1
|
Li M, Zhang R, Wu S, Cheng L, Fu H, Qu L. Isoflurane anesthesia decreases excitability of inhibitory neurons in the basolateral amygdala leading to anxiety‑like behavior in aged mice. Exp Ther Med 2024; 28:399. [PMID: 39171147 PMCID: PMC11336806 DOI: 10.3892/etm.2024.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Anxiety after surgery can be a major factor leading to postoperative cognitive dysfunction, particularly in elderly patients. The role of inhibitory neurons in the basolateral amygdala (BLA) in anxiety-like behaviors in aged mice following isoflurane anesthesia remains unclear. Therefore, the present study aimed to investigate the role of inhibitory neurons in isoflurane-treated mice. A total of 30 C57BL/6 mice (age, 13 months) were allocated into the control and isoflurane anesthesia groups (15 mice/group) and were then subjected to several neurological assessments. Behavioral testing using an elevated plus maze test showed that aged mice in the isoflurane anesthesia group displayed significant anxiety-like behavior, since they spent more time in the closed arm, exhibited more wall climbing behavior and covered more distance. In addition, whole-cell patch-clamp recording revealed that the excitability of the BLA excitatory neurons was notably increased following mice anesthesia with isoflurane, while that of inhibitory neurons was markedly reduced. Following mice treatment with diazepam, the excitability of the BLA inhibitory neurons was notably increased compared with that of the excitatory neurons, which was significantly attenuated. Overall, the results of the current study indicated that anxiety-like behavior could occur in aged mice after isoflurane anesthesia, which could be caused by a reduced excitability of the inhibitory neurons in the BLA area. This process could enhance excitatory neuronal activity in aged mice, thus ultimately promoting the onset of anxiety-like behaviors.
Collapse
Affiliation(s)
- Mengyuan Li
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Ruijiao Zhang
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shiyin Wu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liqin Cheng
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Huan Fu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liangchao Qu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
- Department of Anesthesia and Surgery, People's Hospital of Ganjiang New District, Nanchang, Jiangxi 341099, P.R. China
| |
Collapse
|
2
|
Saltafossi M, Heck D, Kluger DS, Varga S. Common threads: Altered interoceptive processes across affective and anxiety disorders. J Affect Disord 2024; 369:244-254. [PMID: 39321982 DOI: 10.1016/j.jad.2024.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
There is growing attention towards atypical brain-body interactions and interoceptive processes and their potential role in psychiatric conditions, including affective and anxiety disorders. This paper aims to synthesize recent developments in this field. We present emerging explanatory models and focus on brain-body coupling and modulations of the underlying neurocircuitry that support the concept of a continuum of affective disorders. Grounded in theoretical frameworks like peripheral theories of emotion and predictive processing, we propose that altered interoceptive processes might represent transdiagnostic mechanisms that confer common vulnerability traits across multiple disorders. A deeper understanding of the interplay between bodily states and neural processing is essential for a holistic conceptualization of mental disorders.
Collapse
Affiliation(s)
- Martina Saltafossi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Detlef Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA; Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Somogy Varga
- Department of Philosophy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Bischoff H, Kovach C, Kumar S, Bruss J, Tranel D, Khalsa SS. Sensing, feeling and regulating: investigating the association of focal brain damage with voluntary respiratory and motor control. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230251. [PMID: 39005040 PMCID: PMC11528364 DOI: 10.1098/rstb.2023.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 07/16/2024] Open
Abstract
Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire, and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia and left medial temporal lobe showed reduced performance relative to individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60 bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnoea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Collapse
Affiliation(s)
- Henrik Bischoff
- Department of Psychology, University of Stockholm, 10691 Stockholm, Sweden
- Department of Psychology, Carl-von-Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Christopher Kovach
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sukbhinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Joel Bruss
- Departments of Pediatrics, Neurology, and Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Tranel
- Departments of Neurology and Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK 74119, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Cushing CA, Lau H, Hofmann SG, LeDoux JE, Taschereau‐Dumouchel V. Metacognition as a window into subjective affective experience. Psychiatry Clin Neurosci 2024; 78:430-437. [PMID: 38884177 PMCID: PMC11488623 DOI: 10.1111/pcn.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
When patients seek professional help for mental disorders, they often do so because of troubling subjective affective experiences. While these subjective states are at the center of the patient's symptomatology, scientific tools for studying them and their cognitive antecedents are limited. Here, we explore the use of concepts and analytic tools from the science of consciousness, a field of research that has faced similar challenges in having to develop robust empirical methods for addressing a phenomenon that has been considered difficult to pin down experimentally. One important strand is the operationalization of some relevant processes in terms of metacognition and confidence ratings, which can be rigorously studied in both humans and animals. By assessing subjective experience with similar approaches, we hope to develop new scientific approaches for studying affective processes and promoting psychological resilience in the face of debilitating emotional experiences.
Collapse
Affiliation(s)
| | | | | | - Joseph E. LeDoux
- Center for Neural Science and Department of PsychologyNew York UniversityNew YorkNew YorkUSA
- Emotional Brain InstituteNathan Kline InstituteOrangeburgNew YorkUSA
- Department of Psychiatry, and Department of Child and Adolescent PsychiatryNew York University Langone Medical SchoolNew YorkNew YorkUSA
- Max‐Planck‐NYU Center for Language, Music, and Emotion (CLaME)New York UniversityNew YorkNew YorkUSA
| | - Vincent Taschereau‐Dumouchel
- Department of Psychiatry and AddictologyUniversité de MontréalMontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de MontréalMontrealQuebecCanada
| |
Collapse
|
5
|
LeDoux JE. Consciousness, the affectome, and human life. Neurosci Biobehav Rev 2024; 159:105601. [PMID: 38401575 DOI: 10.1016/j.neubiorev.2024.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
I have been working on interactions between conscious and non-conscious processes since the late 1970s. In this commentary, I offer a perspective on conscious/non-conscious interactions that might a useful adjunct to the Human Affectome Project as it evolves.
Collapse
Affiliation(s)
- Joseph E LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY 1003, USA; Department of Psychiatry, and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY 1003, USA.
| |
Collapse
|
6
|
de Vos JH, Schruers KRJ, Debard G, Bonroy B, Linden DEJ, Leibold NK. The role of the peripheral and central adrenergic system in the construction of the subjective emotional experience of panic. Psychopharmacology (Berl) 2024; 241:627-635. [PMID: 38363344 PMCID: PMC10884065 DOI: 10.1007/s00213-024-06548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
RATIONALE Although the study of emotions can look back to over 100 years of research, it is unclear which information the brain uses to construct the subjective experience of an emotion. OBJECTIVE In the current study, we assess the role of the peripheral and central adrenergic system in this respect. METHODS Healthy volunteers underwent a double inhalation of 35% CO2, which is a well-validated procedure to induce an intense emotion, namely panic. In a randomized, cross-over design, 34 participants received either a β1-blocker acting selectively in the peripheral nervous system (atenolol), a β1-blocker acting in the peripheral and central nervous system (metoprolol), or a placebo before the CO2 inhalation. RESULTS Heart rate and systolic blood pressure were reduced in both β-blocker conditions compared to placebo, showing effective inhibition of the adrenergic tone. Nevertheless, the subjective experience of the induced panic was the same in all conditions, as measured by self-reported fear, discomfort, and panic symptom ratings. CONCLUSIONS These results indicate that information from the peripheral and central adrenergic system does not play a major role in the construction of the subjective emotion.
Collapse
Affiliation(s)
- Jette H de Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616 (VIJV-SN2), 6200 MD, Maastricht, The Netherlands
| | - Koen R J Schruers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616 (VIJV-SN2), 6200 MD, Maastricht, The Netherlands
- Department of Health Psychology, University of Leuven, Leuven, Belgium
- Mondriaan Mental Health Center, Maastricht, The Netherlands
| | - Glen Debard
- Mobilab & Care, Thomas More Kempen, Geel, Belgium
| | - Bert Bonroy
- Mobilab & Care, Thomas More Kempen, Geel, Belgium
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616 (VIJV-SN2), 6200 MD, Maastricht, The Netherlands
| | - Nicole K Leibold
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616 (VIJV-SN2), 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Sato W, Usui N, Kondo A, Kubota Y, Toichi M, Inoue Y. Impairment of unconscious emotional processing after unilateral medial temporal structure resection. Sci Rep 2024; 14:4269. [PMID: 38383855 PMCID: PMC10881984 DOI: 10.1038/s41598-024-54868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
The role of the amygdala in unconscious emotional processing remains a topic of debate. Past lesion studies have indicated that amygdala damage leads to impaired electrodermal activity in response to subliminally presented emotional stimuli. However, electrodermal activity can reflect both emotional and nonemotional processes. To provide behavioral evidence highlighting the critical role of the amygdala in unconscious emotional processing, we examined patients (n = 16) who had undergone unilateral resection of medial temporal lobe structures, including the amygdala. We utilized the subliminal affective priming paradigm in conjunction with unilateral visual presentation. Fearful or happy dynamic facial expressions were presented in unilateral visual fields for 30 ms, serving as negative or positive primes. Subsequently, neutral target faces were displayed, and participants were tasked with rating the valence of these targets. Positive primes, compared to negative ones, enhanced valence ratings of the target to a greater extent when they stimulated the intact hemisphere (i.e., were presented in the contralateral visual field of the intact hemisphere) than when they stimulated the resected hemisphere (i.e., were presented in the contralateral visual field of the resected hemisphere). These results suggest that the amygdala is causally involved in unconscious emotional processing.
Collapse
Affiliation(s)
- Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan.
| | - Akihiko Kondo
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, 1-1-1 Baba, Hikone, Shiga, 522-8522, Japan
| | - Motomi Toichi
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto, 606-8507, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan
| |
Collapse
|
8
|
Bischoff H, Kovach C, Kumar S, Bruss J, Tranel D, Khalsa SS. Sensing, Feeling, and Regulating: Investigating the Association of Focal Brain Damage with Voluntary Respiratory and Motor Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562254. [PMID: 37905134 PMCID: PMC10614780 DOI: 10.1101/2023.10.16.562254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal, or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia, and left medial temporal lobe showed reduced performance than individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60-bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal, or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. Highlights Impaired human respiratory regulation is associated with cortical/subcortical brain lesionsFrontolimbic/temporal regions contribute to rhythmic breathing and hand motor controlFrontolimbic/temporal damage is associated with anxiety during tachypnea/irregular breathingThe human forebrain is vital for affective and interoceptive experiences during breathing.
Collapse
|
9
|
Schoeller F, Horowitz AH, Jain A, Maes P, Reggente N, Christov-Moore L, Pezzulo G, Barca L, Allen M, Salomon R, Miller M, Di Lernia D, Riva G, Tsakiris M, Chalah MA, Klein A, Zhang B, Garcia T, Pollack U, Trousselard M, Verdonk C, Dumas G, Adrien V, Friston K. Interoceptive technologies for psychiatric interventions: From diagnosis to clinical applications. Neurosci Biobehav Rev 2024; 156:105478. [PMID: 38007168 DOI: 10.1016/j.neubiorev.2023.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Interoception-the perception of internal bodily signals-has emerged as an area of interest due to its implications in emotion and the prevalence of dysfunctional interoceptive processes across psychopathological conditions. Despite the importance of interoception in cognitive neuroscience and psychiatry, its experimental manipulation remains technically challenging. This is due to the invasive nature of existing methods, the limitation of self-report and unimodal measures of interoception, and the absence of standardized approaches across disparate fields. This article integrates diverse research efforts from psychology, physiology, psychiatry, and engineering to address this oversight. Following a general introduction to the neurophysiology of interoception as hierarchical predictive processing, we review the existing paradigms for manipulating interoception (e.g., interoceptive modulation), their underlying mechanisms (e.g., interoceptive conditioning), and clinical applications (e.g., interoceptive exposure). We suggest a classification for interoceptive technologies and discuss their potential for diagnosing and treating mental health disorders. Despite promising results, considerable work is still needed to develop standardized, validated measures of interoceptive function across domains and before these technologies can translate safely and effectively to clinical settings.
Collapse
Affiliation(s)
- Felix Schoeller
- Fluid Interfaces Group, Media Lab, Massachusetts Institute of Technology, USA; Institute for Advanced Consciousness Studies, Santa Monica, CA, USA; Department Cognitive Sciences, University of Haifa, Israel.
| | - Adam Haar Horowitz
- Fluid Interfaces Group, Media Lab, Massachusetts Institute of Technology, USA; Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Abhinandan Jain
- Fluid Interfaces Group, Media Lab, Massachusetts Institute of Technology, USA
| | - Pattie Maes
- Fluid Interfaces Group, Media Lab, Massachusetts Institute of Technology, USA
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | | | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Laura Barca
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Micah Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| | - Roy Salomon
- Department Cognitive Sciences, University of Haifa, Israel
| | - Mark Miller
- Center for Human Nature, Artificial Intelligence and Neuroscience, Hokkaido University, Japan
| | - Daniele Di Lernia
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy; Applied Technology for Neuro- Psychology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Riva
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy; Applied Technology for Neuro- Psychology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Manos Tsakiris
- The Warburg Institute, School of Advanced Study, University of London, UK; Department of Psychology, Royal Holloway, University of London, UK; Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| | - Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est Créteil, Créteil, France; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Créteil, France
| | - Arno Klein
- Child Mind Institute, New York City, USA
| | - Ben Zhang
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Teresa Garcia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Ursula Pollack
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Marion Trousselard
- Institut de Recherche Biomédicale des Armées, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Charles Verdonk
- Institut de Recherche Biomédicale des Armées, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | | | - Vladimir Adrien
- Infrastructure for Clinical Research in Neurosciences (iCRIN) Psychiatry, Paris Brain Institute, Paris, France; Department of Psychiatry, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, 75012 Paris, France
| | - Karl Friston
- Queen Sq, Institute of Neurology, UCL, London WC1N 3AR, UK
| |
Collapse
|
10
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
11
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
12
|
Kinkead R, Ambrozio-Marques D, Fournier S, Gagnon M, Guay LM. Estrogens, age, and, neonatal stress: panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO 2 responses. Front Physiol 2023; 14:1183933. [PMID: 37265841 PMCID: PMC10229816 DOI: 10.3389/fphys.2023.1183933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.
Collapse
|
13
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Breathwork Interventions for Adults with Clinically Diagnosed Anxiety Disorders: A Scoping Review. Brain Sci 2023; 13:brainsci13020256. [PMID: 36831799 PMCID: PMC9954474 DOI: 10.3390/brainsci13020256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Anxiety disorders are the most common group of mental disorders, but they are often underrecognized and undertreated in primary care. Dysfunctional breathing is a hallmark of anxiety disorders; however, mainstays of treatments do not tackle breathing in patients suffering anxiety. This scoping review aims to identify the nature and extent of the available research literature on the efficacy of breathwork interventions for adults with clinically diagnosed anxiety disorders using the DSM-5 classification system. Using the PRISMA extension for scoping reviews, a search of PubMed, Embase, and Scopus was conducted using terms related to anxiety disorders and breathwork interventions. Only clinical studies using breathwork (without the combination of other interventions) and performed on adult patients diagnosed with an anxiety disorder using the DSM-5 classification system were included. From 1081 articles identified across three databases, sixteen were included for the review. A range of breathwork interventions yielded significant improvements in anxiety symptoms in patients clinically diagnosed with anxiety disorders. The results around the role of hyperventilation in treatment of anxiety were contradictory in few of the examined studies. This evidence-based review supports the clinical utility of breathwork interventions and discusses effective treatment options and protocols that are feasible and accessible to patients suffering anxiety. Current gaps in knowledge for future research directions have also been identified.
Collapse
|
15
|
Ritz T, von Leupoldt A. Introduction to the 2022 special issue on neuroscience and psychobiology of respiration in Biological Psychology. Biol Psychol 2023; 176:108478. [PMID: 36521652 DOI: 10.1016/j.biopsycho.2022.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | | |
Collapse
|
16
|
Mulkey DK, Milla BM. Perspectives on the basis of seizure-induced respiratory dysfunction. Front Neural Circuits 2022; 16:1033756. [PMID: 36605420 PMCID: PMC9807672 DOI: 10.3389/fncir.2022.1033756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is an umbrella term used to define a wide variety of seizure disorders and sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in epilepsy. Although some SUDEP risk factors have been identified, it remains largely unpredictable, and underlying mechanisms remain poorly understood. Most seizures start in the cortex, but the high mortality rate associated with certain types of epilepsy indicates brainstem involvement. Therefore, to help understand SUDEP we discuss mechanisms by which seizure activity propagates to the brainstem. Specifically, we highlight clinical and pre-clinical evidence suggesting how seizure activation of: (i) descending inhibitory drive or (ii) spreading depolarization might contribute to brainstem dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder, we also considered factors expected to favor or oppose mechanisms of seizure propagation. We also consider whether epilepsy-associated genetic variants directly impact brainstem function. Because respiratory failure is a leading cause of SUDEP, our discussion of brainstem dysfunction focuses on respiratory control.
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
17
|
He Z, Wang X, Ma K, Zheng L, Zhang Y, Liu C, Sun T, Wang P, Rong W, Niu J. Selective activation of the hypothalamic orexinergic but not melanin-concentrating hormone neurons following pilocarpine-induced seizures in rats. Front Neurosci 2022; 16:1056706. [DOI: 10.3389/fnins.2022.1056706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionSleep disorders are common comorbidities in patients with temporal lobe epilepsy (TLE), but the underlying mechanisms remain poorly understood. Since the lateral hypothalamic (LH) and the perifornical orexinergic (ORX) and melanin-concentrating hormone (MCH) neurons are known to play opposing roles in the regulation of sleep and arousal, dysregulation of ORX and MCH neurons might contribute to the disturbance of sleep-wakefulness following epileptic seizures.MethodsTo test this hypothesis, rats were treated with lithium chloride and pilocarpine to induce status epilepticus (SE). Electroencephalogram (EEG) and electromyograph (EMG) were recorded for analysis of sleep-wake states before and 24 h after SE. Double-labeling immunohistochemistry of c-Fos and ORX or MCH was performed on brain sections from the epileptic and control rats. In addition, anterograde and retrograde tracers in combination with c-Fos immunohistochemistry were used to analyze the possible activation of the amygdala to ORX neural pathways following seizures.ResultsIt was found that epileptic rats displayed prolonged wake phase and decreased non-rapid eye movement (NREM) and rapid eye movement (REM) phase compared to the control rats. Prominent neuronal activation was observed in the amygdala and the hypothalamus following seizures. Interestingly, in the LH and the perifornical nucleus, ORX but not MCH neurons were significantly activated (c-Fos+). Neural tracing showed that seizure-activated (c-Fos+) ORX neurons were closely contacted by axon terminals originating from neurons in the medial amygdala.DiscussionThese findings suggest that the spread of epileptic activity from amygdala to the hypothalamus causes selective activation of the wake-promoting ORX neurons but not sleep-promoting MCH neurons, which might contribute to the disturbance of sleep-wakefulness in TLE.
Collapse
|
18
|
Cuyler RN, Katdare R, Thomas S, Telch M. Real-world outcomes of an innovative digital therapeutic for treatment of panic disorder and PTSD: A 1,500 patient effectiveness study. Front Digit Health 2022; 4:976001. [PMID: 36465089 PMCID: PMC9712796 DOI: 10.3389/fdgth.2022.976001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
Objective Prior clinical trials have shown consistent clinical benefit for Capnometry Guided Respiratory Intervention (CGRI), a prescription digital therapeutic for the treatment of panic disorder (PD) and post-traumatic stress disorder (PTSD). The purpose of this study is to report real-world outcomes in a series of patients treated with the intervention in clinical practice. Design This paper reports pre- and post-treatment self-reported symptom reduction, measures of respiratory rate and end-tidal carbon dioxide levels, drop-out and adherence rates drawn from an automatic data repository in a large real-world series of patients receiving CGRI for panic disorder and PTSD. Setting Patients used the intervention in their homes, supported by telehealth coaching. Participants Patients meeting symptom criteria for panic disorder (n = 1,395) or posttraumatic stress disorder (n = 174) were treated following assessment by a healthcare professional. Intervention Capnometry Guided Respiratory Intervention is a 28-day home-based treatment that provides breath-to-breath feedback of respiratory rate and exhaled carbon dioxide levels, aimed at normalizing respiratory style and increasing patients' mastery for coping with symptoms of stress, anxiety, and panic. Health coaches provide initial training with weekly follow up during the treatment episode. Remote data upload and monitoring facilitates individualized coaching and aggregate outcomes analysis. Main outcome measures Self-reported Panic Disorder Severity Scale (PDSS) and the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5) scores were obtained at pre-treatment and post-treatment. Results Panic disorder (PD) patients showed a mean pre-to-post-treatment reduction in total PDSS scores of 50.2% (P < 0.001, d = 1.31). Treatment response rates for PD (defined as a 40% or greater reduction in PDSS total scores) were observed in 65.3% of the PD patients. PTSD patients showed a pre-to-post-treatment reduction in total PCL-5 scores of 41.1% (P < 0.001, d = 1.16). The treatment response rate for PTSD (defined as a ≥10-point reduction in PCL-5 scores) was 72.4%. In an additional analysis of response at the individual level, 55.7% of panic disorder patients and 53.5% of PTSD patients were classified as treatment responders using the Reliable Change Index. Patients with both normal and below-normal baseline exhaled CO2 levels experienced comparable benefit. Across the 28-day treatment period, mean adherence rates of 74.8% (PD) and 74.9% (PTSD) were recorded during the 28-day treatment. Dropout rates were 10% (PD) and 11% (PTSD) respectively. Conclusions The results from this cohort of 1,569 patients treated with the CGRI intervention demonstrate significant rates of symptom reduction and adherence consistent with prior published clinical trials. The brief duration of treatment, high adherence rates, and clinical benefit suggests that CGRI provides an important addition to treatment options for panic disorder and PTSD.
Collapse
Affiliation(s)
| | | | | | - Michael J. Telch
- Laboratory for the Study of Anxiety Disorders, University of Texas, Austin, TX, United States
| |
Collapse
|
19
|
Cartágenes SDC, da Silveira CCSDM, Pinheiro BG, Fernandes LMP, Farias SV, Kobayashi NHC, de Souza PHFS, do Prado AF, Ferreira MKM, Lima RR, de Oliveira EHC, de Luna FCF, Burbano RMR, Fontes-Júnior EA, Maia CDSF. “K-Powder” Exposure during Adolescence Elicits Psychiatric Disturbances Associated with Oxidative Stress in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15111373. [PMID: 36355545 PMCID: PMC9698848 DOI: 10.3390/ph15111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Ketamine, also called ‘K-powder’ by abusers, an analog of phencyclidine, primarily acts as an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, therapeutically used as an anesthetic agent. Ketamine also stimulates the limbic system, inducing hallucinations and dissociative effects. At sub-anesthetic doses, ketamine also displays hallucinatory and dissociative properties, but not loss of consciousness. These behavioral consequences have elicited its recreational use worldwide, mainly at rave parties. Ketamine is generally a drug of choice among teenagers and young adults; however, the harmful consequences of its recreational use on adolescent central nervous systems are poorly explored. Thus, the aim of the present study was to characterize the behavioral and biochemical consequences induced by one binge-like cycle of ketamine during the early withdrawal period in adolescent female rats. Adolescent female Wistar rats (n = 20) received intraperitoneally administered ketamine (10 mg/kg/day) for 3 consecutive days. Twenty-four hours after the last administration of ketamine, animals were submitted to behavioral tests in an open field, elevated plus-maze, and forced swimming test. Then, animals were intranasally anesthetized with 2% isoflurane and euthanized to collect prefrontal cortex and hippocampus to assess lipid peroxidation, antioxidant capacity against peroxyl radicals, reactive oxygen species, reduced glutathione, and brain-derived neurotrophic factor (BDNF) levels. Our results found that 24 h after recreational ketamine use, emotional behavior disabilities, such as anxiety- and depression-like profiles, were detected. In addition, spontaneous ambulation was reduced. These negative behavioral phenotypes were associated with evidence of oxidative stress on the prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | | | - Bruno Gonçalves Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Physiological and Morphological Sciences Department, Biological and Health Science Centre, State University of Pará, Belém 66087-662, PA, Brazil
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Natália Harumi Correa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Pablo Henrique Franco Santos de Souza
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Science, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | - Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | | | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Correspondence:
| |
Collapse
|
20
|
Ciumas C, Rheims S, Ryvlin P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits 2022; 16:982963. [PMID: 36213203 PMCID: PMC9537466 DOI: 10.3389/fncir.2022.982963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
A plethora of neural centers in the central nervous system control the fundamental respiratory pattern. This control is ensured by neurons that act as pacemakers, modulating activity through chemical control driven by changes in the O2/CO2 balance. Most of the respiratory neural centers are located in the brainstem, but difficult to localize on magnetic resonance imaging (MRI) due to their small size, lack of visually-detectable borders with neighboring areas, and significant physiological noise hampering detection of its activity with functional MRI (fMRI). Yet, several approaches make it possible to study the normal response to different abnormal stimuli or conditions such as CO2 inhalation, induced hypercapnia, volitional apnea, induced hypoxia etc. This review provides a comprehensive overview of the majority of available studies on central respiratory control in humans.
Collapse
Affiliation(s)
- Carolina Ciumas
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Panic Disorder Seeks More Specific Drugs for Treatment: Might the Amygdala Be the Best Target? J Clin Psychopharmacol 2022; 42:427-428. [PMID: 36099401 DOI: 10.1097/jcp.0000000000001591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Ritz T. An apnea-hypothesis of anxiety generation: Novel, respiratory, and falsifiable. Biol Psychol 2022; 170:108304. [DOI: 10.1016/j.biopsycho.2022.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/02/2022]
|
23
|
The amygdala might be the main target for Donald Klein´s “Real” False Suffocation Alarm hypothesis for triggering panic attacks. Biol Psychol 2022; 170:108306. [DOI: 10.1016/j.biopsycho.2022.108306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|