1
|
Suarez-Roca H, Mamoun N, Mathew JP, Bortsov AV. Noninvasive Assessment of Temporal Dynamics in Sympathetic and Parasympathetic Baroreflex Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617927. [PMID: 39502363 PMCID: PMC11537316 DOI: 10.1101/2024.10.11.617927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Background The baroreflex system is crucial for cardiovascular regulation and autonomic homeostasis. A comprehensive assessment requires understanding the simultaneous temporal dynamics of its multiple functional branches, which traditional methods often overlook. Objective To develop and validate a noninvasive method for simultaneously assessing the temporal dynamics of sympathetic and parasympathetic baroreflexes using pulse contour analysis and the sequence method. Methods Beat-to-beat blood pressure and ECG recordings were analyzed from 55 preoperative cardiothoracic surgery patients in the supine position and 21 subjects from the EUROBAVAR dataset in both supine and standing positions. Systolic arterial pressure (SAP), interbeat interval (IBI), cardiac output (CO), myocardial contraction (dP/dtmax), and systemic vascular resistance (SVR) were estimated using pulse contour analysis. Baroreflex sensitivity (BRS) was calculated via the sequence method and correlated with hemodynamic and heart rate variability (HRV) parameters. Results Parasympathetic BRS for IBI was correlated with the root mean square of successive differences of ECG RR intervals (RMSSD-HRV) at 0-beat delay. Sympathetic BRS for SVR strongly correlated with SVR, CO, and RMSSD-HRV, particularly at 3-beat delay, and was uniquely associated with SAP at 1-beat delay. Sympathetic BRS for dP/dtmax correlated with dP/dtmax at 1-beat delay. In contrast, BRS for CO correlated with CO and SVR at 0- and 3-beat delays. Postural changes mainly affected parasympathetically-mediated BRS for IBI and, to a lesser extent, the sympathetic vascular and myocardial branches. Conclusions This method effectively captures multiple baroreflex responses and their temporal dynamics, revealing distinct autonomic mechanisms and the impact of postural changes. Further validation is warranted.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Negmeldeen Mamoun
- Division of Cardiothoracic Anesthesia and Critical Care Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Division of Cardiothoracic Anesthesia and Critical Care Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Andrey V Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
2
|
Sohn R, Assar T, Kaufhold I, Brenneis M, Braun S, Junker M, Zaucke F, Pongratz G, Jenei-Lanzl Z. Osteoarthritis patients exhibit an autonomic dysfunction with indirect sympathetic dominance. J Transl Med 2024; 22:467. [PMID: 38755685 PMCID: PMC11100157 DOI: 10.1186/s12967-024-05258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative joint disease causing limited mobility and pain, with no curative treatment available. Recent in vivo studies suggested autonomic alterations during OA progression in patients, yet clinical evidence is scarce. Therefore, autonomic tone was analyzed in OA patients via heart rate variability (HRV) measurements. METHODS Time-domain (SDRR, RMSSD, pRR50) and frequency-domain (LF, HF, LF/HF) HRV indices were determined to quantify sympathetic and parasympathetic activities. In addition, perceived stress, WOMAC pain as well as serum catecholamines, cortisol and dehydroepiandrosterone-sulphate (DHEA-S) were analyzed. The impact of the grade of disease (GoD) was evaluated by linear regression analysis and correlations with clinical data were performed. RESULTS GoD significantly impacted the autonomic tone in OA patients. All time-domain parameters reflected slightly decreased HRV in early OA patients and significantly reduced HRV in late OA patients. Moreover, frequency-domain analysis revealed decreased HF and LF power in all OA patients, reflecting diminished parasympathetic and sympathetic activities. However, LF/HF ratio was significantly higher in early OA patients compared to late OA patients and implied a clear sympathetic dominance. Furthermore, OA patients perceived significantly higher chronic stress and WOMAC pain levels compared to healthy controls. Serum cortisol and cortisol/DHEA-S ratio significantly increased with GoD and positively correlated with WOMAC pain. In contrast, serum catecholamines only trended to increase with GoD and pain level. CONCLUSIONS This prospective study provides compelling evidence of an autonomic dysfunction with indirect sympathetic dominance in early and late knee OA patients for the first time based on HRV analyses and further confirmed by serum stress hormone measurements. Increased sympathetic activity and chronic low-grade inflammation in OA as well as in its major comorbidities reinforce each other and might therefore create a vicious cycle. The observed autonomic alterations coupled with increased stress and pain levels highlight the potential of HRV as a prognostic marker. In addition, modulation of autonomic activity represents an attractive future therapeutic option.
Collapse
Affiliation(s)
- Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Marienburgstr. 2, 60528, Frankfurt Am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Tina Assar
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Marienburgstr. 2, 60528, Frankfurt Am Main, Germany
| | - Isabelle Kaufhold
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Marienburgstr. 2, 60528, Frankfurt Am Main, Germany
| | - Marco Brenneis
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60528, Frankfurt, Germany
| | - Sebastian Braun
- Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, 60528, Frankfurt, Germany
| | - Marius Junker
- Department of Orthopedics, Tabea Hospital Hamburg, 22587, Hamburg, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Marienburgstr. 2, 60528, Frankfurt Am Main, Germany
| | - Georg Pongratz
- Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty, University of Regensburg, 93053, Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Marienburgstr. 2, 60528, Frankfurt Am Main, Germany.
| |
Collapse
|
3
|
Viswanathan LG, Nagaraj BC, Mundlamuri R, Thennarasu K, Kenchaiah R, Asranna A, Nagappa M, Seshagiri D, Saini J, Sinha S. Cardiac Rhythm Aberrations in Subacute Sclerosing Panencephalitis: Insights From Heart Rate Variability Analysis. J Clin Neurophysiol 2024:00004691-990000000-00129. [PMID: 38587485 DOI: 10.1097/wnp.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
PURPOSE Subacute sclerosing panencephalitis (SSPE) is a fatal neurological disorder resulting from persistent measles virus infection within the brain. Although neurological manifestations have been well-documented, the impact of SSPE on cardiac autonomic function, assessed through heart rate variability (HRV), remains understudied. METHODS In this prospective single-center study conducted from January 2022 to March 2023 in Southern India, 30 consecutive SSPE patients and age- and sex-matched controls underwent electrocardiogram recordings for HRV analysis. Various HRV parameters were assessed, including time-domain metrics (SD of normal-to-normal intervals, root mean square of successive differences between normal heartbeats, percentage of successive normal interbeat intervals greater than 50 msec), SD1 and SD2 for Poincaré plot analysis, and frequency-domain metrics (low frequency %, high frequency %, low frequency:high frequency ratio). RESULTS In the study, SSPE patients exhibited markedly reduced HRV. Specifically, SD of normal-to-normal intervals (P = 0.003), percentage of successive normal interbeat intervals greater than 50 msec (P = 0.03), and SD2 (P = 0.0016) were significantly lower compared with controls. Frequency-domain analysis did not reveal significant distinctions. Correlation analysis demonstrated a negative relationship between percentage of successive normal interbeat intervals greater than 50 msec and SSPE severity (r = -0.37, P = 0.042). Heart rate variability did not significantly differ between SSPE stages or with clinical variables. The interbeat interval range showed a narrower distribution in SSPE subjects. CONCLUSIONS Our study highlights the clinical relevance of HRV analysis in SSPE and autonomic dysfunction throughout the disease course underscoring its importance in SSPE. This investigation provides valuable insights into cardiac autonomic dysfunction probably because of affliction of the central autonomic networks caused by the disease process and may be a contributing factor to mortality in SSPE.
Collapse
Affiliation(s)
| | | | | | | | | | - Ajay Asranna
- Department of Neurology, NIMHANS, Bangalore, India
| | | | | | | | - Sanjib Sinha
- Department of Neurology, NIMHANS, Bangalore, India
| |
Collapse
|
4
|
Rajendran PS, Hadaya J, Khalsa SS, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Semin Cell Dev Biol 2024; 156:190-200. [PMID: 36641366 PMCID: PMC10336178 DOI: 10.1016/j.semcdb.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The parasympathetic nervous system via the vagus nerve exerts profound influence over the heart. Together with the sympathetic nervous system, the parasympathetic nervous system is responsible for fine-tuned regulation of all aspects of cardiovascular function, including heart rate, rhythm, contractility, and blood pressure. In this review, we highlight vagal efferent and afferent innervation of the heart, with a focus on insights from comparative biology and advances in understanding the molecular and genetic diversity of vagal neurons, as well as interoception, parasympathetic dysfunction in heart disease, and the therapeutic potential of targeting the parasympathetic nervous system in cardiovascular disease.
Collapse
Affiliation(s)
| | - Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Ok, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, Ok, USA
| | - Chuyue Yu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rui Chang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kalyanam Shivkumar
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA Molecular, Cellular, and Integrative Physiology Program, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Kocsel N, Galambos A, Szőke J, Kökönyei G. The moderating effect of resting heart rate variability on the relationship between pain catastrophizing and depressed mood: an empirical study. Biol Futur 2024; 75:29-39. [PMID: 37934392 DOI: 10.1007/s42977-023-00190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Previous research indicated that pain catastrophizing-a negative emotional and cognitive response toward actual or anticipated pain-could contribute to pain intensity and could be associated with depressive symptoms not just in chronic pain patients but in healthy population as well. Accumulated evidence suggests that resting heart rate variability (HRV) as a putative proxy of emotion regulation could moderate the association of self-reported pain catastrophizing and depressed mood. In the present cross-sectional study, we investigated these associations in a healthy young adult sample controlling for the effect of trait rumination. Seventy-two participants (58 females, mean age = 22.2 ± 1.79 years ranging from 19 to 28 years old) completed the Pain Catastrophizing Scale, the Zung Self-Rating Depression Scale and the Ruminative Response Scale. Resting HRV was measured by time domain metric of HRV, the root mean square of successive differences (RMSSD). The results showed that the relationship between pain catastrophizing and depressive symptoms is significantly moderated by resting HRV (indexed by lnRMSSD). Specifically, in participants with higher resting HRV there was no significant relationship between the two investigated variables, while in participants with relatively low or medium HRV pain catastrophizing and depressed mood showed significant positive association. The relationship remained significant after controlling for sex, age and trait rumination. These results might indicate that measuring pain catastrophizing and depressive symptoms is warranted in non-clinical samples as well and higher resting HRV could have a buffer or protective role against depressive symptoms.
Collapse
Affiliation(s)
- Natália Kocsel
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Attila Galambos
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Júlia Szőke
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gyöngyi Kökönyei
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Jammal Salameh L, Bitzenhofer SH, Hanganu-Opatz IL, Dutschmann M, Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 2024; 383:eadk8511. [PMID: 38301001 DOI: 10.1126/science.adk8511] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The transmission of the heartbeat through the cerebral vascular system causes intracranial pressure pulsations. We discovered that arterial pressure pulsations can directly modulate central neuronal activity. In a semi-intact rat brain preparation, vascular pressure pulsations elicited correlated local field oscillations in the olfactory bulb mitral cell layer. These oscillations did not require synaptic transmission but reflected baroreceptive transduction in mitral cells. This transduction was mediated by a fast excitatory mechanosensitive ion channel and modulated neuronal spiking activity. In awake animals, the heartbeat entrained the activity of a subset of olfactory bulb neurons within ~20 milliseconds. Thus, we propose that this fast, intrinsic interoceptive mechanism can modulate perception-for example, during arousal-within the olfactory bulb and possibly across various other brain areas.
Collapse
Affiliation(s)
- Luna Jammal Salameh
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Veronica Egger
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
7
|
Grossman P. Respiratory sinus arrhythmia (RSA), vagal tone and biobehavioral integration: Beyond parasympathetic function. Biol Psychol 2024; 186:108739. [PMID: 38151156 DOI: 10.1016/j.biopsycho.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Linchpin to the entire area of psychophysiological research and discussion of the vagus is the respiratory and cardiovascular phenomenon known as respiratory sinus arrhythmia (RSA; often synonymous with high-frequency heart-rate variability when it is specifically linked to respiratory frequency), i.e. rhythmic fluctuations in heart rate synchronized to inspiration and expiration. This article aims 1) to clarify concepts, terms and measures commonly employed during the last half century in the scientific literature, which relate vagal function to psychological processes and general aspects of health; and 2) to expand upon an earlier theoretical model, emphasizing the importance of RSA well beyond the current focus upon parasympathetic mechanisms. A close examination of RSA and its relations to the vagus may 1) dispel certain commonly held beliefs about associations between psychological functioning, RSA and the parasympathetic nervous system (for which the vagus nerve plays a major role), and 2) offer fresh perspectives about the likely functions and adaptive significance of RSA, as well as RSA's relationship to vagal control. RSA is neither an invariably reliable index of cardiac vagal tone nor of central vagal outflow to the heart. The model here presented posits that RSA represents an evolutionarily entrenched, cardiovascular and respiratory phenomenon that significantly contributes to meeting continuously changing metabolic, energy and behavioral demands.
Collapse
Affiliation(s)
- Paul Grossman
- Department of Psychosomatic Medicine, University Hospital Basel, Switzerland.
| |
Collapse
|
8
|
Vasilkova T, Fiore VF, Clum A, Wong A, Kabir N, Costello E, Crasta M. Assessment of Autonomic Nervous System Activity Using Spectral Analysis of Heart Rate Variability After Continuous Positive Airway Pressure (CPAP) Therapy in Patients With Sleep Apnea. Cureus 2024; 16:e51735. [PMID: 38187017 PMCID: PMC10770822 DOI: 10.7759/cureus.51735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/09/2024] Open
Abstract
Heart rate variability (HRV) measurements have emerged as a valuable tool for understanding the functioning of the autonomic nervous system (ANS) and assessing the health outcomes of obstructive sleep apnea (OSA) in patients. Sleep and the ANS exert a mutual influence on each other. Sleep promotes relaxation and recovery of the ANS. Conversely, ANS activity plays a role in regulating the onset and maintenance of sleep. The impact of continuous positive airway pressure (CPAP) therapy on patient recovery levels was investigated by assessing the restoration of ANS activity using HRV indicators. The study included patients with OSA who had been on CPAP for at least eight weeks. The patients were divided into two groups, namely the experimental group (CPAP-compliant) and the control group (CPAP-non-compliant). The study included a total of 38 patients, with 20 in the CPAP-compliant group and 18 in the CPAP-non-compliant group. The HRV analysis included time- and frequency-domain measures. Data was collected in various resting conditions, including lying down, standing, regular breathing, and under physiological stress induced by deep breathing and the Valsalva maneuver. After CPAP treatment, there was an increase in the average values for SDNN for deep breathing and Valsalva maneuvers. The mean changes in SDNN for CPAP-non-compliant versus CPAP-compliant groups for normal breathing increased from 32.50±5.33 to 42.40±8.03, while the values for Valsalva increased from 20.16±2.47 to 25.45±3.03. Despite the observed variations in SDNN, there was no significant change in the average change in heart rate (∆ HR), except during the Valsalva maneuver. Post-CPAP values for the Valsalva ratio were significantly decreased in deep breathing. The E:I ratio for the CPAP-compliant group during normal breathing was 1.08±.16 compared to 1.55±.09; t (36) =-11.15, p <0.001 in the CPAP-non-compliant group. During deep breathing, the ratio was 1.36±.15 versus 1.59±.24; t (36) =-3.578, p <0.001. The high frequency (HF)nu mean values for deep breathing were 34.06±5.546 compared to 35.00±6.358; t (36) = -.485, p=.630. For the Valsalva maneuver, the values were 29.94±4.721 versus 26.95±6.621; t (36) =1.589, p=.060. The HF/low frequency (LF) ratio was found to be significant only in supine, standing, and normal breathing. The utilization of CPAP therapy was found to be effective in achieving and sustaining autonomic balance during tasks like standing and engaging in regular breathing patterns. During activities that involve intense physical effort, like the Valsalva maneuver, the HRV metrics did not indicate any significant balance between sympathetic and parasympathetic activity. However, using CPAP therapy for a prolonged period can be beneficial in consistently improving the sympathovagal balance in these patients.
Collapse
Affiliation(s)
- Taisa Vasilkova
- Medicine, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | - Valerie F Fiore
- General Surgery, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | - Alicia Clum
- Medicine, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | - Angel Wong
- Medicine, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | - Nawshin Kabir
- Medicine, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | | | - Maxim Crasta
- Physiology, Lake Erie College of Osteopathic Medicine, Elmira, USA
| |
Collapse
|
9
|
Ritz T. Putting back respiration into respiratory sinus arrhythmia or high-frequency heart rate variability: Implications for interpretation, respiratory rhythmicity, and health. Biol Psychol 2024; 185:108728. [PMID: 38092221 DOI: 10.1016/j.biopsycho.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Research on respiratory sinus arrhythmia, or high-frequency heart rate variability (its frequency-domain equivalent), has been popular in psychology and the behavioral sciences for some time. It is typically interpreted as an indicator of cardiac vagal activity. However, as research has shown for decades, the respiratory pattern can influence the amplitude of these noninvasive measures substantially, without necessarily reflecting changes in tonic cardiac vagal activity. Although changes in respiration are systematically associated with experiential and behavioral states, this potential confound in the interpretation of RSA, or HF-HRV, is rarely considered. Interpretations of within-individual changes in these parameters are therefore only conclusive if undertaken relative to the breathing pattern. The interpretation of absolute levels of these parameters between individuals is additionally burdened with the problem of residual inspiratory cardiac vagal activity in humans. Furthermore, multiple demographic, anthropometric, life-style, health, and medication variables can act as relevant third variables that might explain associations of RSA or HF-HRV with experiential and behavioral variables. Because vagal activity measured by these parameters only represents the portion of cardiac vagal outflow that is modulated by the respiratory rhythm, alternative interpretations beyond cardiac vagal activity should be considered. Accumulating research shows that activity of multiple populations of neurons in the brain and the periphery, and with that organ activity and function, are modulated rhythmically by respiratory activity. Thus, observable health benefits ascribed to the cardiac vagal system through RSA or HF-HRV may actually reflect beneficial effects of respiratory modulation. Respiratory rhythmicity may ultimately provide the mechanism that integrates central, autonomic, and visceral activities.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
10
|
Blaser BL, Weymar M, Wendt J. The effect of a single-session heart rate variability biofeedback on attentional control: does stress matter? Front Psychol 2023; 14:1292983. [PMID: 38034309 PMCID: PMC10687403 DOI: 10.3389/fpsyg.2023.1292983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Vagally mediated heart rate variability is an index of autonomic nervous system activity that is associated with a large variety of outcome variables including psychopathology and self-regulation. While practicing heart rate variability biofeedback over several weeks has been reliably associated with a number of positive outcomes, its acute effects are not well known. As the strongest association with vagally mediated heart rate variability has been found particularly within the attention-related subdomain of self-regulation, we investigated the acute effect of heart rate variability biofeedback on attentional control using the revised Attention Network Test. Methods Fifty-six participants were tested in two sessions. In one session each participant received a heart rate variability biofeedback intervention, and in the other session a control intervention of paced breathing at a normal ventilation rate. After the biofeedback or control intervention, participants completed the Attention Network Test using the Orienting Score as a measure of attentional control. Results Mixed models revealed that higher resting baseline vagally mediated heart rate variability was associated with better performance in attentional control, which suggests more efficient direction of attention to target stimuli. There was no significant main effect of the intervention on attentional control. However, an interaction effect indicated better performance in attentional control after biofeedback in individuals who reported higher current stress levels. Discussion The results point to acute beneficial effects of heart rate variability biofeedback on cognitive performance in highly stressed individuals. Although promising, the results need to be replicated in larger or more targeted samples in order to reach stronger conclusions about the effects.
Collapse
Affiliation(s)
- Berenike L. Blaser
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Julia Wendt
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Mangalam M, Sadri A, Hayano J, Watanabe E, Kiyono K, Kelty-Stephen DG. Multifractal foundations of biomarker discovery for heart disease and stroke. Sci Rep 2023; 13:18316. [PMID: 37880302 PMCID: PMC10600152 DOI: 10.1038/s41598-023-45184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Any reliable biomarker has to be specific, generalizable, and reproducible across individuals and contexts. The exact values of such a biomarker must represent similar health states in different individuals and at different times within the same individual to result in the minimum possible false-positive and false-negative rates. The application of standard cut-off points and risk scores across populations hinges upon the assumption of such generalizability. Such generalizability, in turn, hinges upon this condition that the phenomenon investigated by current statistical methods is ergodic, i.e., its statistical measures converge over individuals and time within the finite limit of observations. However, emerging evidence indicates that biological processes abound with nonergodicity, threatening this generalizability. Here, we present a solution for how to make generalizable inferences by deriving ergodic descriptions of nonergodic phenomena. For this aim, we proposed capturing the origin of ergodicity-breaking in many biological processes: cascade dynamics. To assess our hypotheses, we embraced the challenge of identifying reliable biomarkers for heart disease and stroke, which, despite being the leading cause of death worldwide and decades of research, lacks reliable biomarkers and risk stratification tools. We showed that raw R-R interval data and its common descriptors based on mean and variance are nonergodic and non-specific. On the other hand, the cascade-dynamical descriptors, the Hurst exponent encoding linear temporal correlations, and multifractal nonlinearity encoding nonlinear interactions across scales described the nonergodic heart rate variability more ergodically and were specific. This study inaugurates applying the critical concept of ergodicity in discovering and applying digital biomarkers of health and disease.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran
- Interdisciplinary Neuroscience Research Program, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, P94V+8MF, Iran
| | - Junichiro Hayano
- Graduate School of Medicine, Nagoya City University, Nagoya, Aichi, 467-8601, Japan
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal Medicine, Fujita Health University Bantane Hospital, Nagoya, Aichi, 454-0012, Japan
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, 12561, USA
| |
Collapse
|
12
|
Güemes Gonzalez A, Carnicer-Lombarte A, Hilton S, Malliaras G. A multivariate physiological model of vagus nerve signalling during metabolic challenges in anaesthetised rats for diabetes treatment. J Neural Eng 2023; 20:056033. [PMID: 37757803 DOI: 10.1088/1741-2552/acfdcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Objective.This study aims to develop a comprehensive decoding framework to create a multivariate physiological model of vagus nerve transmission that reveals the complex interactions between the nervous and metabolic systems.Approach.Vagus nerve activity was recorded in female Sprague-Dawley rats using gold hook microwires implanted around the left cervical vagus nerve. The rats were divided into three experimental cohorts (intact nerve, ligation nerve for recording afferent activation, and ligation for recording efferent activation) and metabolic challenges were administered to change glucose levels while recording the nerve activity. The decoding methodology involved various techniques, including continuous wavelet transformation, extraction of breathing rate (BR), and correlation of neural metrics with physiological signals.Main results.Decrease in glucose level was consistently negatively correlated with an increase in the firing activity of the intact vagus nerve that was found to be conveyed by both afferent and efferent pathways, with the afferent response being more similar to the one on the intact nerve. A larger variability was observed in the sensory and motor responses to hyperglycaemia. A novel strategy to extract the BR over time based on inter-burst-interval is also presented. The vagus afferent was found to encode breathing information through amplitude and firing rate modulation. Modulations of the signal amplitude were also observed due to changes in heart rate in the intact and efferent recordings, highlighting the parasympathetic control of the heart.Significance.The analytical framework presented in this study provides an integrative understanding that considers the relationship between metabolic, cardiac, and breathing signals and contributes to the development of a multivariable physiological model for the transmission of vagus nerve signals. This work progresses toward the development of closed-loop neuro-metabolic therapeutic systems for diabetes.
Collapse
Affiliation(s)
- Amparo Güemes Gonzalez
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - George Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| |
Collapse
|
13
|
Ruigrok TJH, Mantel SA, Orlandini L, de Knegt C, Vincent AJPE, Spoor JKH. Sympathetic components in left and right human cervical vagus nerve: implications for vagus nerve stimulation. Front Neuroanat 2023; 17:1205660. [PMID: 37492698 PMCID: PMC10364449 DOI: 10.3389/fnana.2023.1205660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Cervical vagus nerve stimulation is in a great variety of clinical situations indicated as a form of treatment. It is textbook knowledge that at the cervical level the vagus nerve contains many different fiber classes. Yet, recently, several reports have shown that this nerve also may contain an additional class of potentially noradrenergic fibers, suggested to denote efferent sympathetic fibers. As such, the nature and presence of these fibers should be considered when choosing a stimulation protocol. We have studied human vagus material extracted from dissection room cadavers in order to further confirm the presence of this class of fibers, to study their origin and direction within the nerve and to determine their distribution and variability between subjects and pairs of left and right nerves of the same individual. Sections were studied with immunohistochemical techniques using antibodies against tyrosine hydroxylase (TH: presumed to indicate noradrenergic fibers), myelin basic protein and neurofilament. Our results show that at least part of the TH-positive fibers derive from the superior cervical ganglion or sympathetic trunk, do not follow a cranial but take a peripheral course through the nerve. The portion of TH-positive fibers is highly variable between individuals but also between the left and right pairs of the same individual. TH-positive fibers can distribute and wander throughout the fascicles but maintain a generally clustered appearance. The fraction of TH-positive fibers generally diminishes in the left cervical vagus nerve when moving in a caudal direction but remains more constant in the right nerve. These results may help to determine optimal stimulation parameters for cervical vagus stimulation in clinical settings.
Collapse
Affiliation(s)
- Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Sophia A. Mantel
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Lara Orlandini
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Corné de Knegt
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Jochem K. H. Spoor
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Abstract
The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (C.Y.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Cristina Godinho-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal (C.G.-S., H.V.-F.)
| | | | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| |
Collapse
|
15
|
Mueller BR, Ray C, Benitez A, Robinson-Papp J. Reduced cardiovagal baroreflex sensitivity is associated with postural orthostatic tachycardia syndrome (POTS) and pain chronification in patients with headache. Front Hum Neurosci 2023; 17:1068410. [PMID: 36992793 PMCID: PMC10040804 DOI: 10.3389/fnhum.2023.1068410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundNon-cephalgic symptoms including orthostatic intolerance, fatigue, and cognitive impairment, are common in patients with chronic headache disorders and may result from alterations in the autonomic nervous system. However, little is known about the function of autonomic reflexes, which regulate cardiovascular homeostasis and cerebral perfusion in patients with headache.MethodsAutonomic function testing data from patients with headache collected between January 2018 and April 2022 was retrospectively analyzed. Through review of EMR we determined headache pain chronicity and patient self-report of orthostatic intolerance, fatigue, and cognitive impairment. Composite Autonomic Severity Score (CASS), CASS subscale scores, and cardiovagal and adrenergic baroreflex sensitivities were used to quantify autonomic reflex dysfunction. Descriptive analyses (Mann-Whitney-U or χ2, as appropriate) determined associations between autonomic reflex dysfunction and POTS as well as chronic headache. Binomial logistic regression adjusted for age and sex. Spearman’s rank correlation determined the association between the total CASS score and the number of painless symptoms reported by each participant.ResultsWe identified 34 patients meeting inclusion criteria, of whom there were 16 (47.0%) with orthostatic intolerance, 17 (50.0%) with fatigue, 11 (32.4%) with cognitive complaints, and 11 (32.4%) with Postural Orthostatic Tachycardia Syndrome (POTS). The majority of participants had migraine (n = 24, 70.6%), were female (n = 23, 67.6%) and had a chronic (>15 headache days in a month) headache disorder (n = 26, 76.5%). Reduced cardiovagal baroreflex sensitivity (BRS-V) independently predicted chronic headache [aOR: 18.59 (1.16, 297.05), p = 0.039] and POTS [aOR: 5.78 (1.0, 32.5), p = 0.047]. The total CASS was correlated with the total number of non-painful features in the expected direction (r = 0.46, p = 0.007).ConclusionAbnormal autonomic reflexes may play an important role in pain chronification and the development of POTS in patients with headache.
Collapse
|
16
|
Colzato LS, Elmers J, Beste C, Hommel B. A Prospect to Ameliorate Affective Symptoms and to Enhance Cognition in Long COVID Using Auricular Transcutaneous Vagus Nerve Stimulation. J Clin Med 2023; 12:jcm12031198. [PMID: 36769845 PMCID: PMC9917620 DOI: 10.3390/jcm12031198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Long COVID, the postviral disorder caused by COVID-19, is expected to become one of the leading causes of disability in Europe. The cognitive consequences of long COVID have been described as "brain fog" and characterized by anxiety and depression, and by cognitive deficits. Long COVID is assumed to be a complex condition arising from multiple causes, including persistent brainstem dysfunction and disrupted vagal signaling. We recommend the potential application of auricular transcutaneous vagus nerve stimulation (atVNS) as an ADD-ON instrument to compensate for the cognitive decline and to ameliorate affective symptoms caused by long COVID. This technique enhances vagal signaling by directly activating the nuclei in the brainstem, which are hypoactive in long COVID to enhance mood and to promote attention, memory, and cognitive control-factors affected by long COVID. Considering that atVNS is a non-pharmacological intervention, its ADD-ON to standard pharmaceutical agents will be useful for non-responders, making of this method a suitable tool. Given that atVNS can be employed as an ecological momentary intervention (EMI), we outline the translational advantages of atVNS in the context of accelerating the cognitive and affective recovery from long COVID.
Collapse
Affiliation(s)
- Lorenza S. Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Christian Beste
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
17
|
Arrhythmia and Heart Rate Variability during Long Interdialytic Periods in Patients on Maintenance Hemodialysis: Prospective Observational Cohort Study. J Clin Med 2022; 12:jcm12010265. [PMID: 36615065 PMCID: PMC9820857 DOI: 10.3390/jcm12010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Sudden cardiac death among hemodialysis patients is related to the hemodialysis schedule. Mortality is highest within 12 h before and after the first hemodialysis sessions of a week. We investigated the association of arrhythmia occurrence and heart rate variability (HRV) using an electrocardiogram (ECG) monitoring patch during the long interdialytic interval in hemodialysis patients. This was a prospective observational study with 55 participants on maintenance hemodialysis for at least six months. A patch-type ECG monitoring device was applied to record arrhythmia events and HRV during 72 h of a long interdialytic period. Forty-nine participants with sufficient ECG data out of 55 participants were suitable for the analysis. The incidence of supraventricular tachycardia and ventricular tachycardia did not significantly change over time. The square root of the mean squared differences of successive NN intervals (RMSSD), the proportion of adjacent NN intervals differing by >50 ms (pNN50), and high-frequency (HF) increased during the long interdialytic interval. The gap in RMSSD, pNN50, HF, and the low-frequency/high-frequency (LF/HF) ratio between patients with and without significant arrhythmias increased significantly over time during the long interdialytic interval. The daily changes in RMSSD, pNN50, HF, and the LF/HF ratio were more prominent in patients without significant arrhythmias than in those with significant arrhythmias. The electrolyte fluctuation between post-hemodialysis and subsequent pre-hemodialysis was not considered in this study. The study results suggest that the decreased autonomic response during interdialytic periods in dialysis patients is associated with poor cardiac arrhythmia events.
Collapse
|
18
|
Valenti VE. Editorial: New insights into the role of the vagus nerve in health and disease: Basic and clinical studies. Front Neurosci 2022; 16:979695. [PMID: 36248636 PMCID: PMC9555882 DOI: 10.3389/fnins.2022.979695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
|