1
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
2
|
Bouwer FL, Háden GP, Honing H. Probing Beat Perception with Event-Related Potentials (ERPs) in Human Adults, Newborns, and Nonhuman Primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:227-256. [PMID: 38918355 DOI: 10.1007/978-3-031-60183-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The aim of this chapter is to give an overview of how the perception of rhythmic temporal regularity such as a regular beat in music can be studied in human adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). First, we discuss different aspects of temporal structure in general, and musical rhythm in particular, and we discuss the possible mechanisms underlying the perception of regularity (e.g., a beat) in rhythm. Additionally, we highlight the importance of dissociating beat perception from the perception of other types of structure in rhythm, such as predictable sequences of temporal intervals, ordinal structure, and rhythmic grouping. In the second section of the chapter, we start with a discussion of auditory ERPs elicited by infrequent and frequent sounds: ERP responses to regularity violations, such as mismatch negativity (MMN), N2b, and P3, as well as early sensory responses to sounds, such as P1 and N1, have been shown to be instrumental in probing beat perception. Subsequently, we discuss how beat perception can be probed by comparing ERP responses to sounds in regular and irregular sequences, and by comparing ERP responses to sounds in different metrical positions in a rhythm, such as on and off the beat or on strong and weak beats. Finally, we will discuss previous research that has used the aforementioned ERPs and paradigms to study beat perception in human adults, human newborns, and nonhuman primates. In doing so, we consider the possible pitfalls and prospects of the technique, as well as future perspectives.
Collapse
Affiliation(s)
- Fleur L Bouwer
- Cognitive Psychology Unit, Institute of Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
- Department of Psychology, Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.
| | - Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Henkjan Honing
- Music Cognition group (MCG), Institute for Logic, Language and Computation (ILLC), Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Javitt DC. Mismatch Negativity (MMN) as a Pharmacodynamic/Response Biomarker for NMDA Receptor and Excitatory/Inhibitory Imbalance-Targeted Treatments in Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:411-451. [PMID: 39562453 DOI: 10.1007/978-3-031-69491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Schizophrenia is a major mental disorder that affects approximately 0.5% of the population worldwide. Persistent negative symptoms and cognitive impairments associated with schizophrenia (CIAS) are key features of the disorder and primary predictors of long-term disability. At the neurochemical level, both CIAS and negative symptoms are potentially attributable to dysfunction or dysregulation of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission within cortical and subcortical brain regions. At present, there are no approved treatments for either CIAS or persistent negative symptoms. Development of novel treatments, moreover, is limited by the lack of biomarkers that can be used translationally across preclinical and early-stage clinical investigation. The present chapter describes the use of mismatch negativity (MMN) as a pharmacodynamic/response (PD/R) biomarker for early-stage clinical investigation of NMDAR targeted therapies for schizophrenia. MMN indexes dysfunction of early auditory processing (EAP) in schizophrenia. In humans, deficits in MMN generation contribute hierarchically to impaired cognition and functional outcome. Across humans, rodents, and primates, MMN has been linked to impaired NMDAR function and resultant disturbances in excitatory/inhibitory (E/I) balance involving interactions between glutamatergic (excitatory) pyramidal and GABAeric (inhibitory) local circuit neurons. In early-stage clinical trials, MMN has shown sensitivity to the acute effects of novel pharmacological treatments. These findings support use of MMN as a pharmacodynamic/response biomarker to support preclinical drug discovery and early-stage proof-of-mechanisms studies in schizophrenia and other related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
4
|
Poublan-Couzardot A, Lecaignard F, Fucci E, Davidson RJ, Mattout J, Lutz A, Abdoun O. Time-resolved dynamic computational modeling of human EEG recordings reveals gradients of generative mechanisms for the MMN response. PLoS Comput Biol 2023; 19:e1010557. [PMID: 38091350 PMCID: PMC10752554 DOI: 10.1371/journal.pcbi.1010557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/27/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Despite attempts to unify the different theoretical accounts of the mismatch negativity (MMN), there is still an ongoing debate on the neurophysiological mechanisms underlying this complex brain response. On one hand, neuronal adaptation to recurrent stimuli is able to explain many of the observed properties of the MMN, such as its sensitivity to controlled experimental parameters. On the other hand, several modeling studies reported evidence in favor of Bayesian learning models for explaining the trial-to-trial dynamics of the human MMN. However, direct comparisons of these two main hypotheses are scarce, and previous modeling studies suffered from methodological limitations. Based on reports indicating spatial and temporal dissociation of physiological mechanisms within the timecourse of mismatch responses in animals, we hypothesized that different computational models would best fit different temporal phases of the human MMN. Using electroencephalographic data from two independent studies of a simple auditory oddball task (n = 82), we compared adaptation and Bayesian learning models' ability to explain the sequential dynamics of auditory deviance detection in a time-resolved fashion. We first ran simulations to evaluate the capacity of our design to dissociate the tested models and found that they were sufficiently distinguishable above a certain level of signal-to-noise ratio (SNR). In subjects with a sufficient SNR, our time-resolved approach revealed a temporal dissociation between the two model families, with high evidence for adaptation during the early MMN window (from 90 to 150-190 ms post-stimulus depending on the dataset) and for Bayesian learning later in time (170-180 ms or 200-220ms). In addition, Bayesian model averaging of fixed-parameter models within the adaptation family revealed a gradient of adaptation rates, resembling the anatomical gradient in the auditory cortical hierarchy reported in animal studies.
Collapse
Affiliation(s)
- Arnaud Poublan-Couzardot
- Cente de Recherche en Neurosciences de Lyon (CRNL), CNRS UMRS5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron, France
| | - Françoise Lecaignard
- Cente de Recherche en Neurosciences de Lyon (CRNL), CNRS UMRS5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron, France
| | - Enrico Fucci
- 2 Institute for Globally Distributed Open Research and Education (IGDORE), Sweden
| | - Richard J. Davidson
- Center for Healthy Minds, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Psychology, University of Wisconsin, Madison, Wisconsin, United States of America
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jérémie Mattout
- Cente de Recherche en Neurosciences de Lyon (CRNL), CNRS UMRS5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron, France
| | - Antoine Lutz
- Cente de Recherche en Neurosciences de Lyon (CRNL), CNRS UMRS5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron, France
| | - Oussama Abdoun
- Cente de Recherche en Neurosciences de Lyon (CRNL), CNRS UMRS5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
5
|
Obara K, Ebina T, Terada SI, Uka T, Komatsu M, Takaji M, Watakabe A, Kobayashi K, Masamizu Y, Mizukami H, Yamamori T, Kasai K, Matsuzaki M. Change detection in the primate auditory cortex through feedback of prediction error signals. Nat Commun 2023; 14:6981. [PMID: 37957168 PMCID: PMC10643402 DOI: 10.1038/s41467-023-42553-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Although cortical feedback signals are essential for modulating feedforward processing, no feedback error signal across hierarchical cortical areas has been reported. Here, we observed such a signal in the auditory cortex of awake common marmoset during an oddball paradigm to induce auditory duration mismatch negativity. Prediction errors to a deviant tone presentation were generated as offset calcium responses of layer 2/3 neurons in the rostral parabelt (RPB) of higher-order auditory cortex, while responses to non-deviant tones were strongly suppressed. Within several hundred milliseconds, the error signals propagated broadly into layer 1 of the primary auditory cortex (A1) and accumulated locally on top of incoming auditory signals. Blockade of RPB activity prevented deviance detection in A1. Optogenetic activation of RPB following tone presentation nonlinearly enhanced A1 tone response. Thus, the feedback error signal is critical for automatic detection of unpredicted stimuli in physiological auditory processing and may serve as backpropagation-like learning.
Collapse
Affiliation(s)
- Keitaro Obara
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Teppei Ebina
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Masafumi Takaji
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Aichi, 444-8585, Japan
| | - Yoshito Masamizu
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Central Institute of Experimental Animals, Kanagawa, 210-0821, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Huang Q, Velthuis H, Pereira AC, Ahmad J, Cooke SF, Ellis CL, Ponteduro FM, Puts NAJ, Dimitrov M, Batalle D, Wong NML, Kowalewski L, Ivin G, Daly E, Murphy DGM, McAlonan GM. Exploratory evidence for differences in GABAergic regulation of auditory processing in autism spectrum disorder. Transl Psychiatry 2023; 13:320. [PMID: 37852957 PMCID: PMC10584846 DOI: 10.1038/s41398-023-02619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Altered reactivity and responses to auditory input are core to the diagnosis of autism spectrum disorder (ASD). Preclinical models implicate ϒ-aminobutyric acid (GABA) in this process. However, the link between GABA and auditory processing in humans (with or without ASD) is largely correlational. As part of a study of potential biosignatures of GABA function in ASD to inform future clinical trials, we evaluated the role of GABA in auditory repetition suppression in 66 adults (n = 28 with ASD). Neurophysiological responses (temporal and frequency domains) to repetitive standard tones and novel deviants presented in an oddball paradigm were compared after double-blind, randomized administration of placebo, 15 or 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. We first established that temporal mismatch negativity was comparable between participants with ASD and those with typical development (TD). Next, we showed that temporal and spectral responses to repetitive standards were suppressed relative to responses to deviants in the two groups, but suppression was significantly weaker in individuals with ASD at baseline. Arbaclofen reversed weaker suppression of spectral responses in ASD but disrupted suppression in TD. A post hoc analysis showed that arbaclofen-elicited shift in suppression was correlated with autistic symptomatology measured using the Autism Quotient across the entire group, though not in the smaller sample of the ASD and TD group when examined separately. Thus, our results confirm: GABAergic dysfunction contributes to the neurophysiology of auditory sensory processing alterations in ASD, and can be modulated by targeting GABAB activity. These GABA-dependent sensory differences may be upstream of more complex autistic phenotypes.
Collapse
Affiliation(s)
- Qiyun Huang
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, China.
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Jumana Ahmad
- School of Human Sciences, University of Greenwich, London, UK
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
7
|
Bastos G, Holmes JT, Ross JM, Rader AM, Gallimore CG, Wargo JA, Peterka DS, Hamm JP. Top-down input modulates visual context processing through an interneuron-specific circuit. Cell Rep 2023; 42:113133. [PMID: 37708021 PMCID: PMC10591868 DOI: 10.1016/j.celrep.2023.113133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Visual stimuli that deviate from the current context elicit augmented responses in the primary visual cortex (V1). These heightened responses, known as "deviance detection," require local inhibition in the V1 and top-down input from the anterior cingulate area (ACa). Here, we investigated the mechanisms by which the ACa and V1 interact to support deviance detection. Local field potential recordings in mice during an oddball paradigm showed that ACa-V1 synchrony peaks in the theta/alpha band (≈10 Hz). Two-photon imaging in the V1 revealed that mainly pyramidal neurons exhibited deviance detection, while contextually redundant stimuli increased vasoactive intestinal peptide (VIP)-positive interneuron (VIP) activity and decreased somatostatin-positive interneuron (SST) activity. Optogenetic drive of ACa-V1 inputs at 10 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of V1-VIPs disrupted Aca-V1 synchrony and deviance detection in the V1. These results outline temporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.
Collapse
Affiliation(s)
- Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Anna M Rader
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Joseph A Wargo
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA.
| |
Collapse
|
8
|
Todd J, Salisbury D, Michie PT. Why mismatch negativity continues to hold potential in probing altered brain function in schizophrenia. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e144. [PMID: 38867817 PMCID: PMC11114358 DOI: 10.1002/pcn5.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
The brain potential known as mismatch negativity (MMN) is one of the most studied indices of altered brain function in schizophrenia. This review looks at what has been learned about MMN in schizophrenia over the last three decades and why the level of interest and activity in this field of research remains strong. A diligent consideration of available evidence suggests that MMN can serve as a biomarker in schizophrenia, but perhaps not the kind of biomarker that early research supposed. This review concludes that MMN measurement is likely to be most useful as a monitoring and response biomarker enabling tracking of an underlying pathology and efficacy of interventions, respectively. The role of, and challenges presented by, pre-clinical models is discussed as well as the merits of different methodologies that can be brought to bear in pursuing a deeper understanding of pathophysiology that might explain smaller MMN in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Dean Salisbury
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Patricia T. Michie
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| |
Collapse
|
9
|
Gallimore CG, Ricci DA, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. Cereb Cortex 2023; 33:9417-9428. [PMID: 37310190 PMCID: PMC10393498 DOI: 10.1093/cercor/bhad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1)-a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence-a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations-and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that although basic adaptation to redundant stimuli was present early (50 ms) in layer 4 responses, DD emerged later (150-230 ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7 Hz) and high-gamma (70-80 Hz) oscillations in L2/3 and decreased beta oscillations (26-36 Hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, whereas "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
Affiliation(s)
- Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - David A Ricci
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| |
Collapse
|
10
|
Han C, English G, Saal HP, Indiveri G, Gilra A, von der Behrens W, Vasilaki E. Modelling novelty detection in the thalamocortical loop. PLoS Comput Biol 2023; 19:e1009616. [PMID: 37186588 DOI: 10.1371/journal.pcbi.1009616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/25/2023] [Accepted: 02/21/2023] [Indexed: 05/17/2023] Open
Abstract
In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly referred to as novelty detection, have been identified on the level of EEG recordings as mismatch negativity (MMN) and on the level of single neurons as stimulus-specific adaptation (SSA). Here, we propose a multi-scale recurrent network with synaptic depression to explain how novelty detection can arise in the whisker-related part of the somatosensory thalamocortical loop. The "minimalistic" architecture and dynamics of the model presume that neurons in cortical layer 6 adapt, via synaptic depression, specifically to a frequently presented stimulus, resulting in reduced population activity in the corresponding cortical column when compared with the population activity evoked by a rare stimulus. This difference in population activity is then projected from the cortex to the thalamus and amplified through the interaction between neurons of the primary and reticular nuclei of the thalamus, resulting in rhythmic oscillations. These differentially activated thalamic oscillations are forwarded to cortical layer 4 as a late secondary response that is specific to rare stimuli that violate a particular stimulus pattern. Model results show a strong analogy between this late single neuron activity and EEG-based mismatch negativity in terms of their common sensitivity to presentation context and timescales of response latency, as observed experimentally. Our results indicate that adaptation in L6 can establish the thalamocortical dynamics that produce signatures of SSA and MMN and suggest a mechanistic model of novelty detection that could generalize to other sensory modalities.
Collapse
Affiliation(s)
- Chao Han
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolyn English
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
- ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, Switzerland
| | - Hannes P Saal
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Giacomo Indiveri
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
- ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, Switzerland
| | - Aditya Gilra
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
- ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, Switzerland
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Switzerland
| |
Collapse
|
11
|
Teixeira FL, Costa MRE, Abreu JP, Cabral M, Soares SP, Teixeira JP. A Narrative Review of Speech and EEG Features for Schizophrenia Detection: Progress and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10040493. [PMID: 37106680 PMCID: PMC10135748 DOI: 10.3390/bioengineering10040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a mental illness that affects an estimated 21 million people worldwide. The literature establishes that electroencephalography (EEG) is a well-implemented means of studying and diagnosing mental disorders. However, it is known that speech and language provide unique and essential information about human thought. Semantic and emotional content, semantic coherence, syntactic structure, and complexity can thus be combined in a machine learning process to detect schizophrenia. Several studies show that early identification is crucial to prevent the onset of illness or mitigate possible complications. Therefore, it is necessary to identify disease-specific biomarkers for an early diagnosis support system. This work contributes to improving our knowledge about schizophrenia and the features that can identify this mental illness via speech and EEG. The emotional state is a specific characteristic of schizophrenia that can be identified with speech emotion analysis. The most used features of speech found in the literature review are fundamental frequency (F0), intensity/loudness (I), frequency formants (F1, F2, and F3), Mel-frequency cepstral coefficients (MFCC's), the duration of pauses and sentences (SD), and the duration of silence between words. Combining at least two feature categories achieved high accuracy in the schizophrenia classification. Prosodic and spectral or temporal features achieved the highest accuracy. The work with higher accuracy used the prosodic and spectral features QEVA, SDVV, and SSDL, which were derived from the F0 and spectrogram. The emotional state can be identified with most of the features previously mentioned (F0, I, F1, F2, F3, MFCCs, and SD), linear prediction cepstral coefficients (LPCC), linear spectral features (LSF), and the pause rate. Using the event-related potentials (ERP), the most promissory features found in the literature are mismatch negativity (MMN), P2, P3, P50, N1, and N2. The EEG features with higher accuracy in schizophrenia classification subjects are the nonlinear features, such as Cx, HFD, and Lya.
Collapse
Affiliation(s)
- Felipe Lage Teixeira
- Research Centre in Digitalization and Intelligent Robotics (CEDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Engineering Department, School of Sciences and Technology, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Miguel Rocha E Costa
- Research Centre in Digitalization and Intelligent Robotics (CEDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pio Abreu
- Faculty of Medicine of the University of Coimbra, 3000-548 Coimbra, Portugal
- Hospital da Universidade de Coimbra, 3004-561 Coimbra, Portugal
| | - Manuel Cabral
- Engineering Department, School of Sciences and Technology, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Salviano Pinto Soares
- Engineering Department, School of Sciences and Technology, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193 Aveiro, Portugal
- Intelligent Systems Associate Laboratory (LASI), University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Paulo Teixeira
- Research Centre in Digitalization and Intelligent Robotics (CEDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
12
|
Gallimore CG, Ricci D, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537173. [PMID: 37131642 PMCID: PMC10153128 DOI: 10.1101/2023.04.17.537173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1) -- a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence - a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations - and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that while basic adaptation to redundant stimuli was present early (50ms) in layer 4 responses, DD emerged later (150-230ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7Hz) and high-gamma (70-80Hz) oscillations in L2/3 and decreased beta oscillations (26-36hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, while "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
|
13
|
Van Derveer AB, Ross JM, Hamm JP. Multimodal mismatch responses in associative but not primary visual cortex support hierarchical predictive coding in cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536573. [PMID: 37090646 PMCID: PMC10120723 DOI: 10.1101/2023.04.12.536573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A key function of the mammalian neocortex is to process sensory data in the context of current and past stimuli. Primary sensory cortices, such as V1, respond weakly to stimuli that typical in their context but strongly to novel stimuli, an effect known as "deviance detection". How deviance detection occurs in associative cortical regions that are downstream of V1 is not well-understood. Here we investigated parietal associative area (PTLp) responses to auditory, visual, and audio-visual mismatches with two-photon calcium imaging and local field potential recordings. We employed basic unisensory auditory and visual oddball paradigms as well as a novel multisensory oddball paradigm, involving typical parings (VaAc or VbAd) presented at p=.88 with rare "deviant" pairings (e.g. VaAd or VbAc) presented at p=.12. We found that PTLp displayed robust deviance detection responses to auditory-visual mismatches, both in individual neurons and in population theta and gamma-band oscillations. In contrast, V1 neurons displayed deviance detection only to visual deviants in a unisensory context, but not to auditory or auditory-visual mismatches. Taken together, these results accord with a predictive processing framework for cortical responses, wherein modality specific prediction errors (i.e. deviance detection responses) are computed in functionally specified cortical areas and feed-forward to update higher brain regions.
Collapse
|
14
|
Jalewa J, Todd J, Michie PT, Hodgson DM, Harms L. The effect of schizophrenia risk factors on mismatch responses in a rat model. Psychophysiology 2023; 60:e14175. [PMID: 36087044 PMCID: PMC10909418 DOI: 10.1111/psyp.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023]
Abstract
Reduced mismatch negativity (MMN), a robust finding in schizophrenia, has prompted interest in MMN as a preclinical biomarker of schizophrenia. The rat brain can generate human-like mismatch responses (MMRs) which therefore enables the exploration of the neurobiology of reduced MMRs. Given epidemiological evidence that two developmental factors, maternal infection and adolescent cannabis use, increase the risk of schizophrenia, we determined the effect of these two developmental risk factors on rat MMR amplitude in different auditory contexts. MMRs were assessed in awake adult male and female Wistar rats that were offspring of pregnant dams treated with either a viral infection mimetic (poly I:C) inducing maternal immune activation (MIA) or saline control. In adolescence, subgroups of the prenatal treatment groups were exposed to either a synthetic cannabinoid (adolescent cannabinoid exposure: ACE) or vehicle. The context under which MMRs were obtained was manipulated by employing two different oddball paradigms, one that manipulated the physical difference between rare and common auditory stimuli, and another that manipulated the probability of the rare stimulus. The design of the multiple stimulus sequences across the two paradigms also allowed an investigation of context on MMRs to two identical stimulus sequences. Male offspring exposed to each of the risk factors for schizophrenia (MIA, ACE or both) showed a reduction in MMR, which was evident only in the probability paradigm, with no effects seen in the physical difference. Our findings highlight the importance of contextual factors induced by paradigm manipulations and sex for modeling schizophrenia-like MMN impairments in rats.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Juanita Todd
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Patricia T. Michie
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Deborah M. Hodgson
- School of Psychological Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Lauren Harms
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
15
|
A simple model of the electrosensory electromotor loop in Gymnotus omarorum. Biosystems 2023; 223:104800. [PMID: 36343760 DOI: 10.1016/j.biosystems.2022.104800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
This article introduces and tests a simple model that describes a neural network found in nature, the electrosensory control of an electromotor pacemaker. The cornerstone of the model is an early-stage filter based on the subtraction of a feedforward integrated version of the recent sensory past from the present input signal. The output of this filter governs the modulation of a premotor pacemaker command driving the sensory signal carrier generation and, in consequence, the timing of subsequent electrosensory input. This early filter has a biological parallel in the known connectivity of the first electrosensory relay within the brain stem of the weakly electric fish Gymnotus omarorum. Our biomimetic model of this active, perception-driven action-sensation cycle was contrasted with previously published and here provided new data. When the amplitude of the electrosensory input was manipulated to mimic previous experiments on the novelty detection characteristics, the model reproduces them rather faithfully. In addition, when we applied continuous variations to the input it shows that increases in stimulus amplitudes are followed by increases in the EOD rate, but decreases do not cause rate modulation suggesting a rectification in some stage of the loop. These behavioral experiments confirmed results generated the simulations suggesting that beyond explaining the novelty detection process this simple model is a good description of the electrosensory -electromotor loop in pulse weakly electric fish.
Collapse
|
16
|
Ehret G, Romand R. Awareness and consciousness in humans and animals - neural and behavioral correlates in an evolutionary perspective. Front Syst Neurosci 2022; 16:941534. [PMID: 35910003 PMCID: PMC9331465 DOI: 10.3389/fnsys.2022.941534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Awareness or consciousness in the context of stimulus perception can directly be assessed in well controlled test situations with humans via the persons' reports about their subjective experiences with the stimuli. Since we have no direct access to subjective experiences in animals, their possible awareness or consciousness in stimulus perception tasks has often been inferred from behavior and cognitive abilities previously observed in aware and conscious humans. Here, we analyze published human data primarily on event-related potentials and brain-wave generation during perception and responding to sensory stimuli and extract neural markers (mainly latencies of evoked-potential peaks and of gamma-wave occurrence) indicating that a person became aware or conscious of the perceived stimulus. These neural correlates of consciousness were then applied to sets of corresponding data from various animals including several species of mammals, and one species each of birds, fish, cephalopods, and insects. We found that the neural markers from studies in humans could also successfully be applied to the mammal and bird data suggesting that species in these animal groups can become subjectively aware of and conscious about perceived stimuli. Fish, cephalopod and insect data remained inconclusive. In an evolutionary perspective we have to consider that both awareness of and consciousness about perceived stimuli appear as evolved, attention-dependent options added to the ongoing neural activities of stimulus processing and action generation. Since gamma-wave generation for functional coupling of brain areas in aware/conscious states is energetically highly cost-intensive, it remains to be shown which animal species under which conditions of lifestyle and ecological niche may achieve significant advantages in reproductive fitness by drawing upon these options. Hence, we started our discussion about awareness and consciousness in animals with the question in how far these expressions of brain activity are necessary attributes for perceiving stimuli and responding in an adaptive way.
Collapse
Affiliation(s)
- Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Raymond Romand
- Faculty of Medicine, Institute de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
17
|
Braga A, Schönwiesner M. Neural Substrates and Models of Omission Responses and Predictive Processes. Front Neural Circuits 2022; 16:799581. [PMID: 35177967 PMCID: PMC8844463 DOI: 10.3389/fncir.2022.799581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Predictive coding theories argue that deviance detection phenomena, such as mismatch responses and omission responses, are generated by predictive processes with possibly overlapping neural substrates. Molecular imaging and electrophysiology studies of mismatch responses and corollary discharge in the rodent model allowed the development of mechanistic and computational models of these phenomena. These models enable translation between human and non-human animal research and help to uncover fundamental features of change-processing microcircuitry in the neocortex. This microcircuitry is characterized by stimulus-specific adaptation and feedforward inhibition of stimulus-selective populations of pyramidal neurons and interneurons, with specific contributions from different interneuron types. The overlap of the substrates of different types of responses to deviant stimuli remains to be understood. Omission responses, which are observed both in corollary discharge and mismatch response protocols in humans, are underutilized in animal research and may be pivotal in uncovering the substrates of predictive processes. Omission studies comprise a range of methods centered on the withholding of an expected stimulus. This review aims to provide an overview of omission protocols and showcase their potential to integrate and complement the different models and procedures employed to study prediction and deviance detection.This approach may reveal the biological foundations of core concepts of predictive coding, and allow an empirical test of the framework's promise to unify theoretical models of attention and perception.
Collapse
Affiliation(s)
- Alessandro Braga
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
- International Max Plank Research School, Max Plank Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marc Schönwiesner
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
- International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
18
|
Novel stimuli evoke excess activity in the mouse primary visual cortex. Proc Natl Acad Sci U S A 2022; 119:2108882119. [PMID: 35101916 PMCID: PMC8812573 DOI: 10.1073/pnas.2108882119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/03/2023] Open
Abstract
Rapid detection and processing of stimulus novelty are key elements of adaptive behavior. Predictive coding theories postulate that novel stimuli should be encoded differently from familiar stimuli. Here, we show that the majority of neurons in layer 2/3 of the mouse primary visual cortex exhibit a significant excess response to novel visual stimuli. The distinction between novel and familiar images developed rapidly, requiring only a few repeated presentations. We show that this phenomenon can be described by a model of cascading adaptation. This ubiquitous mechanism makes it likely that similar computations could be carried out in many brain areas. To explore how neural circuits represent novel versus familiar inputs, we presented mice with repeated sets of images with novel images sparsely substituted. Using two-photon calcium imaging to record from layer 2/3 neurons in the mouse primary visual cortex, we found that novel images evoked excess activity in the majority of neurons. This novelty response rapidly emerged, arising with a time constant of 2.6 ± 0.9 s. When a new image set was repeatedly presented, a majority of neurons had similarly elevated activity for the first few presentations, which decayed to steady state with a time constant of 1.4 ± 0.4 s. When we increased the number of images in the set, the novelty response’s amplitude decreased, defining a capacity to store ∼15 familiar images under our conditions. These results could be explained quantitatively using an adaptive subunit model in which presynaptic neurons have individual tuning and gain control. This result shows that local neural circuits can create different representations for novel versus familiar inputs using generic, widely available mechanisms.
Collapse
|
19
|
Yi GL, Zhu MZ, Cui HC, Yuan XR, Liu P, Tang J, Li YQ, Zhu XH. A hippocampus dependent neural circuit loop underlying the generation of auditory mismatch negativity. Neuropharmacology 2022; 206:108947. [PMID: 35026286 DOI: 10.1016/j.neuropharm.2022.108947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
Extracting relevant information and transforming it into appropriate behavior, is a fundamental brain function, and requires the coordination between the sensory and cognitive systems, however, the underlying mechanisms of interplay between sensory and cognition systems remain largely unknown. Here, we developed a mouse model for mimicking human auditory mismatch negativity (MMN), a well-characterized translational biomarker for schizophrenia, and an index of early auditory information processing. We found that a subanesthetic dose of ketamine decreased the amplitude of MMN in adult mice. Using pharmacological and chemogenetic approaches, we identified an auditory cortex-entorhinal cortex-hippocampus neural circuit loop that is required for the generation of MMN. In addition, we found that inhibition of dCA1→MEC circuit impaired the auditory related fear discrimination. Moreover, we found that ketamine induced MMN deficiency by inhibition of long-range GABAergic projection from the CA1 region of the dorsal hippocampus to the medial entorhinal cortex. These results provided circuit insights for ketamine effects and early auditory information processing. As the entorhinal cortex is the interface between the neocortex and hippocampus, and the hippocampus is critical for the formation, consolidation, and retrieval of episodic memories and other cognition, our results provide a neural mechanism for the interplay between the sensory and cognition systems.
Collapse
Affiliation(s)
- Guo-Liang Yi
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Min-Zhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - He-Chen Cui
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Rui Yuan
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Liu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Tang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuan-Qing Li
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Xin-Hong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, 510330, China; School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
20
|
Kat R, van den Berg B, Perenboom MJ, Schenke M, van den Maagdenberg AM, Bruining H, Tolner EA, Kas MJ. EEG-based visual deviance detection in freely behaving mice. Neuroimage 2021; 245:118757. [PMID: 34838751 DOI: 10.1016/j.neuroimage.2021.118757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
The mouse is widely used as an experimental model to study visual processing. To probe how the visual system detects changes in the environment, functional paradigms in freely behaving mice are strongly needed. We developed and validated the first EEG-based method to investigate visual deviance detection in freely behaving mice. Mice with EEG implants were exposed to a visual deviant detection paradigm that involved changes in light intensity as standard and deviant stimuli. By subtracting the standard from the deviant evoked waveform, deviant detection was evident as bi-phasic negativity (starting around 70 ms) in the difference waveform. Additionally, deviance-associated evoked (beta/gamma) and induced (gamma) oscillatory responses were found. We showed that the results were stimulus-independent by applying a "flip-flop" design and the results showed good repeatability in an independent measurement. Together, we put forward a validated, easy-to-use paradigm to measure visual deviance processing in freely behaving mice.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands.
| | - Berry van den Berg
- Faculty of Behavioral and Social Sciences, Cognitive Neuroscience, Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - Matthijs Jl Perenboom
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands.
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Arn Mjm van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands.
| | - Hilgo Bruining
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center, University of Amsterdam, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands.
| | - Martien Jh Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
21
|
Schulz A, Miehl C, Berry MJ, Gjorgjieva J. The generation of cortical novelty responses through inhibitory plasticity. eLife 2021; 10:e65309. [PMID: 34647889 PMCID: PMC8516419 DOI: 10.7554/elife.65309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
Collapse
Affiliation(s)
- Auguste Schulz
- Max Planck Institute for Brain ResearchFrankfurtGermany
- Technical University of Munich, Department of Electrical and Computer EngineeringMunichGermany
| | - Christoph Miehl
- Max Planck Institute for Brain ResearchFrankfurtGermany
- Technical University of Munich, School of Life SciencesFreisingGermany
| | - Michael J Berry
- Princeton University, Princeton Neuroscience InstitutePrincetonUnited States
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain ResearchFrankfurtGermany
- Technical University of Munich, School of Life SciencesFreisingGermany
| |
Collapse
|
22
|
O'Reilly JA. Roving oddball paradigm elicits sensory gating, frequency sensitivity, and long-latency response in common marmosets. IBRO Neurosci Rep 2021; 11:128-136. [PMID: 34622244 PMCID: PMC8482433 DOI: 10.1016/j.ibneur.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/21/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mismatch negativity (MMN) is a candidate biomarker for neuropsychiatric disease. Understanding the extent to which it reflects cognitive deviance-detection or purely sensory processes will assist practitioners in making informed clinical interpretations. This study compares the utility of deviance-detection and sensory-processing theories for describing MMN-like auditory responses of a common marmoset monkey during roving oddball stimulation. The following exploratory analyses were performed on an existing dataset: responses during the transition and repetition sequence of the roving oddball paradigm (standard -> deviant/S1 -> S2 -> S3) were compared; long-latency potentials evoked by deviant stimuli were examined using a double-epoch waveform subtraction; effects of increasing stimulus repetitions on standard and deviant responses were analyzed; and transitions between standard and deviant stimuli were divided into ascending and descending frequency changes to explore contributions of frequency-sensitivity. An enlarged auditory response to deviant stimuli was observed. This decreased exponentially with stimulus repetition, characteristic of sensory gating. A slow positive deflection was viewed over approximately 300–800 ms after the deviant stimulus, which is more difficult to ascribe to afferent sensory mechanisms. When split into ascending and descending frequency transitions, the resulting difference waveforms were disproportionally influenced by descending frequency deviant stimuli. This asymmetry is inconsistent with the general deviance-detection theory of MMN. These findings tentatively suggest that MMN-like responses from common marmosets are predominantly influenced by rapid sensory adaptation and frequency preference of the auditory cortex, while deviance-detection may play a role in long-latency activity.
Collapse
Affiliation(s)
- Jamie A O'Reilly
- College of Biomedical Engineering, Rangsit University, 52/347 Muang-Ake, Phaholyothin Road, Pathumthani 12000, Thailand
| |
Collapse
|
23
|
Inaba H, Namba H, Kida S, Nawa H. The dopamine D2 agonist quinpirole impairs frontal mismatch responses to sound frequency deviations in freely moving rats. Neuropsychopharmacol Rep 2021; 41:405-415. [PMID: 34296531 PMCID: PMC8411315 DOI: 10.1002/npr2.12199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/21/2022] Open
Abstract
Aim A reduced mismatch negativity (MMN) response is a promising electrophysiological endophenotype of schizophrenia that reflects neurocognitive impairment. Dopamine dysfunction is associated with symptoms of schizophrenia. However, whether the dopamine system is involved in MMN impairment remains controversial. In this study, we investigated the effects of the dopamine D2‐like receptor agonist quinpirole on mismatch responses to sound frequency changes in an animal model. Methods Event‐related potentials were recorded from electrocorticogram electrodes placed on the auditory and frontal cortices of freely moving rats using a frequency oddball paradigm consisting of ascending and equiprobable (ie, many standards) control sequences before and after the subcutaneous administration of quinpirole. To detect mismatch responses, difference waveforms were obtained by subtracting nondeviant control waveforms from deviant waveforms. Results Here, we show the significant effects of quinpirole on frontal mismatch responses to sound frequency deviations in rats. Quinpirole delayed the frontal N18 and P30 mismatch responses and reduced the frontal N55 MMN‐like response, which resulted from the reduction in the N55 amplitude to deviant stimuli. Importantly, the magnitude of the N55 amplitude was negatively correlated with the time of the P30 latency in the difference waveforms. In contrast, quinpirole administration did not clearly affect the temporal mismatch responses recorded from the auditory cortex. Conclusion These results suggest that the disruption of dopamine D2‐like receptor signaling by quinpirole reduces frontal MMN to sound frequency deviations and that delays in early mismatch responses are involved in this MMN impairment. The subcutaneous administration of quinpirole delayed early mismatch response latencies and reduced a late MMN‐like response amplitude recorded from the frontal cortex but had no effect on those recorded from the auditory cortex. These observations suggest that increased dopamine D2‐like receptor signaling impairs MMN generation to sound frequency changes in the frontal cortex and that the neurochemical mechanisms of MMN vary according to the cortical area. As MMN is associated with cognitive function, these new findings may help develop treatment modalities for cognitive dysfunctions in schizophrenia.![]()
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Satoshi Kida
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
24
|
O'Reilly JA, Angsuwatanakul T. More evidence for a long-latency mismatch response in urethane-anaesthetised mice. Hear Res 2021; 408:108296. [PMID: 34174482 DOI: 10.1016/j.heares.2021.108296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Long-latency mismatch responses to oddball stimuli have recently been observed from anaesthetised rodents. This electrophysiological activity is viewed through 200 to 700 ms post-stimulus; a window that is typically obstructed from analysis by the response to subsequent stimuli in the auditory paradigm. A novel difference waveform computation using two adjoining evoked responses has enabled visualisation of this activity over a longer window than previously available. In the present study, this technique was retroactively applied to data from 13 urethane-anaesthetised mice. Oddball paradigm waveforms were compared with those of a many-standards control sequence, confirming that oddball stimuli evoked long-latency potentials that did not arise from standard or control stimuli. Statistical tests were performed to identify regions of significant difference. Oddball-induced mismatch responses were found to display significantly greater long-latency potentials than identical stimuli presented in an equal-probability context. As such, it may be concluded that long-latency potentials were evoked by the oddball condition. How this feature of the anaesthetised rodent mismatch response relates to human mismatch negativity is unclear, although it may be tentatively linked to the human P3a component, which emerges downstream from mismatch negativity under certain conditions. These results demonstrate that the time dynamics of mismatch responses from anaesthetised rodents are more extensive than previously considered.
Collapse
Affiliation(s)
- Jamie A O'Reilly
- College of Biomedical Engineering, Rangsit University, Pathumthani, Thailand.
| | | |
Collapse
|
25
|
Abstract
Mismatch negativity (MMN) is a component of the difference waveform derived from passive auditory oddball stimulation. Since its inception in 1978, this has become one of the most popular event-related potential techniques, with over two-thousand published studies using this method. This is a testament to the ingenuity and commitment of generations of researchers engaging in basic, clinical and animal research. Despite this intensive effort, high-level descriptions of the mechanisms theorized to underpin mismatch negativity have scarcely changed over the past four decades. The prevailing deviance detection theory posits that MMN reflects inattentive detection of difference between repetitive standard and infrequent deviant stimuli due to a mismatch between the unexpected deviant and a memory representation of the standard. Evidence for these mechanisms is inconclusive, and a plausible alternative sensory processing theory considers fundamental principles of sensory neurophysiology to be the primary source of differences between standard and deviant responses evoked during passive oddball stimulation. By frequently being restated without appropriate methods to exclude alternatives, the potentially flawed deviance detection theory has remained largely dominant, which could lead some researchers and clinicians to assume its veracity implicitly. It is important to have a more comprehensive understanding of the source(s) of MMN generation before its widespread application as a clinical biomarker. This review evaluates issues of validity concerning the prevailing theoretical account of mismatch negativity and the passive auditory oddball paradigm, highlighting several limitations regarding its interpretation and clinical application.
Collapse
|
26
|
O'Reilly JA, Conway BA. Classical and controlled auditory mismatch responses to multiple physical deviances in anaesthetised and conscious mice. Eur J Neurosci 2020; 53:1839-1854. [DOI: 10.1111/ejn.15072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jamie A. O'Reilly
- College of Biomedical Engineering Rangsit University Pathum Thani Thailand
| | - Bernard A. Conway
- Department of Biomedical Engineering University of Strathclyde Glasgow UK
| |
Collapse
|
27
|
Casado-Román L, Carbajal GV, Pérez-González D, Malmierca MS. Prediction error signaling explains neuronal mismatch responses in the medial prefrontal cortex. PLoS Biol 2020; 18:e3001019. [PMID: 33347436 PMCID: PMC7785337 DOI: 10.1371/journal.pbio.3001019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/05/2021] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The mismatch negativity (MMN) is a key biomarker of automatic deviance detection thought to emerge from 2 cortical sources. First, the auditory cortex (AC) encodes spectral regularities and reports frequency-specific deviances. Then, more abstract representations in the prefrontal cortex (PFC) allow to detect contextual changes of potential behavioral relevance. However, the precise location and time asynchronies between neuronal correlates underlying this frontotemporal network remain unclear and elusive. Our study presented auditory oddball paradigms along with "no-repetition" controls to record mismatch responses in neuronal spiking activity and local field potentials at the rat medial PFC. Whereas mismatch responses in the auditory system are mainly induced by stimulus-dependent effects, we found that auditory responsiveness in the PFC was driven by unpredictability, yielding context-dependent, comparatively delayed, more robust and longer-lasting mismatch responses mostly comprised of prediction error signaling activity. This characteristically different composition discarded that mismatch responses in the PFC could be simply inherited or amplified downstream from the auditory system. Conversely, it is more plausible for the PFC to exert top-down influences on the AC, since the PFC exhibited flexible and potent predictive processing, capable of suppressing redundant input more efficiently than the AC. Remarkably, the time course of the mismatch responses we observed in the spiking activity and local field potentials of the AC and the PFC combined coincided with the time course of the large-scale MMN-like signals reported in the rat brain, thereby linking the microscopic, mesoscopic, and macroscopic levels of automatic deviance detection.
Collapse
Affiliation(s)
- Lorena Casado-Román
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Guillermo V. Carbajal
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
28
|
Koshiyama D, Kirihara K, Tada M, Nagai T, Fujioka M, Usui K, Araki T, Kasai K. Reduced Auditory Mismatch Negativity Reflects Impaired Deviance Detection in Schizophrenia. Schizophr Bull 2020; 46:937-946. [PMID: 32072183 PMCID: PMC7345817 DOI: 10.1093/schbul/sbaa006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The auditory mismatch negativity (MMN) is a translatable electroencephalographic biomarker automatically evoked in response to unattended sounds that is robustly associated with cognitive and psychosocial disability in patients with schizophrenia. Although recent animal studies have tried to clarify the neural substrates of the MMN, the nature of schizophrenia-related deficits is unknown. In this study, we applied a novel paradigm developed from translational animal model studies to carefully deconstruct the constituent neurophysiological processes underlying MMN generation. Patients with schizophrenia (N = 25) and healthy comparison subjects (HCS; N = 27) underwent MMN testing using both a conventional auditory oddball paradigm and a "many-standards paradigm" that was specifically developed to deconstruct the subcomponent adaptation and deviance detection processes that are presumed to underlie the MMN. Using a conventional oddball paradigm, patients with schizophrenia exhibited large effect size deficits of both duration and frequency MMN, consistent with many previous studies. Furthermore, patients with schizophrenia showed selective impairments in deviance detection but no impairment in adaptation to repeated tones. These findings support the use of the many-standards paradigm for deconstructing the constituent processes underlying the MMN, with implications for the use of these translational measures to accelerate the development of new treatments that target perceptual and cognitive impairments in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kirihara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Tatsuya Nagai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Psychiatry, Kawamuro Memorial Hospital, Niigata, Japan
| | - Mao Fujioka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Usui
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan,To whom correspondence should be addressed; Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; tel: +81-3-5800-8919, fax: +81-3-5800-9162, e-mail:
| |
Collapse
|
29
|
Jalewa J, Todd J, Michie PT, Hodgson DM, Harms L. Do rat auditory event related potentials exhibit human mismatch negativity attributes related to predictive coding? Hear Res 2020; 399:107992. [PMID: 32571607 DOI: 10.1016/j.heares.2020.107992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Rodent models play a significant role in understanding disease mechanisms and the screening of new treatments. With regard to psychiatric disorders such as schizophrenia, however, it is difficult to replicate the human symptoms in rodents because these symptoms are often either 'uniquely human' or are only conveyed via self-report. There is a growing interest in rodent mismatch responses (MMRs) as a translatable 'biomarker' for disorders such as schizophrenia. In this review, we will summarize the attributes of human MMN, and discuss the scope of exploring the attributes of human MMN in rodents. Here, we examine how reliably MMRs that are measured in rats mimic human attributes, and present original data examining whether manipulations of stimulus conditions known to modulate human MMN, do the same for rat MMRs. Using surgically-implanted epidural electroencephalographic electrodes and wireless telemetry in freely-moving rats, we observed human-like modulations of MMRs, namely that larger MMRs were elicited to unexpected (deviant) stimuli that a) had a larger change in pitch compared to the expected (standard) stimulus, b) were less frequently presented (lower probability), and c) had no jitter (stable stimulus onset asynchrony) compared to high jitter. Overall, these findings contribute to the mounting evidence for rat MMRs as a good analogue of human MMN, bolstering the development of a novel approach in future to validate the preclinical models based on a translatable biomarker, MMN.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Patricia T Michie
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Deborah M Hodgson
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lauren Harms
- Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
30
|
Raith H, Schuelert N, Duveau V, Roucard C, Plano A, Dorner-Ciossek C, Ferger B. Differential effects of traxoprodil and S-ketamine on quantitative EEG and auditory event-related potentials as translational biomarkers in preclinical trials in rats and mice. Neuropharmacology 2020; 171:108072. [PMID: 32243874 DOI: 10.1016/j.neuropharm.2020.108072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
Quantitative Electroencephalography (qEEG) and event-related potential (ERP) assessment have emerged as powerful tools to unravel translational biomarkers in preclinical and clinical psychiatric drug discovery trials. The aim of the present study was to compare the GluN2B negative allosteric modulator (NAM) traxoprodil (CP-101,606) with the unselective NMDA receptor channel blocker S-ketamine to give insight into central target engagement and differentiation on multiple EEG readouts. For qEEG recordings telemetric transmitters were implanted in male Wistar rats. Recorded EEG data were analyzed using fast Fourier transformation to determine power spectra and vigilance states. Additionally, body temperature and locomotor activity were assessed via telemetry. For recordings of auditory event-related potentials (AERP) male C57Bl/6J mice were chronically implanted with deep electrodes using a tethered system. Power spectral analysis revealed a significant increase in gamma power following ketamine treatment, whereas traxoprodil (6&18 mg/kg) induced an overall decrease primarily within alpha and beta bands. Additionally, ketamine disrupted sleep and enhanced time spent in wake vigilance states, whereas traxoprodil did not alter sleep-wake architecture. AERP and mismatch negativity (MMN) revealed that ketamine (10 mg/kg) selectively disrupts auditory deviance detection, whereas traxoprodil (6 mg/kg) did not alter MMN at clinically relevant doses. In contrast to ketamine treatment, traxoprodil did not produce hyperactivity and hypothermia. In conclusion, ketamine and traxoprodil showed very different effects on diverse EEG readouts differentiating selective GluN2B antagonism from non-selective pan-NMDA-R antagonists like ketamine. These readouts are thus perfectly suited to support drug discovery efforts on NMDA-R and understanding the different functions of NMDA-R subtypes.
Collapse
Affiliation(s)
- Henrike Raith
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Niklas Schuelert
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Venceslas Duveau
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Corinne Roucard
- SynapCell SAS, Biopolis and Institut Jean Roget, Université Joseph Fourier-Grenoble 1, Domaine de la merci, 38700, La Tronche, France.
| | - Andrea Plano
- Plano Consulting, Georg-Schinbain-Str. 70, 88400, Biberach an der Riß, Germany.
| | - Cornelia Dorner-Ciossek
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| | - Boris Ferger
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Diseases Research Germany, Birkendorferstr. 65, 88397, Biberach an der Riß, Germany.
| |
Collapse
|
31
|
Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020; 14:13. [PMID: 32296311 PMCID: PMC7137737 DOI: 10.3389/fncir.2020.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed “stimulus-specific adaptation” (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed “deviance detection” (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced “mismatch negativity” (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the “oddball” paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.
Collapse
Affiliation(s)
- Jordan M Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States.,Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
32
|
Putative TAAR5 agonist alpha-NETA affects event-related potentials in oddball paradigm in awake mice. Brain Res Bull 2020; 158:116-121. [PMID: 32151716 DOI: 10.1016/j.brainresbull.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 11/23/2022]
Abstract
Trace amines have been reported to be neuromodulators of monoaminergic systems. Trace amines receptor 5 (TAAR5) is expressed in several regions of mice central nervous system, such as amygdala, arcuate nucleus and ventromedial hypothalamus, but very limited information is available on its functional role. The purpose of this study is to examine the effect of TAAR5 agonist alpha-NETA on the generation of mismatch negativity (MMN) analogue in C57BL/6 mice. Event-related potentials have been recorded from awake mice in oddball paradigms before and after the alpha-NETA administration. Alpha-NETA has been found to decrease N40 MMN-like difference, which resulted from the increased response to standard stimuli. An opposite effect has been found for the P80 component: the amplitude increased in response both to standard and deviant stimuli. A significant increase in N40 peak latency after the alpha-NETA administration has been found. This may suggest a reduced speed of information processing similar to the increase in P50 and N100 components latencies in schizophrenia patients. These results provide new evidence for a role of TAAR5 in cognitive processes.
Collapse
|
33
|
Kim B, Shin J, Kim Y, Choi JH. Destruction of ERP responses to deviance in an auditory oddball paradigm in amyloid infusion mice with memory deficits. PLoS One 2020; 15:e0230277. [PMID: 32160242 PMCID: PMC7065782 DOI: 10.1371/journal.pone.0230277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
The amyloid-β (Aβ) oligomer is considered one of the major pathogens responsible for neuronal and synaptic loss in Alzheimer’s disease (AD) brains. Although the neurotoxic mechanisms of Aβ have been widely investigated, experimental evidence for the direct linkage between neural signaling and cognitive impairments in association with peptide oligomers is lacking. Here, we conducted an auditory oddball paradigm utilizing an Aβ-infused Alzheimer’s disease mouse model and interpreted the results based on Y-maze behavioral tests. We acutely injected Aβ oligomers into the intracerebroventricular brain region of normal mice to induce Aβ-associated cognitive impairments. During the auditory oddball paradigm, electroencephalograms (EEG) were recorded from frontal and parietal cortex of Aβ-infused and control mice. The event-related potentials (ERPs) elicited by auditory stimuli showed no significant difference in Aβ-infused mice compared to control mice. On the other hand, the differential ERP signature elicited by oddball sound stimuli was destructed in the Aβ-infused mice group. We noticed that ERP traces to standard and deviant tones were not significantly different in the Aβ group, while the control group showed differences in the amplitude of ERP components. In particular, the difference in the first negative component (N1) between standard and deviant tone, which indexes the sensory memory system, was significantly reduced in the parietal cortex of Aβ-infused mice. These findings demonstrate the direct influence of Aβ oligomers on the functional integrity of cortical areas in vivo. Furthermore, the N1 amplitude difference may provide a potential marker of sensory memory deficits in a mouse model of AD and yield additional targets for drug assessment in AD.
Collapse
Affiliation(s)
- Bowon Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
- Integrated Science and Engineering Division, Yonsei University, Incheon, Republic of Korea
- * E-mail: (YK); (JHC)
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- * E-mail: (YK); (JHC)
| |
Collapse
|
34
|
Shiramatsu TI, Takahashi H. Mismatch-negativity (MMN) in animal models: Homology of human MMN? Hear Res 2020; 399:107936. [PMID: 32197715 DOI: 10.1016/j.heares.2020.107936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Mismatch negativity (MMN) has long been considered to be one of the deviance-detecting neural characteristics. Animal models exhibit similar neural activities, called MMN-like responses; however, there has been considerable debate on whether MMN-like responses are homologous to MMN in humans. Herein, we reviewed several studies that compared the electrophysiological, pharmacological, and functional properties of MMN-like responses and adaptation-exhibiting middle-latency responses (MLRs) in animals with those in humans. Accumulating evidence suggests that there are clear differences between MMN-like responses and MLRs, in particular that MMN-like responses can be distinguished from mere effects of adaptation, i.e., stimulus-specific adaptation. Finally, we discuss a new direction for research on MMN-like responses by introducing our recent work, which demonstrated that MMN-like responses represent empirical salience of deviant stimuli, suggesting a new functional role of MMN beyond simple deviance detection.
Collapse
Affiliation(s)
| | - Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
35
|
Tada M, Kirihara K, Mizutani S, Uka T, Kunii N, Koshiyama D, Fujioka M, Usui K, Nagai T, Araki T, Kasai K. Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: A review. Int J Psychophysiol 2019; 145:5-14. [DOI: 10.1016/j.ijpsycho.2019.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/09/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
|
36
|
Yang T, Hämäläinen JA, Lohvansuu K, Lipponen A, Penttonen M, Astikainen P. Deviance detection in sound frequency in simple and complex sounds in urethane-anesthetized rats. Hear Res 2019; 399:107814. [PMID: 31672403 DOI: 10.1016/j.heares.2019.107814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 11/26/2022]
Abstract
Mismatch negativity (MMN), which is an electrophysiological response demonstrated in humans and animals, reflects memory-based deviance detection in a series of sounds. However, only a few studies on rodents have used control conditions that were sufficient in eliminating confounding factors that could also explain differential responses to deviant sounds. Furthermore, it is unclear if change detection occurs similarly for sinusoidal and complex sounds. In this study, we investigated frequency change detection in urethane-anesthetized rats by recording local-field potentials from the dura above the auditory cortex. We studied change detection in sinusoidal and complex sounds in a series of experiments, controlling for sound frequency, probability, and pattern in a series of sounds. For sinusoidal sounds, the MMN controlled for frequency, adaptation, and pattern, was elicited at approximately 200 ms onset latency. For complex sounds, the MMN controlled for frequency and adaptation, was elicited at 60 ms onset latency. Sound frequency affected the differential responses. MMN amplitude was larger for the sinusoidal sounds than for the complex sounds. These findings indicate the importance of controlling for sound frequency and stimulus probabilities, which have not been fully controlled for in most previous animal and human studies. Future studies should confirm the preference for sinusoidal sounds over complex sounds in rats.
Collapse
Affiliation(s)
- Tiantian Yang
- Department of Psychology, University of Jyvaskyla, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Jarmo A Hämäläinen
- Department of Psychology, University of Jyvaskyla, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Kaisa Lohvansuu
- Department of Psychology, University of Jyvaskyla, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Arto Lipponen
- Department of Psychology, University of Jyvaskyla, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Markku Penttonen
- Department of Psychology, University of Jyvaskyla, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Piia Astikainen
- Department of Psychology, University of Jyvaskyla, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
37
|
Double-epoch subtraction reveals long-latency mismatch response in urethane-anaesthetized mice. J Neurosci Methods 2019; 326:108375. [DOI: 10.1016/j.jneumeth.2019.108375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022]
|
38
|
Sikkens T, Bosman CA, Olcese U. The Role of Top-Down Modulation in Shaping Sensory Processing Across Brain States: Implications for Consciousness. Front Syst Neurosci 2019; 13:31. [PMID: 31680883 PMCID: PMC6802962 DOI: 10.3389/fnsys.2019.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
Top-down, feedback projections account for a large portion of all connections between neurons in the thalamocortical system, yet their precise role remains the subject of much discussion. A large number of studies has focused on investigating how sensory information is transformed across hierarchically-distributed processing stages in a feedforward fashion, and computational models have shown that purely feedforward artificial neural networks can even outperform humans in pattern classification tasks. What is then the functional role of feedback connections? Several key roles have been identified, ranging from attentional modulation to, crucially, conscious perception. Specifically, most of the major theories on consciousness postulate that feedback connections would play an essential role in enabling sensory information to be consciously perceived. Consequently, it follows that their efficacy in modulating target regions should drastically decrease in nonconscious brain states [non-rapid eye movement (REM) sleep, anesthesia] compared to conscious ones (wakefulness), and also in instances when a given sensory stimulus is not perceived compared to when it is. Until recently, however, this prediction could only be tested with correlative experiments, due to the lack of techniques to selectively manipulate and measure the activity of feedback pathways. In this article, we will review the most recent literature on the functions of feedback connections across brain states and based on the presence or absence of perception. We will focus on experiments studying mismatch negativity, a phenomenon which has been hypothesized to rely on top-down modulation but which persists during nonconscious states. While feedback modulation is generally dampened in nonconscious states and enhanced when perception occurs, there are clear deviations from this rule. As we will discuss, this may pose a challenge to most theories of consciousness, and possibly require a change in how the level of consciousness in supposedly nonconscious states is assessed.
Collapse
Affiliation(s)
- Tom Sikkens
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Jodo E, Inaba H, Narihara I, Sotoyama H, Kitayama E, Yabe H, Namba H, Eifuku S, Nawa H. Neonatal exposure to an inflammatory cytokine, epidermal growth factor, results in the deficits of mismatch negativity in rats. Sci Rep 2019; 9:7503. [PMID: 31097747 PMCID: PMC6522493 DOI: 10.1038/s41598-019-43923-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
Perinatal exposure to epidermal growth factor (EGF) induces various cognitive and behavioral abnormalities after maturation in non-human animals, and is used for animal models of schizophrenia. Patients with schizophrenia often display a reduction of mismatch negativity (MMN), which is a stimulus-change specific event-related brain potential. Do the EGF model animals also exhibit the MMN reduction as schizophrenic patients do? This study addressed this question to verify the pathophysiological validity of this model. Neonatal rats received repeated administration of EGF or saline and were grown until adulthood. Employing the odd-ball paradigm of distinct tone pitches, tone-evoked electroencephalogram (EEG) components were recorded from electrodes on the auditory and frontal cortices of awake rats, referencing an electrode on the frontal sinus. The amplitude of the MMN-like potential was significantly reduced in EGF-treated rats compared with saline-injected control rats. The wavelet analysis of the EEG during a near period of tone stimulation revealed that synchronization of EEG activity, especially with beta and gamma bands, was reduced in EGF-treated rats. Results suggest that animals exposed to EGF during a perinatal period serve as a promising neurodevelopmental model of schizophrenia.
Collapse
Affiliation(s)
- Eiichi Jodo
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Hiroyoshi Inaba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Itaru Narihara
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Eiko Kitayama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Satoshi Eifuku
- Department of Systems Neuroscience, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| |
Collapse
|
40
|
Aleksandrov AA, Knyazeva VM, Volnova AB, Dmitrieva ES, Polyakova NV, Gainetdinov RR. Trace Amine-Associated Receptor 1 Agonist Modulates Mismatch Negativity-Like Responses in Mice. Front Pharmacol 2019; 10:470. [PMID: 31130864 PMCID: PMC6509589 DOI: 10.3389/fphar.2019.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor widely expressed in the mammalian brain, particularly in limbic system and monoaminergic areas. It has proven to be an important modulator of dopaminergic, serotoninergic, and glutamatergic neurotransmission and is considered to be a potential useful target for the pharmacotherapy of neuropsychiatric disorders, including schizophrenia. One of the promising schizophrenia endophenotypes is a deficit in neurocognitive abilities manifested as mismatch negativity (MMN) deficit. This study examines the effect of TAAR1 partial agonist RO5263397 on the MMN-like response in freely moving C57BL/6 mice. Event-related potentials (ERPs) were recorded from awake mice in the oddball paradigm before and after RO5263397 administration. The RO5263397 (but not saline) administration increased the N40 amplitude in response to deviant stimuli. That provided the MMN-like difference at the 36-44 ms interval after the injection. The pitch deviance-elicited changes before the injection and in the control paradigm were established for the P68 component. After TAAR1 agonist administration the P68 amplitude in response both to standard and deviant stimuli was increased. These results suggest that the MMN-like response in mice may be modulated through TAAR1-dependent processes (possibly acting through the direct or indirect glutamate NMDA receptor modulation), indicating the TAAR1 agonists potential antipsychotic and pro-cognitive activity.
Collapse
Affiliation(s)
- Aleksander A. Aleksandrov
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Veronika M. Knyazeva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna B. Volnova
- Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elena S. Dmitrieva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Nadezhda V. Polyakova
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
41
|
Carbajal GV, Malmierca MS. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear 2019; 22:2331216518784822. [PMID: 30022729 PMCID: PMC6053868 DOI: 10.1177/2331216518784822] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this review, we attempt to integrate the empirical evidence regarding stimulus-specific adaptation (SSA) and mismatch negativity (MMN) under a predictive coding perspective (also known as Bayesian or hierarchical-inference model). We propose a renewed methodology for SSA study, which enables a further decomposition of deviance detection into repetition suppression and prediction error, thanks to the use of two controls previously introduced in MMN research: the many-standards and the cascade sequences. Focusing on data obtained with cellular recordings, we explain how deviance detection and prediction error are generated throughout hierarchical levels of processing, following two vectors of increasing computational complexity and abstraction along the auditory neuraxis: from subcortical toward cortical stations and from lemniscal toward nonlemniscal divisions. Then, we delve into the particular characteristics and contributions of subcortical and cortical structures to this generative mechanism of hierarchical inference, analyzing what is known about the role of neuromodulation and local microcircuitry in the emergence of mismatch signals. Finally, we describe how SSA and MMN are occurring at similar time frame and cortical locations, and both are affected by the manipulation of N-methyl- D-aspartate receptors. We conclude that there is enough empirical evidence to consider SSA and MMN, respectively, as the microscopic and macroscopic manifestations of the same physiological mechanism of deviance detection in the auditory cortex. Hence, the development of a common theoretical framework for SSA and MMN is all the more recommendable for future studies. In this regard, we suggest a shared nomenclature based on the predictive coding interpretation of deviance detection.
Collapse
Affiliation(s)
- Guillermo V Carbajal
- 1 Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castile and León, University of Salamanca, Salamanca, Spain.,2 Salamanca Institute for Biomedical Research, Spain
| | - Manuel S Malmierca
- 1 Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castile and León, University of Salamanca, Salamanca, Spain.,2 Salamanca Institute for Biomedical Research, Spain.,3 Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain
| |
Collapse
|
42
|
Lipponen A, Kurkela JLO, Kyläheiko I, Hölttä S, Ruusuvirta T, Hämäläinen JA, Astikainen P. Auditory-evoked potentials to changes in sound duration in urethane-anaesthetized mice. Eur J Neurosci 2019; 50:1911-1919. [PMID: 30687973 DOI: 10.1111/ejn.14359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 11/30/2022]
Abstract
Spectrotemporally complex sounds carry important information for acoustic communication. Among the important features of these sounds is the temporal duration. An event-related potential called mismatch negativity indexes auditory change detection in humans. An analogous response (mismatch response) has been found to duration changes in speech sounds in rats but not yet in mice. We addressed whether mice show this response, and, if elicited, whether this response is functionally analogous to mismatch negativity or whether adaptation-based models suffice to explain them. Auditory-evoked potentials were epidurally recorded above the mice auditory cortex. The differential response to the changes in a repeated human speech sound /a/ was elicited 53-259 ms post-change (oddball condition). The differential response was observable to the largest duration change (from 200 to 110 ms). Any smaller (from 200 to 120-180 ms at 10 ms steps) duration changes did elicit an observable response. The response to the largest duration change did not robustly differ in amplitude from the response to the change-inducing sound presented without its repetitive background (equiprobable condition). The findings suggest that adaptation may suffice to explain responses to duration changes in spectrotemporally complex sounds in anaesthetized mice. The results pave way for development of a variety of murine models of acoustic communication.
Collapse
Affiliation(s)
- Arto Lipponen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jari L O Kurkela
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Iiris Kyläheiko
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Sonja Hölttä
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Timo Ruusuvirta
- Department of Teacher Education, University of Turku, Rauma, Finland
| | | | - Piia Astikainen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
43
|
Schuelert N, Dorner‐Ciossek C, Brendel M, Rosenbrock H. A comprehensive analysis of auditory event-related potentials and network oscillations in an NMDA receptor antagonist mouse model using a novel wireless recording technology. Physiol Rep 2018; 6:e13782. [PMID: 30155997 PMCID: PMC6113138 DOI: 10.14814/phy2.13782] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence that impaired sensory processing significantly contributes to cognitive deficits found in schizophrenia. Electroencephalography (EEG) has become an important preclinical and clinical technique to investigate the underlying mechanisms of neurophysiological dysfunctions in psychiatric disorders. Patients with schizophrenia show marked deficits in auditory event-related potentials (ERP), the detection of deviant auditory stimuli (mismatch negativity, MMN), the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation (ASSR) and reduced auditory-evoked oscillation in the gamma range. Due to a novel data-logging technology (Neurologger, TSE Systems), it is now possible to record wireless EEG data in awake, free-moving small rodents without any restrictions due to size of the device or attached cables. Recently, a new version of the Neurologger was released with improved performance to record time-locked event-related EEG signals. In this study, we were able to show in mice that pharmacological intervention with the NMDA receptor antagonists Ketamine and MK-801 can impair a comprehensive selection of EEG/ERP readouts (ERP N1 amplitude, 40 Hz ASSR, basal and evoked gamma oscillation, MMN) and therefore mimic the EEG deficits observed in patients with schizophrenia. Our data support the translational value of NMDA receptor antagonists as a model for preclinical evaluation of sensory processing deficits relevant to schizophrenia. Further, the new Neurologger system is a suitable device for wireless recording of clinically relevant EEG biomarkers in freely moving mice and a robust translational tool to investigate novel therapeutic approaches regarding sensory processing deficits related to psychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Niklas Schuelert
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Cornelia Dorner‐Ciossek
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Michael Brendel
- Biostatistics and Data SciencesBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Holger Rosenbrock
- CNS Diseases Research GermanyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| |
Collapse
|
44
|
Honing H, Bouwer FL, Prado L, Merchant H. Rhesus Monkeys ( Macaca mulatta) Sense Isochrony in Rhythm, but Not the Beat: Additional Support for the Gradual Audiomotor Evolution Hypothesis. Front Neurosci 2018; 12:475. [PMID: 30061809 PMCID: PMC6054994 DOI: 10.3389/fnins.2018.00475] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 06/22/2018] [Indexed: 12/05/2022] Open
Abstract
Charles Darwin suggested the perception of rhythm to be common to all animals. While only recently experimental research is finding some support for this claim, there are also aspects of rhythm cognition that appear to be species-specific, such as the capability to perceive a regular pulse (or beat) in a varying rhythm. In the current study, using EEG, we adapted an auditory oddball paradigm that allows for disentangling the contributions of beat perception and isochrony to the temporal predictability of the stimulus. We presented two rhesus monkeys (Macaca mulatta) with a rhythmic sequence in two versions: an isochronous version, that was acoustically accented such that it could induce a duple meter (like a march), and a jittered version using the same acoustically accented sequence but that was presented in a randomly timed fashion, as such disabling beat induction. The results reveal that monkeys are sensitive to the isochrony of the stimulus, but not its metrical structure. The MMN was influenced by the isochrony of the stimulus, resulting in a larger MMN in the isochronous as opposed to the jittered condition. However, the MMN for both monkeys showed no interaction between metrical position and isochrony. So, while the monkey brain appears to be sensitive to the isochrony of the stimulus, we find no evidence in support of beat perception. We discuss these results in the context of the gradual audiomotor evolution (GAE) hypothesis (Merchant and Honing, 2014) that suggests beat-based timing to be omnipresent in humans but only weakly so or absent in non-human primates.
Collapse
Affiliation(s)
- Henkjan Honing
- Amsterdam Brain and Cognition, Institute for Advanced Study, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur L Bouwer
- Amsterdam Brain and Cognition, Institute for Advanced Study, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
| | - Luis Prado
- Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autonoma de México, Santiago de Querétaro, Mexico
| | - Hugo Merchant
- Department of Cognitive Neuroscience, Instituto de Neurobiología, Universidad Nacional Autonoma de México, Santiago de Querétaro, Mexico
| |
Collapse
|
45
|
Identification of TAAR5 Agonist Activity of Alpha-NETA and Its Effect on Mismatch Negativity Amplitude in Awake Rats. Neurotox Res 2018; 34:442-451. [DOI: 10.1007/s12640-018-9902-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
|
46
|
Electrophysiological evidence of memory-based detection of auditory regularity violations in anesthetized mice. Sci Rep 2018; 8:3027. [PMID: 29445171 PMCID: PMC5813195 DOI: 10.1038/s41598-018-21411-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/30/2018] [Indexed: 11/18/2022] Open
Abstract
In humans, automatic change detection is reflected by an electrical brain response called mismatch negativity (MMN). Mismatch response is also elicited in mice, but it is unclear to what extent it is functionally similar to human MMN. We investigated this possible similarity by recording local field potentials from the auditory cortex of anesthetized mice. First, we tested whether the response to stimulus changes reflected the detection of regularity violations or adaptation to standard stimuli. Responses obtained from an oddball condition, where occasional changes in frequency were presented amongst of a standard sound, were compared to responses obtained from a control condition, where no regularities existed. To test whether the differential response to the deviant sounds in the oddball condition is dependent on sensory memory, responses from the oddball condition using 375 ms and 600 ms inter-stimulus intervals (ISI) were compared. We found a differential response to deviant sounds which was larger with the shorter than the longer ISI. Furthermore, the oddball deviant sound elicited larger response than the same sound in the control condition. These results demonstrate that the mismatch response in mice reflects detection of regularity violations and sensory memory function, as the human MMN.
Collapse
|
47
|
Lee M, Balla A, Sershen H, Sehatpour P, Lakatos P, Javitt DC. Rodent Mismatch Negativity/theta Neuro-Oscillatory Response as a Translational Neurophysiological Biomarker for N-Methyl-D-Aspartate Receptor-Based New Treatment Development in Schizophrenia. Neuropsychopharmacology 2018; 43:571-582. [PMID: 28816240 PMCID: PMC5770758 DOI: 10.1038/npp.2017.176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/25/2022]
Abstract
Deficits in the generation of auditory mismatch negativity (MMN) generation are among the most widely replicated neurophysiological abnormalities in schizophrenia and are linked to underlying dysfunction of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission. Here, we evaluate physiological properties of rodent MMN, along with sensitivity to NMDAR agonist and antagonist treatments, relative to known patterns of dysfunction in schizophrenia. Epidural neurophysiological responses to frequency and duration deviants, along with responses to standard stimuli, were obtained at baseline and following 2 and 4 weeks' treatment in rats treated with saline, phencyclidine (PCP, 15 mg/kg/d by osmotic minipump), or PCP+glycine (16% by weight diet) interventions. Responses were analyzed using both event-related potential (ERP) and neuro-oscillatory (evoked power) approaches. At baseline, rodent duration MMN was associated with increased theta (θ)-frequency response similar to that observed in humans. PCP significantly reduced rodent duration MMN (p<0.001) and θ-band (p<0.01) response. PCP effects were prevented by concurrent glycine treatment (p<0.01 vs PCP alone). Effects related to stimulus-specific adaptation (SSA) were observed primarily in the alpha (α) and beta (β) frequency ranges. PCP treatment also significantly reduced α-frequency response to standard stimuli while increasing θ-band response, reproducing the pattern of deficit observed in schizophrenia. Overall, we demonstrate that rodent duration MMN shows neuro-oscillatory signature similar to human MMN, along with sensitivity to the NMDAR antagonist and agonist administration. These findings reinforce recent human studies linking MMN deficits to θ-band neuro-oscillatory dysfunction and support utility of rodent duration MMN as a translational biomarker for investigation of mechanisms underlying impaired local circuit function in schizophrenia.
Collapse
Affiliation(s)
- Migyung Lee
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA,Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, USA
| | - Andrea Balla
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, USA
| | - Henry Sershen
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, USA
| | - Pejman Sehatpour
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA,Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, USA
| | - Peter Lakatos
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA,Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, USA,Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Unit 21, New York, NY 10032, USA, Tel: +646 774-5404, E-mail:
| |
Collapse
|
48
|
Harms L, Fulham WR, Todd J, Meehan C, Schall U, Hodgson DM, Michie PT. Late deviance detection in rats is reduced, while early deviance detection is augmented by the NMDA receptor antagonist MK-801. Schizophr Res 2018; 191:43-50. [PMID: 28385587 DOI: 10.1016/j.schres.2017.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/08/2023]
Abstract
One of the most robust electrophysiological features of schizophrenia is reduced mismatch negativity, a component of the event related potential (ERP) induced by rare and unexpected stimuli in an otherwise regular pattern. Emerging evidence suggests that mismatch negativity (MMN) is not the only ERP index of deviance detection in the mammalian brain and that sensitivity to deviant sounds in a regular background can be observed at earlier latencies in both the human and rodent brain. Pharmacological studies in humans and rodents have previously found that MMN reductions similar to those seen in schizophrenia can be elicited by N-methyl-d-aspartate (NMDA) receptor antagonism, an observation in agreement with the hypothesised role of NMDA receptor hypofunction in schizophrenia pathogenesis. However, it is not known how NMDA receptor antagonism affects early deviance detection responses. Here, we show that NMDA antagonism impacts both early and late deviance detection responses. By recording EEG in awake, freely-moving rats in a drug-free condition and after varying doses of NMDA receptor antagonist MK-801, we found the hypothesised reduction of deviance detection for a late, negative potential (N55). However, the amplitude of an early component, P13, as well as deviance detection evident in the same component, were increased by NMDA receptor antagonism. These findings indicate that late deviance detection in rats is similar to human MMN, but the surprising effect of MK-801 in increasing ERP amplitudes as well as deviance detection at earlier latencies suggests that future studies in humans should examine ERPs over early latencies in schizophrenia and after NMDA antagonism.
Collapse
Affiliation(s)
- L Harms
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Centre for Brain and Mental Health Research, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia.
| | - W R Fulham
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Centre for Brain and Mental Health Research, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - J Todd
- Priority Centre for Brain and Mental Health Research, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - C Meehan
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Centre for Brain and Mental Health Research, Callaghan, NSW, Australia
| | - U Schall
- Priority Centre for Brain and Mental Health Research, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - D M Hodgson
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Centre for Brain and Mental Health Research, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia
| | - P T Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Centre for Brain and Mental Health Research, Callaghan, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia
| |
Collapse
|
49
|
Mismatch negativity in preclinical models of schizophrenia. Schizophr Res 2018; 191:35-42. [PMID: 28768598 DOI: 10.1016/j.schres.2017.07.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 11/23/2022]
Abstract
Schizophrenia is a mental disorder associated with profoundly disruptive positive and negative symptomology that result in difficulties building close relationships with others, performing daily tasks and sustaining independent living, resulting in poor social, vocational and occupational attainment (functional outcome). Mismatch Negativity (MMN) is a change in the sensory event-related potential that occurs in response to deviation from an established pattern of stimulation. Patients with schizophrenia show a reduction in MMN that is positively associated with impaired cognition and poor functional outcome. This has led to interest in MMN as a potential clinical and pre-clinical biomarker of fundamental neural processes responsible for reduced functional outcome. To date, relatively few studies have sought to assess MMN in non-human primates or rodents. The validity of these studies will be reviewed using criteria used to identify true deviance detection based MMN responses in human subjects. Although MMN has been difficult to establish in pre-clinical models the weight of evidence suggests that non-human animals show true deviance based MMN.
Collapse
|
50
|
Parras GG, Nieto-Diego J, Carbajal GV, Valdés-Baizabal C, Escera C, Malmierca MS. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat Commun 2017; 8:2148. [PMID: 29247159 PMCID: PMC5732270 DOI: 10.1038/s41467-017-02038-6] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022] Open
Abstract
Perception is characterized by a reciprocal exchange of predictions and prediction error signals between neural regions. However, the relationship between such sensory mismatch responses and hierarchical predictive processing has not yet been demonstrated at the neuronal level in the auditory pathway. We recorded single-neuron activity from different auditory centers in anaesthetized rats and awake mice while animals were played a sequence of sounds, designed to separate the responses due to prediction error from those due to adaptation effects. Here we report that prediction error is organized hierarchically along the central auditory pathway. These prediction error signals are detectable in subcortical regions and increase as the signals move towards auditory cortex, which in turn demonstrates a large-scale mismatch potential. Finally, the predictive activity of single auditory neurons underlies automatic deviance detection at subcortical levels of processing. These results demonstrate that prediction error is a fundamental component of singly auditory neuron responses.
Collapse
Affiliation(s)
- Gloria G Parras
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Javier Nieto-Diego
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Guillermo V Carbajal
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Catalina Valdés-Baizabal
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, 08035, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, 08035, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950, Catalonia, Spain
| | - Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain. .,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain. .,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, 37007, Castilla y León, Spain.
| |
Collapse
|