1
|
Bagbi Y, Sarswat A, Kumar R, Panda AK, Mohan D, Solanki PR. Excellent Adsorption of Lead (II) and Chromium (VI) from Water Using Zwitterions (-NH 3+ and -COO -) Functionalized Nano Lanthanum Oxide: Kinetic, Isotherm, Thermodynamic, and Surface Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11558-11570. [PMID: 38771341 DOI: 10.1021/acs.langmuir.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Zwitterion amino acid l-cysteine functionalized lanthanum oxide nanoparticles (l-Cyst-La2O3 NPs) have been synthesized for the first time with lanthanum acetate as the precursor, NH4OH as the base, and l-cysteine as the in situ functionalized mediator. The typical size of l-Cyst-La2O3 NPs was obtained in the range of 15-20 nm from the TEM technique. A cytotoxicity test of l-Cyst-La2O3 NPs was performed in Raw 264.7 cell lines, which were shown to be highly biocompatible. The point zero charge pH (pHPZC) of bare and l-Cyst functionalized La2O3 NPs was obtained at pH 6 and 2. The maximum uptake capacities of l-Cyst-La2O3 NPs at temperatures 25-45 °C were obtained as 137-282 mg/g for Pb2+ and 186-256 mg/g for Cr6+. All of these values are much higher than those reported in the literature with other nanomaterials. The presence of -SH, -NH2, and -COOH functional groups in zwitterion l-cysteine provides multiple binding sites leading to the high adsorption of Pb2+ and Cr6+. Five-cycle desorption studies were successfully performed to regenerate the spent l-Cyst-La2O3 NPs.
Collapse
Affiliation(s)
- Yana Bagbi
- Department of Physics and Astrophysics, University of Delhi, New Delhi 110006, India
| | - Ankur Sarswat
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Robin Kumar
- National Institute of Immunology, New Delhi 110067, India
| | - Amulya K Panda
- National Institute of Immunology, New Delhi 110067, India
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Lissaneddine A, Aziz K, Ouazzani N, El Achaby M, Haydari I, Mandi L, Aziz F. Continuous treatment of highly concentrated tannery wastewater using novel porous composite beads: Central composite design optimization study. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:513-532. [PMID: 37869602 PMCID: PMC10584791 DOI: 10.1007/s40201-023-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/27/2023] [Indexed: 10/24/2023]
Abstract
This present study depicts the successful employment of fixed-bed column for total chromium removal from tannery wastewater in dynamic mode using sodium alginate-powdered marble beads (SA-Marble) as adsorbent. The SA-Marble composite beads prepared were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Brunauer, Emmett and Teller (BET) method. The adsorption process performance of this bio-sorbent was examined in batches and columns for real effluent (tannery wastewater). After 90 min, the total chromium removal efficiency could be kept above 90% in the batch experiment. The adsorption kinetics fit better with the pseudo-second-order model, indicating the chemisorption process and the adsorption capacity of about 67.74 mg g-1 at 293 K (C0 = 7100 mg L-1) was obtained. Additionally, dynamic experiments indicate that the total chromium removal efficiency could be maintained above 90% after 120 min at 293 K and 60 min at 318 and 333 K; it's an endothermic but rapid process. The effects of two adsorption variables (Temperature and time) were investigated using central composite design (CCD), which is a subset of response surface methodology (total Cr, COD, sulfate, and total phosphorus percentage removal). This work paves a new avenue for synthesizing SA-Marble composite beads and provides an adsorption efficiency of total chromium removal from tannery wastewater. Graphical abstract
Collapse
Affiliation(s)
- Amina Lissaneddine
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Khalid Aziz
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real, Cadiz, 11510 Spain
| | - Naaila Ouazzani
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, VI Mohammed Polytechnic University (UM6P), Lot 660 – Hay Moulay Rachid, Benguerir, 43150 Morocco
| | - Imane Haydari
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Faissal Aziz
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| |
Collapse
|
3
|
Wei S, Chen W, Li Z, Liu Z, Xu A. Synthesis of cationic biomass lignosulfonate hydrogel for the efficient adsorption of Cr(VI) in wastewater with low pH. ENVIRONMENTAL TECHNOLOGY 2023; 44:2134-2147. [PMID: 34962213 DOI: 10.1080/09593330.2021.2024274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 05/30/2023]
Abstract
In the present study, we synthesized a cationic lignosulfonate hydrogel (LS-g-P (AM-co-DAC)) by grafting acrylamide (AM) and acryloxyethyl trimethyl ammonium chloride (DAC) onto sodium lignosulfonate (LS) via free radical copolymerization. The solution pH, contact time, initial concentration, and temperature were comprehensively investigated through the static adsorption method for the adsorption behaviours of Cr(VI) by the hydrogel. The experimental results show that the best conditions were a temperature of 30°C, a dosage of 0.1 g, pH = 3, a concentration of 50 mg / L, and contact time = 2 h with removal efficiencies of above 70% and adsorption capacity of 18.14 mg·g-1. The adsorption process followed the Langmuir isothermal model, indicating monolayer adsorption, and the maximum adsorption capacity was 58.86 mg·g-1. Adsorption kinetics results show that the pseudo-second-order kinetic model dominated the adsorption process, and the adsorption activation energy was 5.489 kJ·mol-1. In addition, the adsorption involved spontaneous exothermic and entropy reduction. The combination of FT-IR, SEM, and XRD was used to characterize the structure and properties of the prepared hydrogel, and the adsorption mechanism was the result of electrostatic attraction, physical and chemical adsorption, and hydrogen bond. The hydrogel has good regenerative properties after desorption. Overall, this work synthesized an environmentally friendly biomass lignin-based hydrogel, which can be used as an adsorbent for the treatment of anionic pollutants, and explored a new method for the high-value utilization of industrial lignin.HighlightsNovel cationic lignosulfonate hydrogel (LS-g-P (AM-co-DAC)) was synthesized by a free radical method.SEM and XRD results confirmed the surface of the obtained hydrogel shows a 3D network structure and does not have a crystal structure.LS-g-P (AM-co-DAC) hydrogel adsorbent can selectively adsorb Cr6+ at pH 3.0.The adsorption conditions and the adsorption mechanism were studied in detail.Electrostatic interaction plays a key role in the adsorption of Cr6+.
Collapse
Affiliation(s)
- Shuxia Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning People's Republic of China
| | - Wu Chen
- School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou People's Republic of China
| | - Zhili Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning People's Republic of China
| | - Zhuozhuang Liu
- School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou People's Republic of China
| | - Ao Xu
- School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou People's Republic of China
| |
Collapse
|
4
|
Zhang B, Jiao W. Biochar facilitated bacterial reduction of Cr(VI) by Shewanella Putrefaciens CN32: Pathways and surface characteristics. ENVIRONMENTAL RESEARCH 2022; 214:113971. [PMID: 35952752 DOI: 10.1016/j.envres.2022.113971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Biochar can facilitate the microbial reduction of various pollutants in soil and groundwater environments, but its impact on Cr(VI) reduction by dissimilatory metal reducing bacteria (DMRB) remains to be systematically investigated. In this study, we prepared biochars at 500 °C and 700 °C from wheat straw and grass, and investigated the impact of these biochars on Cr(VI) reduction by a model DMRB, Shewanella Putrefaciens CN32 (CN32). Pristine biochars abiotically reduced Cr(VI), which decreased the concentration and toxicity of chromium to CN32 cells, and brought about higher overall Cr(VI) removal extent after CN32 were added sequentially; on the other hand, no enhancement effect were observed when biochars and CN32 were added simultaneously. Further tests between biologically reduced biochars and Cr(VI) revealed that the reaction rates between bioreduced biochars and Cr(VI) are relatively sluggish compared to that of direct Cr(VI) reduction by CN32, which prohibited biochars from directly accelerating the Cr(VI) reduction by CN32 in simultaneous-addition scenario. The relative importance of biochars' surface functional groups and surface areas on their reactivities towards Cr(VI) reduction were also investigated. This study deepened our understanding towards the role of biochar played during bacterial Cr(VI) reduction and could potentially contribute to optimizing the biochar-based Cr(VI) bioremediation strategies.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
5
|
Deb AK, Biswas B, Naidu R, Rahman MM. Mechanistic insights of hexavalent chromium remediation by halloysite-supported copper nanoclusters. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126812. [PMID: 34396956 DOI: 10.1016/j.jhazmat.2021.126812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) pollution is a significant environmental concern with remediation challenge. Hexavalent chromium (Cr(VI)) is more toxic than trivalent chromium (Cr(III)) due to its mutagenicity and oncogenicity. In this investigation, a multi-functional material, copper nanoclusters (CuNCs)-halloysite nanotubes (HNT) composite (CuNCs@HNT), has been synthesised in an eco-friendly manner and utilised for Cr(VI) remediation. Advanced analytical tools confirmed the seeding of ultra-fine CuNCs onto HNT surfaces. The maximum adsorption capacity of CuNCs@HNT is 79.14 ± 6.99 mg/g at pH 5 ± 0.1 with an increment at lower pHs. This performance was comparable for real surface stream water as well as other reported materials. The pseudo-second-order kinetic-, intra-particle diffusion- and Freundlich isotherm models well fit the experimental data implying that the chemisorption, multiphase diffusion and multi-molecular layer distribution occurred during adsorption. The Fourier-transform infrared and the x-ray photoelectron spectra also ensured the transformation of Cr(VI) to Cr(III) indicating the material's suitability for concurrent adsorption and reduction of Cr(VI). While coexisting cations and anions did not overwhelm this adsorption, CuNCs@HNT was regenerated and reused five successive times in adsorption-desorption cycles without significant loss of adsorption capacity and material's integrity. Therefore, this multi-functional, biocompatible, low-cost and stable CuNCs@HNT composite may have practical application for similar toxic metals remediation.
Collapse
Affiliation(s)
- Amal Kanti Deb
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia; Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Bhabananda Biswas
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, STEM UniSA, Mawson Lakes Campus, SA 5095, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
6
|
Prabakaran E, Pillay K. Self-Assembled Silver Nanoparticles Decorated on Exfoliated Graphitic Carbon Nitride/Carbon Sphere Nanocomposites as a Novel Catalyst for Catalytic Reduction of Cr(VI) to Cr(III) from Wastewater and Reuse for Photocatalytic Applications. ACS OMEGA 2021; 6:35221-35243. [PMID: 34984255 PMCID: PMC8717378 DOI: 10.1021/acsomega.1c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/16/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles decorated on an exfoliated graphitic carbon nitride/carbon sphere (AgNP/Eg-C3N4/CS) nanocomposites were synthesized by an adsorption method with a self-assembled process. These nanoparticles were characterized by different techniques like UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), electrochemical impedance spectroscopy (EIS), and ζ potential. AgNP/Eg-C3N4/CS nanocomposites showed a higher catalytic reduction activity for the conversion of Cr(VI) into Cr(III) with formic acid (FA) at 45 °C when compared to bulk graphitic carbon nitride (Bg-C3N4, Eg-C3N4, CS, and Eg-C3N4/CS). The kinetic rate constants were determined as a function of catalyst dosage, concentration of Cr(VI), pH, and temperature for the AgNP/Eg-C3N4/CS nanocomposite. This material showed higher reduction efficiency (98.5%, k = 0.0621 min-1) with turnover frequency (0.0158 min-1) for the reduction of Cr(VI) to Cr(III). It also showed great selectivity and high stability after six repeated cycles (98.5%). Further, the reusability of the Cr(III)-AgNP/Eg-C3N4/CS nanocomposite was also investigated for the photocatalytic degradation of methylene blue (MB) under visible light irradiation with various time intervals and it showed good degradation efficiency (α = 97.95%). From these results, the AgNP/Eg-C3N4/CS nanocomposite demonstrated higher catalytic activity, improved environmental friendliness, lower cost for the conversion of toxic Cr(VI) to Cr(III) in solutions, and also good reusability.
Collapse
|
7
|
Chemical modification of xanthan gum through graft copolymerization: Tailored properties and potential applications in drug delivery and wastewater treatment. Carbohydr Polym 2021; 251:117095. [DOI: 10.1016/j.carbpol.2020.117095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
|
8
|
Lei C, Wang C, Chen W, He M, Huang B. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139316. [PMID: 32447080 DOI: 10.1016/j.scitotenv.2020.139316] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 05/27/2023]
Abstract
Devising new versatile nano-adsorbents for efficient capturing of heavy metals in water represents one important direction for environmental remediation. Here, the application of a novel polyaniline@magnetic chitosan (PANI@MCTS) composite consisting of numerous nitrogen-containing functional groups and magnetic Fe3O4 nanoparticles was reported for the efficient treatment of chromium-containing wastewater. This material exhibited a fast adsorption kinetics (80% removal efficiency within 15 min) and strong adsorption capacity (186.6 mg(Cr(VI))•g-1(PANI@MCTS)) for removing Cr(VI) in water as well as an excellent magnetic separation ability. The adsorption of Cr(VI) was found to follow the Langmuir isotherm model and comply with the pseudo-second-order kinetics. More importantly, the PANI@MCTS could facilitate the in-situ chemical reduction of Cr(VI) to Cr(III) that enabled the detoxification treatment of Cr(VI) in water. XPS analysis revealed the simultaneous adsorption and in-situ chemical reduction of Cr(VI) on the PANI@MCTS, where the coordination and electrostatic interaction between Cr(VI) and the positively charged nitrogen containing functional groups contributed to the adsorption, and the = N-/-NH- groups served as active redox pair triggered the in-situ chemical reduction reaction. The recycle experiment showed an excellent stability of this material with >90% removal efficiency after five repeats of treatment. This work provides a promising alternative material for the effective treatment of chromium-containing wastewater.
Collapse
Affiliation(s)
- Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Chunwei Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenqian Chen
- Department of Chemical Engineering and Technology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Miaohua He
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
9
|
Ouertani R, Ouertani A, Mahjoubi M, Bousselmi Y, Najjari A, Cherif H, Chamkhi A, Mosbah A, Khdhira H, Sghaier H, Chouchane H, Cherif A, Neifar M. New Plant Growth-Promoting, Chromium-Detoxifying Microbacterium Species Isolated From a Tannery Wastewater: Performance and Genomic Insights. Front Bioeng Biotechnol 2020; 8:521. [PMID: 32719777 PMCID: PMC7350417 DOI: 10.3389/fbioe.2020.00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium [Cr(VI)], widely generated by tannery activities, is considered among the most toxic substances and causes a serious damage for the environment and for human health. Interestingly, some microorganisms have a potential of bioremediation of chromium-contaminated wastewaters and soils through the reduction of Cr(VI) (soluble and harmful form) into Cr(III) (stable and non-toxic form). Here, we present the full genome sequence of a novel heavy-metal-resistant, plant growth-promoting bacterium (PGPB), Microbacterium metallidurans TL13, which was isolated from a Tunisian leather industry. The strain TL13 was resistant to many heavy metals, such as chromium, copper, nickel, cobalt, and arsenic. The 50% TL13 growth inhibitory concentration (IC50) values of HgCl2, CoCl2, K2Cr2O7, CuSO4, NiCl2, FeSO4, and Na2HAsO4 are 368, 445, 676, 1,590, 1,680, 4,403, and 7,007 mg/L, respectively, with the following toxicity order: HgCl2 > CoCl2 > K2Cr2O7 > CuSO4 > NiCl2 > FeSO4 > Na2HAsO4. This new strain was also able to promote the growth of the hybrid tomato (Elika F1) under chromium metal stress. Its whole genome sequence length was estimated to be 3,587,460 bp (3,393 coding sequences) with a G + C content of 70.7%. Functional annotation of the genome of TL13 revealed the presence of open reading frames (ORFs) involved in adaptation to metal stress, such as the chromate transport protein, cobalt–zinc–cadmium resistance protein, copper resistance protein, copper responsive transcriptional regulator, multidrug resistance transporters, arsenical resistance operon repressor, arsenate reductase, arsenic resistance protein, mercuric resistance operon regulatory protein, mercuric ion reductase, and organomercurial lyase. Moreover, genes for the production of glutathione peroxidase, catalase, superoxide dismutase, and thioredoxin reductase, which confer a higher tolerance to oxidative/metal stresses, were identified in TL13 genome. In addition, genes for heat shock tolerance, cold shock tolerance, glycine-betaine production, mineral phosphate solubilization, ammonia assimilation, siderophores, exopolysaccharides, polyketides, and lytic enzymes (cellulase, chitinase, and proteases) production that enable bacteria to survive biotic/abiotic stress and to promote plant growth and health were also revealed. Based on genome analysis and experimental approaches, strain TL13 appears to have evolved from various metabolic strategies and could play a role in ensuring sustainable environmental and agricultural systems.
Collapse
Affiliation(s)
- Rania Ouertani
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia.,Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Awatef Ouertani
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Yosra Bousselmi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Afef Najjari
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Asma Chamkhi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Hechmi Khdhira
- Management Environment Responsible in Tanneries Mégisseries du Maghreb, TMM, Grombalia, Tunisia
| | - Haitham Sghaier
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia.,Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, Sidi Thabet, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| | - Mohamed Neifar
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Sidi Thabet, Tunisia
| |
Collapse
|
10
|
Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, Nizamuddin S, Karri RR. Magnetic nanoadsorbents' potential route for heavy metals removal-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24342-24356. [PMID: 32306264 DOI: 10.1007/s11356-020-08711-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shaukat A Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan
| | | | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
11
|
Devatha CP, S S. Novel application of maghemite nanoparticles coated bacteria for the removal of cadmium from aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110038. [PMID: 31929071 DOI: 10.1016/j.jenvman.2019.110038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Heavy metals are classified as persistent pollutants owing to their nature of bioaccumulation and affect human life and environment, even in minor concentrations. Divalent Cadmium (Cd2+) is one of the heavy metal pollutants that are highly toxic. The present study investigates the novel application of maghemite nanoparticles coated Bacillus subtilis for the removal of Cd2+ ions from its aqueous solution by batch adsorption studies. Surface characterization of the biosorbent done by Scanning Electron Microscope (SEM) and the presence of maghemite nanoparticle coat was confirmed. Parameters like pH, initial metal ion concentration, contact time, and temperature that affect the biosorption of cadmium ions are analyzed, and the equilibrium adsorption capacity expressed as a function of each of the parameters. The mechanism of biosorption was studied by plotting adsorption isotherms, and it follows pseudo-second-order kinetics. Thermodynamic studies showed the process to be spontaneous and endothermic. At optimum conditions of pH 4, 30 °C, 120 rpm, maximum removal percentage of 83.5%, which accounts for an equilibrium adsorption capacity of 32.6 mg/g of biosorbent. There was a recovery of 76.4% of the biosorbent after adsorption studies. Based on the adsorptive capacity and good recovery of the biosorbent, maghemite coated Bacillus subtilis proves to be an efficient adsorbent for the removal of Cd2+ ions from its aqueous solution.
Collapse
Affiliation(s)
- C P Devatha
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, India.
| | - Shivani S
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, India.
| |
Collapse
|
12
|
Xian T, Di L, Sun X, Li H, Zhou Y, Yang H. Photo-Fenton Degradation of AO7 and Photocatalytic Reduction of Cr(VI) over CQD-Decorated BiFeO 3 Nanoparticles Under Visible and NIR Light Irradiation. NANOSCALE RESEARCH LETTERS 2019; 14:397. [PMID: 31889227 PMCID: PMC6937369 DOI: 10.1186/s11671-019-3206-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/08/2019] [Indexed: 05/11/2023]
Abstract
In this work, the carbon quantum dot (CQD)-decorated BiFeO3 nanoparticle photocatalysts were prepared by a hydrothermal method. The TEM observation and XPS characterization indicate that the CQDs are well anchored on the surface of BiFeO3 nanoparticles. Acid orange 7 (AO7) and hexavalent chromium (Cr(VI)) were chosen as the model pollutants to investigate the photocatalytic/photo-Fenton degradation and photocatalytic reduction performances of the as-prepared CQD/BiFeO3 composites under visible and near-infrared (NIR) light irradiation. Compared with bare BiFeO3 nanoparticles, the CQD/BiFeO3 composites exhibit significantly improved photocatalytic and photo-Fenton catalytic activities. Moreover, the composites possess good catalytic stability. The efficient photogenerated charges separation in the composites was demonstrated by the photocurrent response and electrochemical impedance spectroscopy (EIS) measurements. The main active species involved in the catalytic degradation reaction were clarified by radicals trapping and detection experiments. The underlying photocatalytic and photo-Fenton mechanisms are systematically investigated and discussed.
Collapse
Affiliation(s)
- Tao Xian
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, 810008 China
| | - Lijing Di
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, 810008 China
| | - Xiaofeng Sun
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, 810008 China
| | - Hongqin Li
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, 810008 China
| | - Yongjie Zhou
- College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, 810008 China
| | - Hua Yang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050 China
| |
Collapse
|
13
|
Makhado E, Pandey S, Ramontja J. Microwave-assisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: An efficient adsorption of hexavalent chromium. Carbohydr Polym 2019; 222:114989. [DOI: 10.1016/j.carbpol.2019.114989] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 01/24/2023]
|
14
|
Divriklioglu M, Akar ST, Akar T. A passively immobilized novel biomagsorbent for the effective biosorptive treatment of dye contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25834-25843. [PMID: 31270772 DOI: 10.1007/s11356-019-05716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
A new magnetic bio-based composite was designed by the magnetic modification of passively immobilized fungal cells. It was utilized for biosorptive decolorization of reactive dye-contaminated aquatic media. As a greener option, waste tea leaf tissues were used for the first time as an immobilization matrix for microbial cells. Immobilized magnetic cells (biomagsorbent) could be effectively used in both batch and dynamic flow mode treatment processes and real environmental application. Rapid equilibrium and high decolorization yields were observed for the target dye (reactive violet 1). The temperature did not significantly affect the process. Langmuir and the pseudo-second-order models could be better used to fit the process equilibrium and kinetics, respectively. Maximum monolayer sorption capacity was 152.88 mg g-1. High biosorption and desorption yields for 50 consecutive dynamic flow decolorization cycles were recorded as striking results. The breakthrough time was 3420 min. Simulated and industrial water treatment performance of biomagsorbent was found to be more than 90%. The mechanism was evaluated by IR and zeta potential analysis. The magnetic character of the sorbent provided good mechanical durability, easy separation, and excellent regeneration ability. Consequently, this work provides new insight into scalar enhancement of water treatment.
Collapse
Affiliation(s)
- Melike Divriklioglu
- Department of Chemistry, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, 26480, Eskişehir, Turkey
- Department of Medical Services and Techniques, İzmir Kavram Vocational School, Çengelkoy, Üsküdar, 34680, İstanbul, Turkey
| | - Sibel Tunali Akar
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Tamer Akar
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, 26480, Eskişehir, Turkey.
| |
Collapse
|
15
|
Mohammed K, Sahu O. Recovery of chromium from tannery industry waste water by membrane separation technology: Health and engineering aspects. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Shafizadeh F, Taghizadeh M, Hassanpour S. Preparation of a novel magnetic Pd(II) ion-imprinted polymer for the fast and selective adsorption of palladium ions from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18493-18508. [PMID: 31044383 DOI: 10.1007/s10924-016-0929-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/22/2019] [Indexed: 05/27/2023]
Abstract
A novel magnetic ion-imprinted polymer with high accessibility to palladium ions was synthesized via co-precipitation polymerization. Accordingly, a ternary complex composed of PdCl2 as an imprinting ion, 8-aminoquinoline (AQ) as a ligand, and 4-vinyl pyridine (4-VP) as a complexing monomer was applied to Fe3O4@SiO2 as magnetic core, followed by precipitation polymerization using 2-hydroxyethyl methacrylate (2-HEMA) as a co-monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, and 2,2-azobisisobutyronitrile (AIBN) as an initiator in the presence of 2-methoxyethanol as a solvent. The palladium ions were leached out by a solution containing 50% (v/v) HCl. The synthesized polymer was characterized physically and morphologically using different techniques. In order to assess the conditions required for adsorption, as well as the selectivity and reusability, batch adsorption experiments were carried out. The experiments exhibited that the maximum adsorption capacity was about 65.75 mg g-1 at 25 °C, while the pH solution and the adsorbent dose were 4 and 1 g L-1, respectively. Kinetic studies of experimental data demonstrated that they correspond very much to the pseudo-second-order kinetic model. The development of the Langmuir and Freundlich isothermal models on the equilibrium data proved to correspond well to the Langmuir isotherm model. Interferences studies of the magnetic polymer demonstrated higher affinity and discernment for palladium ions than other co-existing ions in the solutions. Spontaneous (ΔG < 0) and exothermic (ΔH < 0) behavior of the adsorption process is confirmed by thermodynamic studies. In addition, the affinity of the spent polymer has not been dramatically reduced over at least five regeneration cycles.
Collapse
Affiliation(s)
- Fatemeh Shafizadeh
- Chemical Engineering Department, Babol Noshirvani University of Technology, P.O. Box 484, Babol, 4714871167, Iran
| | - Majid Taghizadeh
- Chemical Engineering Department, Babol Noshirvani University of Technology, P.O. Box 484, Babol, 4714871167, Iran.
| | - Samaneh Hassanpour
- Chemical Engineering Department, Babol Noshirvani University of Technology, P.O. Box 484, Babol, 4714871167, Iran
| |
Collapse
|
17
|
Micromixing Efficiency of Particles in Heavy Metal Removal Processes under Various Inlet Conditions. WATER 2019. [DOI: 10.3390/w11061135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water quality problems are a persistent global issue since population growth has continually stressed hydrological resources. Heavy metals released into the environment from plating plants, mining, and alloy manufacturing pose a significant threat to the public health. A possible solution for water purification from heavy metals is to capture them by using nanoparticles in micromixers. In this method, conventionally heavy metal capture is achieved by effectively mixing two streams, a particle solution and the contaminated water, under the action of external magnetic fields. In the present study, we investigated the effective mixing of iron oxide nanoparticles and water without the use of external magnetic fields. For this reason, the mixing of particles and the contaminated water was studied for various inlet velocity ratios and inflow angles of the two streams using computational fluid dynamics techniques. The Navier-Stokes equations were solved for the water flow, the discrete motion of particles was evaluated by a Lagrangian method, while the flow of substances of the contaminated water was studied by a scalar transport equation. Results showed that as the velocity ratio between the inlet streams increased, the mixing of particles with the contaminated water was increased. Therefore, nanoparticles were more uniformly distributed in the duct and efficiently absorbed the substances of the contaminated water. On the other hand, the angle between two streams was found to play an insignificant role in the mixing process. Consequently, the results from this study could be used in the design of more compact and cost efficient micromixer devices.
Collapse
|
18
|
Soliman MA, Rashad GM, Mahmoud MR. Development of the adsorption capability of MCM-41 particles synthesized at room temperature using 8-hydroxyquinoline-5-sulfonic acid for removal of Co(II) and Cr(VI) in binary systems. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Wan Z, Cho DW, Tsang DCW, Li M, Sun T, Verpoort F. Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:410-420. [PMID: 30690237 DOI: 10.1016/j.envpol.2019.01.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/22/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
This study introduced a new approach for simultaneously enhancing Cr(VI) removal performance and mitigating release of dissolved Fe during nanoscale zero-valent iron (nZVI)-mediated reactions. After entrapping nZVI-impregnated biochar (BC) in the matrix of calcium-alginate (CA) bead, the physicochemical characterization of nZVI/BC/CA composites revealed that nZVI/BC particles were embedded inside CA having a spherical shape and several cracks on its outer layer. The multi-functionality of nZVI/BC/CA composites consisting of reductant (nZVI), porous adsorbent (BC), and external screening layer (CA) enhanced the removal of Cr(VI) with the maximum adsorption capacity of 86.4 mg/g (based on the Langmuir isotherm) and little release of dissolved Fe. With the XPS analysis and fitting results of kinetics (pseudo second order) and isotherms (Redlich-Peterson model), plausible removal mechanisms of Cr(VI) were simultaneous adsorption and micro-electrolysis reactions by nZVI/BC/CA composites. The practical applicability of nZVI/BC/CA composites was further demonstrated through the fixed-bed column experiments. These results provide new insights into the design of high-performance engineered biochar for wastewater treatment.
Collapse
Affiliation(s)
- Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dong-Wan Cho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, China
| | - Tan Sun
- College of Environmental Science and Engineering, Tongji University, China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China; Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| |
Collapse
|
20
|
Maurya S, Rashk-E-Eram, Naik SK, Choudhary JS, Kumar S. Heavy Metals Scavenging Potential of Trichoderma asperellum and Hypocrea nigricans Isolated from Acid Soil of Jharkhand. Indian J Microbiol 2019; 59:27-38. [PMID: 30728628 DOI: 10.1007/s12088-018-0756-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/26/2018] [Indexed: 01/26/2023] Open
Abstract
Trichoderma asperellum (NAIMCC-F-03167) and Hypocrea nigricans (NAIMCC-F-03168) were isolated from the acidic soil of the vicinity of Litchi orchard, Ranchi, Jharkhand and were characterized on the basis of morphological, molecular and biochemical features. Both strains are fast growing, light to dark green, highly sporulative and have ability to cover 90 mm Petri dish within 96 h of inoculation. Biochemcial estimation of both isolates indicated significant cellulase and phosphate solubilisation activity. Highest cellulase activity was observed in T. asperellum (5.63 cm) followed by H. nigricans (5.10 cm) and phosphate solubilisation index was observed maximum in T. asperellum (1.93) followed by H. nigricans (1.39). Moreover, these isolates were molecularly identified on the basis of ribosomal DNA based sequences database and phylogenetic analysis in NCBI GenBank as T. asperellum (NCBI-KM 438015) and H. nigricans (NCBI-KJ910335). Negetive effect on sporulation of Lead (Pb) and Cadmium (Cd) was observed while in heavy metal scavenging potential, T. asperellum (88.9% Cd) showed highest scavenging potential followed by H. nigricans (87.2% Cd) while in Pb scavenging potential, H. nigricans (88% Pb) followed highest scavenging potential followed by T. asperellum (81.30% Pb) after 21 days of inoculation from 30 µg/ml heavy metals concentrated broth medium. If both potential bioagents can apply in Cd and Pb affected soil/water will be helpful in scavenging of heavy metals as well as management of phosphorus deficiency and soilborne fungal diseases.
Collapse
Affiliation(s)
- Sudarshan Maurya
- ICAR-Research Complex for Eastern Region, Research Centre, Ranchi, Jharkhand India
| | - Rashk-E-Eram
- ICAR-Research Complex for Eastern Region, Research Centre, Ranchi, Jharkhand India
| | - S K Naik
- ICAR-Research Complex for Eastern Region, Research Centre, Ranchi, Jharkhand India
| | - J S Choudhary
- ICAR-Research Complex for Eastern Region, Research Centre, Ranchi, Jharkhand India
| | - S Kumar
- ICAR-Research Complex for Eastern Region, Research Centre, Ranchi, Jharkhand India
| |
Collapse
|
21
|
Removal of Hexavalent Chromium from Aqueous Solution by Alumina-Supported Copper Aluminum Oxide Nanoparticles. SMART TECHNOLOGIES FOR ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT 2019. [DOI: 10.1007/978-981-13-6148-7_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Karagöz R, Tunali Akar S, Turkyilmaz S, Celik S, Akar T. Process design and potential use of a regenerable biomagsorbent for effective decolorization process. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
23
|
Yan Y, Yuvaraja G, Liu C, Kong L, Guo K, Reddy GM, Zyryanov GV. Removal of Pb(II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff's base@Fe3O4 (ECCSB@Fe3O4). Int J Biol Macromol 2018; 117:1305-1313. [DOI: 10.1016/j.ijbiomac.2018.05.204] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 11/29/2022]
|
24
|
Davarnejad R, Karimi Dastnayi Z, Kennedy J. Cr(VI) adsorption on the blends of Henna with chitosan microparticles: Experimental and statistical analysis. Int J Biol Macromol 2018; 116:281-288. [DOI: 10.1016/j.ijbiomac.2018.04.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 11/29/2022]
|
25
|
Velkova Z, Kirova G, Stoytcheva M, Kostadinova S, Todorova K, Gochev V. Immobilized microbial biosorbents for heavy metals removal. Eng Life Sci 2018; 18:871-881. [PMID: 32624881 DOI: 10.1002/elsc.201800017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/10/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022] Open
Abstract
Intensive industrial and urban growth has led to the release of increasing amounts of environmental pollutants. Contamination by metals, in particular, deserves special attention due to their toxicity and potential to bioaccumulate via the food chain. Conventional techniques for the removal of toxic metals, radionuclides and precious metals from wastewater all have a number of drawbacks, such as incomplete metal extraction, high cost and risk of generating hazardous by-products. Biosorption is a cost-effective and environment-friendly technology, an alternative to conventional wastewater treatment methods. Biosorption is a metabolically independent process, in which dead microbial biomass is capable of removal and concentrating metal ions from aqueous solutions. Free microbial biosorbents are of small size and low density, insufficient mechanical stability and low elasticity, which causes problems with metal ion desorption, separation of the sorbent from the medium and its regeneration. Hence, the possibilities for the implementation of continuous biosorbent processes for metal removal in flow-type reactor systems are reduced and the practical application of biosorption in industrial conditions is limited. By immobilizing microbial biomass on suitable carriers the disadvantages of free biosorbents are eliminated and more opportunities for practical use of biosorption become available. This review examines different immobilization techniques and carriers, certain basic features and possibilities of using immobilized microbial biosorbents for the removal and concentration of metals from aqueous solutions.
Collapse
Affiliation(s)
- Zdravka Velkova
- Department of Chemical Sciences Medical University of Plovdiv Plovdiv Bulgaria
| | - Gergana Kirova
- Department of Chemical Sciences Medical University of Plovdiv Plovdiv Bulgaria
| | - Margarita Stoytcheva
- Instituto de Ingeneria, Universidad Autonoma de Baja California Mexicali Baja California Mexico
| | - Sonia Kostadinova
- Department of Biochemistry and Microbiology Paisii Hilendarski University of Plovdiv Plovidv Bulgaria
| | - Kostadinka Todorova
- Department of Natural and Mathematical Sciences Paisii Hilendarski University of Plovdiv Branch Kardzhali Kardzhali Bulgaria
| | - Velizar Gochev
- Department of Biochemistry and Microbiology Paisii Hilendarski University of Plovdiv Plovidv Bulgaria
| |
Collapse
|
26
|
Wan Z, Li M, Zhang Q, Fan Z, Verpoort F. Concurrent reduction-adsorption of chromium using m-phenylenediamine-modified magnetic chitosan: kinetics, isotherm, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17830-17841. [PMID: 29679271 DOI: 10.1007/s11356-018-1941-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/03/2018] [Indexed: 05/15/2023]
Abstract
Magnetic chitosan particles (MCS) were chemically grafted by m-phenylenediamine (mPD) forming a distinctive shell layer with abundant nitrogenous functional groups and used as an adsorbent for the effective removal of Cr(VI) from aqueous solution. By interaction among functional groups in the facile oxidative polymerization process, the grafting of mPD and its polymers on MCS surface was innovatively realized. Through Fourier-transformed infrared spectroscopy, energy dispersive spectrometer, X-ray photoelectron spectroscopy, etc., the chemical properties of MCS before and after modification were characterized and the concurrent reduction-adsorption mechanism in Cr(VI) adsorption by mPD-MCS was carefully analyzed. The maximal Cr(VI) removal performance of mPD-MCS reached 227.27 mg/g, which was significantly better than that of the original MCS. The analysis indicated that Cr(VI) could be efficiently reduced to Cr(III) and the removal of Cr(VI) and Cr(III) was through adsorption and chelation simultaneously by mPD-MCS. Results also indicated that the concurrent reduction-adsorption was enhanced by protonation of nitrogenous functional groups under low pH. The obtained results suggest that mPD-MCS has a good potential in removal and detoxication of Cr(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Zhonghao Wan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Zixi Fan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| |
Collapse
|
27
|
Qiu Y, Guo H, Guo C, Zheng J, Yue T, Yuan Y. One-step preparation of nano-Fe3O4 modified inactivated yeast for the adsorption of patulin. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Li X, Zhang D, Sheng F, Qing H. Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:357-366. [PMID: 28865349 DOI: 10.1016/j.ecoenv.2017.08.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 05/14/2023]
Abstract
This study investigated the adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by immobilized Flammulina velutipes, Auricularia polytricha, Pleurotus eryngii and Pleurotus ostreatus residues. Lagergren model, elovich and intraparticle diffusion model were used to present the adsorption kinetics, and it was proved that Langmuir isotherm model and pseudo-second order kinetics are the best suitable model with high correlation coefficient to characterize the adsorption process of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ). The results showed that adsorption process finished in 120min at pH 6.0. The adsorption rate of Cu2+, Zn2+ and Hg2+ were reached to 53.8-84.1% of total in the initial 60min, and finished in 120min. Ion exchange and complexation of F. velutipes were the main mechanisms for adsorption of metal ions by characterizations of Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). In addition the functional group of cell walls such as hydroxyl, amide, carbonyl, phosphoric played a critical role in ions adsorption of edible mushroom residues. Cu2+, Zn2+ and Hg2+ in wastewater could be efficiently removed by F. velutipes residue with removal ratio of 73.11%, 66.67% and 69.35%, respectively.
Collapse
Affiliation(s)
- Xia Li
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China
| | - Dan Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China.
| | - Fei Sheng
- Hydrogeology and Engineering Geological Team NO. 909, BGEEMRSP, Jiangyou 621701, China
| | - Hui Qing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China; University of Chinese Academy of Science, Beijing 100049,China
| |
Collapse
|
29
|
Sha H, Wu Y, Fan Y. Utilization of industrial waste as a novel adsorbent: Mono/competitive adsorption of chromium(VI) and nickel(II) using diatomite waste modified by EDTA. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3977] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Haitao Sha
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education; Hohai University; Xikang Road 1 Nanjing 210098 China
| | - Yunhai Wu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education; Hohai University; Xikang Road 1 Nanjing 210098 China
| | - Yiang Fan
- College of Environment; Hohai University; Xikang Road 1 Nanjing 210098 China
| |
Collapse
|
30
|
Zhang J, Deng Y, Zhou Q, Qin P, Liu Y, Wang C. Novel geochemistry-inspired method for the deep removal of vanadium from molybdate solution. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:210-217. [PMID: 28273570 DOI: 10.1016/j.jhazmat.2017.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Separation of vanadium from molybdates is an essential task for processing the leaching solution of hazardous spent hydrodesulphurization (HDS) catalyst. In this study, the difference in the main naturally occurring mineral forms of Mo and V inspired us to develop a method for the deep removal of V from molybdate solution using Fe3O4 as an adsorbent. First, the adsorbent was synthesized with coprecipitation method, and then it was characterized by XRD, TEM, and VSM. The synthesized material consisted of pure Fe3O4 nanoparticles that exhibited paramagnetic property, with a saturated magnetization of 68.6emug-1. The V removal efficiency was investigated using batch adsorption experiments in varying conditions. Results indicated that V could be deeply removed from various concentrations of molybdate solution at pH of 7.0-11.0 within 5min. A slight decrease was found in the adsorption ratio after the adsorbent had been reused for 4 cycles. The resulting molybdate solution contained less than 0.02gL-1 of V, which satisfies the requirement for preparing high-quality products. Finally, a process flowchart is presented for the separation of Mo and V from the leaching solution of spent HDS catalyst, based on the excellent V removal performance and rapid separation rate of the Fe3O4 adsorbent.
Collapse
Affiliation(s)
- Jialiang Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Green Recycling and Extraction of Metals, Beijing, 100083, China
| | - Yuping Deng
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiuyue Zhou
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixin Qin
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yubo Liu
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengyan Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
31
|
Singh K, Lataye DH, Wasewar KL. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Kemik ÖF, Ngwabebhoh FA, Yildiz U. A response surface modelling study for sorption of Cu2+, Ni2+, Zn2+ and Cd2+ using chemically modified poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-methylacrylate) hydrogels. ADSORPT SCI TECHNOL 2016. [DOI: 10.1177/0263617416674950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ömer F Kemik
- Department of Chemistry, University of Kocaeli, Kocaeli, Turkey
| | | | - Ufuk Yildiz
- Department of Chemistry, University of Kocaeli, Kocaeli, Turkey
| |
Collapse
|
33
|
Bedemo A, Chandravanshi BS, Zewge F. Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide. SPRINGERPLUS 2016; 5:1288. [PMID: 27547663 PMCID: PMC4977246 DOI: 10.1186/s40064-016-2983-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022]
Abstract
Water is second most essential for human being. Contamination of water makes it unsuitable for human consumption. Chromium ion is released to water bodies from various industries having high toxicity which affects the biota life in these waters. In this study aluminum oxide hydroxide was tested for its efficiency to remove trivalent chromium from aqueous solutions through batch mode experiments. Chromium concentrations in aqueous solutions and tannery waste water before and after adsorption experiments were determined using flame atomic absorption spectrometry. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(III) were studied. The study revealed that more than 99 % removal of Cr(III) was achieved over wide range of initial pH (3–10). The optimum conditions for the removal of Cr(III) were found to be at pH 4–6 with 40 g/L adsorbent dose at 60 min of contact time. The adsorption capacity was assessed using Langmuir and Freundlich isotherms. The equilibrium data at varying adsorbent dose obeyed the two isotherms. The adsorbent was found to be efficient for the removal of Cr(III) from tannery waste effluent.
Collapse
Affiliation(s)
- Agaje Bedemo
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Feleke Zewge
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
34
|
Ramrakhiani L, Ghosh S, Majumdar S. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Appl Biochem Biotechnol 2016; 180:41-78. [PMID: 27097928 DOI: 10.1007/s12010-016-2083-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/10/2016] [Indexed: 11/24/2022]
Abstract
Heavy metal pollution in water emerges as a severe socio-environmental problem originating primarily from the discharge of industrial wastewater. In view of the toxic, non-biodegradable, and persistent nature of most of the heavy metal ions, remediation of such components becomes an absolute necessity. Biosorption is an emerging tool for bioremediation that has gained momentum for employing low-cost biological materials with effective metal binding capacities. Even though biological materials possess excellent metal adsorption abilities, they show poor mechanical strength and low rigidity. Other disadvantages include solid-liquid separation problems, possible biomass swelling, lower efficiency for regeneration or reuse, and frequent development of high pressure drop in the column mode that limits its applications under real conditions. To improve the biosorption efficiency, biomasses need to be modified with a simple technique for selective/multi-metal adsorption. This review is intended to cover discussion on biomass modification for enhanced biosorption efficiency, mechanism studies using various instrumental/analytical techniques, and future direction for research and development including the fate of spent biosorbent. In most of the previously published researches, difficulty of the process in scaling up has not been addressed. The current article outlines the application potential of biosorbents in the development of hybrid technology integrated with membrane processes for water and wastewater treatment in industrial scale.
Collapse
Affiliation(s)
- Lata Ramrakhiani
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sourja Ghosh
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India.
| | - Swachchha Majumdar
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India
| |
Collapse
|
35
|
Sun X, Li Q, Yang L, Liu H. Removal of chromium(vi) from wastewater using weakly and strongly basic magnetic adsorbents: adsorption/desorption property and mechanism comparative studies. RSC Adv 2016. [DOI: 10.1039/c5ra27028f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two novel strongly basic magnetic adsorbents were prepared, and the adsorption/desorption property and mechanism of weakly and strongly basic magnetic adsorbents were compared.
Collapse
Affiliation(s)
- Xitong Sun
- CAS Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Qian Li
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Liangrong Yang
- CAS Key Laboratory of Green Process and Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| |
Collapse
|
36
|
Muliwa AM, Leswifi TY, Onyango MS, Maity A. Magnetic adsorption separation (MAS) process: An alternative method of extracting Cr(VI) from aqueous solution using polypyrrole coated Fe 3 O 4 nanocomposites. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Functionalized agricultural biomass as a low-cost adsorbent: Utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Sun X, Yang L, Dong T, Liu Z, Liu H. Removal of Cr(VI) from aqueous solution using amino-modified Fe3O4-SiO2-chitosan magnetic microspheres with high acid resistance and adsorption capacity. J Appl Polym Sci 2015. [DOI: 10.1002/app.43078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xitong Sun
- CAS Key Laboratory of Biobased Materials; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Qingdao 266101 People's Republic of China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Liangrong Yang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Tingting Dong
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Zhini Liu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- College of Chemical Engineering; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Qingdao 266101 People's Republic of China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| |
Collapse
|
39
|
Polypyrrole-polyaniline/Fe3O4 magnetic nanocomposite for the removal of Pb(II) from aqueous solution. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0156-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Wang T, Zhang L, Li C, Yang W, Song T, Tang C, Meng Y, Dai S, Wang H, Chai L, Luo J. Synthesis of Core-Shell Magnetic Fe3O4@poly(m-Phenylenediamine) Particles for Chromium Reduction and Adsorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5654-62. [PMID: 25867789 DOI: 10.1021/es5061275] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic Fe3O4@poly(m-phenylenediamine) particles (Fe3O4@PmPDs) with well-defined core-shell structure were first designed for high performance Cr(VI) removal by taking advantages of the easy separation property of magnetic nanoparticles (MNPs) and the satisfactory adsorption property of polymers. Through controlling the polymerization on MNPs, directly coating was realized without the complicated premodification procedures. The particle property and adsorption mechanism were analyzed in details. Fe3O4@PmPDs exhibited tunable PmPD shell thickness from 10 to 100 nm, high magnetic (∼150 to ∼73 emu g(-1)) and facile separation property by magnet. The coating of PmPD significantly enhanced Cr(VI) adsorption capacity from 46.79 (bare MNPs) to 246.09 mg g(-1) (71.55% PmPD loading proportion), much higher than many reported composite adsorbents. The high Cr(VI) removal performance was attributed to the adsorption of Cr(VI) on protonated imino groups and the efficient reduction of Cr(VI) to Cr(III) by amine, followed by Cr(III) chelated on imino groups, which are spontaneous and endothermic. The Fe3O4@PmPDs have great potential in treating Cr(VI)-contaminated water.
Collapse
Affiliation(s)
- Ting Wang
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Liyuan Zhang
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Chaofang Li
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Weichun Yang
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingting Song
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Chongjian Tang
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yun Meng
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Shuo Dai
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Liyuan Chai
- †Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Jian Luo
- §School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| |
Collapse
|
41
|
Mthombeni NH, Onyango MS, Aoyi O. Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.12.037] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Kang D, Zhang HB, Nitta Y, Fang YP, Nishinari K. Gellan. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-03751-6_20-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal. Int J Biol Macromol 2015; 72:862-7. [DOI: 10.1016/j.ijbiomac.2014.09.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 11/17/2022]
|
44
|
|
45
|
San Keskin NO, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T. Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Adv 2015. [DOI: 10.1039/c5ra15601g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bacteria have been immobilized onto a polysulfone nanofibrous web and used for the removal of reactive dye and heavy metal.
Collapse
Affiliation(s)
- Nalan Oya San Keskin
- Polatlı Science and Literature Faculty
- Biology Department
- Gazi University
- Ankara 06900
- Turkey
| | - Aslı Celebioglu
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Omer Faruk Sarioglu
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Alper Devrim Ozkan
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Tamer Uyar
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Turgay Tekinay
- Life Sciences Application and Research Center
- Gazi University
- Ankara 06830
- Turkey
- Faculty of Medicine
| |
Collapse
|
46
|
Wang SY, Tang YK, Li K, Mo YY, Li HF, Gu ZQ. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. BIORESOURCE TECHNOLOGY 2014; 174:67-73. [PMID: 25463783 DOI: 10.1016/j.biortech.2014.10.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 05/12/2023]
Abstract
Magnetic biochar was prepared with eucalyptus leaf residue remained after essential oil being extracted. Batch experiments were conducted to examine the capacity of the magnetic biochar to remove Cr (VI) from electroplating wastewater and to be separated by an external magnetic field. The results show that the initial solution pH plays an important role on both sorption and separation. The removal rates of Cr (VI), total Cr, Cu (II), and Ni (II) were 97.11%, 97.63%, 100% and 100%, respectively. The turbidity of the sorption-treated solution was reduced to 21.8NTU from 4075NTU after 10min magnetic separation. The study also confirms that the magnetic biochar still retains the original magnetic separation performance after the sorption process.
Collapse
Affiliation(s)
- Sheng-ye Wang
- College of Environment Science and Engineering, Guangxi University, Nanning 530004, China
| | - Yan-kui Tang
- College of Environment Science and Engineering, Guangxi University, Nanning 530004, China.
| | - Kun Li
- College of Environment Science and Engineering, Guangxi University, Nanning 530004, China
| | - Ya-yuan Mo
- College of Environment Science and Engineering, Guangxi University, Nanning 530004, China
| | - Hao-feng Li
- College of Environment Science and Engineering, Guangxi University, Nanning 530004, China
| | - Zhan-qi Gu
- Department of Environmental Protection of Guangxi Zhuang Autonomous Region, Naning 530028, China
| |
Collapse
|
47
|
Shukla S, Jadaun A, Arora V, Sinha RK, Biyani N, Jain VK. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol Rep 2014; 2:27-39. [PMID: 28962334 PMCID: PMC5598369 DOI: 10.1016/j.toxrep.2014.11.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/25/2014] [Accepted: 11/01/2014] [Indexed: 11/25/2022] Open
Abstract
Iron oxide nanoparticles (INPs) have potential biological, biomedical and environmental applications. These applications require surface modification of the iron oxide nanoparticles, which makes it non-toxic, biocompatible, stable and non-agglomerative in natural and biological surroundings. In the present study, iron oxide nanoparticles (INPs) and chitosan oligosaccharide coated iron oxide nanoparticles (CSO-INPs) were synthesized to evaluate the effect of surface coating on the stability and toxicity of nanoparticles. Comparative in vitro cytotoxicity of nanoparticles was evaluated in HeLa (human cervix carcinoma), A549 (human lung carcinoma) and Hek293 (human embryonic kidney) cells by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay along with flow cytometry study for cell viability, membrane integrity, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production. Morphological alteration in nanoparticles treated cells was analyzed by Acridine orange/ethidium bromide double staining and electron microscopy. Synthesized nanoparticles were found to be spherical in shape, well dispersed and stable at various pH values, making them suitable for biomedical and environmental applications. The present study also indicates that the chitosan oligosaccharide coating on iron oxide nanoparticles results in the decrease in cellular damage and moderate ROS production, thereby, significantly decreasing the cytotoxic impact of bare iron oxide nanoparticles.
Collapse
Affiliation(s)
- Sudeep Shukla
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Alka Jadaun
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vikas Arora
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Raj Kumar Sinha
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Neha Biyani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - V K Jain
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
48
|
Ballav N, Choi H, Mishra S, Maity A. Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI). J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2014.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Kim S, Song MH, Wei W, Yun YS. Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:657-662. [PMID: 25464307 DOI: 10.1016/j.jhazmat.2014.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
This study reports a new finding that the industrial waste biomass of Escherichia coli is capable of selective binding of Pd(II) in the Pd(II)-Pt(IV) bimetal solution. Batch sorption experiments with E. coli were carried out at different initial metal concentrations in single and bimetal systems. In the single metal systems, the maximum sorption capacities of E. coli for Pt(IV) and Pd(II) were found to be 45.65 ± 2.04 and 38.87 ± 2.08 mg/g, respectively. Meanwhile, in the bimetal system, the maximum sorption capacities for Pd(II) and Pt(IV) were 33.16 ± 1.53 and 7.32 ± 0.29 mg/g, respectively, which corresponded to 4.53 times of selective adsorption toward Pd(II). In order to understand the underlying reason, ion exchange resins (TP214 and Amberjet 4200) with different amine types were compared with the E. coli biomass. As a result, it was found that the sorbents containing primary amine groups could selectively adsorb Pd(II) more easily in the binary mixture.
Collapse
Affiliation(s)
- Sok Kim
- School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756, Republic of Korea
| | - Myung-Hee Song
- School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756, Republic of Korea
| | - Wei Wei
- School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756, Republic of Korea
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756, Republic of Korea; Department of Bioprocess Engineering, Chonbuk National University, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
50
|
Nuryono N, Mutia Rosiati N, Rusdiarso B, Sakti SCW, Tanaka S. Coating of magnetite with mercapto modified rice hull ash silica in a one-pot process. SPRINGERPLUS 2014; 3:515. [PMID: 25279307 PMCID: PMC4177443 DOI: 10.1186/2193-1801-3-515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022]
Abstract
In this research, mercapto-silica coated magnetite (Fe3O4-SiO2-SH) has been prepared in aqueous solution through a simple approach so called a one-pot process. The Fe3O4-SiO2-SH was prepared in nitrogen condition by mixing magnetite, 3-mercaptopropyltrimethoxysilane (MPTMS), and sodium silicate (Na2SiO3) solution extracted from rice hull ash, and adjusting the pH of 7.0 using hydrochloric acid. The residue was washed with deionized water, dried at 150°C and separated with an external magnetic field. In that work, the volume of MPTMS and Na2SiO3 was varied and the total amount of Si represented as silica was kept constant. Characters of the material including the functional group presence, the structure, the porosity, the morphology and stability toward various solvents were identified and evaluated. Results of characterization indicated that mercapto-silica has been coated magnetite particle with a simple one-pot process. Coating mercapto-silica on magnetite increases particle size, surface area, and chemical stability. Additionally, Fe3O4-SiO2-SH also shows high stability toward various organic solvents. The magnetic property of magnetite does not change after coating and the addition of nonmagnetic material still gives high value of maximum saturation magnetization. The presence of mercapto groups effective for interaction with heavy metal ions, the high chemical stability without removing the magnetic property promises the prospective application of Fe3O4-SiO2-SH in the future such as for separation and removal of heavy metal ions from aquatic environments.
Collapse
Affiliation(s)
- Nuryono Nuryono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Nur Mutia Rosiati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Bambang Rusdiarso
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Satya Candra Wibawa Sakti
- Division of Environmental Science Development, Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido, Japan
| | - Shunitz Tanaka
- Division of Environmental Science Development, Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido, Japan ; Division of Environmental Material Science, Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido, Japan
| |
Collapse
|