1
|
Srinak N, Chiewchankaset P, Kalapanulak S, Panichnumsin P, Saithong T. Metabolic cross-feeding interactions modulate the dynamic community structure in microbial fuel cell under variable organic loading wastewaters. PLoS Comput Biol 2024; 20:e1012533. [PMID: 39418284 PMCID: PMC11521316 DOI: 10.1371/journal.pcbi.1012533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The efficiency of microbial fuel cells (MFCs) in industrial wastewater treatment is profoundly influenced by the microbial community, which can be disrupted by variable industrial operations. Although microbial guilds linked to MFC performance under specific conditions have been identified, comprehensive knowledge of the convergent community structure and pathways of adaptation is lacking. Here, we developed a microbe-microbe interaction genome-scale metabolic model (mmGEM) based on metabolic cross-feeding to study the adaptation of microbial communities in MFCs treating sulfide-containing wastewater from a canned-pineapple factory. The metabolic model encompassed three major microbial guilds: sulfate-reducing bacteria (SRB), methanogens (MET), and sulfide-oxidizing bacteria (SOB). Our findings revealed a shift from an SOB-dominant to MET-dominant community as organic loading rates (OLRs) increased, along with a decline in MFC performance. The mmGEM accurately predicted microbial relative abundance at low OLRs (L-OLRs) and adaptation to high OLRs (H-OLRs). The simulations revealed constraints on SOB growth under H-OLRs due to reduced sulfate-sulfide (S) cycling and acetate cross-feeding with SRB. More cross-fed metabolites from SRB were diverted to MET, facilitating their competitive dominance. Assessing cross-feeding dynamics under varying OLRs enabled the execution of practical scenario-based simulations to explore the potential impact of elevated acidity levels on SOB growth and MFC performance. This work highlights the role of metabolic cross-feeding in shaping microbial community structure in response to high OLRs. The insights gained will inform the development of effective strategies for implementing MFC technology in real-world industrial environments.
Collapse
Affiliation(s)
- Natchapon Srinak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Porntip Chiewchankaset
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| |
Collapse
|
2
|
Bhattacharya A, Neena M, Chatterjee P. Microbial nutrient recovery cell as an efficient and sustainable nutrient recovery option in sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121753. [PMID: 38981265 DOI: 10.1016/j.jenvman.2024.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Globally, nutrient pollution is a serious and challenging concern. Wastewater treatment plants (WWTPs) are designed to prevent the discharge of contaminants resulting from anthropogenic sources to the receiving water bodies. In this study, seasonal nutrient pollution load, and biological nutrient removal efficiency of an anoxic aerobic unit based WWTP were investigated. Seasonal assessment revealed that the average total nitrogen removal efficiency and total phosphorus removal efficiency of the WWTP do not meet the discharge standard of 10 mg/L and 1 mg/L, respectively. Furthermore, the WWTP does not utilize the energy contained in the wastewater. In this regard, dual chamber MFC (D-MFC) has emerged as a promising solution that can not only treat wastewater but can also convert chemical energy present in the wastewater into electrical energy. However, higher N O3- (57 ± 4 mg/L) and P-P O43- (6 ± 0.52 mg/L) concentration in cathodic effluent is a major drawback in D-MFC. Therefore, to solve this issue, D-MFC was transformed into a microbial nutrient recovery cell (MNRC) which demonstrated a final N H4+-N and P-P O43- concentration of nearly 1 mg/L with N H4+-N and P-P O43- recovery up to 74 % and 69 %, respectively in the recovery chamber. Besides, MNRC attained a maximum power density of 307 mW/m3 and a current density of 1614 mA/m3, thus indicating MNRC is an eco-friendly, energy-neutral, and promising technology for electricity generation and recovering nutrients.
Collapse
Affiliation(s)
| | - Margret Neena
- Department of Environmental Studies, Sacred Heart College, Kerala, India
| | - Pritha Chatterjee
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, India; Department of Climate Change, Indian Institute of Technology Hyderabad, India.
| |
Collapse
|
3
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
4
|
Tomás-Pejó E, González-Fernández C, Greses S, Kennes C, Otero-Logilde N, Veiga MC, Bolzonella D, Müller B, Passoth V. Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:96. [PMID: 37270640 DOI: 10.1186/s13068-023-02349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
Carboxylic acids have become interesting platform molecules in the last years due to their versatility to act as carbon sources for different microorganisms or as precursors for the chemical industry. Among carboxylic acids, short-chain fatty acids (SCFAs) such as acetic, propionic, butyric, valeric, and caproic acids can be biotechnologically produced in an anaerobic fermentation process from lignocellulose or other organic wastes of agricultural, industrial, or municipal origin. The biosynthesis of SCFAs is advantageous compared to chemical synthesis, since the latter relies on fossil-derived raw materials, expensive and toxic catalysts and harsh process conditions. This review article gives an overview on biosynthesis of SCFAs from complex waste products. Different applications of SCFAs are explored and how these acids can be considered as a source of bioproducts, aiming at the development of a circular economy. The use of SCFAs as platform molecules requires adequate concentration and separation processes that are also addressed in this review. Various microorganisms such as bacteria or oleaginous yeasts can efficiently use SCFA mixtures derived from anaerobic fermentation, an attribute that can be exploited in microbial electrolytic cells or to produce biopolymers such as microbial oils or polyhydroxyalkanoates. Promising technologies for the microbial conversion of SCFAs into bioproducts are outlined with recent examples, highlighting SCFAs as interesting platform molecules for the development of future bioeconomy.
Collapse
Affiliation(s)
- Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Institute of Sustainable Processes, Valladolid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, 28935, Móstoles, Madrid, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - Nuria Otero-Logilde
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research, Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, La Coruña, Spain
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7070, 75007, Uppsala, Sweden.
| |
Collapse
|
5
|
Zhou Q, Li R, Li T, Zhou R, Hou Z, Zhang X. Interactions among microorganisms functionally active for electron transfer and pollutant degradation in natural environments. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:3-15. [PMID: 38074455 PMCID: PMC10702900 DOI: 10.1016/j.eehl.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2024]
Abstract
Compared to single microbial strains, complex interactions between microbial consortia composed of various microorganisms have been shown to be effective in expanding ecological functions and accomplishing biological processes. Electroactive microorganisms (EMs) and degradable microorganisms (DMs) play vital roles in bioenergy production and the degradation of organic pollutants hazardous to human health. These microorganisms can strongly interact with other microorganisms and promote metabolic cooperation, thus facilitating electricity production and pollutant degradation. In this review, we describe several specific types of EMs and DMs based on their ability to adapt to different environments, and summarize the mechanism of EMs in extracellular electron transfer. The effects of interactions between EMs and DMs are evaluated in terms of electricity production and degradation efficiency. The principle of the enhancement in microbial consortia is also introduced, such as improved biomass, changed degradation pathways, and biocatalytic potentials, which are directly or indirectly conducive to human health.
Collapse
Affiliation(s)
- Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiren Zhou
- Department of Biological and Agricultural Engineering, Texas A&M University, TX 77843-2117, USA
| | - Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Wang H, Chai G, Zhang Y, Wang D, Wang Z, Meng H, Jiang C, Dong W, Li J, Lin Y, Li H. Copper removal from wastewater and electricity generation using dual-chamber microbial fuel cells with shrimp shell as the substrate. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Cao X, Yuan Y, Khodseewong S, Nishimura O, Wang H, Li X. Efficient use of electrons in a double-anode microbial fuel cell-biofilm electrode reactor self-powered coupled system for degradation of azo dyes. CHEMOSPHERE 2022; 302:134760. [PMID: 35508261 DOI: 10.1016/j.chemosphere.2022.134760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
A coupled system consisting of a double-anode microbial fuel cell (MFC) unit and a biofilm electrode reactor (BER) has been applied to degrade the azo dye reactive brilliant red X-3B. In this system, the MFC effluent was used as the input of the BER. The MFC preliminarily degraded X-3B while generating electricity, and the BER obtained electrons from the MFC through the external circuit to continue degrading pollutants without the need for an external power supply. The X-3B removal efficiency was 41.93% higher in the coupled system than the control when the X-3B concentration was 3000 mg/L. The analysis of intermediate products showed that the azo bond of X-3B broke in the MFC, generating a large number of complex intermediates such as anthraquinones, which were further degraded into simple organic compounds in the BER. Meanwhile, the abundance of microbial taxa related to the degradation of refractory organics in the MFC was high, as was that of microbial taxa related to the degradation of simple organics in the BER. Furthermore, the abundance of microorganisms related to power generation in the MFC increased. These results provided an efficient strategy for improving electron utilization efficiency in the coupling system of bioelectrochemical system.
Collapse
Affiliation(s)
- Xian Cao
- School of Energy and Environment, Southeast University, Nanjing 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yali Yuan
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Sirapat Khodseewong
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan
| | - Hui Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
8
|
Jung JH, Sim YB, Ko J, Park SY, Kim GB, Kim SH. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system. BIORESOURCE TECHNOLOGY 2022; 352:127094. [PMID: 35367325 DOI: 10.1016/j.biortech.2022.127094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study examined a two-stage dynamic membrane bioreactor (DMBR) system for biohydrogen and biomethane production from food waste (FW) in mesophilic condition. The two-stage DMBR system enabled high-rate H2 and CH4 production from particulate feedstock by enhanced microorganism retention. Chemical energy in FW was recovered up to 79% as renewable energy. The highest average hydrogen production rate of 7.09 ± 0.42 L/L-d was observed at a hydraulic retention time (HRT) of 8 h in the H2-DMBR, while the highest CH4 average production rate of 0.99 ± 0.02 L/L-d was observed at an HRT of 6 d in the CH4-DMBR. The high specific methanogenic activity of 71.7 mL CH4/g VSS-d was maintained at the short HRT, which also contributed to the high MPR. The genus Clostridium was dominant in the H2-DMBR, while bacterial and archaeal populations in the CH4-DMBR were dominated by the class Clostridia and genera Methanobacterium and Methanosaeta, respectively.
Collapse
Affiliation(s)
- Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeun Ko
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - So Young Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Huang L, Xie T, Wang Y, Tan S, Lu Z, Wang L, Mo C. Symbiotic treatment of ammonia-nitrogen wastewater by algae and activated sludge: effects of algae and sludge inoculation rates. ENVIRONMENTAL TECHNOLOGY 2022:1-11. [PMID: 35184701 DOI: 10.1080/09593330.2022.2044919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
A symbiotic microalgal-bacterial system may be an optional technology for wastewater treatment. It was composed of microalgae and activated sludge and established in the SBR to explore the effect of different dosing ratios of algae and sludge on the removal of nitrogen and phosphorus from simulated wastewater containing ammonium. It can be seen from the result that varied algae-sludge dosing ratios had a higher removal effect on COD removal, but the difference was not significant. The algal-bacterial symbiosis system had a 100% removal rate for ammonium removal on the 8th day. Relatively speaking, the removal of nutrients and related mechanisms vary with environmental conditions (inoculation rate). In general, when the additive ratio was 5:1 (algae: AS), the removal rate of TN and TP was the highest, reaching 53.85% and 85.13% in the shortest time (14 days), among them, the removal rate of ammonium and COD was 100%, and the reduction rates of Nitrite nitrogen and Nitrate nitrogen were 362.99% and 73.42%, respectively. In addition, 16S rDNA gene analysis results demonstrated that the microbial community in the reactor with algal sludge inoculation ratio of 5:1 had differences in three stages of the initial reaction, the middle reaction and the end of the reaction. Comamonadaceae, Flavobacterium, Paenarthrobacter, Mesorhizobium, Nitrobacter were enriched during the reaction operation.
Collapse
Affiliation(s)
- Lizhen Huang
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Ting Xie
- School of Materials and Environment, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, the People's Republic of China
| | - Yilin Wang
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Shun Tan
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Zuyi Lu
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Lujie Wang
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Chuangrong Mo
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| |
Collapse
|
10
|
Kugarajah V, Solomon J, Rajendran K, Dharmalingam S. Enhancement of nitrate removal and electricity generation in microbial fuel cell using eggshell supported biocathode. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Varjani S, Liu Q, Bui XT, Hoang NB. Bio-membrane integrated systems for nitrogen recovery from wastewater in circular bioeconomy. CHEMOSPHERE 2022; 289:133175. [PMID: 34875297 DOI: 10.1016/j.chemosphere.2021.133175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Wastewater contains a significant amount of recoverable nitrogen. Hence, the recovery of nitrogen from wastewater can provide an option for generating some revenue by applying the captured nitrogen to producing bio-products, in order to minimize dangerous or environmental pollution consequences. The circular bio-economy can achieve greater environmental and economic sustainability through game-changing technological developments that will improve municipal wastewater management, where simultaneous nitrogen and energy recovery are required. Over the last decade, substantial efforts were undertaken concerning the recovery of nitrogen from wastewater. For example, bio-membrane integrated system (BMIS) which integrates biological process and membrane technology, has attracted considerable attention for recovering nitrogen from wastewater. In this review, current research on nitrogen recovery using the BMIS are compiled whilst the technologies are compared regarding their energy requirement, efficiencies, advantages and disadvantages. Moreover, the bio-products achieved in the nitrogen recovery system processes are summarized in this paper, and the directions for future research are suggested. Future research should consider the quality of recovered nitrogenous products, long-term performance of BMIS and economic feasibility of large-scale reactors. Nitrogen recovery should be addressed under the framework of a circular bio-economy.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, PR China.
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Bich Hoang
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
12
|
Gul H, Raza W, Lee J, Azam M, Ashraf M, Kim KH. Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. CHEMOSPHERE 2021; 281:130828. [PMID: 34023759 DOI: 10.1016/j.chemosphere.2021.130828] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The global energy crisis has stimulated the development of various forms of green energy technology such as microbial fuel cells (MFCs) that can be applied synergistically and simultaneously toward wastewater treatment and bioenergy generation. This is because electricigens in wastewater can act as catalysts for destroying organic pollutants to produce bioelectricity through bacterial metabolism. In this review, the factors affecting energy production are discussed to help optimize MFC processes with respect to design (e.g., single, double, stacked, up-flow, sediment, photosynthetic, and microbial electrolysis cells) and operational conditions/parameters (e.g., cell potential, microorganisms, substrate (in wastewater), pH, temperature, salinity, external resistance, and shear stress). The significance of electron transfer mechanisms and microbial metabolism is also described to pursue the maximum generation of power by MFCs. Technically, the generation of power by MFCs is still a significant challenge for real-world applications due to the difficulties in balancing between harvesting efficiency and upscaling of the system. This review summarizes various techniques used for MFC-based energy harvesting systems. This study aims to help narrow such gaps in their practical applications. Further, it is also expected to give insights into the upscaling of MFC technology while assisting environmental scientists to gain a better understanding on this energy harvesting approach.
Collapse
Affiliation(s)
- Hajera Gul
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Waseem Raza
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024, PR China
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Mudassar Azam
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mujtaba Ashraf
- NFC Institute of Engineering & Technology, Department of Chemical Engineering, Khanewal Road Opposite Pak Arab Fertilizers, 60000, Multan, Pakistan
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
13
|
Yang N, Zhou Q, Zhan G, Liu Y, Luo H, Li D. Comparative evaluation of simultaneous nitritation/denitritation and energy recovery in air-cathode microbial fuel cells (ACMFCs) treating low C/N ratio wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147652. [PMID: 34023598 DOI: 10.1016/j.scitotenv.2021.147652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Air-cathode microbial fuel cells (ACMFCs) can extract available electrons from the low C/N ratio wastewater (LCNW) for pollutant degradation and power generation. However, the multiple effects of operating parameters and their relationship between the performances and parameters are still lacking. In this study, several ACMFCs for simultaneous nitritation/denitritation (SND) and energy recovery were constructed and evaluated in terms of chemical oxygen demand (COD), NH4+-N, C/N ratio, phosphate buffer solution (PBS), and external resistance (Rext), and several derived parameters (e.g., organic loading rate (OLR), nitrogen loading rate (NLR)). Results indicated that ACMFCs could be used to treat LCNW successfully with high pollutant removal rates and sustainable current generation. Maximum removal efficiencies of 94% COD, 92% NH4+-N, and 92% total nitrogen (TN) were achieved. A maximum power density of 1400 mW m-2 and columbic efficiency of 69.2% were also obtained at a low C/N ratio of 1.7-2.6. Low C/N ratios promoted SND by balancing nitritation and denitritation. The microbial community and their predicated function results showed considerable nitrifiers and denitrificans were enriched in the ACMFCs, contributing to SND and power recovery. Further analyses showed that the NH4+-N could inhibit SND, but PBS and Rext had no obvious effects on this outcome. Co-occurrence network analysis demonstrated that power is positively correlated with COD and Rext; strong correlations between organic removal and COD, and between nitrogen removal and ammonia, conductivity, and C/N ratio were also noted. Overall, the appropriate control of such parameters is necessary to achieve efficient SND in ACMFCs for LCNW treatment.
Collapse
Affiliation(s)
- Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Biogas Institute of Ministry of Agriculture and Rural Affairs, Sichuan Institute of Rural Human Settlements, Chengdu 610041, China; MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Qinmao Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Huiqin Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
14
|
Santoro C, Babanova S, Cristiani P, Artyushkova K, Atanassov P, Bergel A, Bretschger O, Brown RK, Carpenter K, Colombo A, Cortese R, Erable B, Harnisch F, Kodali M, Phadke S, Riedl S, Rosa LFM, Schröder U. How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross-Laboratory Study. CHEMSUSCHEM 2021; 14:2313-2330. [PMID: 33755321 PMCID: PMC8252665 DOI: 10.1002/cssc.202100294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Indexed: 05/05/2023]
Abstract
A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 μW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Material ScienceUniversity of Milan BicoccaU5 Via Cozzi 55Milan20125Italy
| | - Sofia Babanova
- Aquacycl LLC2180 Chablis Court, Suite 102EscondidoCA 92029USA
| | - Pierangela Cristiani
- Department of Sustainable Development and Energy ResourcesRicerca sul Sistema Energetico S.p.A.Via Rubattino 54Milan20134Italy
| | | | - Plamen Atanassov
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Alain Bergel
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | | | - Robert K. Brown
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Kayla Carpenter
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Alessandra Colombo
- Department of ChemistryUniversità degli Studi di MilanoVia Golgi 19Milan20133Italy
| | - Rachel Cortese
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Benjamin Erable
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Mounika Kodali
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Sujal Phadke
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Sebastian Riedl
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Luis F. M. Rosa
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
15
|
Zhang Y, Xu Y, Chen X, Chen C, Sun J, Bai X, Yuan Y. Effect of copper ions on glucose fermentation pathways in bioelectrochemical system. CHEMOSPHERE 2021; 272:129627. [PMID: 33486454 DOI: 10.1016/j.chemosphere.2021.129627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/05/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Toxic metal ions were previously found to be effective removed by anodic biofilms under the coexistence of organics in bioelectrochemical system (BES). However, the effect of toxic metal ions on the organics fermentation pathways remains unclear. To investigate the pathway systematically, the glucose fermentation pathways were discussed under different Cu2+ concentrations. After introducing Cu2+, more acetate and less propionate were observed, implying that the metabolic reaction of glucose fermentation altered from mixed acid type to acetogenesis type. This pattern produced more "food" (acetate or hydrogen) for methanogens, thus, the methane content increased by 19.67%, 39.51%, and 27.71% in the presence of 0.1, 1, and 7 mg L-1 Cu2+ compared to the blank, respectively. Increased Cu2+ concentrations resulted in the decrease of current production, which was associated with the decrease of electricigen (Geobacter). Consistent with the change of fermentation type, the fermenters (Klebsiella and norank_f__norank_o__Bacteroidales) that related to the production of acetate increased, while the dominant methanogens (Methaospirillum) didn't decrease until the Cu2+ concentration reached 7 mg L-1.
Collapse
Affiliation(s)
- Yaping Zhang
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yangao Xu
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xi Chen
- South China Institute of Environmental Science, Ministry of ecology and Environment of PR China, Guangzhou, 510655, China
| | - Caiyun Chen
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jian Sun
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiaoyan Bai
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yong Yuan
- School of Environmental Science and Engineering, Institute of Environmental, Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
Spiess S, Kucera J, Seelajaroen H, Sasiain A, Thallner S, Kremser K, Novak D, Guebitz GM, Haberbauer M. Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells. BIOSENSORS-BASEL 2021; 11:bios11060170. [PMID: 34073192 PMCID: PMC8229196 DOI: 10.3390/bios11060170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023]
Abstract
Sustainable technologies for energy production and storage are currently in great demand. Bioelectrochemical systems (BESs) offer promising solutions for both. Several attempts have been made to improve carbon felt electrode characteristics with various pretreatments in order to enhance performance. This study was motivated by gaps in current knowledge of the impact of pretreatments on the enrichment and microbial composition of bioelectrochemical systems. Therefore, electrodes were treated with poly(neutral red), chitosan, or isopropanol in a first step and then fixed in microbial electrolysis cells (MECs). Four MECs consisting of organic substance-degrading bioanodes and methane-producing biocathodes were set up and operated in batch mode by controlling the bioanode at 400 mV vs. Ag/AgCl (3M NaCl). After 1 month of operation, Enterococcus species were dominant microorganisms attached to all bioanodes and independent of electrode pretreatment. However, electrode pretreatments led to a decrease in microbial diversity and the enrichment of specific electroactive genera, according to the type of modification used. The MEC containing isopropanol-treated electrodes achieved the highest performance due to presence of both Enterococcus and Geobacter. The obtained results might help to select suitable electrode pretreatments and support growth conditions for desired electroactive microorganisms, whereby performance of BESs and related applications, such as BES-based biosensors, could be enhanced.
Collapse
Affiliation(s)
- Sabine Spiess
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
- Correspondence:
| | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (D.N.)
| | - Hathaichanok Seelajaroen
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria;
| | - Amaia Sasiain
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
| | - Sophie Thallner
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
| | - Klemens Kremser
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria;
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (D.N.)
| | - Georg M. Guebitz
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria;
| | - Marianne Haberbauer
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
| |
Collapse
|
17
|
Dai S, Korth B, Vogt C, Harnisch F. Microbial Electrochemical Oxidation of Anaerobic Digestion Effluent From Treating HTC Process Water. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.652445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrothermal carbonization (HTC) is a promising technology for chemical and material synthesis. However, HTC produces not only valuable solid coal-materials but also yields process water (PW) with high chemical oxygen demand (COD) that requires extensive treatment. Anaerobic digestion (AD) has been used for initial treatment of HTC-PW, but the AD effluent is still high in COD and particles. Here, we show that microbial electrochemical technologies (MET) can be applied for COD removal from AD effluent of HTC-PW. Bioelectrochemical systems (BES) treating different shares of AD effluent from HTC-PW exhibited similar trends for current production. Thereby, maximum current densities of 0.24 mA cm−2 and COD removal of 65.4 ± 4.4% were reached (n = 3). Microbial community analysis showed that the genus Geobacter dominated anode biofilm and liquid phase of all reactors indicating its central role for COD oxidation and current generation.
Collapse
|
18
|
Salar-Garcia MJ, Obata O, Kurt H, Chandran K, Greenman J, Ieropoulos IA. Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms 2020; 8:microorganisms8121921. [PMID: 33287204 PMCID: PMC7761717 DOI: 10.3390/microorganisms8121921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
Bacteria are the driving force of the microbial fuel cell (MFC) technology, which benefits from their natural ability to degrade organic matter and generate electricity. The development of an efficient anodic biofilm has a significant impact on the power performance of this technology so it is essential to understand the effects of the inoculum nature on the anodic bacterial diversity and establish its relationship with the power performance of the system. Thus, this work aims at analysing the impact of 3 different types of inoculum: (i) stored urine, (ii) sludge and (iii) effluent from a working MFC, on the microbial community of the anodic biofilm and therefore on the power performance of urine-fed ceramic MFCs. The results showed that MFCs inoculated with sludge outperformed the rest and reached a maximum power output of 40.38 mW·m-2anode (1.21 mW). The power performance of these systems increased over time whereas the power output by MFCs inoculated either with stored urine or effluent decreased after day 30. These results are directly related to the establishment and adaptation of the microbial community on the anode during the assay. Results showed the direct relationship between the bacterial community composition, originating from the different inocula, and power generation within the MFCs.
Collapse
Affiliation(s)
- Maria Jose Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK; (O.O.); (J.G.)
- Correspondence: (M.J.S.-G.); (I.A.I.)
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK; (O.O.); (J.G.)
| | - Halil Kurt
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA; (H.K.); (K.C.)
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA; (H.K.); (K.C.)
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK; (O.O.); (J.G.)
| | - Ioannis A. Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK; (O.O.); (J.G.)
- Correspondence: (M.J.S.-G.); (I.A.I.)
| |
Collapse
|
19
|
Chung TH, Meshref MNA, Hai FI, Al-Mamun A, Dhar BR. Microbial electrochemical systems for hydrogen peroxide synthesis: Critical review of process optimization, prospective environmental applications, and challenges. BIORESOURCE TECHNOLOGY 2020; 313:123727. [PMID: 32646578 DOI: 10.1016/j.biortech.2020.123727] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide (H2O2) is an industrial chemical that has been widely adopted for various industrial applications, including water and wastewater treatment. Currently, the majority of H2O2 is being produced through the anthraquinone oxidation process, which is disadvantageous due to the requirement of toxic raw materials and high energy input. Recently, microbial electrochemical cells (MXCs), such as microbial fuel cells and microbial electrolysis cells, have demonstrated great potential for effective H2O2 production via cathodic oxygen-reduction reaction (ORR). Previous studies have specified key operational parameters for scaling-up of H2O2-producing MXCs, where improvements in production rate, conversion efficiency, product concentration and stability are attainable. Moreover, various systems have demonstrated their value proposition in the contaminant removal aspects through direct removal of various environmental pollutants, water disinfection, and many more. This review is intended to highlight promising ways of H2O2 production with MXCs and on-site environmental applications of bioelectrochemically-produced H2O2.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Mohamed N A Meshref
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada; Public Works Department, Faculty of Engineering, Ain Shams University, 1 El Sarayat St., Abbassia, 11517 Cairo, Egypt
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
20
|
San-Martín MI, Escapa A, Alonso RM, Canle M, Morán A. Degradation of 2-mercaptobenzothizaole in microbial electrolysis cells: Intermediates, toxicity, and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139155. [PMID: 32446060 DOI: 10.1016/j.scitotenv.2020.139155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The compound 2-mercaptobenzothizaole (MBT) has been frequently detected in wastewater and surface water and is a potential threat to both aquatic organisms and human health (its mutagenic potential has been demonstrated). This study investigated the degradation routes of MBT in the anode of a microbial electrolysis cell (MEC) and the involved microbial communities. The results indicated that graphene-modified anodes promoted the presence of more enriched, developed, and specific communities compared to bare anodes. Moreover, consecutive additions of the OH substituent to the benzene ring of MBT were only detected in the reactor equipped with the graphene-treated electrode. Both phenomena, together with the application of an external voltage, may be related to the larger reduction of biotoxicity observed in the MEC equipped with graphene-modified anodes (46.2 eqtox∙m-3 to 27.9 eqtox∙m-3).
Collapse
Affiliation(s)
- M Isabel San-Martín
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Avda. de Portugal 41, E-24009 Leon, Spain
| | - Adrián Escapa
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Avda. de Portugal 41, E-24009 Leon, Spain; Department of Electrical Engineering and Automatic Systems, Universidad de León, Campus de Vegazana s/n, E-24071 León, Spain.
| | - Raúl M Alonso
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Avda. de Portugal 41, E-24009 Leon, Spain
| | - Moisés Canle
- Chemical Reactivity & Photoreactivity Group, Dept. of Chemistry, Faculty of Sciences & CICA, University of A Coruña, E-15071 A Coruña, Spain
| | - Antonio Morán
- Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Avda. de Portugal 41, E-24009 Leon, Spain
| |
Collapse
|
21
|
Guo Y, Wang J, Shinde S, Wang X, Li Y, Dai Y, Ren J, Zhang P, Liu X. Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Adv 2020; 10:25874-25887. [PMID: 35518611 PMCID: PMC9055303 DOI: 10.1039/d0ra05234e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023] Open
Abstract
The development of microbial fuel cell (MFC) makes it possible to generate clean electricity as well as remove pollutants from wastewater. Extensive studies on MFC have focused on structural design and performance optimization, and tremendous advances have been made in these fields. However, there is still a lack of systematic analysis on biocatalysts used in MFCs, especially when it comes to pollutant removal and simultaneous energy recovery. In this review, we aim to provide an update on MFC-based wastewater treatment and energy harvesting research, and analyze various biocatalysts used in MFCs and their underlying mechanisms in pollutant removal as well as energy recovery from wastewater. Lastly, we highlight key future research areas that will further our understanding in improving MFC performance for simultaneous wastewater treatment and sustainable energy harvesting.
Collapse
Affiliation(s)
- Yajing Guo
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jiao Wang
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Shrameeta Shinde
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Xin Wang
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Yang Li
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Yexin Dai
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jun Ren
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University Tianjin 300384 PR China
| | - Xianhua Liu
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| |
Collapse
|
22
|
Wu Y, He G, Chen S, Wang Z. Three-dimensional carbon-based anodes promoted the accumulation of exoelectrogens in bioelectrochemical systems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:997-1005. [PMID: 31891435 DOI: 10.1002/wer.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
To achieve deep understandings on the effects of structure and surface properties of anode material on the performance of bioelectrochemical systems, the present research investigated the bacterial community structures of biofilms attached to different three-dimensional anodes including carbon felt and materials derived from pomelo peel, kenaf stem, and cardboard with 454 pyrosequencing analysis based on the bacterial 16S rRNA gene. The results showed that bacterial community structures, especially the relative abundance of exoelectrogens, were significantly related to the types of adopted three-dimensional anode materials. Proteobacteria was the shared predominant phylum, accounting for 55.4%, 52.1%, 66.7%, and 56.1% for carbon felt, cardboard, pomelo peel, and kenaf stem carbon, respectively. The most abundant OTU was phylogenetically related to the well-known exoelectrogen of Geobacter, with a relative abundance of 16.3%, 19.0%, 36.3%, and 28.6% in carbon felt, cardboard, pomelo peel, and kenaf stem, respectively. Moreover, another exoelectrogen of Pseudomonas sp. accounted for 4.9% in kenaf stem and 3.9% in carbonboard, respectively. The results implied the macrostructure and properties of different anode materials might result in different niches such as hydrodynamics and substrate transport dynamics, leading to different bacterial structure, especially different relative abundance of exoelectrogens, which consequently affected the performance of bioelectrochemical systems. PRACTITIONER POINTS: Bioelectrochemical systems (BESs) represent a novel biotechnology platform to simultaneously treat wastewaters and produce electrical power. Three-dimensional materials derived from nature plant as anode to promote electricity output from BESs and reduce the construct cost of BESs. Macrostructure of the three-dimensional anode material affected phylotype richness and phylogenetic diversity of microorganisms in anodic biofilm of BESs. Geobacter as well-known exoelectrogen was the most abundant in biofilm attached to three-dimensional anode.
Collapse
Affiliation(s)
- Yicheng Wu
- Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Guanghua He
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Shuiliang Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Zejie Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
23
|
Effective Treatment of Acid Mine Drainage with Microbial Fuel Cells: An Emphasis on Typical Energy Substrates. MINERALS 2020. [DOI: 10.3390/min10050443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acid mine drainage (AMD), characterized by a high concentration of heavy metals, poses a threat to the ecosystem and human health. Bioelectrochemical system (BES) is a promising technology for the simultaneous treatment of organic wastewater and recovery of metal ions from AMD. Different kinds of organic wastewater usually contain different predominant organic chemicals. However, the effect of different energy substrates on AMD treatment and microbial communities of BES remains largely unknown. Here, results showed that different energy substrates (such as glucose, acetate, ethanol, or lactate) affected the startup, maximum voltage output, power density, coulombic efficiency, and microbial communities of the microbial fuel cell (MFC). Compared with the maximum voltage output (55 mV) obtained by glucose-fed-MFC, much higher maximum voltage output (187 to 212 mV) was achieved by MFCs fed individually with other energy substrates. Acetate-fed-MFC showed the highest power density (195.07 mW/m2), followed by lactate (98.63 mW/m2), ethanol (52.02 mW/m2), and glucose (3.23 mW/m2). Microbial community analysis indicated that the microbial communities of anodic electroactive biofilms changed with different energy substrates. The unclassified_f_Enterobacteriaceae (87.48%) was predominant in glucose-fed-MFC, while Geobacter species only accounted for 0.63%. The genera of Methanobrevibacter (23.70%), Burkholderia-Paraburkholderia (23.47%), and Geobacter (11.90%) were the major genera enriched in the ethanol-fed-MFC. Geobacter was most predominant in MFC enriched by lactate (45.28%) or acetate (49.72%). Results showed that the abundance of exoelectrogens Geobacter species correlated to electricity-generation capacities of electroactive biofilms. Electroactive biofilms enriched with acetate, lactate, or ethanol effectively recovered all Cu2+ ion (349 mg/L) of simulated AMD in a cathodic chamber within 53 h by reduction as Cu0 on the cathode. However, only 34.65% of the total Cu2+ ion was removed in glucose-fed-MFC by precipitation with anions and cations rather than Cu0 on the cathode.
Collapse
|
24
|
Mai Q, Yang G, Cao J, Zhang X, Zhuang L. Stratified microbial structure and activity within anode biofilm during electrochemically assisted brewery wastewater treatment. Biotechnol Bioeng 2020; 117:2023-2031. [DOI: 10.1002/bit.27342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Qijun Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Jiayao Cao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| | - Xia Zhang
- Guangzhou Zhujiang Brewery Guangzhou China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan University Guangzhou China
| |
Collapse
|
25
|
Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Varjani S, Kumar M. Microbial fuel cell-based biosensor for online monitoring wastewater quality: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135612. [PMID: 31836209 DOI: 10.1016/j.scitotenv.2019.135612] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 05/22/2023]
Abstract
Recently, the application of the microbial fuel cell (MFC)-based biosensor for rapid and real-time monitoring wastewater quality is very innovative due to its simple compact design, disposability, and cost-effectiveness. This review represents recent advances in this emerging technology for the management of wastewater quality, where the emphasis is on biochemical oxygen demand, toxicity, and other environmental applications. In addition, the main challenges of this technology are discussed, followed by proposing possible solutions to those challenges based on the existing knowledge of detection principles and signal processing. Potential future research of MFC-based biosensor has been demonstrated in this review.
Collapse
Affiliation(s)
- Minh Hang Do
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Mathava Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| |
Collapse
|
26
|
Xiao N, Selvaganapathy PR, Wu R, Huang JJ. Influence of wastewater microbial community on the performance of miniaturized microbial fuel cell biosensor. BIORESOURCE TECHNOLOGY 2020; 302:122777. [PMID: 31991390 DOI: 10.1016/j.biortech.2020.122777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Microbial fuel cells (MFCs) based sensors had been studied in measuring biochemical oxygen demand (BOD) or the equivalent chemical oxygen demand (COD) recently. Limited attention has been paid to the effect of the microbial communities in wastewater on the responses of these sensors. This study systematically evaluated, for the first time, the effect of wastewater samples from a variety of sources on the electrical response of a micro-fabricated double-chamber MFC device. It was found that the response of the MFC is positively correlated with the bacterial composition, in particular electroactive bacteria. The presence of aerobic bacteria in the sample reduces the current generation. These findings indicated that the bacterial content of the water sample could be a significant interference source and must be considered in the use of µMFC-based sensors. Filtering samples may be effective in improving the reliability of these microsensors.
Collapse
Affiliation(s)
- Nan Xiao
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China; Department of Mechanical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | | | - Rong Wu
- Department of Mechanical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
27
|
Obata O, Salar-Garcia MJ, Greenman J, Kurt H, Chandran K, Ieropoulos I. Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:109992. [PMID: 31929046 PMCID: PMC7001104 DOI: 10.1016/j.jenvman.2019.109992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 05/20/2023]
Abstract
The Microbial fuel cell (MFC) technology harnesses the potential of some naturally occurring bacteria for electricity generation. Digested sludge is commonly used as the inoculum to initiate the process. There are, however, health hazards and practical issues associated with the use of digested sludge depending on its origin as well as the location for system deployment. This work reports the development of an efficient electroactive bacterial community within ceramic-based MFCs fed with human urine in the absence of sludge inoculum. The results show the development of a uniform bacterial community with power output levels equal to or higher than those generated from MFCs inoculated with sludge. In this case, the power generation begins within 2 days of the experimental set-up, compared to about 5 days in some sludge-inoculated MFCs, thus significantly reducing the start-up time. The metagenomics analysis of the successfully formed electroactive biofilm (EAB) shows significant shifts between the microbial ecology of the feeding material (fresh urine) and the developed anodic biofilm. A total of 21 bacteria genera were detected in the urine feedstock whilst up to 35 different genera were recorded in the developed biofilm. Members of Pseudomonas (18%) and Anaerolineaceae (17%) dominate the bacterial community of the fresh urine feed while members of Burkholderiaceae (up to 50%) and Tissierella (up to 29%) dominate the anodic EAB. These results highlight a significant shift in the bacterial community of the feedstock towards a selection and adaptation required for the various electrochemical reactions essential for survival through power generation.
Collapse
Affiliation(s)
- Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| | - Maria J Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Halil Kurt
- Department of Earth and Environmental Engineering, Columbia University, NY, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, NY, USA
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
28
|
Nagendranatha Reddy C, Nguyen HTH, Noori MT, Min B. Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2019; 292:122010. [PMID: 31473037 DOI: 10.1016/j.biortech.2019.122010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Production of biofuels and other value-added products from wastewater along with quality treatment is an uttermost necessity to achieve environmental sustainability and promote bio-circular economy. Algae-Microbial fuel cell (A-MFC) with algae in cathode chamber offers several advantages e.g. photosynthetic oxygenation for electricity recovery, CO2-fixation, wastewater treatment, etc. However, performance of A-MFC depends on several operational parameters and also on electrode materials types; therefore, enormous collective efforts have been made by researchers for finding optimal conditions in order to enhance A-MFC performance. The present review is a comprehensive snapshot of the recent advances in A-MFCs, dealing two major parts: 1) the power generation, which exclusively outlines the effect of different parameters and development of cutting edge cathode materials and 2) wastewater treatment at cathode of A-MFC. This review provides fundamental knowledge, critical constraints, current status and some insights for making A-MFC technology a reality at commercial scale operation.
Collapse
Affiliation(s)
- C Nagendranatha Reddy
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea; Department of Biotechnology, Chaitanya Bharathi Institute of Technology (Autonomous), Gandipet-500075, Hyderabad, Telangana State, India; Bhuma Shobha Nagireddy Memorial College of Engineering & Technology (BSNRMCET) Kandukuri Metta, Allagadda 518543, Andhra Pradesh, India
| | - Hai T H Nguyen
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Md T Noori
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
29
|
Yang Z, Zhang L, Nie C, Hou Q, Zhang S, Pei H. Multiple anodic chambers sharing an algal raceway pond to establish a photosynthetic microbial fuel cell stack: Voltage boosting accompany wastewater treatment. WATER RESEARCH 2019; 164:114955. [PMID: 31408757 DOI: 10.1016/j.watres.2019.114955] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Photosynthetic microbial fuel cells (PMFCs) allow renewable energy production from wastewater. However, system scale-up is still a major challenge hindering the use of PMFCs for practical applications. Herein, a PMFC stack, which consisted of multiple anodic chambers installed in an algal raceway pond (ARP), was established to recovery energy from anaerobically digested effluent with the assistance of a prototypical capacitor circuit. The highest voltage output of the stack reached 1.4 V with four PMFC units and four capacitors. The system can produce stable voltages through controlling charging and discharging frequencies and the voltage output remained stable around 0.60 V when the time interval decreased to 2 s. During long-term operation, the highest power density of the stack with capacitors reached 2.34 W/m3, which was 77% higher than that without capacitors (1.32 W/m3). About 98% of the ammonium in the anolyte was removed, resulting from the ammonium migration effect. The dynamics of bacterial community compositions were not greatly influenced by the capacitor circuit, and the stack with capacitors had a more stable bacterial community compared to the stack without capacitors. The variations in bacterial community composition following power density changes indicated that members of the Clostridia and Betaproteobacteria were related to power generation. Bacteria affiliated to Bacteroidetes were inhibited when power density was high, though their numbers were enriched at the end of the process. This study promotes a practical method for developing the PMFC technology into real-world applications, and furthermore reveals the main bacteria that play vital roles in power generation by analysing the anodic bacterial community during the whole process.
Collapse
Affiliation(s)
- Zhigang Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lijie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Changliang Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingjie Hou
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shasha Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| |
Collapse
|
30
|
Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Ni BJ, Zhang X. Microbial fuel cell for nutrient recovery and electricity generation from municipal wastewater under different ammonium concentrations. BIORESOURCE TECHNOLOGY 2019; 292:121992. [PMID: 31430674 DOI: 10.1016/j.biortech.2019.121992] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a dual-compartment microbial fuel cell (MFC) was constructed and continuously operated under different influent concentrations of ammonium-nitrogen (5-40 mg/L). The impacts of ammonium on organics removal, energy output and nutrient recovery were investigated. Experimental results demonstrated that this MFC reactor achieved a CDO removal efficiency of greater than 85%. Moreover, excess ammonium concentration in the feed solution compromises the generation of electricity. Simultaneously, the recovery rate of phosphate achieved in the MFC was insignificantly influenced at the wider influent ammonium concentration. In contrast, a high concentration of ammonium may not be beneficial for its recovery.
Collapse
Affiliation(s)
- Yuanyao Ye
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
31
|
Saheb‐Alam S, Persson F, Wilén B, Hermansson M, Modin O. Response to starvation and microbial community composition in microbial fuel cells enriched on different electron donors. Microb Biotechnol 2019; 12:962-975. [PMID: 31228355 PMCID: PMC6680615 DOI: 10.1111/1751-7915.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
In microbial fuel cells (MFCs), microorganisms generate electrical current by oxidizing organic compounds. MFCs operated with different electron donors harbour different microbial communities, and it is unknown how that affects their response to starvation. We analysed the microbial communities in acetate- and glucose-fed MFCs and compared their responses to 10 days starvation periods. Each starvation period resulted in a 4.2 ± 1.4% reduction in electrical current in the acetate-fed MFCs and a 10.8 ± 3.9% reduction in the glucose-fed MFCs. When feed was resumed, the acetate-fed MFCs recovered immediately, whereas the glucose-fed MFCs required 1 day to recover. The acetate-fed bioanodes were dominated by Desulfuromonas spp. converting acetate into electrical current. The glucose-fed bioanodes were dominated by Trichococcus sp., functioning as a fermenter, and a member of Desulfuromonadales, using the fermentation products to generate electrical current. Suspended biomass and biofilm growing on non-conductive regions within the MFCs had different community composition than the bioanodes. However, null models showed that homogenizing dispersal of microorganisms within the MFCs affected the community composition, and in the glucose-fed MFCs, the Trichococcus sp. was abundant in all locations. The different responses to starvation can be explained by the more complex pathway requiring microbial interactions to convert glucose into electrical current.
Collapse
Affiliation(s)
- Soroush Saheb‐Alam
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| | - Frank Persson
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| | - Britt‐Marie Wilén
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| | - Malte Hermansson
- Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Oskar Modin
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
32
|
Song N, Yan Z, Xu H, Yao Z, Wang C, Chen M, Zhao Z, Peng Z, Wang C, Jiang HL. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:272-280. [PMID: 30995582 DOI: 10.1016/j.scitotenv.2019.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
A novel multi-cathode, single-anode system integrating a sediment microbial fuel cell -based biosensor was developed for in-situ, continuous, and online monitoring of dissolved oxygen (DO) concentrations along various depths of lake water. The signal feedback mechanism was evaluated based on a relationship between voltage and DO concentration at corresponding depths. With an external resistance of 1000 Ω, a linear relationship was found (regression coefficient, R2 = 0.9576) between voltage and DO in the range of 0-9 mg L-1. The sensor performance was further optimized under various influence factors. The results of indoor experiments indicated that the optimal anode to single cathode area ratio was 11:1. The sensor signal could also be significantly influenced by organic matter content in sediment; thus, the addition of 5% organic matter could obtain a stable anode potential and a high voltage output. Furthermore, the sensor was operated in-situ for 67 days in a lake environment, which also led to a good correlation between the voltage and DO (R2 = 0.8897). Thus, this integrated system has great potential as an early-warning program to help identify environmental risks in aquatic environments.
Collapse
Affiliation(s)
- Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zongbao Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mo Chen
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Zhiwei Zhao
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhaoliang Peng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - He-Long Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
33
|
Xia T, Zhang X, Wang H, Zhang Y, Gao Y, Bian C, Wang X, Xu P. Power generation and microbial community analysis in microbial fuel cells: A promising system to treat organic acid fermentation wastewater. BIORESOURCE TECHNOLOGY 2019; 284:72-79. [PMID: 30925425 DOI: 10.1016/j.biortech.2019.03.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
To explore a sustainable and efficient treatment approach for organic acid fermentation wastewater, two microbial fuel cells (MFCs) systems inoculated with wastewater or domesticated microbial community were constructed in this study. Compared with the MFC inoculated with domesticated microbial community, the MFC inoculated with wastewater not only showed higher power density (543.75 mW m-2) and coulomb efficiency (22.10%), but also exhibited higher removal rates of chemical oxygen demand (75.59%), total nitrogen (76.15%), and ammonia nitrogen (83.23%), meeting the demand of wastewater discharge standard of China. Sequencing analysis revealed that the MFC inoculated with wastewater were richer in microbial community, and some bacteria such as Saprospiraceae and Caldilineaceae were beneficial for its good performance. In contrast, the microbial community of the MFC inoculated with domesticated microbial community was relatively simple. These results indicated that MFCs may be a sustainable method for organic acid fermentation wastewater treatment without any preprocessing.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xueli Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huimin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yachao Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yan Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Congcong Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Ping Xu
- Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
34
|
Comparative Study of Electrochemical Performance and Microbial Flora in Microbial Fuel Cells by Using Three Kinds of Substrates. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Sun H, Zhang Y, Wu S, Dong R, Angelidaki I. Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1439-1447. [PMID: 30577135 DOI: 10.1016/j.scitotenv.2018.11.336] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Volatile fatty acids (VFAs) especially acetate concentration have been proved to be a sensitive and reliable indicator for many anaerobic processes such as anaerobic digestion (AD). Microbial fuel cells (MFC) have been demonstrated as a promising VFAs sensor due to simple reactor design and operating conditions among microbial electrochemical biosensors. However, the conventional MFC biosensors may fail to distinguish between VFAs and other organics as real digestates containing complex organics and microbes are fed into anode directly. In the present study, an MFC based biosensor was developed and operated in a smart way for selective acetate detection. In the biosensor, acetate ions contained in the AD sample was first fed into the cathode, and then acetic ion transferred through the membrane from the cathode to anode chamber where it was further used as the sole substrate by pre-enriched electroactive biofilm for the current generation. A linear correlation between the current density and acetate concentrations (0.5-20 mM) at varied reaction time (1-5 h) was established. Then, the interference from propionate, butyrate, isobutyrate, and glucose on the performance of the biosensor was evaluated. Furthermore, the influence of sample temperatures (37 and 55 °C) was also studied. Finally, the VFAs content in real AD effluent with this biosensor was measured. The results corresponded well with gas chromatographic measurements. This simple, and reliable biosensor could serve as a promising alternative method for acetate detection in the AD process or any other acetate-rich fluids.
Collapse
Affiliation(s)
- Hao Sun
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China; Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Shubiao Wu
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, Beijing 100083, PR China
| | - Irini Angelidaki
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
36
|
Ebadinezhad B, Ebrahimi S, Shokrkar H. Evaluation of microbial fuel cell performance utilizing sequential batch feeding of different substrates. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Zhang X, Li X, Zhao X, Li Y. Factors affecting the efficiency of a bioelectrochemical system: a review. RSC Adv 2019; 9:19748-19761. [PMID: 35519388 PMCID: PMC9065546 DOI: 10.1039/c9ra03605a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
The great potential of bioelectrochemical systems (BESs) in pollution control combined with energy recovery has attracted increasing attention.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Xiaojing Li
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Yongtao Li
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| |
Collapse
|
38
|
Sun G, Kang K, Qiu L, Guo X, Zhu M. Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor. Bioelectrochemistry 2018; 126:12-19. [PMID: 30472567 DOI: 10.1016/j.bioelechem.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Microbial fuels cells (MFCs) have been applied for the degradation of pyroligneous liquor (PL) derived from apple tree branches, at different concentrations. The substrate removal, electrochemical properties, and microbial community characteristics were analysed to evaluate the performance of MFCs. Maximum current density (1.94 A/m2), coulombic efficiency (28%), and phenol removal rate (84%) were achieved with MFCs fed with PL at the optimal concentration of 1 g chemical oxygen demand (COD)/L. The polarisation test, cyclic voltammetry, and electrochemical impedance of the electrode redox reaction further explained how the addition of PL could stimulate formation of the electrochemically active biofilm, at the optimal concentration of 1 g COD/L. The microbial community of the anodic biofilm demonstrated that MFCs fed with 1 g COD/L had the highest relative abundance of the typical electrogenic bacteria Geobacter (33%), followed by Sphaerochaeta (6%) and Clostridium (4%). The results revealed that syntrophic interaction of these functional microorganisms contributed significantly to the PL degradation and electrical current generation.
Collapse
Affiliation(s)
- Guotao Sun
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Kang Kang
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xiaohui Guo
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Mingqiang Zhu
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
39
|
Ottoni CA, Simões MF, Santos JG, Peixoto L, Martins CR, Silva BP, Neto AO, Brito AG, Maiorano AE. Application of microbial fuel cell technology for vinasse treatment and bioelectricity generation. Biotechnol Lett 2018; 41:107-114. [PMID: 30443879 DOI: 10.1007/s10529-018-2624-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Our study evaluated the performance of different two-chambered microbial fuel cell (MFC) prototypes, operated with variable distance between electrodes and Nafion membrane and specific inoculum concentration, applied for vinasse treatment. RESULTS The performance of the developed MFC resulted in a maximum current density of 1200 mA m-2 and power density of 800 mW m-2 in a period of 61 days. MFC performed a chemical oxygen demand removal at a rate ranging from 51 to 60%. CONCLUSIONS Taking our preliminary results into consideration, we concluded that the MFC technology presents itself as highly promising for the treatment of vinasse.
Collapse
Affiliation(s)
- Cristiane Angélica Ottoni
- São Paulo State University (UNESP), Bioscience Institute, São Vicente, SP, 11380-972, Brazil. .,Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, 05508-901, Brazil.
| | - Marta F Simões
- Biology Department, Edge Hill University, St Helens Road, Lancashire, Ormskirk, L39 4QP, UK
| | - Jonas G Santos
- Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, 05508-901, Brazil
| | - Luciana Peixoto
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Cleiton R Martins
- São Paulo State University (UNESP), Bioscience Institute, São Vicente, SP, 11380-972, Brazil
| | - Bruno P Silva
- São Paulo State University (UNESP), Bioscience Institute, São Vicente, SP, 11380-972, Brazil
| | - Almir O Neto
- Centro de Célula a Combustível e Hidrogênio, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, SP, 05508-000, Brazil
| | - António G Brito
- Department of Biosystems Sciences and Engineering, Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Alfredo E Maiorano
- Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, SP, 05508-901, Brazil
| |
Collapse
|
40
|
Zhao N, Jiang Y, Alvarado-Morales M, Treu L, Angelidaki I, Zhang Y. Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass. Bioelectrochemistry 2018; 123:145-149. [DOI: 10.1016/j.bioelechem.2018.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
|
41
|
Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 2018; 36:1316-1327. [DOI: 10.1016/j.biotechadv.2018.04.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
42
|
Kokko M, Epple S, Gescher J, Kerzenmacher S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 258:376-389. [PMID: 29548640 DOI: 10.1016/j.biortech.2018.01.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given.
Collapse
Affiliation(s)
- Marika Kokko
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Stefanie Epple
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany.
| |
Collapse
|
43
|
Suzuki K, Kato Y, Yui A, Yamamoto S, Ando S, Rubaba O, Tashiro Y, Futamata H. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells. J Biosci Bioeng 2018; 125:565-571. [DOI: 10.1016/j.jbiosc.2017.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/25/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
|
44
|
Chignell JF, De Long SK, Reardon KF. Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:121. [PMID: 29713380 PMCID: PMC5913794 DOI: 10.1186/s13068-018-1111-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bioelectrochemical systems (BESs) harness electrons from microbial respiration to generate power or chemical products from a variety of organic feedstocks, including lignocellulosic biomass, fermentation byproducts, and wastewater sludge. In some BESs, such as microbial fuel cells (MFCs), bacteria living in a biofilm use the anode as an electron acceptor for electrons harvested from organic materials such as lignocellulosic biomass or waste byproducts, generating energy that may be used by humans. Many BES applications use bacterial biofilm communities, but no studies have investigated protein expression by the anode biofilm community as a whole. RESULTS To discover functional protein expression during current generation that may be useful for MFC optimization, a label-free meta-proteomics approach was used to compare protein expression in acetate-fed anode biofilms before and after the onset of robust electricity generation. Meta-proteomic comparisons were integrated with 16S rRNA gene-based community analysis at four developmental stages. The community composition shifted from dominance by aerobic Gammaproteobacteria (90.9 ± 3.3%) during initial biofilm formation to dominance by Deltaproteobacteria, particularly Geobacter (68.7 ± 3.6%) in mature, electricity-generating anodes. Community diversity in the intermediate stage, just after robust current generation began, was double that at the early stage and nearly double that of mature anode communities. Maximum current densities at the intermediate stage, however, were relatively similar (~ 83%) to those achieved by mature-stage biofilms. Meta-proteomic analysis, correlated with population changes, revealed significant enrichment of categories specific to membrane and transport functions among proteins from electricity-producing biofilms. Proteins detected only in electricity-producing biofilms were associated with gluconeogenesis, the glyoxylate cycle, and fatty acid β-oxidation, as well as with denitrification and competitive inhibition. CONCLUSIONS The results demonstrate that it is possible for an MFC microbial community to generate robust current densities while exhibiting high taxonomic diversity. Moreover, these data provide evidence to suggest that startup growth of air-cathode MFCs under conditions that promote the establishment of aerobic-anaerobic syntrophy may decrease startup times. This study represents the first investigation into protein expression of a complex BES anode biofilm community as a whole. The findings contribute to understanding of the molecular mechanisms at work during BES startup and suggest options for improvement of BES generation of bioelectricity from renewable biomass.
Collapse
Affiliation(s)
- Jeremy F. Chignell
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, USA
| | - Susan K. De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, USA
| | - Kenneth F. Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, USA
| |
Collapse
|
45
|
|
46
|
|
47
|
Dhar BR, Sim J, Ryu H, Ren H, Santo Domingo JW, Chae J, Lee HS. Microbial activity influences electrical conductivity of biofilm anode. WATER RESEARCH 2017; 127:230-238. [PMID: 29055828 PMCID: PMC7321815 DOI: 10.1016/j.watres.2017.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 05/14/2023]
Abstract
This study assessed the conductivity of a Geobacter-enriched biofilm anode in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH gradient across the biofilm anode at 100 mM phosphate buffer (current density 2.38 A/m2) and biofilm conductivity (Kbio) was as high as 0.87 mS/cm. In comparison, an inner biofilm became acidic at 2.5 mM phosphate buffer in which dead cells were accumulated at ∼80 μm of the inner biofilm anode. At this low phosphate buffer, Kbio significantly decreased by 0.27 mS/cm, together with declined current density of 0.64 A/m2. This work demonstrates that biofilm conductivity depends on the composition of live and dead cells in the conductive biofilm anode.
Collapse
Affiliation(s)
- Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, Canada; Civil and Environmental Engineering, University of Waterloo, 200 University Avenue, West Waterloo, Ontario, N2L 3G, Canada.
| | - Junyoung Sim
- Civil and Environmental Engineering, University of Waterloo, 200 University Avenue, West Waterloo, Ontario, N2L 3G, Canada.
| | - Hodon Ryu
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Hao Ren
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| | - Jorge W Santo Domingo
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Junseok Chae
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| | - Hyung-Sool Lee
- Civil and Environmental Engineering, University of Waterloo, 200 University Avenue, West Waterloo, Ontario, N2L 3G, Canada.
| |
Collapse
|
48
|
Guo Z, Liu W, Yang C, Gao L, Thangavel S, Wang L, He Z, Cai W, Wang A. Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. WATER RESEARCH 2017; 125:170-179. [PMID: 28850887 DOI: 10.1016/j.watres.2017.08.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Methane production was tested in membrane-less microbial electrolysis cells (MECs) under closed-circuit (RCC) and open-circuit (ROC) conditions, using glucose as a substrate, to understand the regulatory effects of bioelectrochemistry in anaerobic digestion systems. A dynamic model was built to simulate methane productions and microbial dynamics of functional populations, which were colonized in groups RCC and ROC during the start-up stage. The experiment results showed significantly greater methane production in RCC than ROC, the average methane production of RCC was 0.131 m3/m3/d, which was 1.4 times higher than that of ROC (0.055 m3/m3/d). The simulation results revealed that bioelectrochemistry had a significant influence on the abundance of microorganisms involved in acidogenesis and methanogenesis. The abundance of glucose-uptaking microorganisms was 87% of the total biomass in ROC without applied voltage, which was 20% higher than that in RCC (67%) when external voltages were applied between the anode and cathode. The abundance of hydrogenotrophic methanogens in RCC was 6% higher than that in ROC. The simulation results were verified through 16S rDNA high-throughput sequencing analysis. An electron balance analysis revealed that alteration of the acidogenesis type led to more acetate and hydrogen production from glucose fermentation, compared with the situation without bioelectrochemistry. An additional pathway from acetate to hydrogen was introduced by bioelectrolysis. These two factors resulted in significant enhancement of methane production in RCC. Bioelectrolysis process directly contributed to 26% of the total methane production after the start-up stage. When the applied voltages were cut down or decreased, RCC could maintain considerable methane productions, because the microbial communities and electron transfer pathways were already formed. Starting-up with high voltage, but operating under low voltage, could be an energy-favorable strategy for accelerating biogas production in bioelectro-anaerobic bioreactors.
Collapse
Affiliation(s)
- Zechong Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150001, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Chunxue Yang
- School of Geography and Tourism, Harbin University, Harbin, 150001, China
| | - Lei Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150001, China
| | - Sangeetha Thangavel
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150001, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150001, China
| | - Zhangwei He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150001, China
| | - Weiwei Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150001, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150001, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
49
|
Dai K, Wen JL, Zhang F, Ma XW, Cui XY, Zhang Q, Zhao TJ, Zeng RJ. Electricity production and microbial characterization of thermophilic microbial fuel cells. BIORESOURCE TECHNOLOGY 2017; 243:512-519. [PMID: 28697453 DOI: 10.1016/j.biortech.2017.06.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Thermophilic microbial fuel cell (TMFC) offers many benefits, but the investigations on the diversity of exoelectrogenic bacteria are scarce. In this study, a two-chamber TMFC was constructed using ethanol as an electron donor, and the microbial dynamics were analyzed by high-throughput sequencing and 16S rRNA clone-library sequencing. The open-circuit potential of TMFC was approximately 650mV, while the maximum voltage was around 550mV. The maximum power density was 437mW/m2, and the columbic efficiency in this work was 20.5±6.0%. The Firmicutes bacteria, related to the uncultured bacterium clone A55_D21_H_B_C01 with a similarity of 99%, accounted for 90.9% of all bacteria in the TMFC biofilm. This unknown bacterium has the potential to become a new thermophilic exoelectrogenic bacterium that is yet to be cultured. The development of TMFC-involved biotechnologies will be beneficial for the production of valuable chemicals and generation of energy in the future.
Collapse
Affiliation(s)
- Kun Dai
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jun-Li Wen
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China.
| | - Xi-Wen Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Xiang-Yu Cui
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Qi Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Ting-Jia Zhao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
50
|
Xu L, Zhao Y, Fan C, Fan Z, Zhao F. First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring. BIORESOURCE TECHNOLOGY 2017; 243:846-854. [PMID: 28724256 DOI: 10.1016/j.biortech.2017.06.179] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Chemical oxygen demand (COD) is one of the major targets to remove in constructed wetlands (CWs) system. Traditional method for COD measurement is a complex, time-consuming and highly toxic reagents participated procedure. In this study, microbial fuel cell (MFC) was successfully integrated into CW for indicating COD concentration. Results showed that there are two linear correlations between bioelectrical signals (output voltage from MFC) and COD concentration (acetate), which are COD from 0 to 500mg/L (101.99±7.42 to 631.74±7.41mV, R2=0.9710) and then from 500 to 1000mg/L (631.74±7.41 to 668.46±0.01mV, R2=0.9245). Furthermore, results also revealed the specificity of the system in terms of different types of carbon source. Overall, this work presented the feasibility of using CW-MFC for in-situ sensing COD during the wastewater treatment process, which will be a promising technique for water quality monitoring within CWs.
Collapse
Affiliation(s)
- Lei Xu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yaqian Zhao
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland; Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China.
| | - Chuang Fan
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas (Ministry of Education), School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, PR China
| | - Zhiren Fan
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas (Ministry of Education), School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, PR China
| | - Fangchao Zhao
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas (Ministry of Education), School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, PR China
| |
Collapse
|