1
|
Singh N, Gulhane RD, Singh A, Goel M, Udelal PP, Sangwan V, Sihag MK, Goel G, Panwar H, Puniya AK. Exploring the antimicrobial potential of lactobacilli against early-stage and mature biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Front Chem 2025; 13:1425666. [PMID: 40191159 PMCID: PMC11969340 DOI: 10.3389/fchem.2025.1425666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/31/2025] [Indexed: 04/09/2025] Open
Abstract
Bacterial biofilms are dynamic, complex, and very adaptive, and they can cause health problems in both humans and animals while also posing a serious threat to various industries. This study explores the potential of cell-free preparations of lactobacilli isolated from breast milk (HM; n = 11) and infant fecal (IF; n = 15) samples to impact the growth of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The anti-biofilm activity of three distinct cell-free preparations, namely, untreated cell-free supernatant (CFS), pH-neutralized CFS (N-CFS), and heat-treated CFS (H-CFS), was examined against both early-stage and mature biofilms. The post-incubation strategy examined the impact on mature biofilms, while the co-incubation treatment assessed the impact of CFS on adhesion and initial colonization. Compared to post-incubation treatment (HM3, 67.12%), the CFSs exhibited greater inhibitory activity during co-incubation (IF9, 85.19%). Based on the findings, untreated CFS exhibited the most promising biofilm inactivation, although its activity was not completely lost upon pH neutralization and heat treatment. Treatment with H-CFSs and N-CFSs moderately reduced the population of S. aureus and P. aeruginosa bacterial cells within the biofilm by 40%-60%. Microscopic observations showed that after CFS treatment, the integrity of the biofilm conformation was disrupted. According to principal component analysis (PCA) (significance level at p < 0.05), the most promising anti-biofilm activity against both test pathogens was found in the CFS of Lacticaseibacillus paracasei HM1.
Collapse
Affiliation(s)
- Niharika Singh
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
- Department of Biotechnology, VSB Engineering College, Karur, Tamil Nadu, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Anamika Singh
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Maitri Goel
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Pudke Payal Udelal
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Vikas Sangwan
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Gunjan Goel
- Department of Microbiology, School of Interdisciplinary and Applied Science, Central University of Haryana, Mahendergarh, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Darwiche N, Dufresne C, Chartier A, Claude B, Colas C, Fougère L, Sebban M, Lucchesi ME, Le Floch S, Nehmé R. Glycolipid and Lipopeptide Biosurfactants: Structural Classes and Characterization-Rhamnolipids as a Model. Crit Rev Anal Chem 2024:1-21. [PMID: 39734093 DOI: 10.1080/10408347.2024.2441428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
In recent years, biosurfactants (BS) produced by various bacteria, fungi and yeast strains have attracted much interest because of their unique properties and potential applications in many industries ranging from bioremediation to agriculture and biomedical to cosmetics. Glycolipids are a popular group of BS that include rhamnolipids, sophorolipids, mannosylerythritol, trehalose lipids, xylolipids and cellobiose lipids. Lipopeptides e.g., surfactins, iturins and fengycins are of major biotechnological interest because of their antitumor, immunomodulatory, and antimicrobial activities effects. This review addresses the structural properties of glycolipids and lipopeptides, their main domains of application as well as the screening tests of BS production. Glycolipids are mostly composed of a carbohydrate moiety linked to a ß-hydroxy fatty acid chain with a glycosidic bond. The properties of glycolipids are related to the nature of the carbohydrate moiety and the length of the fatty acid chain. The lipopeptide structure is mainly composed of a linear or cyclic peptide linked to fatty acids of different chain lengths. The structural complexity of these compounds requires various analytical techniques for characterization and quantification. As an example, the analytical techniques used for the characterization of rhamnolipids are presented in this review. RLs are very promising BS with a wide range of applications in various fields, such as cosmetics, food science, pharmaceuticals, and environmental remediation.
Collapse
Affiliation(s)
- Nadin Darwiche
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Christelle Dufresne
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Agnès Chartier
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Bérengère Claude
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| | - Muriel Sebban
- Laboratoire de Chimie Organique Bioorganique -Réactivité et Analyse, COBRA, UMR 6014, Université Rouen Normandie, Bâtiment IRCOF, Mont-Saint-Aignan Cedex, France
| | - Marie-Elisabeth Lucchesi
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne (LUBEM), Université de Bretagne Occidentale, Brest Cedex3, France
| | - Stéphane Le Floch
- Centre de documentation, de recherche et d'expérimentations sur les pollutions accidentelles des eaux-CEDRE, Brest Cedex 2, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique, ICOA, UMR 7311 Université d'Orléans - Pôle de chimie, Orléans Cedex 2, France
| |
Collapse
|
3
|
Shen C, Li J, Meng Q, Xu L, Zhang G. Rhamnolipids stabilized essential oils microemulsion for antimicrobial and fruit preservation. Food Chem 2024; 457:140167. [PMID: 38909451 DOI: 10.1016/j.foodchem.2024.140167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Essential oils, well-known for their antifungal properties, are widely utilized to combat fruit decay. However, their application faces big challenges due to their high volatility and hydrophobic traits, which leads to strong odor, short effective time and poor dispersivity. This study aimed to address these challenges by formulating microemulsions consisting of essential oils and rhamnolipids. The optimized microemulsion, featuring a small particle size of 6.8 nm, exhibited higher stability and lower volatility than conventional emulsion. Notably, the prepared microemulsions demonstrated remarkable antimicrobial efficacy against E. coli, S. aureus, C. albicans, S. cerevisiae, and A. niger. The application of these microemulsions proved to be highly effective in preventing blueberry decay while preserving fruit's quality, particularly by minimizing the loss of essential nutrients such as anthocyanins. Consequently, essential oil microemulsions emerge as a highly effective postharvest preservative for fruits, offering a promising solution to extend their shelf life and enhance overall quality.
Collapse
Affiliation(s)
- Chong Shen
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangxiong Li
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Meng
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering, Zhejiang University, Zheda Road 38#, 310027 Hangzhou, China
| | - Lusheng Xu
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Bustos KAG, Muñoz SS, da Silva SS, Alarcon MADF, dos Santos JC, Andrade GJC, Hilares RT. Saponin Molecules from Quinoa Residues: Exploring Their Surfactant, Emulsifying, and Detergent Properties. Molecules 2024; 29:4928. [PMID: 39459296 PMCID: PMC11510682 DOI: 10.3390/molecules29204928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The indiscriminate use of synthetic surfactants, despite their desirable properties, poses significant environmental risks to ecosystems. This study explores saponins extracted from quinoa (Chenopodium quinoa) residues as a sustainable alternative. Saponin extract (SE) with 42% purity, obtained through hydrodynamic cavitation and membrane technology, was analyzed to determine its techno-functional properties. The critical micelle concentration (CMC) was 1.2 g/L, reducing the surface tension (ST) from 72.0 mN/m to 50.0 mN/m. The effects of temperature (30-90 °C), pH (2-12), and salinity (10,000-150,000 ppm NaCl) on ST and the emulsification index (EI) were assessed using a Box-Behnken design. Optimized conditions yielded an ST of 49.02 mN/m and an EI of 63%. Given these characteristics, SE was evaluated as a detergent across diverse swatches. This study showcases the attributes of quinoa-derived saponins, highlighting their potential for eco-friendly detergent applications.
Collapse
Affiliation(s)
- Kiara A. García Bustos
- Laboratorio de Bioprocesos, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María—UCSM, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.A.G.B.); (G.J.C.A.)
| | - Salvador Sanchez Muñoz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Silvio S. da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Miguel A. D. Flores Alarcon
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Júlio C. dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Gilberto J. Colina Andrade
- Laboratorio de Bioprocesos, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María—UCSM, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.A.G.B.); (G.J.C.A.)
| | - Ruly Terán Hilares
- Laboratorio de Bioprocesos, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María—UCSM, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.A.G.B.); (G.J.C.A.)
| |
Collapse
|
5
|
Singh N, Hu XH, Kumar V, Solanki MK, Kaushik A, Singh VK, Singh SK, Yadav P, Singh RP, Bhardwaj N, Wang Z, Kumar A. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. Front Bioeng Biotechnol 2024; 12:1398210. [PMID: 39253704 PMCID: PMC11381421 DOI: 10.3389/fbioe.2024.1398210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Chemistry, N.A.S.College, Meerut, India
| | - Xiao-Hu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Vikash Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Amit Kaushik
- College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | | | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Yadav
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
6
|
C FC, T K. Advances in stabilization of metallic nanoparticle with biosurfactants- a review on current trends. Heliyon 2024; 10:e29773. [PMID: 38699002 PMCID: PMC11064090 DOI: 10.1016/j.heliyon.2024.e29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Recently, research based on new biomaterials for stabilizing metallic nanoparticles has increased due to their greater environmental friendliness and lower health risk. Their stability is often a critical factor influencing their performance and shelf life. Nowadays, the use of biosurfactants is gaining interest due to their sustainable advantages. Biosurfactants are used for various commercial and industrial applications such as food processing, therapeutic applications, agriculture, etc. Biosurfactants create stable coatings surrounding nanoparticles to stop agglomeration and provide long-term stability. The present review study describes a collection of important scientific works on stabilization and capping of metallic nanoparticles as biosurfactants. This review also provides a comprehensive overview of the intrinsic properties and environmental aspects of metal nanoparticles coated with biosurfactants. In addition, future methods and potential solutions for biosurfactant-mediated stabilization in nanoparticle synthesis are also highlighted. The objective of this study is to ensure that the stabilized nanoparticles exhibit biocompatible properties, making them suitable for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Kamalesh T
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| |
Collapse
|
7
|
Luo SC, Wei SM, Luo XT, Yang QQ, Wong KH, Cheung PCK, Zhang BB. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. NPJ Biofilms Microbiomes 2024; 10:14. [PMID: 38402294 PMCID: PMC10894247 DOI: 10.1038/s41522-024-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Dental caries, a highly prevalent oral disease, impacts a significant portion of the global population. Conventional approaches that indiscriminately eradicate microbes disrupt the natural equilibrium of the oral microbiota. In contrast, biointervention strategies aim to restore this balance by introducing beneficial microorganisms or inhibiting cariogenic ones. Over the past three decades, microbial preparations have garnered considerable attention in dental research for the prevention and treatment of dental caries. However, unlike related pathologies in the gastrointestinal, vaginal, and respiratory tracts, dental caries occurs on hard tissues such as tooth enamel and is closely associated with localized acid overproduction facilitated by cariogenic biofilms. Therefore, it is insufficient to rely solely on previous mechanisms to delineate the role of microbial preparations in the oral cavity. A more comprehensive perspective should involve considering the concepts of cariogenic biofilms. This review elucidates the latest research progress, mechanisms of action, challenges, and future research directions regarding probiotics, prebiotics, synbiotics, and postbiotics for the prevention and treatment of dental caries, taking into account the unique pathogenic mechanisms of dental caries. With an enhanced understanding of oral microbiota, personalized microbial therapy will emerge as a critical future research trend.
Collapse
Affiliation(s)
- Si-Chen Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Si-Min Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Xin-Tao Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Qiong-Qiong Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Bo-Bo Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China.
| |
Collapse
|
8
|
Azevedo MA, Teixeira JA, Pastrana L, Cerqueira MA. Rhamnolipids: A biosurfactant for the development of lipid-based nanosystems for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13252. [PMID: 38284602 DOI: 10.1111/1541-4337.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024]
Abstract
Biosurfactants (surfactants synthesized by microorganisms) are produced by microorganisms and are suitable for use in different areas. Among biosurfactants, rhamnolipids are the most studied and popular, attracting scientists, and industries' interest. Due to their unique characteristics, the rhamnolipids have been used as synthetic surfactants' alternatives and explored in food applications. Besides the production challenges that need to be tackled to guarantee efficient production and low cost, their properties need to be adjusted to the final application, where the pH instability needs to be considered. Moreover, regulatory approval is needed to start being used in commercial applications. One characteristic of interest is their capacity to form oil-in-water nanosystems. Some of the most explored have been nanoemulsions, solid-lipid nanoparticles and nanostructured lipid carriers. This review presents an overview of the main properties of rhamnolipids, asserts the potential and efficiency of rhamnolipids to replace the synthetic surfactants in the development of nanosystems, and describes the rhamnolipids-based nanosystems used in food applications. It also discusses the main characteristics and methodologies used for their characterization and in the end, some of the main challenges are highlighted.
Collapse
Affiliation(s)
- Maria A Azevedo
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
9
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
10
|
Jain M, Stitt G, Son L, Enioutina EY. Probiotics and Their Bioproducts: A Promising Approach for Targeting Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus. Microorganisms 2023; 11:2393. [PMID: 37894051 PMCID: PMC10608974 DOI: 10.3390/microorganisms11102393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a serious global health problem that poses a threat to the successful treatment of various bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). Conventional treatment of MRSA and VRE infections is challenging and often requires alternative or combination therapies that may have limited efficacy, higher costs, and/or more adverse effects. Therefore, there is an urgent need to find new strategies to combat antibiotic-resistant bacteria. Probiotics and antimicrobial peptides (AMPs) are two promising approaches that have shown potential benefits in various diseases. Probiotics are live microorganisms that confer health benefits to the host when administered in adequate amounts. AMPs, usually produced with probiotic bacteria, are short amino acid sequences that have broad-spectrum activity against bacteria, fungi, viruses, and parasites. Both probiotics and AMPs can modulate the host immune system, inhibit the growth and adhesion of pathogens, disrupt biofilms, and enhance intestinal barrier function. In this paper, we review the current knowledge on the role of probiotics and AMPs in targeting multi-drug-resistant bacteria, with a focus on MRSA and VRE. In addition, we discuss future directions for the clinical use of probiotics.
Collapse
Affiliation(s)
| | | | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA; (M.J.); (G.S.); (L.S.)
| |
Collapse
|
11
|
Ammar AB, Bouassida M, Bouallegue A, Fourati N, Gerardi G, Muñiz P, Benito JM, Ghribi D. Isolation and characterization of two glycolipopeptids biosurfactants produced by a Lactiplantibacillus plantarum OL5 strain isolated from green olive curing water. World J Microbiol Biotechnol 2023; 39:308. [PMID: 37715930 DOI: 10.1007/s11274-023-03744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/28/2023] [Indexed: 09/18/2023]
Abstract
Microbial surfactants are natural amphiphilic compounds with high surface activities and emulsifying properties. Due to their structural diversity, low toxicity, biodegradability, and chemical stability in different conditions, these molecules are potential substitutes for chemical surfactants; their interest has grown significantly over the last decade. The current study focuses on the isolation, identification, and characterization of a lactic acid bacteria that produce two forms of biosurfactants. The OL5 strain was isolated from green olive fermentation and identified using MALDI/TOF and DNAr16S amplification. Emulsification activity and surface tension measurements were used to estimate biosurfactant production. The two biosurfactants derived from Lactiplantibacillus plantarum OL5 presented good emulsification powers in the presence of various oils. They were also shown to have the potential to reduce water surface tension from 69 mN/m to 34 mN/m and 37 mN/m within a critical micelle concentration (CMC) of 7 mg/ml and 1.8 mg/ml, respectively, for cell bound and extracellular biosurfactants. Thin layer chromatography (TLC) and FT-IR were used to analyze the composition of the two biosurfactants produced. the obtained data revealed that the two biomolecules consist of a mixture of carbohydrates, lipids and proteins. We demonstrated that they are two anionic biosurfactants with glycolipopeptide nature which are stable in extreme conditions of temperature, pH and salinity.
Collapse
Affiliation(s)
- Ameni Ben Ammar
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie.
- Bioréacteur couplé à un ultra-filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie.
| | - Mouna Bouassida
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
| | - Amir Bouallegue
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
- Bioréacteur couplé à un ultra-filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
| | - Nada Fourati
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
| | - Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Jose Manuel Benito
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Dhouha Ghribi
- Laboratoire d'Amélioration des Plantes et de Valorisation des Agro-Ressources, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
- Bioréacteur couplé à un ultra-filtra, Ecole Nationale D'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisie
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
12
|
Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR. Bio surfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit Rev Food Sci Nutr 2023; 64:10925-10949. [PMID: 37401803 DOI: 10.1080/10408398.2023.2230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, Tamil Nadu, India
| | | | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arti Gaur
- Department of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Nageshwar L, Parameshwar J, Rahman PKSM, Banat IM, Hameeda B. Anti-oxidative property of xylolipid produced by Lactococcus lactis LNH70 and its potential use as fruit juice preservative. Braz J Microbiol 2022; 53:2157-2172. [PMID: 36219343 PMCID: PMC9679099 DOI: 10.1007/s42770-022-00837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 01/13/2023] Open
Abstract
In the present study, 20 lactic acid bacteria (LAB) were isolated from different fruit juices, milk, and milk products. Based on preliminary screening methods like emulsification index, oil displacement method, hemolysis, and reduction in surface tension, strain LNH70 was selected for further studies. Further, it was evaluated for preliminary probiotic characteristics, identified by 16 s rRNA sequencing as Lactococcus lactis, submitted to NCBI, and an accession number was obtained (MH174454). In addition, LNH70 was found to tolerate over wide range of temperatures (10-45 °C), pH (3-10), NaCl (up to 9%), bile (0.7%), and phenol (0.1%) concentrations. Further, optimization studies at flask level revealed that lactose as carbon source, peptone as organic nitrogen, and inorganic nitrogen (ammonium sulfate) enhanced biosurfactant production. Chemical composition of purified biosurfactant obtained from LNH70 was characterized by various physico-chemical analytical techniques and identified as xylolipid. Xylolipid biosurfactant exhibited anti-adhesion activity against food borne pathogens in in vitro conditions. Its anti-oxidative property by 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and ferric reducing antioxidant power (FRAP) radical scavenging activity was found in range of 60.76 ± 0.5 to 83.50 ± 0.73%. Furthermore, xylolipid (0.05, 0.1, 0.3 mg/mL) when used for its potential as orange and pineapple juices preservation revealed miniature changes in the physico-chemical parameters evaluated in this study. However, the microbial population slightly lowered when xylolipid was used at 0.3 mg/mL after 5th day. Hence, this study supports the potential use of biosurfactant from L. lactis for its application as food preservative.
Collapse
Affiliation(s)
- L Nageshwar
- Department of Microbiology, Osmania University, Hyderabad-07, India
| | - J Parameshwar
- Department of Microbiology, Osmania University, Hyderabad-07, India
| | - Pattanathu K S M Rahman
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Bee Hameeda
- Department of Microbiology, Osmania University, Hyderabad-07, India.
| |
Collapse
|
14
|
Sarangi MK, Padhi S, Patel LD, Rath G, Nanda SS, Yi DK. Theranostic efficiency of biosurfactants against COVID-19 and similar viruses - A review. J Drug Deliv Sci Technol 2022; 76:103764. [PMID: 36090183 PMCID: PMC9444339 DOI: 10.1016/j.jddst.2022.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
The world has witnessed an extreme vulnerability of a pandemic during 2020; originated from China. The coronavirus disease 2019 (COVID-19) is infecting and beginning deaths in thousands to millions, creating of the global economic crisis. Biosurfactants (BSs) can carry the prevention, control and management of pandemic out through diverse approaches, such as pharmaceutical, therapeutic, hygienic and environmental. The microbiotas having virulent intrinsic properties towards starting as easily as spreading of diseases (huge morbidity and mortality) could be inhibited via BSs. Such elements could be recognised for their antimicrobial activity, capability to interact with the immune system via micelles formation and in nanoparticulate synthesis. However, they can be used for developing novel and more effective therapeutics, pharmaceuticals, non-toxic formulations, vaccines, and effective cleaning agents. Such approaches can be utilized for product development and implemented for managing and combating the pandemic conditions. This review emphasized on the potentiality of BSs as key components with several ways for protecting against unknown and known pathogens, including COVID-19.
Collapse
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - Sasmita Padhi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, Pin-248001, India
| | - L D Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, Pin-391760, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, 03674, South Korea
| |
Collapse
|
15
|
Lara VM, Mendonça CM, Silva FV, Marguet ER, Vallejo M, Converti A, Varani AM, Gliemmo MF, Campos CA, Oliveira RP. Characterization of Lactiplantibacillus plantarum Tw226 strain and its use for the production of a new membrane-bound biosurfactant. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Khan MA, Ullah K, Rahman NU, Mahmood A, Müllertz A, Mannan A, Murtaza G, Khan SA. Formulation, characterization and in-vitro evaluation of self-nanoemulsifying drug delivery system containing rhamnolipid biosurfactant. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Raman J, Kim JS, Choi KR, Eun H, Yang D, Ko YJ, Kim SJ. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int J Mol Sci 2022; 23:7784. [PMID: 35887142 PMCID: PMC9322495 DOI: 10.3390/ijms23147784] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are significant groups of probiotic organisms in fermented food and are generally considered safe. LAB regulate soil organic matter and the biochemical cycle, detoxify hazardous chemicals, and enhance plant health. They are found in decomposing plants, traditional fermented milk products, and normal human gastrointestinal and vaginal flora. Exploring LAB identified in unknown niches may lead to isolating unique species. However, their classification is quite complex, and they are adapted to high sugar concentrations and acidic environments. LAB strains are considered promising candidates for sustainable agriculture, and they promote soil health and fertility. Therefore, they have received much attention regarding sustainable agriculture. LAB metabolites promote plant growth and stimulate shoot and root growth. As fertilizers, LAB can promote biodegradation, accelerate the soil organic content, and produce organic acid and bacteriocin metabolites. However, LAB show an antagonistic effect against phytopathogens, inhibiting fungal and bacterial populations in the rhizosphere and phyllosphere. Several studies have proposed the LAB bioremediation efficiency and detoxification of heavy metals and mycotoxins. However, LAB genetic manipulation and metabolic engineered tools provide efficient cell factories tailor-made to produce beneficial industrial and agro-products. This review discusses lactic acid bacteria advantages and limitations in sustainable agricultural development.
Collapse
Affiliation(s)
- Jegadeesh Raman
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (K.R.C.); (H.E.); (D.Y.)
| | - Young-Joon Ko
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Science, Rural Development Administration, Wanju-Gun 55365, Jeollabuk-do, Korea; (J.R.); (J.-S.K.); (Y.-J.K.)
| |
Collapse
|
18
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
19
|
Lactiplantibacillus plantarum-Derived Biosurfactant Attenuates Quorum Sensing-Mediated Virulence and Biofilm Formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022; 10:microorganisms10051026. [PMID: 35630468 PMCID: PMC9145448 DOI: 10.3390/microorganisms10051026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Quorum sensing (QS) controls the expression of diverse biological traits in bacteria, including virulence factors. Any natural bioactive compound that disables the QS system is being considered as a potential strategy to prevent bacterial infection. Various biological activities of biosurfactants have been observed, including anti-QS effects. In the present study, we investigated the effectiveness of a biosurfactant derived from Lactiplantibacillus plantarum on QS-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. The structural analogues of the crude biosurfactant were identified using gas chromatography–mass spectrometry (GC–MS). Moreover, the inhibitory prospects of identified structural analogues were assessed with QS-associated CviR, LasA, and LasI ligands via in silico molecular docking analysis. An L. plantarum-derived biosurfactant showed a promising dose-dependent interference with the production of both violacein and acyl homoserine lactone (AHL) in C. violaceum. In P. aeruginosa, at a sub-MIC concentration (2.5 mg/mL), QS inhibitory activity was also demonstrated by reduction in pyocyanin (66.63%), total protease (60.95%), LasA (56.62%), and LasB elastase (51.33%) activity. The swarming motility and exopolysaccharide production were also significantly reduced in both C. violaceum (61.13%) and P. aeruginosa (53.11%). When compared with control, biofilm formation was also considerably reduced in C. violaceum (68.12%) and P. aeruginosa (59.80%). A GC–MS analysis confirmed that the crude biosurfactant derived from L. plantarum was a glycolipid type. Among all, n-hexadecanoic acid, oleic acid, and 1H-indene,1-hexadecyl-2,3-dihydro had a high affinity for CviR, LasI, and LasA, respectively. Thus, our findings suggest that the crude biosurfactant of L. plantarum can be used as a new anti-QS/antibiofilm agent against biofilm-associated pathogenesis, which warrants further investigation to uncover its therapeutic efficacy.
Collapse
|
20
|
Mouafo HT, Sokamte AT, Mbawala A, Ndjouenkeu R, Devappa S. Biosurfactants from lactic acid bacteria: A critical review on production, extraction, structural characterization and food application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Patel M, Siddiqui AJ, Hamadou WS, Surti M, Awadelkareem AM, Ashraf SA, Alreshidi M, Snoussi M, Rizvi SMD, Bardakci F, Jamal A, Sachidanandan M, Adnan M. Inhibition of Bacterial Adhesion and Antibiofilm Activities of a Glycolipid Biosurfactant from Lactobacillus rhamnosus with Its Physicochemical and Functional Properties. Antibiotics (Basel) 2021; 10:1546. [PMID: 34943758 PMCID: PMC8698754 DOI: 10.3390/antibiotics10121546] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
Biosurfactants derived from different microbes are an alternative to chemical surfactants, which have broad applications in food, oil, biodegradation, cosmetic, agriculture, pesticide and medicine/pharmaceutical industries. This is due to their environmentally friendly, biocompatible, biodegradable, effectiveness to work under various environmental conditions and non-toxic nature. Lactic acid bacteria (LAB)-derived glycolipid biosurfactants can play a major role in preventing bacterial attachment, biofilm eradication and related infections in various clinical settings and industries. Hence, it is important to explore and identify the novel molecule/method for the treatment of biofilms of pathogenic bacteria. In the present study, a probiotic Lactobacillus rhamnosus (L. rhamnosus) strain was isolated from human breast milk. Firstly, its ability to produce biosurfactants, and its physicochemical and functional properties (critical micelle concentration (CMC), reduction in surface tension, emulsification index (% EI24), etc.) were evaluated. Secondly, inhibition of bacterial adhesion and biofilm eradication by cell-bound biosurfactants from L. rhamnosus was performed against various biofilm-forming pathogens (B. subtilis, P. aeruginosa, S. aureus and E. coli). Finally, bacterial cell damage, viability of cells within the biofilm, exopolysaccharide (EPS) production and identification of the structural analogues of the crude biosurfactant via gas chromatography-mass spectrometry (GC-MS) analysis were also evaluated. As a result, L. rhamnosus was found to produce 4.32 ± 0.19 g/L biosurfactant that displayed a CMC of 3.0 g/L and reduced the surface tension from 71.12 ± 0.73 mN/m to 41.76 ± 0.60 mN/m. L. rhamnosus cell-bound crude biosurfactant was found to be effective against all the tested bacterial pathogens. It displayed potent anti-adhesion and antibiofilm ability by inhibiting the bacterial attachment to surfaces, leading to the disruption of biofilm formation by altering the integrity and viability of bacterial cells within biofilms. Our results also confirm the ability of the L. rhamnosus cell-bound-derived biosurfactant to damage the architecture of the biofilm matrix, as a result of the reduced total EPS content. Our findings may be further explored as a green alternative/approach to chemically synthesized toxic antibiofilm agents for controlling bacterial adhesion and biofilm eradication.
Collapse
Affiliation(s)
- Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| |
Collapse
|
22
|
Elakkiya VT, Sureshkumar P, Yoha KS, Subhasri D. Studies on antibacterial and chemotaxis properties of Pseudomonas aeruginosa TEN01 biomass-derived sustainable biosurfactant. CHEMOSPHERE 2021; 285:131381. [PMID: 34329147 DOI: 10.1016/j.chemosphere.2021.131381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Biosurfactant producing bacterial strains were isolated from oil-contaminated sites at Chennai Petroleum Corporation Limited, Chennai, the potential strain was selected and identified as Pseudomonas aeruginosa TEN01 by 16 S rRNA sequencing technique. Biosurfactant was produced from cassava solid waste from the sago industry. Further, it was extracted by solvent extraction and partially purified by column chromatography. The partially purified biosurfactant was qualitatively analyzed by Thin Layer Chromatography (TLC), quantitatively analyzed by anthrone assay and characterized by Fourier Transform Infra-Red Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). Rf value and chemical groups confirm the presence of glycolipid in the partially purified biosurfactant. GC-MS results confirmed the presence of long-chain fatty acids and carbohydrate which is found to be mainly present in glycolipids. Biosurfactants are surface-active molecules which have been found to be the best alternative to chemical-based surfactants. The present study focuses on modifying the cell surface using a biosurfactant from P. aeruginosa TEN01 to enhance membrane permeabilization. Antibacterial and chemotaxis properties of biosurfactant from P. aeruginosa TEN01 were found to be better towards Xenorhabdus poinarii, a bio-pesticide producing microbial strain, X. poinarii exhibited 81.7% adhesion to hydrocarbons upon biosurfactant treatment as analyzed by Bacterial Adhesion to Hydrocarbon (BATH) assay. The alteration in the membrane permeability was tested in X. poinarii using biosurfactant and chemical surfactants viz. Sodium dodecyl sulfate (SDS) and toluene by estimating the amount of intracellular protein released. High protein recovery (51.55%) was achieved with a biosurfactant. Cell viability in the biosurfactant-treated cells was also high (93.98%) in comparison to cells treated with chemical surfactants. Increased recovery of intracellular protein along with high cell viability makes the biosurfactant a potential candidate for application in numerous environmental fields.
Collapse
Affiliation(s)
- V Tamil Elakkiya
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| | - P Sureshkumar
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| | - K S Yoha
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| | - D Subhasri
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620 024, India.
| |
Collapse
|
23
|
Sharma V, Singh D, Manzoor M, Banpurkar AG, Satpute SK, Sharma D. Characterization and cytotoxicity assessment of biosurfactant derived from Lactobacillus pentosus NCIM 2912. Braz J Microbiol 2021; 53:327-340. [PMID: 34816387 DOI: 10.1007/s42770-021-00654-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022] Open
Abstract
Noteworthy properties of biosurfactant (BS) are fascinating scientific fraternity to explore them for food, medicinal, cosmetic, or pharmaceutical etc. applications. Newer products intended for pharmaceutical purposes are mandatory to go through pragmatic evaluation protocols. BS, being less cytotoxic, offers an ideal candidature for widespread applications in the healthcare sector. The goal of the current study was the isolation, physico-chemical characterization, and safety assessment of cell-associated biosurfactant (CABS) from Lactobacillus pentosus NCIM 2912. The culture was grown in a 3-L fermentor to produce CABS from the cell pellets through procedures like centrifugation, filtration, dialysis, column chromatography, and freeze-drying. Further, physical properties like surface tension (ST), critical micelle concentration (CMC), contact angle (CA), emulsification activity, stability of emulsion (height of emulsion, the extent of coalescence, and appearance), and ionic character of CABS were evaluated. Analytical characterization through TLC, FTIR, NMR, and GC-MS was carried out. The physico-chemical characterization revealed CABS as an anionic, multicomponent glycolipopeptide having a hydrophobic chain comprising butanoic acid (C4), decanoic acid (C10), undecanoic acid (C11), tridecanoic acid (C13), hexadecenoic acid (C16), and octadecanoic acid (C18). The oil-in-water (O/W) emulsions formed by CABS with various oils (olive, sesame, soybean, coconut) were stabilized up to the 7th day of storage and were analogous with polysorbate 80 (emulsifier/defoamer used in food industries). The O/W emulsions are quite stable at room temperature with no evidence of coalescence of droplets around 1 week. The cytotoxicity of CABS was evaluated through MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cytotoxicity study performed on the human embryonic kidney (HEK 293), mouse fibroblast ATCC L929 and human epithelial type (HEP-2) cell lines recorded viability of 90.3 ± 0.1%, 99.2 ± 0.43, and 94.3 ± 0.2% respectively. The toxicity of the BS was comparable to that of the commercially used rhamnolipid sample. Thus, CABS derived from L. pentosus NCIM 2912 pose promising applications in the pharmaceutical, food industries acquiescently. The multifunctional potential of the incredibly versatile microbial product like BS from lactic acid bacteria (LAB) certainly contributes to wider avenues for varied industries.
Collapse
Affiliation(s)
- Vikrant Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, Rajasthan, 303002, India
| | - Deepti Singh
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, Rajasthan, 303002, India
| | - Mehak Manzoor
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, Rajasthan, 303002, India
| | - Arun G Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India.
| | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
24
|
Adnan M, Siddiqui AJ, Hamadou WS, Ashraf SA, Hassan MI, Snoussi M, Badraoui R, Jamal A, Bardakci F, Awadelkareem AM, Sachidanandan M, Patel M. Functional and Structural Characterization of Pediococcus pentosaceus-Derived Biosurfactant and Its Biomedical Potential against Bacterial Adhesion, Quorum Sensing, and Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10111371. [PMID: 34827310 PMCID: PMC8614858 DOI: 10.3390/antibiotics10111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022] Open
Abstract
Biosurfactants are surface-active molecules of microbial origin and alternatives to synthetic surfactants with various applications. Due to their environmental-friendliness, biocompatibility, biodegradability, effectiveness to work under various environmental conditions, and non-toxic nature, they have been recently recognized as potential agents with therapeutic and commercial importance. The biosurfactant produced by various probiotic lactic acid bacteria (LAB) has enormous applications in different fields. Thus, in vitro assessment of biofilm development prevention or disruption by natural biosurfactants derived from probiotic LAB is a plausible approach that can lead to the discovery of novel antimicrobials. Primarily, this study aims to isolate, screen, and characterize the functional and biomedical potential of biosurfactant synthesized by probiotic LAB Pediococcus pentosaceus (P. pentosaceus). Characterization consists of the assessment of critical micelle concentration (CMC), reduction in surface tension, and emulsification index (% EI24). Evaluation of antibacterial, antibiofilm, anti-QS, and anti-adhesive activities of cell-bound biosurfactants were carried out against different human pathogenic bacteria (B. subtilis, P. aeruginosa, S. aureus, and E. coli). Moreover, bacterial cell damage, viability of cells within the biofilm, and exopolysaccharide (EPS) production were also evaluated. As a result, P. pentosaceus was found to produce 4.75 ± 0.17 g/L biosurfactant, which displayed a CMC of 2.4 ± 0.68 g/L and reduced the surface tension from 71.11 ± 1.12 mN/m to 38.18 ± 0.58 mN/m. P. pentosaceus cells bound to the crude biosurfactant were found to be effective against all tested bacterial pathogens. It exhibited an anti-adhesion ability and impeded the architecture of the biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total EPS content. Furthermore, the crude biosurfactant derived from P. pentosaceus was structurally characterized as a lipoprotein by GC-MS analysis, which confirms the presence of lipids and proteins. Thus, our findings represent the potent anti-adhesion and antibiofilm potential of P. pentosaceus crude biosurfactant for the first time, which may be explored further as an alternative to antibiotics or chemically synthesized toxic antibiofilm agents.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Correspondence: (M.A.); (M.P.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 10025, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Center, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
- Correspondence: (M.A.); (M.P.)
| |
Collapse
|
25
|
Evidence for biosurfactant-induced flow in corners and bacterial spreading in unsaturated porous media. Proc Natl Acad Sci U S A 2021; 118:2111060118. [PMID: 34531326 DOI: 10.1073/pnas.2111060118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
The spread of pathogenic bacteria in unsaturated porous media, where air and liquid coexist in pore spaces, is the major cause of soil contamination by pathogens, soft rot in plants, food spoilage, and many pulmonary diseases. However, visualization and fundamental understanding of bacterial transport in unsaturated porous media are currently lacking, limiting the ability to address the above contamination- and disease-related issues. Here, we demonstrate a previously unreported mechanism by which bacterial cells are transported in unsaturated porous media. We discover that surfactant-producing bacteria can generate flows along corners through surfactant production that changes the wettability of the solid surface. The corner flow velocity is on the order of several millimeters per hour, which is the same order of magnitude as bacterial swarming, one of the fastest known modes of bacterial surface translocation. We successfully predict the critical corner angle for bacterial corner flow to occur based on the biosurfactant-induced change in the contact angle of the bacterial solution on the solid surface. Furthermore, we demonstrate that bacteria can indeed spread by producing biosurfactants in a model soil, which consists of packed angular grains. In addition, we demonstrate that bacterial corner flow is controlled by quorum sensing, the cell-cell communication process that regulates biosurfactant production. Understanding this previously unappreciated bacterial transport mechanism will enable more accurate predictions of bacterial spreading in soil and other unsaturated porous media.
Collapse
|
26
|
Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biosurfactants are a microbially synthesized alternative to synthetic surfactants, one of the most important bulk chemicals. Some yeast species are proven to be exceptional biosurfactant producers, while others are emerging producers. A set of factors affects the type, amount, and properties of the biosurfactant produced, as well as the environmental impact and costs of biosurfactant’s production. Exploring waste cooking oil as a substrate for biosurfactants’ production serves as an effective cost-cutting strategy, yet it has some limitations. This review explores the existing knowledge on utilizing waste cooking oil as a feedstock to produce glycolipid biosurfactants by yeast. The review focuses specifically on the differences created by using raw cooking oil or waste cooking oil as the substrate on the ability of various yeast species to synthesize sophorolipids, rhamnolipids, mannosylerythritol lipids, and other glycolipids and the substrate’s impact on the composition, properties, and limitations in the application of biosurfactants.
Collapse
|
27
|
Nataraj BH, Ramesh C, Mallappa RH. Functional group characterization of lactic bacterial biosurfactants and evaluation of antagonistic actions against clinical isolates of methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2021; 73:372-382. [PMID: 34133779 DOI: 10.1111/lam.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
The present study investigated the antimicrobial and antibiofilm potential of biosurfactants derived from Lactobacillus fermentum Lf1, L. fermentum LbS4 and Lactobacillus plantarum A5 against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). The cell wall-bound and intracellular biosurfactants were extracted by solvent extraction method. Fourier-transform infrared spectroscopy-based characterization of biosurfactants revealed the heterogeneous chemical composition involving proteins, fatty acids and carbohydrate moieties in LbS4 and A5, while only the sugar and lipid fractions in Lf1. Fatty acid profiling using Gas chromatography-mass spectrometry indicated hexadecanoic acid and stearic acid as the predominant fatty acids in the biosurfactants of all these strains. Biosurfactants demonstrated dose-dependent antibacterial action against MRSA isolates with the highest inhibition zone diameter (30·0 ± 0·0 to 35·0 ± 0·0 mm) recorded at 400 mg ml-1 . Biosurfactants showed an excellent staphylococcal antibiofilm activity by preventing the biofilm formation and disrupting the preformed biofilms. Visual inspection through scanning electron microscopy witnessed the biosurfactants-induced alteration in the cell membrane integrity and subsequent membrane pore formation on staphylococcal cells. Taken together, our findings emphasize the prospects of biomedical applications of biosurfactants as bactericidal and biofilm controlling agents to confront staphylococcal nosocomial infections.
Collapse
Affiliation(s)
- B H Nataraj
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - C Ramesh
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - R H Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
28
|
Cloutier M, Prévost MJ, Lavoie S, Feroldi T, Piochon M, Groleau MC, Legault J, Villaume S, Crouzet J, Dorey S, Dìaz De Rienzo MA, Déziel E, Gauthier C. Total synthesis, isolation, surfactant properties, and biological evaluation of ananatosides and related macrodilactone-containing rhamnolipids. Chem Sci 2021; 12:7533-7546. [PMID: 34163844 PMCID: PMC8171317 DOI: 10.1039/d1sc01146d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/22/2021] [Indexed: 01/20/2023] Open
Abstract
Rhamnolipids are a specific class of microbial surfactants, which hold great biotechnological and therapeutic potential. However, their exploitation at the industrial level is hampered because they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa. The non-human pathogenic bacterium Pantoea ananatis is an alternative producer of rhamnolipid-like metabolites containing glucose instead of rhamnose residues. Herein, we present the isolation, structural characterization, and total synthesis of ananatoside A, a 15-membered macrodilactone-containing glucolipid, and ananatoside B, its open-chain congener, from organic extracts of P. ananatis. Ananatoside A was synthesized through three alternative pathways involving either an intramolecular glycosylation, a chemical macrolactonization or a direct enzymatic transformation from ananatoside B. A series of diasteroisomerically pure (1→2), (1→3), and (1→4)-macrolactonized rhamnolipids were also synthesized through intramolecular glycosylation and their anomeric configurations as well as ring conformations were solved using molecular modeling in tandem with NMR studies. We show that ananatoside B is a more potent surfactant than its macrolide counterpart. We present evidence that macrolactonization of rhamnolipids enhances their cytotoxic and hemolytic potential, pointing towards a mechanism involving the formation of pores into the lipidic cell membrane. Lastly, we demonstrate that ananatoside A and ananatoside B as well as synthetic macrolactonized rhamnolipids can be perceived by the plant immune system, and that this sensing is more pronounced for a macrolide featuring a rhamnose moiety in its native 1 C 4 conformation. Altogether our results suggest that macrolactonization of glycolipids can dramatically interfere with their surfactant properties and biological activity.
Collapse
Affiliation(s)
- Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Marie-Joëlle Prévost
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Serge Lavoie
- Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi 555, Boulevard de l'Université Chicoutimi (Québec) G7H 2B1 Canada
| | - Thomas Feroldi
- Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi 555, Boulevard de l'Université Chicoutimi (Québec) G7H 2B1 Canada
| | - Marianne Piochon
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Jean Legault
- Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi 555, Boulevard de l'Université Chicoutimi (Québec) G7H 2B1 Canada
| | - Sandra Villaume
- Université de Reims Champagne-Ardenne, INRAE, USC RIBP 1488, SFR Condorcet-FR CNRS 3417 51100 Reims France
| | - Jérôme Crouzet
- Université de Reims Champagne-Ardenne, INRAE, USC RIBP 1488, SFR Condorcet-FR CNRS 3417 51100 Reims France
| | - Stéphan Dorey
- Université de Reims Champagne-Ardenne, INRAE, USC RIBP 1488, SFR Condorcet-FR CNRS 3417 51100 Reims France
| | - Mayri Alejandra Dìaz De Rienzo
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University L3 3AF Liverpool UK
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| |
Collapse
|
29
|
Abstract
Clean label is an important trend in the food industry. It aims at washing foods of chemicals perceived as unhealthy by consumers. Microorganisms are present in many foods (usually fermented), they exhibit a diversity of metabolism and some can bring probiotic properties. They are usually well considered by consumers and, with progresses in the knowledge of their physiology and behavior, they can become very precise tools to produce or degrade specific compounds. They are thus an interesting means to obtain clean label foods. In this review, we propose to discuss some current research to use microorganisms to produce clean label foods with examples improving sensorial, textural, health and nutritional properties.
Collapse
|
30
|
Antibiotic Resistance Crisis: An Update on Antagonistic Interactions between Probiotics and Methicillin-Resistant Staphylococcus aureus (MRSA). Curr Microbiol 2021; 78:2194-2211. [PMID: 33881575 DOI: 10.1007/s00284-021-02442-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) havoc is a global multifaceted crisis endowing a significant challenge for the successful eradication of devastating pathogens. Methicillin-Resistant Staphylococcus aureus (MRSA) is an enduring superbug involved in causing devastating infections. Although MRSA is a frequent colonizer of human skin, wound, and anterior nares, the intestinal colonization of MRSA has greatly increased the risk of inducing MRSA-associated colitis besides creating a conducive environment for horizontal transfer of resistant genes to commensal microbes. On the other hand, staphylococcal resistance to last-resort antibiotics has urged the development of novel antimicrobial agents for the effective decolonization of MRSA. In response, probiotics and their metabolites (postbiotics) have been proposed as the adjunct therapeutic avenues. Probiotics exhibit a multitude of anti-MRSA actions (anti-bacterial, anti-biofilm, anti-virulence, anti-drug resistance, co-aggregation, and anti-quorum sensing) through the production of numerous antagonistic compounds such as organic acids, hydrogen peroxide, low molecular weight compounds, biosurfactants, bacteriocins, and bacteriocins like inhibitory substances. Besides, probiotics stabilize the epithelial barrier function and positively modulate the host immune system via regulating various signal transduction mechanisms. Preclinical and human intervention studies have suggested that probiotics outcompete with MRSA by exhibiting anti-colonization mechanisms via protective, competitive, and displacement mode. In this review, we aim to highlight the dynamics of MRSA associated virulence and drug resistance properties, and how probiotics antagonize MRSA through various mechanism of action.
Collapse
|
31
|
Development and Genetic Engineering of Hyper-Producing Microbial Strains for Improved Synthesis of Biosurfactants. Mol Biotechnol 2021; 63:267-288. [PMID: 33523418 DOI: 10.1007/s12033-021-00302-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Current research energies are fixated on the synthesis of environmentally friendly and non-hazardous products, which include finding and recognizing biosurfactants that can substitute synthetic surfactants. Microbial biosurfactants are surface-active compounds synthesized intracellularly or extracellularly. To use biosurfactants in various industries, it is essential to understand scientific engagements that demonstrate its potentials as real advancement in the 21st century. Other than applying a substantial effect on the world economic market, engineered hyper-producing microbial strains in combination with optimized cultivation parameters have made it probable for many industrial companies to receive the profits of 'green' biosurfactant innovation. There needs to be an emphasis on the worldwide state of biosurfactant synthesis, expression of biosurfactant genes in expressive host systems, the recent developments, and prospects in this line of research. Thus, molecular dynamics with respect to genetic engineering of biosynthetic genes are proposed as new biotechnological tools for development, improved synthesis, and applications of biosurfactants. For example, mutant and hyper-producing recombinants have been designed efficaciously to advance the nature, quantity, and quality of biosurfactants. The fastidious and deliberate investigation will prompt a comprehension of the molecular dynamics and phenomena in new microorganisms. Throughout the decade, valuable data on the molecular genetics of biosurfactant have been produced, and this solid foundation would encourage application-oriented yields of the biosurfactant production industry and expand its utilization in diverse fields. Therefore, the conversations among different interdisciplinary experts from various scientific interests such as microbiology, biochemistry, molecular biology, and genetics are indispensable and significant to accomplish these objectives.
Collapse
|
32
|
Microbial-derived glycolipids in the sustainable formulation of biomedical and personal care products: A consideration of the process economics towards commercialization. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Biosurfactants’ Potential Role in Combating COVID-19 and Similar Future Microbial Threats. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010334] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During 2020, the world has experienced extreme vulnerability in the face of a disease outbreak. The coronavirus disease 2019 (COVID-19) pandemic discovered in China and rapidly spread across the globe, infecting millions, causing hundreds of thousands of deaths, and severe downturns in the economies of countries worldwide. Biosurfactants can play a significant role in the prevention, control and treatment of diseases caused by these pathogenic agents through various therapeutic, pharmaceutical, environmental and hygiene approaches. Biosurfactants have the potential to inhibit microbial species with virulent intrinsic characteristics capable of developing diseases with high morbidity and mortality, as well as interrupting their spread through environmental and hygiene interventions. This is possible due to their antimicrobial activity, ability to interact with cells forming micelles and to interact with the immune system, and compatibility with relevant processes such as nanoparticle synthesis. They, therefore, can be applied in developing innovative and more effective pharmaceutical, therapeutics, sustainable and friendly environmental management approaches, less toxic formulations, and more efficient cleaning agents. These approaches can be easily integrated into relevant product development pipelines and implemented as measures for combating and managing pandemics. This review examines the potential approaches of biosurfactants as useful molecules in fighting microbial pathogens both known and previously unknown, such as COVID-19.
Collapse
|
34
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
35
|
Panjiar N, Mattam AJ, Jose S, Gandham S, Velankar HR. Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138933. [PMID: 32371209 DOI: 10.1016/j.scitotenv.2020.138933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 05/26/2023]
Abstract
Biosurfactants, amphiphilic compounds that reduce interfacial tension in oil-aqueous mixtures, are used in the petroleum, pharmaceutical, food, and agriculture industries. Fermentative production of biosurfactants requires expensive sugar or lipid substrates. Lignocellulosic biomass is a relatively cheap and abundant agricultural residue that can be used as an alternative substrate. Currently, several million tonnes of rice and wheat straw are generated globally as agricultural residues, most of which is disposed by open-field burning thereby leading to severe environmental pollution. This study aimed to produce biosurfactants in xylose-rich hydrolysates generated from rice straw. The hydrolysate is also a byproduct of 2G biofuel processes that often goes underutilized. A soil bacterium capable of growing and producing biosurfactants in rice straw hydrolysates, which typically contain growth-inhibitory compounds such as furfural and hydroxymethyl furfural, was isolated. Interestingly, the organism, identified as Serratia nematodiphila, exhibited higher glycolipid formation (4.5 ± 0.6 gL-1) in xylose-rich hydrolysate than in glucose-rich enzymatic hydrolysate (3.1 ± 0.2 gL-1) despite the higher bacterial cell density observed with the latter. The biosurfactants were thermostable and possessed promising emulsifying property and anti-microbial activity against bacteria and yeast. Further optimization of C:N resulted in a 2.8-fold increase in glycolipid production from xylose-rich hydrolysates. This study demonstrates the production of glycolipid biosurfactants from lignocellulosic biomass, a low-cost substrate and offers a plausible strategy for the management of these residues. Further, it also provides insights into the generation of additional high-value compounds in a bioethanol biorefinery to improve its commercial feasibility.
Collapse
Affiliation(s)
- Neha Panjiar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Anu Jose Mattam
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Steffi Jose
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Sriganesh Gandham
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R&D Centre, KIADB Industrial Area, Tarabanahalli, Devanagonthi, Hoskote, Bengaluru 560067, India.
| |
Collapse
|
36
|
Srivastava N, Ellepola K, Venkiteswaran N, Chai LYA, Ohshima T, Seneviratne CJ. Lactobacillus Plantarum 108 Inhibits Streptococcus mutans and Candida albicans Mixed-Species Biofilm Formation. Antibiotics (Basel) 2020; 9:antibiotics9080478. [PMID: 32759754 PMCID: PMC7459986 DOI: 10.3390/antibiotics9080478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mutans is the principal biofilm forming oral pathogen associated with dental caries. Studies have shown that Candida albicans, a commensal oral fungus is capable of forming pathogenic mixed-species biofilms with S. mutans. The treatment of bacterial and fungal infections using conventional antimicrobial agents has become challenging due to the antimicrobial resistance of the biofilm mode of growth. The present study aimed to evaluate the efficacy of secretory components of Lactobacillus plantarum 108, a potentially promising probiotic strain, against S. mutans and C. albicans single and mixed-species biofilms. L. plantarum 108 supernatant inhibited S. mutans and C. albicans single-species biofilms as shown by XTT reduction assay, crystal violet assay, and colony forming units counting. The probiotic supernatant significantly inhibited the S. mutans and C. albicans mixed-species biofilm formation. The pre-formed mixed-species biofilms were also successfully reduced. Confocal microscopy showed poorly developed biofilm architecture in the probiotic supernatant treated biofilms. Moreover, the expression of S. mutans genes associated with glucosyltransferase activity and C. albicans hyphal specific genes (HWP1, ALS1 and ALS3) were down-regulated in the presence of the probiotic supernatant. Altogether, the data demonstrated the capacity of L. plantarum 108 supernatant to inhibit the S. mutans and C. albicans mixed-species biofilms. Herein, we provide a new insight on the potential of probiotic-based strategies to prevent bacterial-fungal mixed-species biofilms associated with dental caries.
Collapse
Affiliation(s)
- Neha Srivastava
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 11908, Singapore; (N.S.); or (K.E.); (N.V.)
| | - Kassapa Ellepola
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 11908, Singapore; (N.S.); or (K.E.); (N.V.)
- Center of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Nityasri Venkiteswaran
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 11908, Singapore; (N.S.); or (K.E.); (N.V.)
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, University Medicine Cluster, National University Health System and Faculty of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Tomoko Ohshima
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Japan;
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, SingHealth Duke NUS Medical School, 5 Second Hospital Avenue, Singapore 168938, Singapore
- Correspondence: ; Tel.: +65-65767141
| |
Collapse
|
37
|
Behzadnia A, Moosavi-Nasab M, Tiwari BK, Setoodeh P. Lactobacillus plantarum-derived biosurfactant: Ultrasound-induced production and characterization. ULTRASONICS SONOCHEMISTRY 2020; 65:105037. [PMID: 32179260 DOI: 10.1016/j.ultsonch.2020.105037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to investigate the effect of ultrasonic treatment (25 kHz) on biosurfactant production by Lactobacillus plantarum ATCC 8014. The impacts of the ultrasonication (with a frequency of 25 kHz and power of 7.4 W for 30 min time duration) were examined at different stages of the fermentation process to obtain the optimum stimulation instant(s). The optimum scenario was found to be one-time sonication at the 12th hour of fermentation which can be beneficial from an economic point of view (compared with multiple applications of sonication). Ultrasonic treatment at this time resulted in enhancement of the productivities of biomass (4.5 g/L) and biosurfactant (2.01 g/L) which was almost 1.3 times higher than those of the non-sonicated control samples. According to our results, it was clearly observed that glucose consumption increased after ultrasonic treatment representing the improved substrate uptake and progression of the cellular metabolism. Furthermore, the transmission electron microscopic images immediately after sonication clarified the pore formation on the cell surfaces. The results also indicated the enhancement of plasma membrane permeability of the sonicated cells. Fourier transform infrared spectroscopy and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy analyses also disclosed respectively no structural differences before and after ultrasonic exposure in the produced biosurfactant and bacterial cell membrane. The biosurfactant was characterized to be a mixture of carbohydrate (28%), protein (23%) and lipid (specified by gas chromatography-mass spectrometry) known as glycolipoprotein. The sustainable critical micelle concentration and the stability of the synthesized biosurfactant can feature its potential applicability in various processes in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Asma Behzadnia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - Payam Setoodeh
- Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
38
|
Mouafo HT, Mbawala A, Somashekar D, Tchougang HM, Harohally NV, Ndjouenkeu R. Biological properties and structural characterization of a novel rhamnolipid like-biosurfactants produced by Lactobacillus casei subsp. casei TM1B. Biotechnol Appl Biochem 2020; 68:585-596. [PMID: 32497351 DOI: 10.1002/bab.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/30/2020] [Indexed: 11/08/2022]
Abstract
Biosurfactants are microbial surface-active compounds with antimicrobial and antioxidant activities that display a range of physiological functions. In this study, a strain isolated from a Cameroonian fermented milk "pendidam" and identified as Lactobacillus casei subsp. casei TM1B was used for biosurfactants production. The biosurfactants produced by L. casei TM1B with molasses as the substrate had a good surface (40.77 mN/m) and emulsifying (84.50%) activities. The scavenging of the ABTS+• radical (IC50 value of 0.60 ± 0.03 mg/mL) by the biosurfactants was found to be higher than that of DPPH• radical (IC50 value of 0.97 ± 0.13 mg/mL). The maximum chelating activity of biosurfactants (82.29%) was observed at 3.5 mg/mL. The biologically active compound of the biosurfactants produced by L. casei TM1B was identified as 2,5-O-methylrhamnofuranosyl-palmitate, a novel rhamnolipid-like biosurfactant by using chemical, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and NMR analysis. The biosurfactants were bactericidal against several Gram-negative and Gram-positive pathogens (minimum inhibitory concentration values ranged from 3.22 to 12.83 mg/mL), and scanning electron microscope analysis revealed bacterial cell walls and membranes as main targets.
Collapse
Affiliation(s)
- Hippolyte T Mouafo
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon.,Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Augustin Mbawala
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Devappa Somashekar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Hervé M Tchougang
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Nanishankar V Harohally
- Spice and Flavour Science Department, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Robert Ndjouenkeu
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| |
Collapse
|
39
|
Milojevic T, Weckwerth W. Molecular Mechanisms of Microbial Survivability in Outer Space: A Systems Biology Approach. Front Microbiol 2020; 11:923. [PMID: 32499769 PMCID: PMC7242639 DOI: 10.3389/fmicb.2020.00923] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Since the dawn of space exploration, the survivability of terrestrial life in outer space conditions has attracted enormous attention. Space technology has enabled the development of advanced space exposure facilities to investigate in situ responses of microbial life to the stress conditions of space during interplanetary transfer. Significant progress has been made toward the understanding of the effects of space environmental factors, e.g., microgravity, vacuum and radiation, on microorganisms exposed to real and simulated space conditions. Of extreme importance is not only knowledge of survival potential of space-exposed microorganisms, but also the determination of mechanisms of survival and adaptation of predominant species to the extreme space environment, i.e., revealing the molecular machinery, which elicit microbial survivability and adaptation. Advanced technologies in -omics research have permitted genome-scale studies of molecular alterations of space-exposed microorganisms. A variety of reports show that microorganisms grown in the space environment exhibited global alterations in metabolic functions and gene expression at the transcriptional and translational levels. Proteomic, metabolomic and especially metabolic modeling approaches as essential instruments of space microbiology, synthetic biology and metabolic engineering are rather underrepresented. Here we summarized the molecular space-induced alterations of exposed microorganisms in terms of understanding the molecular mechanisms of microbial survival and adaptation to drastic outer space environment.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Jiang J, Zu Y, Li X, Meng Q, Long X. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. BIORESOURCE TECHNOLOGY 2020; 298:122394. [PMID: 31757615 DOI: 10.1016/j.biortech.2019.122394] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
The global market for rhamnolipids production holds great promise, and is in need of an economically viable mass-production scheme. Accordingly, several strategies have been employed to improve the efficiency of rhamnolipid production in the past few decades. Currently, rhamnolipids can be produced by Pseudomonas aeruginosa at a high yield (over 70 g/L) when vegetable oil is used as the carbon source under optimized fed-batch cultivations. However, severe foaming during rhamnolipid fermentation inhibits scaling-up and production efficiency. Stop valve was found to effective break the extremely stable rhamnolipids foams during fermentation, and production efficiency of rhamnolipids was highly improved, while its scale-up mechanism needs further study. In addition, the combination of both chemical and mechanical approaches is likely to be more efficiently resolving the foam problem existed in rhamnolipids fermentation than either chemical or mechanical methods alone.
Collapse
Affiliation(s)
- Jingjing Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Yunqiao Zu
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Xiaoyi Li
- Hangzhou Greenda Electronic Materials Co. Ltd., Hangzhou, PR China
| | - Qin Meng
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China.
| |
Collapse
|
41
|
Screening and Identification of Biosurfactant-Producing Lactic Acid Bacteria. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2019. [DOI: 10.2478/aucft-2019-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Biosurfactant attracts people’s attention because of its advantages of green and low toxicity. Lactic acid bacteria are beneficial to human and animal health. In order to make the application of surfactants safer, SDS standard curve was established, 65 strains of Lactic acid bacteria were used as screening source, and oil expanding circle was used as index to screen the strain with strong surfactant production capacity. The results showed that the standard curve of SDS was Y=34.82+(-1495.97) X1+33.11X2, and all strains had the ability to produce surfactants. Surface activity varied with bacteria. The concentration of surface activity ranged from 111.15mg/L to 736.23 mg/L. The concentration of BS in supernatant of LB6, 49, F70, 20 and Y1 strains was selected for screening. The concentration of BS in supernatant was 561.01~935.77 mg/L, and the concentration of BS on cell surface was 401.67~1076.94 mg/L. Considering the highest BS-producing strain is F70, the result of 16SrDNA showed that the strain is Pediococcus acidilactici F70. This experiment provides basic data for the production of surfactants by Lactic acid bacteria.
Collapse
|
42
|
Dygico LK, O'Connor PM, Hayes M, Gahan CG, Grogan H, Burgess CM. Lactococcus lactis subsp. lactis as a natural anti-listerial agent in the mushroom industry. Food Microbiol 2019; 82:30-35. [DOI: 10.1016/j.fm.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
|
43
|
Liu J, Wu J, Lin J, Zhao J, Xu T, Yang Q, Zhao J, Zhao Z, Song X. Changes in the Microbial Community Diversity of Oil Exploitation. Genes (Basel) 2019; 10:E556. [PMID: 31344878 PMCID: PMC6723437 DOI: 10.3390/genes10080556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 01/15/2023] Open
Abstract
To systematically evaluate the ecological changes of an active offshore petroleum production system, the variation of microbial communities at several sites (virgin field, wellhead, storage tank) of an oil production facility in east China was investigated by sequencing the V3 to V4 regions of 16S ribosomal ribonucleic acid (rRNA) of microorganisms. In general, a decrease of microbial community richness and diversity in petroleum mining was observed, as measured by operational taxonomic unit (OTU) numbers, α (Chao1 and Shannon indices), and β (principal coordinate analysis) diversity. Microbial community structure was strongly affected by environmental factors at the phylum and genus levels. At the phylum level, virgin field and wellhead were dominated by Proteobacteria, while the storage tank had higher presence of Firmicutes (29.3-66.9%). Specifically, the wellhead displayed a lower presentence of Proteobacteria (48.6-53.4.0%) and a higher presence of Firmicutes (24.4-29.6%) than the virgin field. At the genus level, the predominant genera were Ochrobactrum and Acinetobacter in the virgin field, Lactococcus and Pseudomonas in the wellhead, and Prauseria and Bacillus in the storage tank. Our study revealed that the microbial community structure was strongly affected by the surrounding environmental factors, such as temperature, oxygen content, salinity, and pH, which could be altered because of the oil production. It was observed that the various microbiomes produced surfactants, transforming the biohazard and degrading hydro-carbon. Altering the microbiome growth condition by appropriate human intervention and taking advantage of natural microbial resources can further enhance oil recovery technology.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiawei Lin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Zhao
- Dalian Chivy Biotechnology Limited Company, Liaoning 116023, China.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
44
|
Giri SS, Ryu EC, Sukumaran V, Park SC. Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microb Pathog 2019; 132:66-72. [PMID: 31028863 DOI: 10.1016/j.micpath.2019.04.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 11/15/2022]
Abstract
Biosurfactants are surface-active compounds that display a range of physiological functions. The present study investigated the antioxidant, antimicrobial, and anti-adhesive or anti-biofilm potential of biosurfactants isolated from Bacillus subtilis VSG4 and Bacillus licheniformis VS16. The antioxidant activity of the biosurfactants was studied in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals. At 5 mg/mL of the biosurfactant concentration, the scavenging of DPPH and hydroxyl radicals was found to be between 69.1-73.5% and 63.3-69.8%, respectively. The biosurfactants also displayed significant antibacterial activities against both Gram-positive and Gram-negative bacteria. The anti-adhesive activities of the biosurfactants were evaluated against Staphylococcus aureus ATCC 29523, Salmonella typhimurium ATCC 19430, and Bacillus cereus ATCC 11778. The biosurfactants exhibited anti-adhesive activity, even at concentrations of 3-5 mg/mL. Moreover, both biosurfactants displayed notable anti-biofilm activities with a biofilm eradication percentage ranging from 63.9 to 80.03% for VSG4 biosurfactant, and from 61.1-68.4% for VS16 biosurfactant. Furthermore, VSG4 biosurfactant exhibited emulsification and surface tension stability over a wide range of pH (4-10) and temperature up to 100 °C. These results show that VSG4 and VS16 biosurfactants can be potentially used as natural antioxidants, antimicrobials, and/or anti-adhesive agents for food and biomedical applications.
Collapse
Affiliation(s)
- S S Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - E C Ryu
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - V Sukumaran
- Dept. of Zoology, Kundavai Nachiyar Government Arts College for Women (Autonomous), Thanjavur, 613007, Tamil Nadu, India.
| | - S C Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
45
|
Jamwal A, Sharma K, Chauhan R, Bansal S, Goel G. Evaluation of commercial probiotic lactic cultures against biofilm formation by Cronobacter sakazakii. Intest Res 2019; 17:192-201. [PMID: 30508474 PMCID: PMC6505092 DOI: 10.5217/ir.2018.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/AIMS Cronobacter sakazakii, an emergent pathogen is considered as a major concern to infants and neonates fed on reconstituted powdered infant milk formula. In conjunction with many other factors, biofilm forming capacity adds to its pathogenic potential. In view of the facts that infants are at highest risk to C. sakazakii infections, and emerging antibiotic resistance among pathogens, it is imperative to evaluate probiotic cultures for their efficacy against C. sakazakii. Therefore, pure probiotic strains were isolated from commercial probiotic products and tested for their antimicrobial and anti-biofilm activities against C. sakazakii. METHODS A total of 6 probiotic strains were tested for their antibiotic susceptibility followed by antimicrobial activity using cell-free supernatant (CFS) against C. sakazakii. The inhibitory activity of CFS against biofilm formation by C. sakazakii was determined using standard crystal violet assay and microscopic observations. RESULTS All the probiotic strains were sensitive to ampicillin, tetracycline, vancomycin and carbenicillin whereas most of the strains were resistant to erythromycin and novobiocin. Four of the 6 probiotic derived CFS possessed antimicrobial activity against C. sakazakii at a level of 40 μL. A higher biofilm inhibitory activity (>80%) was observed at initial stages of biofilm formation with weaker activity during longer incubation upto 48 hours (50%-60%). CONCLUSIONS The study indicated the efficacy of isolated commercial probiotics strains as potential inhibitor of biofilm formation by C. sakazakii and could be further explored for novel bioactive molecules to limit the emerging infections of C. sakazakii.
Collapse
Affiliation(s)
- Anubhav Jamwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Kavita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Rajni Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Gunjan Goel
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
- Department of Microbiology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
46
|
Isolation of Biosurfactant from Lactobacillus sp. and Study of Its Inhibitory Properties Against E.coli Biofilm. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Hajfarajollah H, Eslami P, Mokhtarani B, Akbari Noghabi K. Biosurfactants from probiotic bacteria: A review. Biotechnol Appl Biochem 2018; 65:768-783. [PMID: 30120889 DOI: 10.1002/bab.1686] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 01/17/2023]
Abstract
Among microorganisms, bacteria are the main group of biosurfactant-producing organisms. Different types of bacteria including Pseudomonas sp., Acinetobacter sp., Bacillus sp., and Arthrobacter sp. are among the most commonly studied bacteria in the realm of scientific research. However, due to the pathogenic nature of the producing organisms, the application of these compounds is restricted, therefore, not suitable for use in food-related industries. Given that probiotic bacteria impact human health, applying probiotics as nonpathogenic and safe organisms have gained much attention for the production of biosurfactants in recent years. Most biosurfactants obtained from probiotic bacteria are related to a number of lactic acid bacteria (LAB). These types of biosurfactants are classified based on their structures as protein-carbohydrate complexes, lipids, or fatty acids. The present paper seeks to provide comprehensive and useful information about the production of various kinds of biosurfactants by different probiotic bacteria. In addition, we have extensively reviewed their potential for possible future applications.
Collapse
Affiliation(s)
- Hamidreza Hajfarajollah
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.,Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Parisa Eslami
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Babak Mokhtarani
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | |
Collapse
|
48
|
Vera ECS, de Azevedo PODS, Domínguez JM, Oliveira RPDS. Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Garg M, Priyanka, Chatterjee M. Isolation, characterization and antibacterial effect of biosurfactant from Candida parapsilosis. ACTA ACUST UNITED AC 2018; 18:e00251. [PMID: 29876302 PMCID: PMC5989587 DOI: 10.1016/j.btre.2018.e00251] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022]
Abstract
In the present study, a biosurfactant producing Candida parapsilosis strain was isolated and identified by our laboratory. Different biosurfactant screening tests such as drop collapse, oil spreading, emulsification index and hemolytic activity confirmed the production of biosurfactant by the isolated Candida parapsilosis strain. The biosurfactant showed significant emulsifying index, drop collapse and oil-spread activity. The partially purified biosurfactant was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The FT-IR results indicated phenol (O-H), amide (N-H) and carbon functional group peaks like C[bond, double bond]O and C[bond, double bond]C at their identified places. GC-MS analysis revealed the presence of 13-docosenamide type of compound with a molecular weight of 337.5 g mol-1. The isolated biosurfactant showed significant antibacterial activity against pathogenic Escherichia coli and Staphylococcus aureus strains at the concentrations of 10 and 5 mg ml-1 respectively. Growth inhibition of both Gram positive and Gram negative pathogenic strains designated the future prospect of exploring the isolated biosurfactant as broad spectrum antibacterial agent.
Collapse
Affiliation(s)
- Mayank Garg
- Biotechnology Engineering, U.I.E.T., Panjab University, Chandigarh, India
| | - Priyanka
- Biotechnology Engineering, U.I.E.T., Panjab University, Chandigarh, India
| | - Mary Chatterjee
- Biotechnology Engineering, U.I.E.T., Panjab University, Chandigarh, India
| |
Collapse
|
50
|
|