1
|
Zhao C, Xie L, Shen J, He H, Zhang T, Hao L, Sun C, Zhang X, Chen M, Liu F, Li Z, Wang N. Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway. Int J Biol Macromol 2025; 300:140287. [PMID: 39863204 DOI: 10.1016/j.ijbiomac.2025.140287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L. acidophilus YL01 was firstly isolated from Chinese traditional yogurt, demonstrating inhibitory activities on amylase and glucosidase that are comparable to those of L. rhamnosus LGG. Besides, the oral administration of L. acidophilus YL01 and its EPS significantly reduced body weight in high-fat mice (p < 0.05), as well as fat accumulation in liver and adipocytes. Moreover, they not only reduced fasting blood glucose and glucose/insulin resistance, but also improved dyslipidemia, liver function and inflammation. Further high-performance liquid chromatography analysis and Fourier transform infrared spectroscopy indicated that EPS is an acidic polysaccharide, characterized by a molecular weight of 952 kDa and predominantly composed of glucose. Additionally, the mechanism investigation revealed that the L. acidophilus YL01 and EPS demonstrated limited efficacy in restoring the composition of gut microbiota, but rather exerted an influence on the abundance of specific bacterial groups. The enrichment of the bacterial groups resulted in the increase of acetic acid and butyric acid, which further mediates the gut-liver crosstalk in regulating lipid metabolism by the activation of AMPK/ACC pathway.
Collapse
Affiliation(s)
- Chongjie Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Linlin Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Jing Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, The Academy of Animal and Veterinary Science, Qinghai University, Xining 810000, China
| | - Cai Sun
- Qinghai Pure Yak Biotechnology Co., LTD., Xining 810000, China
| | - Xiaoyuan Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China
| | - Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China.
| | - Zhongyuan Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China.
| |
Collapse
|
2
|
Bae D, Song YB, Choi H, Lee BH. Slowly hydrolyzable property of microbial dextrans at the small intestinal α-glucosidase levels leads to the modulated glycemic responses in the mouse model. Int J Biol Macromol 2024; 277:134322. [PMID: 39094862 DOI: 10.1016/j.ijbiomac.2024.134322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Dextran-type α-glucans have been known as non-digestible ingredients that can be considered prebiotics to promote colon health. However, recent studies have revealed that various α-linked glucosyl units are hydrolyzed to glucose by small intestinal α-glucosidases. This study analyzed the structural characteristics of exopolysaccharides (EPSs) from Weissella species, and the hydrolysis properties at both in vitro/in vivo levels were investigated. Compared with a previous in vitro digestion model using fungal α-hydrolytic enzymes, dextrans, which mainly consist of α-1,6 linkages with small amounts of α-1,3 linked glucose units, were slowly hydrolyzed to glucose by mammalian mucosal α-glucosidases, resulting in attenuation of the initial glycemic response following administration of EPS samples to mice via oral gavage. The results of this study demonstrate the concept of dextran-type α-glucans as glycemic carbohydrates rather than dietary fibers or prebiotics. Slowly digestible dextrans can be applied as a functional ingredient to regulate postprandial glucose delivery throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Dain Bae
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Bo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyunwook Choi
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
3
|
Ciani M, Decorosi F, Ratti C, De Philippis R, Adessi A. Semi-continuous cultivation of EPS-producing marine cyanobacteria: A green biotechnology to remove dissolved metals obtaining metal-organic materials. N Biotechnol 2024; 82:33-42. [PMID: 38714292 DOI: 10.1016/j.nbt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Given the necessity for bioprocesses scaling-up, the present study aims to explore the potential of three marine cyanobacteria and a consortium, cultivated in semi-continuous mode, as a green approach for i) continuous exopolysaccharide-rich biomass production and ii) removal of positively charged metals (Cu, Ni, Zn) from mono and multi-metallic solutions. To ensure the effectiveness of both cellular and released exopolysaccharides, weekly harvested whole cultures were confined in dialysis tubings. The results revealed that all the tested cyanobacteria have a stronger affinity towards Cu in mono and three-metal systems. Despite the amount of metals removed per gram of biomass decreased with higher biosorbent dosage, the more soluble carbohydrates were produced, the greater was the metal uptake, underscoring the pivotal role of released exopolysaccharides in metal biosorption. According to this, Dactylococcopsis salina 16Som2 showed the highest carbohydrate productivity (142 mg L-1 d-1) and metal uptake (84 mg Cu g-1 biomass) representing a promising candidate for further studies. The semi-continuous cultivation of marine cyanobacteria here reported assures a schedulable production of exopolysaccharide-rich biosorbents with high metal removal and recovery potential, even from multi-metallic solutions, as a step forward in the industrial application of cyanobacteria.
Collapse
Affiliation(s)
- Matilde Ciani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine, 18, 50144 Florence, Italy
| | - Francesca Decorosi
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry Sciences (DAGRI), University of Florence, I-50019 Sesto Fiorentino, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine, 18, 50144 Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine, 18, 50144 Florence, Italy.
| |
Collapse
|
4
|
Minari GD, Piazza RD, Sass DC, Contiero J. EPS Production by Lacticaseibacillus casei Using Glycerol, Glucose, and Molasses as Carbon Sources. Microorganisms 2024; 12:1159. [PMID: 38930541 PMCID: PMC11205391 DOI: 10.3390/microorganisms12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
This study demonstrates that Lactobacillus can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 (L. casei) was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.mol-1, consisting of 39.4% carbohydrates and 18% proteins. The EPS obtained using molasses as the carbon source was characterized as a heteropolysaccharide composed of glucose, galactose, and arabinose, containing 1182 g.mol-1, consisting of 52.9% carbohydrates and 11.69% proteins. This molecule was characterized using Size Exclusion Chromatography (HPLC), Gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). The existence of polysaccharides was confirmed via FT-IR and NMR analyses. The results obtained suggest that Lacticaseibacillus casei can grow in media that use alternative carbon sources such as glycerol and molasses. These agro-industry residues are inexpensive, and their use contributes to sustainability. The lack of studies regarding the use of Lacticaseibacillus casei for the production of EPS using renewable carbon sources from agroindustry should be noted.
Collapse
Affiliation(s)
- Guilherme Deomedesse Minari
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Rodolfo Debone Piazza
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-903, Brazil;
| | - Daiane Cristina Sass
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Jonas Contiero
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
- Institute on Research in Bioenergy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| |
Collapse
|
5
|
Show S, Akhter R, Paul I, Das P, Bal M, Bhattacharya R, Bose D, Mondal A, Saha S, Halder G. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review. CHEMOSPHERE 2024; 355:141753. [PMID: 38531498 DOI: 10.1016/j.chemosphere.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
The discharge of dye-laden wastewater into the water streams causes severe water and soil pollution, which poses a global threat to aquatic ecosystems and humans. A diverse array of microorganisms such as bacteria, fungi, and algae produce exopolysaccharides (EPS) of different compositions and exhibit great bioflocculation potency to sustainably eradicate dyes from water bodies. Nanomodified chemical composites of EPS enable their recyclability during dye-laden wastewater treatment. Nevertheless, the selection of potent EPS-producing strains and physiological parameters of microbial growth and the remediation process could influence the removal efficiency of EPS. This review will intrinsically discuss the fundamental importance of EPS from diverse microbial origins and their nanomodified chemical composites, the mechanisms in EPS-mediated bioremediation of dyes, and the parametric influences on EPS-mediated dye removal through sorption/bioflocculation. This review will pave the way for designing and adopting futuristic green and sustainable EPS-based bioremediation strategies for dye-laden wastewater in situ and ex situ.
Collapse
Affiliation(s)
- Sumona Show
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Ramisa Akhter
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Riya Bhattacharya
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Debajyoti Bose
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Amita Mondal
- Department of Chemistry, Vedanta College, Kolkata, 700054, West Bengal, India
| | - Shouvik Saha
- Department of Biotechnology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India.
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
6
|
Uhliariková I, Matulová M, Lukavský J, Capek P. An acidic exopolysaccharide α-D-galacturono-β-D-glucan produced by the cyanobacterium Scytonema sp. Carbohydr Res 2024; 538:109088. [PMID: 38518663 DOI: 10.1016/j.carres.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Some cyanobacteria produce a wide range of secondary metabolites, some of which are of industrial interest. Exopolysaccharides, particularly interesting among them, represent relatively complex primary structures with interesting bioactivity, biodegradability and specific applications. Cultivation of the freshwater cyanobacterium Scytonema sp. provided a proteoglycan-type exopolysaccharide with a relatively low yield and a wide spectrum of molecular weights (Mw) ranging from 2.2 to 1313 × 103 g/mol. Chemical analyses detected the presence of carbohydrates (46 wt%), proteins (10 wt%) and uronic acids (8 wt%). Monosaccharide analysis revealed up to seven neutral sugars with a dominance of glucose (23.6 wt%), galactose (7.4 wt%) and fucose (5.0 wt%) residues, while the others had a much lower content (0.9-3.4 wt%). The presence of galacturonic acid (8.0 wt%) indicated the appearance of ionic type of exopolysaccharide. A preliminary structural study indicated that the α-D-galacturono-β-D-glucan forms a dominant part of Scytonema sp. exopolymer. Its backbone is composed of two 1,6-linked and one 1,2-linked β-D-Glcp residues, which is branched at O6 by side chains composed of α-D-GalAp(1 → 2)-β-D-Glcp(1→ dimer or monomeric β-D-Glcp(1→ residue.
Collapse
Affiliation(s)
- Iveta Uhliariková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 5807/9, SK-84538 Bratislava, Slovakia.
| | - Mária Matulová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 5807/9, SK-84538 Bratislava, Slovakia
| | - Jaromír Lukavský
- Institute of Botany, Academy of Sciences of the Czech Republic, Department of Algology, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 5807/9, SK-84538 Bratislava, Slovakia.
| |
Collapse
|
7
|
Debnath S, Muthuraj M, Bandyopadhyay TK, Bobby MN, Vanitha K, Tiwari ON, Bhunia B. Engineering strategies and applications of cyanobacterial exopolysaccharides: A review on past achievements and recent perspectives. Carbohydr Polym 2024; 328:121686. [PMID: 38220318 DOI: 10.1016/j.carbpol.2023.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.
Collapse
Affiliation(s)
- Shubhankar Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | | | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
8
|
Kim YS, Baek H, Yun HS, Lee JH, Lee KI, Kim HS, Yoon HS. The Prokaryotic Microalga Limnothrix redekei KNUA012 to Improve Aldehyde Decarbonylase Expression for Use as a Biological Resource. Pol J Microbiol 2023; 72:307-317. [PMID: 37725893 PMCID: PMC10561079 DOI: 10.33073/pjm-2023-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/04/2023] [Indexed: 09/21/2023] Open
Abstract
The prokaryotic microalga Limnothrix redekei KNUA012 isolated from a freshwater bloom sample from Lake Hapcheon, Hapcheon-gun, South Korea, was investigated for its potential as a biofuel feedstock. Microalgae produce straight-chain alkanes/alkenes from acyl carrier protein-linked fatty acyls via aldehyde decarbonylase (AD; EC 1.2.1.3), which can convert aldehyde intermediates into various biofuel precursors, such as alkanes and free fatty acids. In L. redekei KNUA012, long-chain ADs can convert fatty aldehyde intermediates into alkanes. After heterologous AD expression in Escherichia coli (pET28-AD), we identified an AD in L. redekei KNUA012 that can synthesize various alkanes, such as pentadecane (C15H32), 8-heptadecene (C17H34), and heptadecane (C17H36). These alkanes can be directly used as fuels without transesterification. Biodiesel constituents including dodecanoic acid (C13H26O2), tetradecanoic acid (C15H30O2), 9-hexa decenoic acid (C17H32O2), palmitoleic acid (C17H32O2), hexadecanoic acid (C17H34O2), 9-octadecenoic acid (C19H36O2), and octadecanoic acid (C19H38O2) are produced by L. redekei KNUA012 as the major fatty acids. Our findings suggest that Korean domestic L. redekei KNUA012 is a promising resource for microalgae-based biofuels and biofuel feedstock.
Collapse
Affiliation(s)
- Young-Saeng Kim
- Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, Republic of Korea
| | - Haeri Baek
- Water Quality Research Institute Daegu Metropolitan City, Daegu, Republic of Korea
| | - Hyun-Sik Yun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Hak Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung-In Lee
- Biotechnology Industrialization Center, Dongshin University, Naju, Republic of Korea
| | - Han-Soon Kim
- Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Republic of Korea
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Tavares J, Silva TP, Paixão SM, Alves L. Development of a bench-scale photobioreactor with a novel recirculation system for continuous cultivation of microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117418. [PMID: 36753845 DOI: 10.1016/j.jenvman.2023.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation can be used to increase the sustainability of carbon emitting processes, converting the CO2 from exhaust gases into fuels, food and chemicals. Many of the carbon emitting industries operate in a continuous manner, for periods that can span days or months, resulting in a continuous stream of gas emissions. Biogenic CO2 from industrial microbiological processes is one example, since in many cases it becomes unsustainable to stop these processes on a daily or weekly basis. To correctly sequester these emissions, microalgae systems must be operated under continuous constant conditions, requiring photobioreactors (PBRs) that can act as chemostats for long periods of time. However, in order to optimize culture parameters or study metabolic responses, bench-scale setups are necessary. Currently there is a lack of studies and design alternatives using chemostat, since most works focus on batch assays or semi-continuous cultures. Therefore, this work focused on the development of a continuous bench-scale PBR, which combines a retention vessel, a photocollector and a degasser, with an innovative recirculation system, that allows it to operate as an autotrophic chemostat, to study carbon sequestration from a biogenic CO2-rich constant air stream. To assess its applicability, the PBR was used to cultivate the green microalga Haematococcus pluvialis using as sole carbon source the CO2 produced by a coupled heterotrophic bacterial chemostat. An air stream containing ≈0.35 vol% of CO2, was fed to the system, and it was evaluated in terms of stability, carbon fixation and biomass productivity, for dilution rates ranging from 0.1 to 0.5 d-1. The PBR was able to operate under chemostat conditions for more than 100 days, producing a stable culture that generated proportional responses to the stimuli it was subjected to, attaining a maximum biomass productivity of 183 mg/L/d with a carbon fixation efficiency of ≈39% at 0.3 d-1. These results reinforce the effectiveness of the developed PBR system, making it suitable for laboratory-scale studies of continuous photoautotrophic microalgae cultivation.
Collapse
Affiliation(s)
- João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| |
Collapse
|
10
|
Bozdemir M, Gümüş T, Altan Kamer DD. Technological and beneficial features of lactic acid bacteria isolated from Boza A cereal-based fermented beverage. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Merve Bozdemir
- Agriculture Faculty, Department of Food Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Tuncay Gümüş
- Agriculture Faculty, Department of Food Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Deniz Damla Altan Kamer
- Agriculture Faculty, Department of Food Engineering, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| |
Collapse
|
11
|
Van Camp C, Fraikin C, Claverie E, Onderwater R, Wattiez R. Capsular polysaccharides and exopolysaccharides from Gloeothece verrucosa under various nitrogen regimes and their potential plant defence stimulation activity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Rajivgandhi G, Gnanamangai BM, Ramachandran G, Chackaravarthy G, Chelliah CK, Maruthupandy M, Alharbi NS, Kadaikunnan S, Li WJ. Effective removal of heavy metals in industrial wastewater with novel bioactive catalyst enabling hybrid approach. ENVIRONMENTAL RESEARCH 2022; 204:112337. [PMID: 34742711 DOI: 10.1016/j.envres.2021.112337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recent years, heavy metal reduction of contaminated atmosphere using microbes is heightened worldwide. In this context, the current study was focused on heavy metal resistant actinomycete strains were screened from effluent mixed contaminated soil samples. Based on the phenotypic and molecular identification, the high metal resistant actinomycete strain was named as Nocardiopsis dassonvillei (MH900216). The highest bioflocculent and exopolysaccharide productions of Nocardiopsis dassonvillei (MH900216) was confirmed by various invitro experiments result. The heavy metal degrading substances was characterized and effectively confirmed by Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscope (SEM). Further, the heavy metal sorption ability of actinomycete substances bioflocculent was exhibited 85.20%, 89.40%, 75.60%, and 51.40% against Cd, Cr, Pb and Hg respectively. Altogether, the bioflocculent produced actinomycete Nocardiopsis dassonvillei (MH900216) as an excellent biological source for heavy metal reduction in waste water, and it is an alternative method for effective removal of heavy metals towards sustainable environmental management.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | | | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | | | - Chenthis Kanisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Tamil Nadu, 629180, India
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
13
|
Mohamed ME, El Semary NA, Younis NS. Silver Nanoparticle Production by the Cyanobacterium Cyanothece sp.: De Novo Manipulation of Nano-Biosynthesis by Phytohormones. Life (Basel) 2022; 12:life12020139. [PMID: 35207426 PMCID: PMC8878298 DOI: 10.3390/life12020139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Numerous cyanobacteria have the potential to reduce metallic ions to form pure metal nanoparticles in a green biosynthesis process. Aim: To investigate the production capacity of silver nanoparticles by the cyanobacterium Cyanothece sp. and to examine the effect of five different phytohormones, indole acetic acid, kinetin; gibberellic acid; abscisic acid; and methyl jasmonate, on this capacity. Methods: The cyanobacterial strain was grown for 60 days and the harvested cyanobacterium biomass was incubated with 0.1 mM of AgNO3. Percentage conversion of Ag+ to Ag0 was calculated to indicate the AgNPs’ production capacity. Different concentrations of the five phytohormones were added to cultures and the AgNP production was monitored throughout different time intervals. Results: Cyanothece sp. biosynthesized spherical AgNPs (diameter range 70 to 140 nm, average diameter 84.37 nm). The addition of indole acetic acid and kinetin provoked the maximum conversion (87.29% and 55.16%, respectively) of Ag+ to Ag0, exceeding or slightly below that of the control (56%). Gibberellic and abscisic acids failed to elevate the Ag+ to Ag0 conversion rate (45.23% and 47.95%, respectively) above that of the control. Methyl jasmonate increased the Ag+ to Ag0 conversion rate to 90.29%, although nearly all the cyanobacterial cultures died at the end. Conclusion: Phytohormones could be used to induce or inhibit the green production of AgNPs with the cyanobacterium Cyanothece sp. This novel manipulation technique may have several applications in agriculture or biomedicine.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Pharmacognosy Department, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.E.M.); (N.A.E.S.)
| | - Nermin A. El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11975, Egypt
- Correspondence: (M.E.M.); (N.A.E.S.)
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
14
|
Pahunang RR, Buonerba A, Senatore V, Oliva G, Ouda M, Zarra T, Muñoz R, Puig S, Ballesteros FC, Li CW, Hasan SW, Belgiorno V, Naddeo V. Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148479. [PMID: 34465066 DOI: 10.1016/j.scitotenv.2021.148479] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
This review paper aims to identify the main sources of carbon dioxide (CO2) emissions from wastewater treatment plants (WWTPs) and highlights the technologies developed for CO2 capture in this milieu. CO2 is emitted in all the operational units of conventional WWTPs and even after the disposal of treated effluents and sludges. CO2 emissions from wastewater can be captured or mitigated by several technologies such as the production of biochar from sludge, the application of constructed wetlands (CWs), the treatment of wastewater in microbial electrochemical processes (microbial electrosynthesis, MES; microbial electrolytic carbon capture, MECC; in microbial carbon capture, MCC), and via microalgal cultivation. Sludge-to-biochar and CW systems showed a high cost-effectiveness in the capture of CO2, while MES, MECC, MCC technologies, and microalgal cultivation offered efficient capture of CO2 with associate production of value-added by-products. At the state-of-the-art, these technologies, utilized for carbon capture and utilization from wastewater, require more research for further configuration, development and cost-effectiveness. Moreover, the integration of these technologies has a potential internal rate of return (IRR) that could equate the operation or provide additional revenue to wastewater management. In the context of circular economy, these carbon capture technologies will pave the way for new sustainable concepts of WWTPs, as an essential element for the mitigation of climate change fostering the transition to a decarbonised economy.
Collapse
Affiliation(s)
- Rekich R Pahunang
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Vincenzo Senatore
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Mariam Ouda
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Raul Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Florencio C Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines; Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Chi-Wang Li
- Department of Water Resources and Environmental Engineering, Tamkang University, 151 Yingzhuan Road Tamsui District, New Taipei City 25137, Taiwan
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy.
| |
Collapse
|
15
|
Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2040046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms capable of synthesizing several biocompounds, including polysaccharides with antioxidant, antibacterial, and antiviral properties. At the same time that the accumulation of biomolecules occurs, microalgae can use wastewater and gaseous effluents for their growth, mitigating these pollutants. The increase in the production of polysaccharides by microalgae can be achieved mainly through nutritional limitations, stressful conditions, and/or adverse conditions. These compounds are of commercial interest due to their biological and rheological properties, which allow their application in various sectors, such as pharmaceuticals and foods. Thus, to increase the productivity and competitiveness of microalgal polysaccharides with commercial hydrocolloids, the cultivation parameters and extraction/purification processes have been optimized. In this context, this review addresses an overview of the production, characterization, and potential applications of polysaccharides obtained by microalgae and cyanobacteria. Moreover, the main opportunities and challenges in relation to obtaining these compounds are highlighted.
Collapse
|
16
|
Wu S, Mi T, Zhen Y, Yu K, Wang F, Yu Z. A Rise in ROS and EPS Production: New Insights into the Trichodesmium erythraeum Response to Ocean Acidification. JOURNAL OF PHYCOLOGY 2021; 57:172-182. [PMID: 32975309 DOI: 10.1111/jpy.13075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The diazotrophic cyanobacterium Trichodesmium is thought to be a major contributor to the new N in parts of the oligotrophic, subtropical, and tropical oceans. In this study, physiological and biochemical methods and transcriptome sequencing were used to investigate the influences of ocean acidification (OA) on Trichodesmium erythraeum (T. erythraeum). We presented evidence that OA caused by CO2 slowed the growth rate and physiological activity of T. erythraeum. OA led to reduced development of proportion of the vegetative cells into diazocytes which included up-regulated genes of nitrogen fixation. Reactive oxygen species (ROS) accumulation was increased due to the disruption of photosynthetic electron transport and decrease in antioxidant enzyme activities under acidified conditions. This study showed that OA increased the amounts of (exopolysaccharides) EPS in T. erythraeum, and the key genes of ribose-5-phosphate (R5P) and glycosyltransferases (Tery_3818) were up-regulated. These results provide new insight into how ROS and EPS of T. erythraeum increase in an acidified future ocean to cope with OA-imposed stress.
Collapse
Affiliation(s)
- Shijie Wu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kaiqiang Yu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fuwen Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
17
|
Jeong Y, Cho SH, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020; 8:E1849. [PMID: 33255283 PMCID: PMC7761380 DOI: 10.3390/microorganisms8121849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for enhanced production of industrially valued compounds, including secondary metabolites and non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and systems biology approaches for advanced metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Sang-Hyeok Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon 21999, Korea;
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
| | - Suhyung Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Byung-Kwan Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| |
Collapse
|
18
|
Biochemical characterization of Nostoc sp. exopolysaccharides and evaluation of potential use in wound healing. Carbohydr Polym 2020; 254:117303. [PMID: 33357870 DOI: 10.1016/j.carbpol.2020.117303] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) produced by cyanobacteria are complex biomolecules of anionic nature with potential biomedical applications. In this study, the EPS produced by the Nostoc sp. strains PCC7936 and PCC7413 were characterized and evaluated as a biomaterial for new wound dressings. The addition of acetate ions to the culture medium slightly stimulated EPS production, achieving 1463.1 ± 16.0 mgL-1 (PCC7413) and 1372.1 ± 29.0 mgL-1 (PCC7936). Both EPS presented nine monosaccharide residues and a MW > 1000 kDa. The acetate addition changed the monosaccharide molar percentages. FTIR and DLS results confirmed the anionic nature and the presence of sulfate groups in both EPS, which are determinant features for biomedical applications. Both EPS at 1%(w/v) formed gels in the presence of 0.4%(w/v) FeCl3. Results obtained for MTT assay and wound healing in vitro scratch assay revealed hydrogels biocompatibility and ability to promote fibroblast migration and proliferation that was greater in PCC7936. The Nostoc EPS hydrogels presented promising properties to be applied in the treatment of skin injuries.
Collapse
|
19
|
Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020; 43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Photosynthetic cyanobacteria are capable of utilizing sunlight and CO2 as sole energy and carbon sources, respectively. With genetically modified cyanobacteria being used as a promising chassis to produce various biofuels and chemicals in recent years, future large-scale cultivation of cyanobacteria would have to be performed in seawater, since freshwater supplies of the earth are very limiting. However, high concentration of salt is known to inhibit the growth of cyanobacteria. This review aims at comparing the mechanisms that different cyanobacteria respond to salt stress, and then summarizing various strategies of developing salt-tolerant cyanobacteria for seawater cultivation, including the utilization of halotolerant cyanobacteria and the engineering of salt-tolerant freshwater cyanobacteria. In addition, the challenges and potential strategies related to further improving salt tolerance in cyanobacteria are also discussed.
Collapse
|
20
|
Exopolysaccharides from Cyanobacteria: Strategies for Bioprocess Development. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyanobacteria have the potential to become an industrially sustainable source of functional biopolymers. Their exopolysaccharides (EPS) harbor chemical complexity, which predicts bioactive potential. Although some are reported to excrete conspicuous amounts of polysaccharides, others are still to be discovered. The production of this strain-specific trait can promote carbon neutrality while its intrinsic location can potentially reduce downstream processing costs. To develop an EPS cyanobacterial bioprocess (Cyano-EPS) three steps were explored: the selection of the cyanobacterial host; optimization of production parameters; downstream processing. Studying the production parameters allow us to understand and optimize their response in terms of growth and EPS production though many times it was found divergent. Although the extraction of EPS can be achieved with a certain degree of simplicity, the purification and isolation steps demand experience. In this review, we gathered relevant research on EPS with a focus on bioprocess development. Challenges and strategies to overcome possible drawbacks are highlighted.
Collapse
|
21
|
Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019; 20:E5693. [PMID: 31739392 PMCID: PMC6888056 DOI: 10.3390/ijms20225693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Biopolymers derived from polysaccharides are a sustainable and environmentally friendly alternative to the synthetic counterparts available in the market. Due to their distinctive properties, the cyanobacterial extracellular polymeric substances (EPS), mainly composed of heteropolysaccharides, emerge as a valid alternative to address several biotechnological and biomedical challenges. Nevertheless, biotechnological/biomedical applications based on cyanobacterial EPS have only recently started to emerge. For the successful exploitation of cyanobacterial EPS, it is important to strategically design the polymers, either by genetic engineering of the producing strains or by chemical modification of the polymers. This requires a better understanding of the EPS biosynthetic pathways and their relationship with central metabolism, as well as to exploit the available polymer functionalization chemistries. Considering all this, we provide an overview of the characteristics and biological activities of cyanobacterial EPS, discuss the challenges and opportunities to improve the amount and/or characteristics of the polymers, and report the most relevant advances on the use of cyanobacterial EPS as scaffolds, coatings, and vehicles for drug delivery.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Filipa Serôdio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
22
|
Mota R, Vidal R, Pandeirada C, Flores C, Adessi A, De Philippis R, Nunes C, Coimbra MA, Tamagnini P. Cyanoflan: A cyanobacterial sulfated carbohydrate polymer with emulsifying properties. Carbohydr Polym 2019; 229:115525. [PMID: 31826510 DOI: 10.1016/j.carbpol.2019.115525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
The extracellular polysaccharides produced by cyanobacteria have distinctive characteristics that make them promising for applications ranging from bioremediation to biomedicine. In this study, a sulfated polysaccharide produced by a marine cyanobacterial strain and named cyanoflan was characterized in terms of morphology, chemical composition, and rheological and emulsifying properties. Cyanoflan has a 71 % carbohydrate content, with 11 % of sulfated residues, while the protein account for 4 % of dry weight. The glycosidic-substitution analysis revealed a highly branched complex chemical structure with a large number of sugar residues. The cyanoflan high molecular mass fractions (above 1 MDa) and entangled structure is consistent with its high apparent viscosity in aqueous solutions and high emulsifying activity. It showed to be a typical non-Newtonian fluid with pseudoplastic behavior. Altogether, these results confirm that cyanoflan is a versatile carbohydrate polymer that can be used in different biotechnological applications, such as emulsifying/thickening agent in food or cosmetic industries.
Collapse
Affiliation(s)
- Rita Mota
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Ricardo Vidal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Carolina Pandeirada
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Flores
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Alessandra Adessi
- DAGRI - Department of Agriculture, Food, Environment and Forestry, Florence University, Via Maragliano, 77, I-50144 Firenze, Italy.
| | - Roberto De Philippis
- DAGRI - Department of Agriculture, Food, Environment and Forestry, Florence University, Via Maragliano, 77, I-50144 Firenze, Italy.
| | - Cláudia Nunes
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; CICECO, Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
| |
Collapse
|
23
|
Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. J Biosci Bioeng 2019; 129:206-214. [PMID: 31471140 DOI: 10.1016/j.jbiosc.2019.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
A high slime-producing Lactobacillus fermentum strain (named as L. fermentum S1) was isolated from traditional fermented Fuyuan pickle, which was made of white turnip and collected from Fuyuan county, Yunnan province, China. We extracted and purified the exopolysaccharides from L. fermentum S1, and investigated their preliminary structure characteristics and biological activities. Three purified exopolysaccharide fractions, designated as EPS1, EPS2 and EPS3, were obtained from the culture supernatant of L. fermentum S1 by ethanol precipitation, anion exchange and gel filtration chromatography. The EPS2 and EPS3 were homogeneous with molecular weights of 4.45 × 106 and 2.82 × 106 Da, respectively. All the purified EPS fractions were composed of glucose, galactose, mannose and arabinose, but with different molar ratios. EPS1, EPS2 and EPS3 presented different surface morphologies and their degradation temperatures were 302.7°C, 316.3°C and 316.9°C, respectively. Bioactivity research showed that L. fermentum S1 EPS elicited free radical scavenging capacity and ferric reducing antioxidant power, and 1 mg/mL of EPS significantly improved the gastrointestinal transit tolerance of non EPS-producing strain L. fermentum LG1. Moreover, S1 EPS had a favorable anti-biofilm activity against Escherichia coli and Staphylococcus aureus. These results indicated that S1 EPS could be explored as a promising functional adjunct for application in foods.
Collapse
|
24
|
Wang K, Niu M, Yao D, Zhao J, Wu Y, Lu B, Zheng X. Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1. Int J Biol Macromol 2019; 139:252-261. [PMID: 31374277 DOI: 10.1016/j.ijbiomac.2019.07.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 11/27/2022]
Abstract
A cell-bound exopolysaccharide (c-EPS) from Lactobacillus fermentum S1 was isolated and purified to near homogeneity by anion exchange and gel filtration chromatography. The c-EPS is a homogeneous heteropolysaccharide with an average molecular weight of 7.19 × 105 Da and comprises mainly mannose, rhamnose, glucose, and galactose. Fourier transform infrared spectroscopy spectrum of the c-EPS exhibited typical characteristic absorption peaks of polysaccharides. Methylation and NMR analyses showed that the c-EPS had a backbone of α-D-Galp-(1 → 3), α-L-Rhap-(1 → 2), α-D-Glcp-(1 → 3), β-D-Galp-(1 → 3), β-D-Glclp-(1 → 2), and β-L-Rhap-(1 → 3,4) residues, terminated with α-D-Manp-(1 → residue. The advanced structure study indicated the c-EPS not to have a triple-helical conformation, while the microstructural study revealed a hollow porous structure for c-EPS. Further, the thermal analysis showed that the degradation temperature for the c-EPS was 288.0 °C; its peak temperature was 89.4 °C with an enthalpy value of 273.1 J/g. Moreover, the c-EPS exhibited potent DPPH, hydroxyl, and ABTS+ radicals scavenging activities, as well as FRAP in a dose-dependent manner, which could significantly enhance the T-AOC and SOD activity and reduce MDA level in Caenorhabditis elegans. Therefore, this c-EPS could be utilized as a promising natural antioxidant for application in functional foods.
Collapse
Affiliation(s)
- Kun Wang
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing, PR China
| | - Mengmeng Niu
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Di Yao
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Jing Zhao
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yue Wu
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Baoxin Lu
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing, PR China.
| | - Xiqun Zheng
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing, PR China.
| |
Collapse
|
25
|
Cyanobacteria as Nanogold Factories II: Chemical Reactivity and anti-Myocardial Infraction Properties of Customized Gold Nanoparticles Biosynthesized by Cyanothece sp. Mar Drugs 2019; 17:md17070402. [PMID: 31288394 PMCID: PMC6669522 DOI: 10.3390/md17070402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023] Open
Abstract
Cyanothece sp., a coccoid, unicellular, nitrogen-fixing and hydrogen-producing cyanobacterium, has been used in this study to biosynthesize customized gold nanoparticles under certain chemical conditions. The produced gold nanoparticles had a characteristic absorption band at 525–535 nm. Two types of gold nanoparticle, the purple and blue, were formed according to the chemical environment in which the cyanobacterium was grown. Dynamic light scattering was implemented to estimate the size of the purple and blue nanoparticles, which ranged from 80 ± 30 nm and 129 ± 40 nm in diameter, respectively. The highest scattering of laser light was recorded for the blue gold nanoparticles, which was possibly due to their larger size and higher concentration. The appearance of anodic and cathodic peaks in cyclic voltammetric scans of the blue gold nanoparticles reflected the oxidation into gold oxide, followed by the subsequent reduction into the nano metal state. The two produced forms of gold nanoparticles were used to treat isoproterenol-induced myocardial infarction in experimental rats. Both forms of nanoparticles ameliorated myocardial infarction injury, with a slight difference in their curative activity with the purple being more effective. Mechanisms that might explain the curative effect of these nanoparticles on the myocardial infarction were proposed. The morphological, physiological, and biochemical attributes of the Cyanothece sp. cyanobacterium were fundamental for the successful production of “tailored” nanoparticles, and complemented the chemical conditions for the differential biosynthesis process. The present research represents a novel approach to manipulate cyanobacterial cells towards the production of different-sized gold nanoparticles whose curative impacts vary accordingly. This is the first report on that type of manipulated gold nanoparticles biosynthesis which will hopefully open doors for further investigations and biotechnological applications.
Collapse
|
26
|
Deprá MC, Mérida LG, de Menezes CR, Zepka LQ, Jacob-Lopes E. A new hybrid photobioreactor design for microalgae culture. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Apios americana Medikus tuber polysaccharide exerts anti-inflammatory effects by activating autophagy. Int J Biol Macromol 2019; 130:892-902. [PMID: 30840871 DOI: 10.1016/j.ijbiomac.2019.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
The tubers of Apios americana Medikus possess high nutritional value and have been used as food in many countries for a long time. However, few researches have focused on the tuber polysaccharides. In the present study, a purified polysaccharide (ATP-1) was isolated with the average molecular weights of 12.16 kDa. ATP-1 significantly suppressed the release of nitric oxide (NO) and inflammatory cytokines from LPS-induced RAW 264.7 cells, as well as oxidative stress and mitochondrial dysfunction. Meanwhile, ATP-1 reduced oxidative damage via the NF-κB, MAPKs and Nrf2-Keap1 signaling pathways in RAW264.7 macrophages. Furthermore, autophagy was activated by HMGB1-Beclin1, Sirt1-FoxO1 and Akt-mTOR signaling pathways, leading to a relief of oxidative stress, mitochondrial dysfunction, inflammation and an expression enhancement of autophagy-related proteins, such as LC3, Beclin1, Atg4, Atg5, and Atg7. In summary, our results suggested that ATP-1 might help to activate the anti-inflammation system,resulting in prevention of LPS-induced damage in RAW264.7 cells.
Collapse
|
28
|
de Jesus CS, de Jesus Assis D, Rodriguez MB, Menezes Filho JA, Costa JAV, de Souza Ferreira E, Druzian JI. Pilot-scale isolation and characterization of extracellular polymeric substances (EPS) from cell-free medium of Spirulina sp. LEB-18 cultures under outdoor conditions. Int J Biol Macromol 2018; 124:1106-1114. [PMID: 30521900 DOI: 10.1016/j.ijbiomac.2018.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 11/26/2022]
Abstract
This objective of this work was to monitor the EPS production during the growth of Spirulina sp. LEB-18, evaluate the productivity and to characterize the exopolymers obtained on pilot-scale under outdoor conditions. The production of crude EPS occurred in all phases of biomass growth and was approximately ten folds higher than that biomass concentration of Spirulina sp. LEB-18 at the end cultivation, demonstrating the importance of the use of supernatant after harvesting of Spirulina to obtain high value bioproducts. The EPS extracted by Spirulina sp. LEB-18 are typically heteropolymers with one high molecular weight fraction (polysaccharides) with potential to be utilized as an alternative bioflocculant and another fraction of lower molecular mass (proteins). The presence of uronic acids, pyruvates and acyl groups of carbohydrates or carboxylic groups of amino acids in protein moiety is the main responsible for overall negative charge of EPS, which is also of biotechnological importance. Moreover, due to the pseudoplastic behavior of the solutions and high thermal stability, the obtained EPS can be widely applied in several industrial sectors, thus determining its technological and market potentiality.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | | | | |
Collapse
|
29
|
Montero-Lobato Z, Vázquez M, Navarro F, Fuentes JL, Bermejo E, Garbayo I, Vílchez C, Cuaresma M. Chemically-Induced Production of Anti-Inflammatory Molecules in Microalgae. Mar Drugs 2018; 16:E478. [PMID: 30513601 PMCID: PMC6315467 DOI: 10.3390/md16120478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 01/13/2023] Open
Abstract
Microalgae have been widely recognized as a valuable source of natural, bioactive molecules that can benefit human health. Some molecules of commercial value synthesized by the microalgal metabolism have been proven to display anti-inflammatory activity, including the carotenoids lutein and astaxanthin, the fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), and sulphated polysaccharides. These molecules can accumulate to a certain extent in a diversity of microalgae species. A production process could become commercially feasible if the productivity is high and the overall production process costs are minimized. The productivity of anti-inflammatory molecules depends on each algal species and the cultivation conditions, the latter being mostly related to nutrient starvation and/or extremes of temperature and/or light intensity. Furthermore, novel bioprocess tools have been reported which might improve the biosynthesis yields and productivity of those target molecules and reduce production costs simultaneously. Such novel tools include the use of chemical triggers or enhancers to improve algal growth and/or accumulation of bioactive molecules, the algal growth in foam and the surfactant-mediated extraction of valuable compounds. Taken together, the recent findings suggest that the combined use of novel bioprocess strategies could improve the technical efficiency and commercial feasibility of valuable microalgal bioproducts production, particularly anti-inflammatory compounds, in large scale processes.
Collapse
Affiliation(s)
- Zaida Montero-Lobato
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - María Vázquez
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Francisco Navarro
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Juan Luis Fuentes
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Elisabeth Bermejo
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Inés Garbayo
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| | - María Cuaresma
- Algal Biotechnology Group, CIDERTA, RENSMA and Faculty of Sciences, University of Huelva, 21007 Huelva, Spain.
| |
Collapse
|
30
|
Ziadi M, Bouzaiene T, M'Hir S, Zaafouri K, Mokhtar F, Hamdi M, Boisset-Helbert C. Evaluation of the Efficiency of Ethanol Precipitation and Ultrafiltration on the Purification and Characteristics of Exopolysaccharides Produced by Three Lactic Acid Bacteria. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1896240. [PMID: 30320131 PMCID: PMC6167595 DOI: 10.1155/2018/1896240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022]
Abstract
Exopolysaccharides (EPS) produced by three Lactic Acid Bacteria strains, Lactococcus lactis SLT10, Lactobacillus plantarum C7, and Leuconostoc mesenteroides B3, were isolated using two methods: ethanol precipitation (EPS-ETOH) and ultrafiltration (EPS-UF) through a 10 KDa cut-off membrane. EPS recovery by ultrafiltration was higher than ethanol precipitation for Lactococcus lactis SLT10 and Lactobacillus plantarum C7. However, it was similar with both methods for Leuconostoc mesenteroides B3. The monomer composition of the EPS fractions revealed differences in structures and molar ratios between the two studied methods. EPS isolated from Lactococcus lactis SLT10 are composed of glucose and mannose for EPS-ETOH against glucose, mannose, and rhamnose for EPS-UF. EPS extracted from Lactobacillus plantarum C7 and Leuconostoc mesenteroides B3 showed similar composition (glucose and mannose) but different molar ratios. The molecular weights of the different EPS fractions ranged from 11.6±1.83 to 62.4±2.94 kDa. Molecular weights of EPS-ETOH fractions were higher than those of EPS-UF fractions. Fourier transform infrared (FTIR) analysis revealed a similarity in the distribution of the functional groups (O-H, C-H, C=O, -COO, and C-O-C) between the EPS isolated from the three strains.
Collapse
Affiliation(s)
- Manel Ziadi
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Taroub Bouzaiene
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Sana M'Hir
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Kaouther Zaafouri
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Ferid Mokhtar
- Centre de Recherche sur les Macromolécules Végétales, CERMAV, CNRS, 601 rue de la Chimie, 38041 Grenoble Cedex 9, France
| | - Mokhtar Hamdi
- Laboratory of Microbial Ecology and Technology, LETMi-INSAT, National Institute of Applied Sciences and Technology INSAT, Carthage University, 2 Boulevard de la Terre, BP 676, 1080 Tunis, Tunisia
| | - Claire Boisset-Helbert
- National Research Center for Materials Science, Borj-Cedria Technopark, BP N°73, 8027 Soliman, Tunisia
| |
Collapse
|
31
|
Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydr Polym 2018; 195:515-524. [DOI: 10.1016/j.carbpol.2018.04.126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
|
32
|
Borah D, Nainamalai S, Gopalakrishnan S, Rout J, Alharbi NS, Alharbi SA, Nooruddin T. Biolubricant potential of exopolysaccharides from the cyanobacterium Cyanothece epiphytica. Appl Microbiol Biotechnol 2018. [PMID: 29520599 DOI: 10.1007/s00253-018-8892-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Exopolysaccaharides (EPS) are carbohydrate polymers secreted by microbial cells, as a protective layer termed sheath or capsule. Their composition is variable. Optimisation of nutrient factors and the effect of some simple stresses on the ability of Cyanothece epiphytica to produce EPS were tested. Of the tested stresses, exposure to ozone for 50 s at 0.06 mg/L resulted in a relatively high EPS yield, without any damage to cell structure. EPS was characterised physicochemically. Chemically, it was found to be composed of pentoses arabinose and xylose; hexoses glucose, galactose and mannose; and the deoxyhexose fucose sugars which were sulphated and with different functional groups. EPS from C. epiphytica was found to be a good hydrophobic dispersant, an excellent emulsifier as well as a flocculant. Its potential as a biolubricant with characteristics better than the conventional lubricant 'grease' was revealed through analysis. This study gave the clue for developing a commercial technology to produce a less expensive and more environment-friendly natural lubricant from the cyanobacterium C. epiphytica for tribological applications.
Collapse
Affiliation(s)
- Dharitri Borah
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Sangeetha Nainamalai
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Subramanian Gopalakrishnan
- Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College and Research Institute Campus, Puducherry, 607402, India
| | - Jayashree Rout
- Department of Ecology and Environmental Science, Assam University, Silchar, 788011, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Thajuddin Nooruddin
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India. .,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
33
|
Liu G, Miao X. Switching cultivation for enhancing biomass and lipid production with extracellular polymeric substance as co-products in Heynigia riparia SX01. BIORESOURCE TECHNOLOGY 2017; 227:214-220. [PMID: 28038398 DOI: 10.1016/j.biortech.2016.12.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
Switching cultivation (mixotrophic-heterotrophic, 12h:12h) of Heynigia riparia SX01 was studied, the maximum biomass concentration of 3.55gL-1 and lipid yield of 1.45gL-1 were achieved after 8days cultivation. The extracellular polymeric substance (EPS) was developed as co-product. Addition of MgSO4 could enhance the production of EPS. The highest amount of 0.60gL-1 EPS was obtained with the addition of 2gL-1 MgSO4, the self-flocculation efficiency was as high as 83% at this condition. The total lipid and lipid fractions did not show differences with extra MgSO4. Based on the above results, a new biodiesel production model was proposed: culturing Heynigia riparia SX01 with extra 2gL-1 MgSO4 by switching cultivation and using self flocculation to collect microalgae for biodiesel production, while EPS was collected as valuable co-products.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
34
|
Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 2016; 34:1159-1179. [DOI: 10.1016/j.biotechadv.2016.08.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
|
35
|
Exopolysaccharides of Halophilic Microorganisms: An Overview. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
36
|
Mei YZ, Huang PW, Liu Y, He W, Fang WW. Cold stress promoting a psychrotolerant bacterium Pseudomonas fragi P121 producing trehaloase. World J Microbiol Biotechnol 2016; 32:134. [PMID: 27339315 DOI: 10.1007/s11274-016-2097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
A newly isolated Pseudomonas fragi P121 strain in a soil sample taken from the Arctic Circle is able to produce trehalose. The P121 strain was able to grow at temperatures ranging from 4 to 25 °C, had an optimum pH of 6.5, and an optimum salt concentration of 2 %. The P121 strain had a survival rate of 29.1 % after being repeatedly frozen and thawed five times, and a survival rate of 78.9 % when placed in physiological saline for 15 days at 20 °C after cold shock, which is far higher than the type strain Pseudomonas fragi ATCC 4973. The P121 strain could produce 2.89 g/L trehalose, which was 18.6 % of dry cell weight within 52 h in a 25 L fermention tank using the malt extract prepared from barley as medium at 15 °C, while only 11.8 % of dry cell weight at 20 °C. These results suggested that cold stress promoted the strain producing trehalose. It is the first reported cold-tolerant bacterium that produces trehalose, which may protect cells against the cold environment.
Collapse
Affiliation(s)
- Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China.
| | - Peng-Wei Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Yang Liu
- College of Life Science, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, China
| | - Wei He
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Wen-Wan Fang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
37
|
Metal-Induced Production of a Novel Bioadsorbent Exopolysaccharide in a Native Rhodotorula mucilaginosa from the Mexican Northeastern Region. PLoS One 2016; 11:e0148430. [PMID: 26828867 PMCID: PMC4734696 DOI: 10.1371/journal.pone.0148430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/18/2016] [Indexed: 11/19/2022] Open
Abstract
There is a current need to develop low-cost strategies to degrade and eliminate industrially used colorants discharged into the environment. Colorants discharged into natural water streams pose various threats, including: toxicity, degradation of aesthetics and inhibiting sunlight penetration into aquatic ecosystems. Dyes and colorants usually have complex aromatic molecular structures, which make them very stable and difficult to degrade and eliminate by conventional water treatment systems. The results in this work demonstrated that heavy metal-resistant Rhodotorula mucilaginosa strain UANL-001L isolated from the northeast region of Mexico produce an exopolysaccharide (EPS), during growth, which has colorant adsorption potential. The EPS produced was purified by precipitation and dialysis and was then physically and chemically characterized by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and chemical elemental analysis. Here, the ability of the purified EPS produced to adsorb methylene blue (MB), which served as a model colorant, is studied. MB adsorption by the EPS is found to follow Langmuir Adsorption Isotherm kinetics at 25°C. Further, by calculating the Langmuir constant the adsorption capabilities of the EPS produced by the Rhodotorula mucilaginosa strain UANL-001L is compared to that of other adsorbents, both, microbially produced and from agroindustrial waste. The total adsorption capacity of the EPS, from the Rhodotorula mucilaginosa strain UANL-001L, was found to be two-fold greater than the best bioadsorbents reported in the literature. Finally, apart from determining which heavy metals stimulated EPS production in the strain, the optimal conditions of pH, heavy metal concentration, and rate of agitation of the growing culture for EPS production, was determined. The EPS reported here has the potential of aiding in the efficient removal of colorants both in water treatment plants and in situ in natural water streams.
Collapse
|
38
|
Biosynthesis of selenium rich exopolysaccharide (Se-EPS) by Pseudomonas PT-8 and characterization of its antioxidant activities. Carbohydr Polym 2016; 142:230-9. [PMID: 26917395 DOI: 10.1016/j.carbpol.2016.01.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
Biosynthesis of organo-selenium is achieved by submerged fermentation of selenium-tolerant Pseudomonas PT-8. The end product of metabolic process is selenium-bearing exopolysaccharide (Se-EPS), which contains a higher content of uronic acid than the exopolysaccharide (EPS) by the strain without selenium in the culture medium. Selenium content in Se-EPS reached a maximum yield of 256.7 mg/kg when using an optimized culture condition. Crude Se-EPS was purified into two fractions-a pH neutral Se-EPS-1 and an acidic Se-EPS-2. Structure and chemical composition of Se-EPS-2 were investigated by chromatographic analyses. Results showed that Se-EPS-2 was a homogenous polysaccharide with molecular weight of 7.3 kDa, consisting of monosaccharides, rhamnose, arabinose, xylose, mannose, glucose and galactose with a molar ratio of 19.58:19.28:5.97:18.99:23.70:12.48, respectively. Compared to the EPS, the content of rhamnose in Se-EPS increased and molecular weight decreased. The Se-EPS had strong scavenging actions on DPPH•, •OH and •O2(-), which is much higher than the EPS.
Collapse
|
39
|
Dubey AK, Jeevaratnam K. Structural characterization and functional evaluation of an exopolysaccharide produced by Weissella confusa AJ53, an isolate from fermented Uttapam batter supplemented with Piper betle L. leaves. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0281-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.07.040] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 2015; 82:315-27. [PMID: 26523336 DOI: 10.1016/j.ijbiomac.2015.10.081] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 11/23/2022]
Abstract
Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications.
Collapse
|
42
|
Vasanthakumari DS, Harikumar S, Beena DJ, Pandey A, Nampoothiri KM. Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria. Appl Biochem Biotechnol 2015; 176:440-53. [DOI: 10.1007/s12010-015-1586-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
|
43
|
Mehta A, Sidhu C, Pinnaka AK, Roy Choudhury A. Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver. PLoS One 2014; 9:e98798. [PMID: 24932690 PMCID: PMC4059621 DOI: 10.1371/journal.pone.0098798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023] Open
Abstract
The present study demonstrates exopolysaccharide production by an osmotolerant marine isolate and also describes further application of the purified polysaccharide for production of colloidal suspension of silver nanoparticles with narrow size distribution. Phylogenetic analysis based on 16S r RNA gene sequencing revealed close affinity of the isolate to Alteromonas macleodii. Unlike earlier reports, where glucose was used as the carbon source, lactose was found to be the most suitable substrate for polysaccharide production. The strain was capable of producing 23.4 gl(-1) exopolysaccharide with a productivity of 7.8 gl(-1) day(-1) when 15% (w/v) lactose was used as carbon source. Furthermore, the purified polysaccharide was able to produce spherical shaped silver nanoparticles of around 70 nm size as characterized by Uv-vis spectroscopy, Dynamic light scattering and Transmission electron microscopy. These observations suggested possible commercial potential of the isolated strain for production of a polysaccharide which has the capability of synthesizing biocompatible metal nanoparticle.
Collapse
Affiliation(s)
- Ananya Mehta
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Chandni Sidhu
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Anil Kumar Pinnaka
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
- * E-mail:
| |
Collapse
|
44
|
Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int J Biol Macromol 2014; 67:71-8. [DOI: 10.1016/j.ijbiomac.2014.02.056] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 11/18/2022]
|
45
|
Wang K, Li W, Rui X, Chen X, Jiang M, Dong M. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol 2014; 63:133-9. [DOI: 10.1016/j.ijbiomac.2013.10.036] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/17/2013] [Accepted: 10/26/2013] [Indexed: 01/29/2023]
|
46
|
Dewapriya P, Kim SK. Marine microorganisms: An emerging avenue in modern nutraceuticals and functional foods. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Manivasagan P, Kim SK. Extracellular polysaccharides produced by marine bacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 72:79-94. [PMID: 25081078 DOI: 10.1016/b978-0-12-800269-8.00005-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Extracellular polysaccharides (EPSs) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids, and humic substances. Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides, and extracellular polysaccharides or exopolysaccharides. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of marine microorganisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. The aim of this chapter is to give an overview of current knowledge on extracellular polysaccharides producing marine bacteria isolated from marine environment.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Marine Biotechnology Laboratory, Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Se-Kwon Kim
- Department of Marine-bio Convergence Science, Specialized Graduate School Science and Technology Convergence, Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea.
| |
Collapse
|
48
|
Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol Adv 2013; 31:1532-42. [DOI: 10.1016/j.biotechadv.2013.07.011] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
|
49
|
Xu H, Yu G, Jiang H. Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. CHEMOSPHERE 2013; 93:75-81. [PMID: 23726883 DOI: 10.1016/j.chemosphere.2013.04.077] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
Enhanced knowledge on extracellular polymeric substances (EPSs) of mucilaginous cyanobacterial blooms could improve our understanding of its ecological significance. This study for the first time investigated the extraction and fractionation of EPS matrix from cyanobacterial blooms in a eutrophic freshwater lake, and the changes in chemical compositions in EPS matrix during extraction were systematically investigated by two-dimensional correlation spectroscopy (2D-COS). The analyses demonstrated that organic matters were unevenly distributed among the EPS matrix, with most of organic matters being tightly bound to cyanobacterial cells. In addition, the soluble and loosely bound EPS fractions mainly consisted of proteins, while polysaccharides became the predominant compounds in the tightly bound EPS fraction. Heating extraction at 60°C for 30min led to a high EPS yield and low cell lysis when compared with other extraction methods. The 2D-COS results revealed a preferential release of OH in polysaccharides versus amide I in proteins in the initial heating; whereas further extension of heating resulted in EPS degradation, with degradation rates arranging in a decreased order from amide I, amide II, polysaccharides-like substances to polysaccharides. These results obtained would help enhance our insights into EPS characterization from cyanobacterial blooms in eutrophic lakes.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | | | | |
Collapse
|
50
|
Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: Evaluation of different carbon sources. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2013.03.002\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|