between the temporal SOP of the modalities among the dyslexics and the non-impaired readers give additional support to the theory that an asynchrony between the visual and auditory modalities is a cause of dyslexia.
Collapse
Affiliation(s)
- Itamar Sela
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of HaifaHaifa, Israel
| |
Collapse
|
34
|
Fagard J, Sirri L, Rämä P. Effect of handedness on the occurrence of semantic N400 priming effect in 18- and 24-month-old children. Front Psychol 2014; 5:355. [PMID: 24808875 PMCID: PMC4009411 DOI: 10.3389/fpsyg.2014.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/04/2014] [Indexed: 11/13/2022] Open
Abstract
It is frequently stated that right-handedness reflects hemispheric dominance for language. Indeed, most right-handers process phonological aspects of language with the left hemisphere (and other aspects with the right hemisphere). However, given the overwhelming majority of right-handers and of individuals showing left-hemisphere language dominance, there is a high probability to be right-handed and at the same time process phonology within the left hemisphere even if there was no causal link between both. One way to understand the link between handedness and language lateralization is to observe how they co-develop. In this study, we investigated to what extent handedness is related to the occurrence of a right-hemisphere lateralized N400 event related potential in a semantic priming task in children. The N400 component in a semantic priming task is more negative for unrelated than for related word pairs. We have shown earlier that N400 effect occurred in 24-month-olds over the right parietal-occipital recording sites, whereas no significant effect was obtained over the left hemisphere sites. In 18-month-olds, this effect was observed only in those children with higher word production ability. Since handedness has also been associated with the vocabulary size at these ages, we investigated the relationship between the N400 and handedness in 18- and 24-months as a function of their vocabulary. The results showed that right-handers had significantly higher vocabulary size and more pronounced N400 effect over the right hemisphere than non-lateralized children, but only in the 18-month-old group. We propose that the emergences of right-handedness and right-distributed N400 effect are not causally related, but that both developmental processes reflect a general tendency to recruit the hemispheres in a lateralized manner. The lack of this relationship at 24 months further suggests that there is no direct causal relation between handedness and language lateralization.
Collapse
Affiliation(s)
- Jacqueline Fagard
- Laboratoire Psychologie de la Perception, Université Paris Descartes - CNRS (UMR 8242)Paris, France
| | | | | |
Collapse
|
35
|
Hasko S, Groth K, Bruder J, Bartling J, Schulte-Körne G. The time course of reading processes in children with and without dyslexia: an ERP study. Front Hum Neurosci 2013; 7:570. [PMID: 24109444 PMCID: PMC3791381 DOI: 10.3389/fnhum.2013.00570] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 11/13/2022] Open
Abstract
The main diagnostic criterion for developmental dyslexia (DD) in transparent orthographies is a remarkable reading speed deficit, which is often accompanied by spelling difficulties. These deficits have been traced back to both deficits in orthographic and phonological processing. For a better understanding of the reading speed deficit in DD it is necessary to clarify which processing steps are degraded in children with DD during reading. In order to address this question the present study used EEG to investigate three reading related ERPs: the N170, N400 and LPC. Twenty-nine children without DD and 52 children with DD performed a phonological lexical decision (PLD)-task, which tapped both orthographic and phonological processing. Children were presented with words, pseudohomophones, pseudowords and false fonts and had to decide whether the presented stimulus sounded like an existing German word or not. Compared to control children, children with DD showed deficits in all the investigated ERPs. Firstly, a diminished mean area under the curve for the word material-false font contrasts in the time window of the N170 was observed, indicating a reduced degree of print sensitivity; secondly, N400 amplitudes, as suggested to reflect the access to the orthographic lexicon and grapheme-phoneme conversion, were attenuated; and lastly, phonological access as indexed by the LPC was degraded in children with DD. Processing differences dependent on the linguistic material in children without DD were observed only in the LPC, suggesting that similar reading processes were adopted independent of orthographic familiarity. The results of this study suggest that effective treatment should include both orthographic and phonological training. Furthermore, more longitudinal studies utilizing the same task and stimuli are needed to clarify how these processing steps and their time course change during reading development.
Collapse
Affiliation(s)
- Sandra Hasko
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich Munich, Germany
| | | | | | | | | |
Collapse
|
36
|
Ruitenberg MFL, Abrahamse EL, Verwey WB. Sequential motor skill in preadolescent children: The development of automaticity. J Exp Child Psychol 2013; 115:607-23. [PMID: 23708125 DOI: 10.1016/j.jecp.2013.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Marit F L Ruitenberg
- Department of Cognitive Psychology and Ergonomics, University of Twente, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
37
|
Spironelli C, Bergamaschi S, Mondini S, Villani D, Angrilli A. Functional plasticity in Alzheimer's disease: Effect of cognitive training on language-related ERP components. Neuropsychologia 2013; 51:1638-48. [DOI: 10.1016/j.neuropsychologia.2013.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/14/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
38
|
Spironelli C, Manfredi M, Angrilli A. Beta EEG band: a measure of functional brain damage and language reorganization in aphasic patients after recovery. Cortex 2013; 49:2650-60. [PMID: 23810123 DOI: 10.1016/j.cortex.2013.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/31/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
Functional reorganization of language was investigated in a group of eleven non-fluent aphasic patients after linguistic recovery and in a group of matched healthy adults. The ElectroEncephaloGram (EEG) was recorded from 38 scalp electrodes and high-beta band (21-28 Hz), an index of cognitive cortical arousal, was computed as normalized percentage across 0-100 Hz spectral range in six electrode clusters during three linguistic tasks: Phonological, Semantic and Orthographic/visuo-perceptual. During the Phonological task, controls showed greater beta activation on left versus right central cluster, whereas aphasic patients exhibited an inverted pattern of lateralization. In addition, patients' left central cluster, located over the core lesion, showed reduced beta activity with respect to controls. A similar inhibited activation was found in aphasics' left posterior cluster located over undamaged areas. At left anterior locations, aphasics, unlike controls, exhibited larger left versus right beta activity during both Phonological and Orthographic/visuo-perceptual tasks. Results point to substantial reorganization of language in recovered non-fluent aphasics at left prefrontal sites located anterior to the damaged Broca's area and inhibited language-related activation in left posterior undamaged, but disconnected, regions.
Collapse
Affiliation(s)
- Chiara Spironelli
- Department of General Psychology, University of Padova, Padova, Italy
| | | | | |
Collapse
|
39
|
Holloway ID, Battista C, Vogel SE, Ansari D. Semantic and Perceptual Processing of Number Symbols: Evidence from a Cross-linguistic fMRI Adaptation Study. J Cogn Neurosci 2013; 25:388-400. [PMID: 23163414 DOI: 10.1162/jocn_a_00323] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
The ability to process the numerical magnitude of sets of items has been characterized in many animal species. Neuroimaging data have associated this ability to represent nonsymbolic numerical magnitudes (e.g., arrays of dots) with activity in the bilateral parietal lobes. Yet the quantitative abilities of humans are not limited to processing the numerical magnitude of nonsymbolic sets. Humans have used this quantitative sense as the foundation for symbolic systems for the representation of numerical magnitude. Although numerical symbol use is widespread in human cultures, the brain regions involved in processing of numerical symbols are just beginning to be understood. Here, we investigated the brain regions underlying the semantic and perceptual processing of numerical symbols. Specifically, we used an fMRI adaptation paradigm to examine the neural response to Hindu-Arabic numerals and Chinese numerical ideographs in a group of Chinese readers who could read both symbol types and a control group who could read only the numerals. Across groups, the Hindu-Arabic numerals exhibited ratio-dependent modulation in the left IPS. In contrast, numerical ideographs were associated with activation in the right IPS, exclusively in the Chinese readers. Furthermore, processing of the visual similarity of both digits and ideographs was associated with activation of the left fusiform gyrus. Using culture as an independent variable, we provide clear evidence for differences in the brain regions associated with the semantic and perceptual processing of numerical symbols. Additionally, we reveal a striking difference in the laterality of parietal activation between the semantic processing of the two symbols types.
Collapse
Affiliation(s)
- Ian D Holloway
- Department of Psychology, Westminster Hall, The University of Western Ontario, London, ON N6A 3K7, Canada
| | | | | | | |
Collapse
|
40
|
Li S, Lee K, Zhao J, Yang Z, He S, Weng X. Neural competition as a developmental process: early hemispheric specialization for word processing delays specialization for face processing. Neuropsychologia 2013; 51:950-9. [PMID: 23462239 DOI: 10.1016/j.neuropsychologia.2013.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 02/01/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Abstract
Little is known about the impact of learning to read on early neural development for word processing and its collateral effects on neural development in non-word domains. Here, we examined the effect of early exposure to reading on neural responses to both word and face processing in preschool children with the use of the Event Related Potential (ERP) methodology. We specifically linked children's reading experience (indexed by their sight vocabulary) to two major neural markers: the amplitude differences between the left and right N170 on the bilateral posterior scalp sites and the hemispheric spectrum power differences in the γ band on the same scalp sites. The results showed that the left-lateralization of both the word N170 and the spectrum power in the γ band were significantly positively related to vocabulary. In contrast, vocabulary and the word left-lateralization both had a strong negative direct effect on the face right-lateralization. Also, vocabulary negatively correlated with the right-lateralized face spectrum power in the γ band even after the effects of age and the word spectrum power were partialled out. The present study provides direct evidence regarding the role of reading experience in the neural specialization of word and face processing above and beyond the effect of maturation. The present findings taken together suggest that the neural development of visual word processing competes with that of face processing before the process of neural specialization has been consolidated.
Collapse
Affiliation(s)
- Su Li
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 4A Datun Road, Chaoyang District, Beijing, China.
| | | | | | | | | | | |
Collapse
|
41
|
Burman DD, Minas T, Bolger DJ, Booth JR. Age, sex, and verbal abilities affect location of linguistic connectivity in ventral visual pathway. BRAIN AND LANGUAGE 2013; 124:184-93. [PMID: 23376366 PMCID: PMC3572208 DOI: 10.1016/j.bandl.2012.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 10/19/2012] [Accepted: 12/16/2012] [Indexed: 06/01/2023]
Abstract
Previous studies have shown that the strength of connectivity between regions can vary depending upon the cognitive demands of a task. In this study, the location of task-dependent connectivity from the primary visual cortex (V1) was examined in 43 children (ages 9-15) performing visual tasks; connectivity maxima were identified for a visual task requiring a linguistic (orthographic) judgment. Age, sex, and verbal IQ interacted to affect maxima location. Increases in age and verbal IQ produced similar shifts in maxima location; in girls, connectivity maxima shifted primarily laterally within the left temporal lobe, whereas the shift was primarily posterior within occipital cortex among boys. A composite map across all subjects shows an expansion in the area of connectivity with age. Results show that the location of visual/linguistic connectivity varies systematically during development, suggesting that both sex differences and developmental changes in V1 connectivity are related to linguistic function.
Collapse
Affiliation(s)
- Douglas D. Burman
- Center for Advanced Imaging, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Dept. of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Taylor Minas
- Dept. of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Donald J. Bolger
- Dept. of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
- Dept. of Human Development, Maryland University, College Park, Maryland 20742, USA
| | - James R. Booth
- Dept. of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
42
|
Shook A, Marian V. Bimodal bilinguals co-activate both languages during spoken comprehension. Cognition 2012; 124:314-24. [PMID: 22770677 DOI: 10.1016/j.cognition.2012.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/26/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Bilinguals have been shown to activate their two languages in parallel, and this process can often be attributed to overlap in input between the two languages. The present study examines whether two languages that do not overlap in input structure, and that have distinct phonological systems, such as American Sign Language (ASL) and English, are also activated in parallel. Hearing ASL-English bimodal bilinguals' and English monolinguals' eye-movements were recorded during a visual world paradigm, in which participants were instructed, in English, to select objects from a display. In critical trials, the target item appeared with a competing item that overlapped with the target in ASL phonology. Bimodal bilinguals looked more at competing item than at phonologically unrelated items and looked more at competing items relative to monolinguals, indicating activation of the sign-language during spoken English comprehension. The findings suggest that language co-activation is not modality specific, and provide insight into the mechanisms that may underlie cross-modal language co-activation in bimodal bilinguals, including the role that top-down and lateral connections between levels of processing may play in language comprehension.
Collapse
Affiliation(s)
- Anthony Shook
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA.
| | | |
Collapse
|
43
|
Chung KKH, Tong X, McBride-Chang C. Evidence for a deficit in orthographic structure processing in Chinese developmental dyslexia: an event-related potential study. Brain Res 2012; 1472:20-31. [PMID: 22750287 DOI: 10.1016/j.brainres.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The present event-related potential (ERP) study aimed to examine group differences in processing of orthographic information in Chinese children with dyslexia and typically developing children. Twelve dyslexic (ages 100-125 months) and 11 control (ages 104-124 months) children were given a character decision task (similar to a lexical decision task). For the control group, the radical position information influenced the character processing at a later stage of semantic information processing as reflected by a more negative N400 component in the pseudocharacter condition, in which the semantic and phonetic radical were combined following correct orthographic rules, as compared to the noncharacter condition, in which the structure of the semantic and phonetic radicals was reversed from that for each real character. In contrast, the dyslexic group showed no such differences across the experimental conditions for the N400 component. Results suggest that Chinese children with dyslexia may have a deficit in processing orthographic information (specifically, radical position). Furthermore, a late positive component (LPC) was elicited in both groups, suggesting that children may have to back track on their earlier semantic memory in order to make a final decision as to whether the character is real or not.
Collapse
Affiliation(s)
- Kevin K H Chung
- Department of Special Education and Counselling, Hong Kong Institute of Education, Taipo, Hong Kong, People's Republic of China.
| | | | | |
Collapse
|
44
|
Hasko S, Bruder J, Bartling J, Schulte-Körne G. N300 indexes deficient integration of orthographic and phonological representations in children with dyslexia. Neuropsychologia 2012; 50:640-54. [PMID: 22245008 DOI: 10.1016/j.neuropsychologia.2012.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 12/08/2011] [Accepted: 01/03/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Hasko
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Munich, Germany
| | | | | | | |
Collapse
|
45
|
Korinth SP, Sommer W, Breznitz Z. Does silent reading speed in normal adult readers depend on early visual processes? evidence from event-related brain potentials. BRAIN AND LANGUAGE 2012; 120:15-26. [PMID: 21903250 DOI: 10.1016/j.bandl.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/24/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Little is known about the relationship of reading speed and early visual processes in normal readers. Here we examined the association of the early P1, N170 and late N1 component in visual event-related potentials (ERPs) with silent reading speed and a number of additional cognitive skills in a sample of 52 adult German readers utilizing a Lexical Decision Task (LDT) and a Face Decision Task (FDT). Amplitudes of the N170 component in the LDT but, interestingly, also in the FDT correlated with behavioral tests measuring silent reading speed. We suggest that reading speed performance can be at least partially accounted for by the extraction of essential structural information from visual stimuli, consisting of a domain-general and a domain-specific expertise-based portion.
Collapse
Affiliation(s)
- Sebastian Peter Korinth
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
46
|
Cao XH, Zhang HT. Change in subtle N170 specialization in response to Chinese characters and pseudocharacters. Percept Mot Skills 2011; 113:365-76. [PMID: 22185051 DOI: 10.2466/04.22.24.28.pms.113.5.365-376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The N170 effect is thought to reflect fast perceptual processing for visual words. While quite a few studies on developmental word-related coarse N170 specialization have been reported, little is known about the appearance of the subtle N170 specialization in processing logographic scripts by Chinese children. The present study investigated the changes of subtle N170 specialization for Chinese logographic script in 32 primary schoolchildren in Grades 2 and 6, and in 16 college students. Participants were required to perform a content-irrelevant color-matching task. The results showed that the subtle N170 specialization for Chinese characters had not emerged in Grade 2 children. Interestingly, both Chinese characters and pseudowords elicited larger N170 responses than stroke combinations in Grade 6 children and adults, which suggested that the subtle N170 specialization for Chinese characters associated with reading learning had achieved adult level in children by Grade 6.
Collapse
Affiliation(s)
- Xiao-Hua Cao
- Department of Psychology, Zhejiang Normal University, Jinhua, 321004 China.
| | | |
Collapse
|
47
|
Spironelli C, Galfano G, Umiltà C, Angrilli A. Word position affects stimulus recognition: Evidence for early ERP short-term plastic modulation. Int J Psychophysiol 2011; 82:217-24. [DOI: 10.1016/j.ijpsycho.2011.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
|
48
|
Ocklenburg S, Güntürkün O, Beste C. Hemispheric asymmetries and cognitive flexibility: an ERP and sLORETA study. Brain Cogn 2011; 78:148-55. [PMID: 22133628 DOI: 10.1016/j.bandc.2011.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/28/2011] [Accepted: 11/06/2011] [Indexed: 10/14/2022]
Abstract
Although functional cerebral asymmetries (FCAs) affect all cognitive domains, their modulation of the efficacy of specific executive functions is largely unexplored. In the present study, we used a lateralized version of the task switching paradigm to investigate the relevance of hemispheric asymmetries for cognitive control processes. Words were tachistoscopically presented in the left (LVF) and right visual half field (RVF). Participants had to categorise the words either based on their initial letters, or according to their word type. On half of the trials the task changed (switch trials) whereas on the other half it stayed the same (repeat trials). ERPs were recorded and the neural sources of the ERPs were reconstructed using standardised low resolution brain electromagnetic tomography (sLORETA). In the word type task, participants were faster on repeat trials when stimuli were presented in the RVF. In contrast, in the initial letter task participants were faster on repeat trials and in general more accurate after stimulus presentation in the LVF. In both tasks, no hemispheric asymmetries in reaction times were observed on switch trials. On the electrophysiological level, we observed a left lateralization of the N1 that was mediated by activation in the left extrastriate cortex as well as a greater positivity of the P3b after stimulus presentation in the RVF compared to the LVF that was mediated by activation in the superior parietal cortex. These results show that FCAs affect the neurophysiological correlates of executive functions related to task switching. The relation of neurophysiological and behavioural asymmetries is mediated by task complexity, with more complex tasks leading to more interhemispheric interaction and smaller left-right differences in behavioural measures. These findings reveal that FCAs are an important modulator of executive functions related to cognitive flexibility.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Germany.
| | | | | |
Collapse
|
49
|
Shany M, Breznitz Z. Rate- and Accuracy-Disabled Subtype Profiles Among Adults With Dyslexia in the Hebrew Orthography. Dev Neuropsychol 2011; 36:889-913. [DOI: 10.1080/87565641.2011.606410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Abstract
Skilled reading requires recognizing written words rapidly; functional neuroimaging research has clarified how the written word initiates a series of responses in visual cortex. These responses are communicated to circuits in ventral occipitotemporal (VOT) cortex that learn to identify words rapidly. Structural neuroimaging has further clarified aspects of the white matter pathways that communicate reading signals between VOT and language systems. We review this circuitry, its development, and its deficiencies in poor readers. This review emphasizes data that measure the cortical responses and white matter pathways in individual subjects rather than group differences. Such methods have the potential to clarify why a child has difficulty learning to read and to offer guidance about the interventions that may be useful for that child.
Collapse
Affiliation(s)
- Brian A Wandell
- Psychology Department, Stanford University, California 94305, USA.
| | | | | |
Collapse
|