1
|
Fang C, Qu H, Yang S, He G, Su Y, He X, Huang G. Micro-positive pressure significantly decreases greenhouse gas emissions by regulating archaeal community during industrial-scale dairy manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121163. [PMID: 38749130 DOI: 10.1016/j.jenvman.2024.121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
In this study, the effects of micro-positive pressure formed by covering with a semipermeable membrane in the heating phase of dairy manure composting on greenhouse gas emissions and the mechanism of reducing methane emissions by the archaeal community were investigated. A large-scale experiment was conducted with semipermeable membrane-covered composting (SMC), forced aeration composting (FAC), and traditional static composting (TSC) groups. The results showed that the oxygen concentration and methanogen abundance were key factors in regulating methane emissions. In the heating phase of SMC, the micro-positive pressure could enhance the O2 utilization rate and heating rate, resulting in Methanobrevibacter and Methanobacterium greatly decreasing, and the abundance of mcrA decreased by 90.03%, while that of pmoA did not increase. Compared with FAC and TSC, the cumulative methane emissions in SMC decreased by 51.75% and 96.04%, respectively. Therefore, the micro-positive pressure could effectively reduce greenhouse gas emissions by inhibiting the growth of methanogens.
Collapse
Affiliation(s)
- Chen Fang
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China; Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
3
|
Li R, Cai L, Cao J, Wang P, Qu H, Chen M, Chen Y. Effect of different multichannel ventilation methods on aerobic composting and vegetable waste gas emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112104-112116. [PMID: 37824054 DOI: 10.1007/s11356-023-30017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Aerobic composting, especially semipermeable membrane-covered aerobic fermentation, is known to be an effective method for recycling and reducing vegetable waste. However, this approach has rarely been applied to the aerobic composting of vegetable waste; in addition, the product characteristics and GHG emissions of the composting process have not been studied in-depth. This study investigated the effect of using different structural ventilation systems on composting efficiency and greenhouse gas emissions in a semipermeable membrane-covered vegetable waste compost. The results for the groups (MV1, MV2, and MV3) with bottom ventilation plus multichannel ventilation and the group (BV) with single bottom ventilation were compared here. The MV2 group effectively increased the average temperature by 19.06% whilst also increasing the degradation rate of organic matter by 30.81%. Additionally, the germination index value reached more than 80%, 3 days in advance. Compared to those of the BV group, the CH4, N2O, and NH3 emissions of MV2 were reduced by 32.67%, 21.52%, and 22.57%, respectively, with the total greenhouse gas emissions decreasing by 24.17%. Overall, this study demonstrated a multichannel ventilation system as a new method for improving the composting efficiency of vegetable waste whilst reducing gas emissions.
Collapse
Affiliation(s)
- Ruirong Li
- School of Energy and Environment, Southeast University (SEU), Nanjing, 210096, China
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Liang Cai
- School of Energy and Environment, Southeast University (SEU), Nanjing, 210096, China.
| | - Jie Cao
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Pengjun Wang
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Haoli Qu
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Mingjiang Chen
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Yongsheng Chen
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| |
Collapse
|
4
|
Li L, Liu Y, Kong Y, Zhang J, Shen Y, Li G, Wang G, Yuan J. Relating bacterial dynamics and functions to greenhouse gas and odor emissions during facultative heap composting of four kinds of livestock manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118589. [PMID: 37451027 DOI: 10.1016/j.jenvman.2023.118589] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Although facultative heap composting is widely used in small and medium-sized livestock farms in China, there are few studies on greenhouse gas (GHG) and odor emissions from this composting system. This study focused on GHG and odor emissions from facultative heap composting of four types of livestock manure and revealed the relationship between the gaseous emissions and microbial communities. Results showed that pig, sheep, and cow manure reached high compost maturity (germination index (GI) > 70%), whereas chicken manure had higher phytotoxicity (GI = 0.02%) with higher electrical conductivity and a lower carbon/nitrogen ratio. The four manure types significantly differed in the total GHG emission, with the following pattern: pig manure (308 g CO2-eq·kg-1) > cow manure (146 g CO2-eq·kg-1) > chicken manure (136 g CO2-eq·kg-1) > sheep manure (95 g CO2-eq·kg-1). Bacterium with Fermentative, Methanotrophy and Nitrite respiratory functions (e.g. Pseudomonas and Lactobacillus) are enriched within the pile so that more than 90% of the GHGs are produced in the early (days 0-15) and late (days 36-49) composting periods. CO2 contributed more than 90% in the first 35 d, N2O contributed 40-75% in the late composting period, and CH4 contributed less than 8.0%. NH3 and H2S emissions from chicken and pig manure were 4.8 times those from sheep and cow manure. Overall, the gas emissions from facultative heap composting significantly differed among the four manure types due to the significant differences in their physicochemical properties and microbial communities.
Collapse
Affiliation(s)
- Liqiong Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yujun Shen
- Key Laboratory of Te-chnology and Model for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
5
|
Nordahl S, Preble CV, Kirchstetter TW, Scown CD. Greenhouse Gas and Air Pollutant Emissions from Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2235-2247. [PMID: 36719708 PMCID: PMC9933540 DOI: 10.1021/acs.est.2c05846] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 05/25/2023]
Abstract
Composting can divert organic waste from landfills, reduce landfill methane emissions, and recycle nutrients back to soils. However, the composting process is also a source of greenhouse gas and air pollutant emissions. Researchers, regulators, and policy decision-makers all rely on emissions estimates to develop local emissions inventories and weigh competing waste diversion options, yet reported emission factors are difficult to interpret and highly variable. This review explores the impacts of waste characteristics, pretreatment processes, and composting conditions on CO2, CH4, N2O, NH3, and VOC emissions by critically reviewing and analyzing 388 emission factors from 46 studies. The values reported to date suggest that CH4 is the single largest contributor to 100-year global warming potential (GWP100) for yard waste composting, comprising approximately 80% of the total GWP100. For nitrogen-rich wastes including manure, mixed municipal organic waste, and wastewater treatment sludge, N2O is the largest contributor to GWP100, accounting for half to as much as 90% of the total GWP100. If waste is anaerobically digested prior to composting, N2O, NH3, and VOC emissions tend to decrease relative to composting the untreated waste. Effective pile management and aeration are key to minimizing CH4 emissions. However, forced aeration can increase NH3 emissions in some cases.
Collapse
Affiliation(s)
- Sarah
L. Nordahl
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Chelsea V. Preble
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Thomas W. Kirchstetter
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Corinne D. Scown
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Biosciences
Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Energy
& Biosciences Institute, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Zeng J, Michel FC, Huang G. Comparison and Evaluation of GHG Emissions during Simulated Thermophilic Composting of Different Municipal and Agricultural Feedstocks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3002. [PMID: 36833698 PMCID: PMC9961834 DOI: 10.3390/ijerph20043002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Composting is widely used to recycle a variety of different organic wastes. In this study, dairy manure, chicken litter, biosolids, yard trimmings and food waste were selected as representative municipal and agricultural feedstocks and composted in simulated thermophilic composting reactors to compare and evaluate the GHG emissions. The results showed that the highest cumulative emissions of CO2, CH4 and N2O were observed during yard trimmings composting (659.14 g CO2 kg-1 DM), food waste composting (3308.85 mg CH4 kg-1 DM) and chicken litter composting (1203.92 mg N2O kg-1 DM), respectively. The majority of the carbon was lost in the form of CO2. The highest carbon loss by CO2 and CH4 emissions and the highest nitrogen loss by N2O emission occurred in dairy manure (41.41%), food waste (0.55%) and chicken litter composting (3.13%), respectively. The total GHG emission equivalent was highest during food waste composting (365.28 kg CO2-eq ton-1 DM) which generated the highest CH4 emission and second highest N2O emissions, followed by chicken litter composting (341.27 kg CO2-eq ton-1 DM), which had the highest N2O emissions. The results indicated that accounting for GHG emissions from composting processes when it is being considered as a sustainable waste management practice was of great importance.
Collapse
Affiliation(s)
- Jianfei Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Food, Agricultural and Biological Engineering, CFAES Wooster, The Ohio State University, Wooster, OH 44691, USA
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Frederick C. Michel
- Department of Food, Agricultural and Biological Engineering, CFAES Wooster, The Ohio State University, Wooster, OH 44691, USA
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Li D, Yuan J, Ding J, Wang H, Shen Y, Li G. Effects of carbon/nitrogen ratio and aeration rate on the sheep manure composting process and associated gaseous emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116093. [PMID: 36095985 DOI: 10.1016/j.jenvman.2022.116093] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
There are several issues such as low maturity degree of compost product and severe pollution gas emissions during the composting process. Carbon/Nitrogen (C/N) ratio and aeration rate (AR) are the most important factors affecting the composting performance. According to the results of previous studies, the proper C/N ratio and AR were 20-30:1 and 0.1-0.4 L kg-1 DM·min-1, respectively. Therefore, a lab-scale experiment was conducted to investigate the effects of C/N ratio and AR on sheep manure composting process and associated gaseous emissions. The initial C/N ratio in this experiment were set at 23, 26 and 29 to simulate the C/N ratio at low, medium and high levels. The AR were decided at 0.12, 0.24 and 0.36 L kg-1 DM·min-1 to simulate the aeration at low, middle and high levels. The results showed that as the C/N ratio or AR increased, the methane (CH4) and hydrogen sulfide (H2S) emissions decreased. The nitrous oxide (N2O) emission peaked at the low C/N ratio or AR treatments. The total greenhouse gas (GHG) emissions decreased with the increase of C/N ratio or AR, and the maximum value occurred in the treatment with C/N ratio 23 and AR 0.24 L kg-1 DM·min-1. In the treatment with C/N ratio 26 and AR 0.36 L kg-1 DM·min-1, the GI value of compost product was the highest (about 250%), and the total greenhouse effect was the lowest (2.36 kg CO2-eq·t-1 DM). Therefore, considering reduction of pollution gas emissions and improvement of the quality of compost products comprehensively, the optimum conditions were initial C/N ratio 26 and AR 0.36 L kg-1 DM·min-1 during the co-composting of sheep manure and cornstalks. In addition, the key physicochemical factors and eight key bacterial communities were determined to regulate compost maturity and pollution gas emissions during the sheep manure composting, which could provide scientific support and theoretical reference for controlling pollution gas emissions and obtaining high quality sheep manure compost products.
Collapse
Affiliation(s)
- Danyang Li
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Huihui Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Fang C, Zhou L, Liu Y, Xiong J, Su Y, Lan Z, Han L, Huang G. Effect of micro-aerobic conditions based on semipermeable membrane-covered on greenhouse gas emissions and bacterial community during dairy manure storage at industrial scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118879. [PMID: 35081462 DOI: 10.1016/j.envpol.2022.118879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.
Collapse
Affiliation(s)
- Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang, 843300, China
| | - Ya Liu
- Chinese Academy of Agricultural Mechanization Sciences, Beijing, 100083, China
| | - Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zefeng Lan
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Romero CM, Redman AAPH, Owens J, Terry SA, Ribeiro GO, Gorzelak MA, Oldenburg TBP, Hazendonk P, Larney FJ, Hao X, Okine E, McAllister TA. Effects of feeding a pine-based biochar to beef cattle on subsequent manure nutrients, organic matter composition and greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152267. [PMID: 34902397 DOI: 10.1016/j.scitotenv.2021.152267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Biochar in ruminant diets is being assessed as a method for simultaneously improving animal production and reducing enteric CH4 emissions, but little is known about subsequent biochar-manure interactions post-excretion. We examined chemical properties, greenhouse gas (GHG) emissions and organic matter (OM) composition during farm scale stockpiling (SP) or composting (CP) of manure from cattle that either received a pine-based biochar in their diet (BM) or did not (RM). Manure piles were monitored hourly for temperature and weekly for top surface CO2, N2O and CH4 fluxes over 90 d in a semiarid location near Lethbridge, AB, Canada. Results indicate that cumulative CO2, N2O and CH4 emissions were not affected by biochar, implying that BM was as labile as RM. The pH, total C (TC), NO3-N and Olsen P were also not influenced by biochar, although it was observed that NH4-N and OM extractability were both 13% lower in BM than RM. Solid-state 13C nuclear magnetic resonance (NMR) showed that biochar increased stockpile/compost aromaticity, yet it did not alter the bulk C speciation of manure OM. Further analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that dissolved OM was enriched by strongly reduced chemical constituents, with BM providing more humic-like OM precursors than RM. Inclusion of a pine-based biochar in cattle diets to generate BM is consistent with current trends in the circular economy, "closing the loop" in agricultural supply chains by returning C-rich organic amendments to croplands. Stockpiling/composting the resulting BM, however, may not provide a clear advantage over directly mixing low levels of biochar with manure. Further research is required to validate BM as a tool to reduce the C footprint of livestock waste management.
Collapse
Affiliation(s)
- Carlos M Romero
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada.
| | - Abby-Ann P H Redman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Jen Owens
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Stephanie A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Gabriel O Ribeiro
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Monika A Gorzelak
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Thomas B P Oldenburg
- Petroleum Reservoir Group, Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Erasmus Okine
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
10
|
Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes (Basel) 2021. [DOI: 10.3390/pr9101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organic waste generation, collection, and management have become a crucial problem in modern and developing societies. Among the technologies proposed in a circular economy and sustainability framework, composting has reached a strong relevance in terms of clean technology that permits reintroducing organic matter to the systems. However, composting has also negative environmental impacts, some of them of social concern. This is the case of composting atmospheric emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic compounds (VOC). They should be taken into account in any environmental assessment of composting as organic waste management technology. This review presents the relationship between composting operation and composting gaseous emissions, in addition to typical emission values for the main organic wastes that are being composted. Some novel mitigation technologies to reduce gaseous emissions from composting are also presented (use of biochar), although it is evident that a unique solution does not exist, given the variability of exhaust gases from composting.
Collapse
|
11
|
Liu T, Awasthi SK, Duan Y, Pandey A, Zhang Z, Awasthi MK. Current status of global warming potential reduction by cleaner composting. ENERGY & ENVIRONMENT 2021; 32:1002-1028. [DOI: 10.1177/0958305x19882417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The global living standards are currently undergoing a stage of growth; however, such improvement also brings some challenges. Global warming is the greatest threat to all living things and attracts more and more attention on a global scale due to the rapid development of economy. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the common components of greenhouse gases, which contribute to the global warming. Mitigation technologies for these gas emissions are urgently needed in every industry for the aim of cleaner production. Traditional agriculture also contributes significantly to enhance the greenhouse gases emission. Composting is a novel and economic greenhouse gases mitigation strategy compared to other technologies in terms of the organic waste disposal. Some of the European countries showed an increase of more than 50% in the composting rate. The microbial respiration, nitrification and denitrification processes, and the generation of anaerobic condition makes the emission of greenhouse gases inevitable during composting. However, although there have been a lot of papers that focused on the reduction of greenhouse gases emission in composting, none of these has summarized the methods of reducing the emission of greenhouse gases during the composting. This review discusses the benefit of composting in greenhouse gases mitigation in the organic waste management and the current methods to improve mitigation efficiency during cleaner composting. Key physical, chemical, and biological parameters related to greenhouse gases mitigation strategies were precisely studied to give a deep understanding about the emission of greenhouse gases during cleaner composting. Furthermore, the mechanism of greenhouse gases emission mitigation strategies for cleaner composting based on various external measures would be helpful for the exploration of novel and effective mitigation strategies.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Sanjeev K Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Mukesh K Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, PR China
- Swedish Center for Resource Recovery Department of Biotechnology, University of Borås, Borås, Sweden
| |
Collapse
|
12
|
Varma VS, Parajuli R, Scott E, Canter T, Lim TT, Popp J, Thoma G. Dairy and swine manure management - Challenges and perspectives for sustainable treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146319. [PMID: 33721638 DOI: 10.1016/j.scitotenv.2021.146319] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Global dairy and swine production growth has increased significantly over the past decades, resulting in higher manure generation in certain areas and environmental concerns. Therefore, manure management is an essential focus for farmers and environmental regulators. Systematic selection of manure management practices can provide environmental benefits, but accounting for local constraints, economics and farming practices are significant challenges. All these factors drive the selection of appropriate manure management systems (MMSs). MMSs are highly varied for their design, partly due to individual farm settings, geography, and the end-use applications of manure. However, the benefits of technological advancements in MMSs provide higher manure treatment efficiency and co-production of value-added products such as recycled water, fiber, sand bedding, and nutrient-rich bio-solids, among others. To achieve higher environmental benefits, advanced manure treatment technologies have to be implemented, which comes with additional costs. So, there is a tradeoff between environmental benefits and cost. With the above prospects, this article reviews: 1) the different treatment technologies used in dairy and swine farms, 2) the life cycle assessment (LCA) method's importance in evaluating various treatment technologies for better environmental returns, and 3) decision support tools (DST) and their significance in MMSs prioritization. We found considerable heterogeneity in the available datasets, mainly on crucial parameters such as water consumption, types and amount of bedding materials, manure removal frequency, manure treatment technologies, and the extent of resource recovery. Thus, suitable environmental impact assessment inventory models are needed to evaluate a more comprehensive range of treatment technologies in MMSs, representing the spatial and farming system heterogeneities. There is also a need for user-friendly DST with adjustable inputs for the functional components of MMSs and evaluation criteria, which can rapidly evaluate the techno-economic feasibility of alternative systems.
Collapse
Affiliation(s)
- Vempalli Sudharsan Varma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Ranjan Parajuli
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erin Scott
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Tim Canter
- Food Systems and Bioengineering Division, University of Missouri, Columbia, MO 65211, USA
| | - Teng Teeh Lim
- Food Systems and Bioengineering Division, University of Missouri, Columbia, MO 65211, USA
| | - Jennie Popp
- Department of Agricultural Economics and Agribusiness, University of Arkansas, Fayetteville, AR 72701, USA
| | - Greg Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
13
|
Fang C, Yin H, Han L, Ma S, He X, Huang G. Effects of semi-permeable membrane covering coupled with intermittent aeration on gas emissions during aerobic composting from the solid fraction of dairy manure at industrial scale. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:1-9. [PMID: 34091233 DOI: 10.1016/j.wasman.2021.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of covering the compost pile with a semi-permeable membrane in combination with intermittent aeration on the gas emissions during aerobic composting from the solid fraction of dairy manure at industrial scale were investigated. A large-scale composting experiment was carried out to compare a membrane-covered (CT) group with a control (CK) group. The results indicated that the CT group could maintain a suitable aerobic and positive micro-pressure environment. The carbon dioxide, methane, nitrous oxide, and ammonia emissions outside the membrane during the aeration interval were reduced by 64.23%, 70.07%, 54.87%, and 11.32%, respectively, compared with that inside the membrane. It was also determined that the methane and nitrous oxide emissions from the CT group were reduced by 99.89% and 60.48% relative to the CK group, confirming that the combined process represented a novel strategy for reducing gas emissions during dairy manure composting.
Collapse
Affiliation(s)
- Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongjie Yin
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shuangshuang Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
14
|
Wang L, Zhao Y, Liu H, Song C, Wei Z, Chen X, Kang K, Yang H. The action difference of metabolic regulators on carbon conversion during different agricultural organic wastes composting. BIORESOURCE TECHNOLOGY 2021; 329:124902. [PMID: 33657500 DOI: 10.1016/j.biortech.2021.124902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study is to explore the action characteristics of metabolic regulators like adenosine tri-phosphate (ATP) and malonic acid (MA) during rice straw (RS) and fruit and vegetable waste (FVW) composting. Results showed that due to the easy degradation difference, ATP and MA reduced CO2 emission in RS and FVW, respectively. Moreover, adding ATP and MA increased humic acids (HA) content in FVW more significantly (p < 0.05), especially for ATP. However, adding MA accelerated organic matter degradation during RS composting, which was basically consistent with CO2 emission, but it was not effective in promoting HA formation. Furthermore, the microbial community was reshaped by adding ATP and MA. Eventually, structural equation model further confirmed that adding metabolic regulators enhanced the biotic and abiotic pathways of HA formation, and the promotion effect of adding ATP was more obvious. The study has great practical significance for the dispose of agricultural waste.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hailong Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| | - Hongyan Yang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
15
|
Ma X, Li H, Xu Y, Liu C. Effects of organic fertilizers via quick artificial decomposition on crop growth. Sci Rep 2021; 11:3900. [PMID: 33594152 PMCID: PMC7887227 DOI: 10.1038/s41598-021-83576-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
Applying organic matters into the soil would help to improve soil quality and sustain crop production. In addition, the small molecular organic matters could be active in influencing soil nutrient cycling and crop development. Thus, this study has firstly induced a new technology of quick artificial decomposition to produce fertilizers containing small molecular organic compounds from crop residues and other biological wastes. The fertilizers were produced via the quick artificial decomposition from biological wastes. The small organic species in the fertilizers were identified by the LC-MS. Field experiments of kiwifruit were conducted to test the effects of fertilizers. In total, 341 species of small organic matters have been determined in the produced fertilizers. The results showed that the organic fertilizers could significantly increase the yields of kiwifruit by 15.2% in contrast with mineral fertilizer treatments. Whereas, the organic fertilizers could enhance the contents of nutritive components in kiwifruits. These results proved that the organic fertilizers containing more small organic matter could be more efficient in promoting crop production.
Collapse
Affiliation(s)
- Xuemiao Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixiao Li
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin, 300350, China.
| | - Yan Xu
- Department of Soils and Agri-Food Engineering, Paul Comtois Bldg, Laval University, Quebec, QC, G1K 7P4, Canada
| | - Cunshou Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Jin Y, Miao Y, Geng Y, Huang M, Zhang Y, Song X, Li S, Zou J. Calcium Superphosphate-Mediated Reshaping of Denitrifying Bacteria Community Contributed to N 2O Mitigation in Pig Manure Windrow Composting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E171. [PMID: 33383657 PMCID: PMC7795020 DOI: 10.3390/ijerph18010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022]
Abstract
Composting is recognized as an effective strategy for the sustainable use of organic wastes, but also as an important emission source of nitrous oxide (N2O) contributing to global warming. The effects of calcium superphosphate (CaSSP) on N2O production during composting are reported to be controversial, and the intrinsic microbial mechanism remains unclear. Here, a pig manure windrow composting experiment lasting for ~60 days was performed to evaluate the effects of CaSSP amendment (5%, w/w) on N2O fluxes in situ, and to determine the denitrifiers' response, and their driving factors. Results indicated that CaSSP amendment significantly reduced N2O emissions as compared to the control pile (maximum N2O emission rate reduced by 64.5% and total emission decreased by 49.8%). CaSSP amendment reduced the abundance of nirK gene encoding for nitrite reductase, while the abundance of nosZ gene (N2O reductase) was enriched. Finally, we built a schematic model and indicated that the abundance of nirK gene was likely to play a key role in mediating N2O production, which were correlated with NH4+-N and NO3--N changing responsive to CaSSP. Our finding implicates that CaSSP application could be a potential strategy for N2O mitigation in manure windrow composting, and the revealed microbial mechanism is helpful for deepening the understanding of the interaction among N-cycle functional genes, physicochemical factors, and greenhouse gases (GHG) emissions.
Collapse
Affiliation(s)
- Yaguo Jin
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yingcheng Miao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yajun Geng
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Mengyuan Huang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yihe Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Xiuchao Song
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Shuqing Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Walling E, Vaneeckhaute C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111211. [PMID: 32987233 DOI: 10.1016/j.jenvman.2020.111211] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Fertilizers have become an essential part of our global food supply chain and are necessary to sustain our growing population. However, fertilizers can also contribute to greenhouse gas (GHG) emissions, along with other potential nutrient losses in the environment, e.g. through leaching. To reduce this environmental impact, tools such as life cycle assessments and decision support systems are being used to aid in selecting sustainable fertilization scenarios. These scenarios often include organic waste-derived amendments, such as manures, composts and digestates. To produce an accurate assessment and comparison of potential fertilization scenarios, these tools require emission factors (EFs) that are used to estimate GHG emissions and that are an integral part of these analyses. However, such EFs seem to be very variable in nature, thereby often resulting in high uncertainty on the outcomes of the analyses. This review aims to identify ranges and sources of variability in EFs to provide a better understanding of the potential uncertainty on the outcomes, as well as to provide recommendations for selecting EFs for future studies. As such, an extensive review of the literature on GHG emissions from production, storage, transportation and application of synthetic fertilizers (N, P, K), composts, digestates and manures was performed. This paper highlights the high variability that is present in emissions data and confirms the great impact of this uncertainty on the quality and validity of GHG predictions related to fertilizers. Variability in EFs stem from the energy source used for production, operating conditions, storage systems, crop and soil type, soil nutrient content, amount and method of fertilizer application, soil bacterial community, irrigation method, among others. Furthermore, a knowledge gap exists related to EFs for potassium fertilizers and waste valorization (anaerobic digestion/composting) processes. Overall, based on this review, it is recommended to determine EFs on a case by case basis when possible and to use uncertainty analyses as a tool to better understand the impact of EF variability.
Collapse
Affiliation(s)
- Eric Walling
- BioEngine - Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 Ave. de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau, Centre de Recherche sur L'eau, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| | - Céline Vaneeckhaute
- BioEngine - Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 Ave. de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau, Centre de Recherche sur L'eau, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
18
|
Greenhouse gas and ammonia emissions from stored manure from beef cattle supplemented 3-nitrooxypropanol and monensin to reduce enteric methane emissions. Sci Rep 2020; 10:19310. [PMID: 33168849 PMCID: PMC7653922 DOI: 10.1038/s41598-020-75236-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
The investigative material 3-nitrooxypropanol (3-NOP) can reduce enteric methane emissions from beef cattle. North American beef cattle are often supplemented the drug monensin to improve feed digestibility. Residual and confounding effects of these additives on manure greenhouse gas (GHG) emissions are unknown. This research tested whether manure carbon and nitrogen, and GHG and ammonia emissions, differed from cattle fed a typical finishing diet and 3-NOP [125–200 mg kg−1 dry matter (DM) feed], or both 3-NOP (125–200 mg kg−1 DM) and monensin (33 mg kg−1 DM) together, compared to a control (no supplements) when manure was stockpiled or composted for 202 days. Consistent with other studies, cumulative GHGs (except nitrous oxide) and ammonia emissions were higher from composted compared to stockpiled manure (all P < 0.01). Dry matter, total carbon and total nitrogen mass balance estimates, and cumulative GHG and ammonia emissions, from stored manure were not affected by 3-NOP or monensin. During the current experiment, supplementing beef cattle with 3-NOP did not significantly affect manure GHG or NH3 emissions during storage under the tested management conditions, suggesting supplementing cattle with 3-NOP does not have residual effects on manure decomposition as estimated using total carbon and nitrogen losses and GHG emissions.
Collapse
|
19
|
Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. WATER 2020. [DOI: 10.3390/w12113074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).
Collapse
|
20
|
Owusu-Twum MY, Sharara MA. Sludge management in anaerobic swine lagoons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110949. [PMID: 32583800 DOI: 10.1016/j.jenvman.2020.110949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Sludge is nutrient and mineral rich residue of anaerobic treatment that is often utilized as a fertilizer. Sludge management is crucial to maintain the function of anaerobic treatment lagoons and ensure efficient nutrient utilization. Intensive livestock production has resulted in accumulation of sludge residue in regions where nutrients are in surplus. This situation adversely impacts the sustainability of livestock production. Alternative uses of sludge needs to be developed and adopted to reduce the negative impacts associated with the nutrients accumulation on farms and nearby crop fields. A thorough understanding of sludge composition is necessary to identify appropriate end use. This review explores swine lagoon sludge (SLS) in relation to its composition, sampling techniques, management approaches, fertilizer value, challenges and opportunities for further development.
Collapse
Affiliation(s)
- Maxwell Y Owusu-Twum
- Department of Biological and Agricultural Engineering, 3100 Faucette Drive, North Carolina State University, Raleigh, NC, 27695, United States
| | - Mahmoud A Sharara
- Department of Biological and Agricultural Engineering, 3100 Faucette Drive, North Carolina State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
21
|
Sardá LG, Higarashi MM, Nicoloso RS, Falkoski C, Ribeiro SMS, Silveira CAP, Soares HM. Effects of dicyandiamide and Mg/P on the global warming potential of swine slurry and sawdust cocomposting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30405-30418. [PMID: 32458307 DOI: 10.1007/s11356-020-09244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Composting is an emerging strategy for swine slurry treatment; nonetheless, significant greenhouse gases (GHG) emissions may occur during this process. We carried out two separate assays with increasing doses of dicyandiamide (DCD; up to 1.1% w/w) as a nitrification inhibitor and solutions of MgCl2 and H3PO4 (Mg/P; up to 0.09/0.06 mol kg-1) to promote struvite crystallization in order to assess their efficiencies as additives to decrease GHG emission during swine slurry cocomposting with sawdust (1:1v/v). We monitored the nitrous oxide (N2O-N), methane (CH4-C), and carbon dioxide (CO2-C) emissions and the ammonia (NH4+-N) and nitrate/nitrite (NOx-N) concentrations in compost reactors (35 L) during the first 4-5 weeks of composting. DCD had no effect on CH4-C and CO2-C emissions but decreased N2O-N losses by up to 56% compared with control. However, DCD inactivation was favored by thermophilic conditions and N2O-N emissions increased to same levels of control after 13 days. Mg/P was effective to decrease N2O-N losses only at the highest dose, which also sustained higher [NH4+-N] in the compost by the end of the assessment. Nonetheless, the use of 0.09/0.06 mol kg-1 of Mg/P also decreased CH4-C and CO2-C emissions compared with lower doses of Mg/P and unamended treatments. Overall, DCD and Mg/P amendments decreased the global warming potential (GWP) of swine slurry composting by up to 46 and 28%, respectively. The Mg/P application may be also interesting to increase the compost quality by increasing its NH4+-N availability. Graphical abstract.
Collapse
Affiliation(s)
- Luana G Sardá
- Chemical Engineering Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | | | | | | | - Hugo M Soares
- Chemical Engineering Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
22
|
San Martin Ruiz M, Reiser M, Kranert M. Enhanced composting as a way to a climate-friendly management of coffee by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24312-24319. [PMID: 32306256 PMCID: PMC7326828 DOI: 10.1007/s11356-020-08742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the performance of aerobic windrow systems by using coffee by-products and green waste to reduce gaseous emissions. Thereafter, a comparison with the current treatment and gaseous emissions at a Coffee Mill in Costa Rica was made. Two different studies where performed in Germany (pile I and II) and one study in a Coffee Mill in Costa Rica (pile III). Temperature, water content, and pH were the key parameters controlled over 35 days in all the systems. Moreover, CH4 emission rates were quantified by a FTIR and by a portable gas detector device where the emissions reached values 100 times higher when coffee by-products as a unique material for the composting process was used. Results show that highest emission rates during the composting process for pile I was 0.007 g(m2)-1 h-1, for pile II 0.006 g(m2)-1 h-1, and for pile III 3.1 g(m2)-1 h-1. It was found that CH4 emissions could be avoided if the mixture and the formation of the windrow piles were performed following the key parameter for composting, and the usage of additional material is used. With this, the reduction of CH4 emissions at the Mill in Costa Rica could be achieved in the future.
Collapse
Affiliation(s)
- Macarena San Martin Ruiz
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany.
| | - Martin Reiser
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Martin Kranert
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| |
Collapse
|
23
|
Characterization of the Gaseous and Odour Emissions from the Composting of Conventional Sewage Sludge. ATMOSPHERE 2020. [DOI: 10.3390/atmos11020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many different alternatives exist to manage and treat sewage sludge, all with the common drawback of causing environmental and odour impacts. The main objective of this work is to present a full inventory of the gaseous and odorous emissions generated during the bench-scale composting of conventional sewage sludge, aiming at assessing the process performance and providing global valuable information of the different gaseous emission patterns and emission factors found for greenhouse gases (GHG) and odorant pollutants during the conventional sewage sludge composting process. The main process parameters evaluated were the temperature of the material, specific airflow, average oxygen uptake rate (OUR), and final dynamic respiration index (DRI), resulting in a proper performance of the sewage sludge composting process and obtaining the expected final product. The obtained material was properly stabilized, presenting a final DRI of 1.2 ± 0.2 g O2·h−1·kg−1 Volatile Solids (VS). GHGs emission factor, in terms of kg CO2eq·Mg−1 dry matter of sewage sludge (DM–SS), was found to be 2.30 × 102. On the other hand, the sewage sludge composting odour emission factor (OEF) was 2.68 × 107ou·Mg−1 DM–SS. Finally, the most abundant volatile organic compounds (VOC) species found in the composting gaseous emissions were terpenes, sulphur compounds, ketones, and aromatic hydrocarbons, whereas the major odour contributors identified were dimethyldisulphide, eucalyptol, and α-pinene.
Collapse
|
24
|
Tang J, Li X, Cui P, Lin J, Jianxiong Zeng R, Lin H, Zhou S. Nitrification plays a key role in N 2O emission in electric-field assisted aerobic composting. BIORESOURCE TECHNOLOGY 2020; 297:122470. [PMID: 31791916 DOI: 10.1016/j.biortech.2019.122470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O) emission is a serious environmental problem in composting. Previous studies have indicated that electric field assistance results in lower N2O emissions in aerobic composting; however, the exact mechanisms involved in electric-field assisted aerobic composting (EAAC) are not clear. In this study, the biological N transformation processes and the N-associated genes were investigated. The results demonstrated that electric field application inhibited nitrification, weakened the nitrifying functional genes (the hao and nxrA genes declined maximally by 86% and 86.8%, respectively), and increased the N2O consumption-related gene (nosZ) by a maximum factor of 2.76 compared with that in CAC. The correlation analysis demonstrated that nitrification was the main source of N2O emission in EAAC. The findings imply that EAAC is a promising process for mitigating N2O emission at the source during aerobic composting.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Lin
- School of Ecology and Resource Engineering, Wuyi University, Wuyishan City, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Wang L, Zhao Y, Ge J, Zhu L, Wei Z, Wu J, Zhang Z, Pan C. Effect of tricarboxylic acid cycle regulators on the formation of humic substance during composting: The performance in labile and refractory materials. BIORESOURCE TECHNOLOGY 2019; 292:121949. [PMID: 31398545 DOI: 10.1016/j.biortech.2019.121949] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The aims of this study are to reveal the roles of tricarboxylic acid (TCA) cycle regulators in reducing CO2 emission and promoting humic substance (HS) formation during composting with different materials. The results showed that the addition of adenosine tri-phosphate (ATP) or malonic acid (MA) reduced CO2 emission during chicken manure composting. However, only the addition of MA reduced CO2 emission during lawn waste and garden waste composting. In addition, both of the two inhibitors promoted HS formation, especially for ATP. Structural equation models further confirmed that ATP and MA reduced CO2 emission by inhibiting the decomposition of amino acid by microorganisms. Meanwhile, ATP promoted the conversion of amino acid and soluble sugars to HS, while MA only promoted the conversion of soluble sugars to HS. In summary, this study provides a theoretical basis for the application of inhibitors to reduce CO2 emission and promote HS formation during composting.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingping Ge
- College of Life Science, Heilongjiang University, Harbin, Heilongjiang 150030, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhechao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
26
|
González D, Guerra N, Colón J, Gabriel D, Ponsá S, Sánchez A. Filling in sewage sludge biodrying gaps: Greenhouse gases, volatile organic compounds and odour emissions. BIORESOURCE TECHNOLOGY 2019; 291:121857. [PMID: 31377511 DOI: 10.1016/j.biortech.2019.121857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
In the present work, a complete study of the sewage sludge (SS) biodrying technology was conducted at bench-scale, aiming at assessing its performance and providing a valuable insight into the different gaseous emission patterns found for greenhouse gases (GHG) and odorant pollutants. As process key parameters, temperature, specific airflow, dynamic respiration index, final moisture content and Lower Calorific Value (LCV) were evaluated. At the end of the biodrying, a product with a 35.9% moisture content and a LCV of 7.1 MJ·kg-1product was obtained. GHGs emission factor was 28.22 kgCO2eq per Mg of initial mass of dry matter in the SS (DM0-SS). During the biodrying process, maximum odour concentration measured was 3043 ou·m-3 and the estimated odour emission factor of the biological treatment was 3.10E + 07 ou per Mg DM0-SS. Finally, VOCs were completely identified and quantified. The most abundant VOCs found in the biodrying gaseous emissions were terpenes, sulphur-compounds and ketones.
Collapse
Affiliation(s)
- Daniel González
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain; Group of Biological Treatment of Liquid and Gaseous Effluents (GENOCOV) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Nagore Guerra
- BETA Technology Centre: "U Science Tech", University of Vic-Central University of Catalonia, 08500 Vic, Barcelona, Spain
| | - Joan Colón
- BETA Technology Centre: "U Science Tech", University of Vic-Central University of Catalonia, 08500 Vic, Barcelona, Spain
| | - David Gabriel
- Group of Biological Treatment of Liquid and Gaseous Effluents (GENOCOV) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Sergio Ponsá
- BETA Technology Centre: "U Science Tech", University of Vic-Central University of Catalonia, 08500 Vic, Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
27
|
Impact of Composting Methods on Nitrogen Retention and Losses during Dairy Manure Composting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183324. [PMID: 31505898 PMCID: PMC6765887 DOI: 10.3390/ijerph16183324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022]
Abstract
Currently, composting is one of the most effective methods for treating fecal waste on large-scale livestock and poultry farms, but the quality effects of different composting methods are different. In this study, we implemented four composting methods, including farmer compost (FC), anaerobic compost (AnC), mixed compost (MC), and aerobic compost (AC), to study the effects of different composting methods on nitrogen (N) losses while composting dairy manure. Our results showed that the germination indexes (GIs) of three of the composting treatments (AnC, MC, and AC) exceeded 80%, which met the maturity requirements for composted products. Ammonia (NH3) emissions were the main contributor to nitrogen losses, while accumulated nitrous oxide (N2O) emissions accounted for the lowest proportion of nitrogen losses. The cumulative N losses via the leachate of the AC treatment were the lowest and accounted for 0.38% of the initial total nitrogen (TN). The accumulated N losses of the AC, FC, AnC, and MC treatments accounted for 13.13% 15.98%, 15.08%, and 19.75%, respectively, of the initial TN. Overall, the AC method significantly reduced N losses via leachates, further reducing TN losses. This observation suggests that AC might be an appropriate method for highly efficient nitrogen management during dairy manure composting.
Collapse
|
28
|
Ngwabie NM, Wirlen YL, Yinda GS, VanderZaag AC. Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:947-953. [PMID: 29501449 DOI: 10.1016/j.wasman.2018.02.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 02/05/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Open dumpsites that receive municipal solid waste are potentially significant sources of greenhouse gas (GHG) emissions into the atmosphere. There is little data available on emissions from these sources, especially in the unique climate and management of central Africa. This research aimed at quantifying CH4, N2O and CO2 emissions from two open dumpsites in Cameroon, located in Mussaka-Buea, regional headquarters of the South West Region and in Mbellewa-Bamenda, regional headquarters of the North West Region. Emissions were measured during the wet season (May 2015 and August 2016) at the Mussaka and Mbellewa dumpsites respectively. Dumpsite surfaces were partitioned into several zones for emission measurements, based on the current activity and the age of the waste. Static flux chambers were used to quantify gas emission rates thrice a day (mornings, afternoons and evenings). Average emissions were 96.80 ± 144 mg CH4 m-2 min-1, 0.20 ± 0.43 mg N2O m-2 min-1 and 224.78 ± 312 mg CO2 m-2 min-1 in the Mussaka dumpsite, and 213.44 ± 419 mg CH4 m-2 min-1, 0.15 ± 0.15 mg N2O m-2 min-1 and 1103.82 ± 1194 mg CO2 m-2 min-1 at the Mbellewa dumpsite. Emissions as high as 1784 mg CH4 m-2 min-1, 2.3 mg N2O m-2 min-1 and 5448 mg CO2 m-2 min-1 were measured from both dumpsites. Huge variations observed in emissions between the different zones on the waste surface were likely a result of the heterogeneous nature of the waste, different stages in waste decomposition and different environmental conditions within the waste. Management activities that disturb waste, such as spreading and compressing potentially increase gas emissions, while covering waste with a layer of soil potentially mitigate gas emissions. Recommendations were for dumpsites to be upgraded to sanitary landfills, and biogas production from such landfills should be exploited to reduce CH4 emissions.
Collapse
Affiliation(s)
- N Martin Ngwabie
- Department of Agricultural and Environmental Engineering, College of Technology, The University of Bamenda, Box 39, Bambili, N.W. Region, Cameroon.
| | - Yvette L Wirlen
- Department of Environmental Science, University of Buea, Cameroon
| | - Godwin S Yinda
- Department of Agronomic and Applied Molecular Sciences, Faculty of Agriculture and Veterinary Medicine, University of Buea, Cameroon
| | - Andrew C VanderZaag
- Science and Technology Branch, Agriculture and Agri-food Canada, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Zeng J, Shen X, Sun X, Liu N, Han L, Huang G. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:297-304. [PMID: 29402617 DOI: 10.1016/j.wasman.2018.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 06/07/2023]
Abstract
With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O2, CO2, CH4 and NH3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O2 concentration rapidly decreased and maintained <5% (in volume) for 38 days or more in both the center and side of the pile and effective O2 diffusion occurred at most in every two contiguous layers. Pore CO2 and CH4 concentrations at each measurement point were positively correlated (0.436 ≤ r ≤ 0.570, P < 0.01) and the concentrations in the side of the pile were obviously lower than those in the center. The top layer exhibited highest pore O2 concentration and lowest CO2 and CH4 concentrations, and the bottom layer was on the contrary. No significant differences in pore NH3 concentrations between different layers or between different measurement points in the same layer were found. Therefore, mixing the center and the side of the pile when mechanical turning and adjusting the height of the pile according to the physical properties of bulking agents are suggested to optimize the oxygen distribution and promote the composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China.
Collapse
Affiliation(s)
- Jianfei Zeng
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiuli Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxi Sun
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
31
|
Opportunities and Barriers to Bioenergy Conversion Techniques and Their Potential Implementation on Swine Manure. ENERGIES 2018. [DOI: 10.3390/en11040957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Cucina M, Tacconi C, Sordi S, Pezzolla D, Gigliotti G, Zadra C. Valorization of a pharmaceutical organic sludge through different composting treatments. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 74:203-212. [PMID: 29273542 DOI: 10.1016/j.wasman.2017.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Nowadays, the agricultural reuse of pharmaceutical sludge is still limited due to environmental and agronomic issues (e.g. low stabilization of the organic matter, phytotoxicity). The aim of the present study was to evaluate the characteristics of a pharmaceutical sludge derived from the daptomycin production and to study the possibility of improving its quality through composting. The pharmaceutical sludge showed high content of macronutrients (e.g. total Kjeldahl N content was 38 g kg-1), but it was also characterized by high salinity (7.9 dS m-1), phytotoxicity (germination index was 36.7%) and a low organic matter stabilization. Two different mixtures were prepared (mixture A: 70% sludge + 30% wood chips w/w, mixture B: 45% sludge + 45% wood chips + 10% cereal straw w/w) and treated through static composting using two different aeration systems: active and passive aeration. The mixtures resulted in the production of two different compost, and the evolution of process management parameters was different. The low total solids and organic matter content of mixture A led to the failure of the process. The addition of cereal straw in mixture B resulted in increased porosity and C/N ratio and, consequently, in an optimal development of the composting process (e.g. the final organic matter loss was 54.1% and 63.1% for the passively and actively aerated treatment, respectively). Both passively and actively aerated composting of mixture B improved the quality of the pharmaceutical sludge, by increasing its organic matter stabilization and removing phytotoxicity.
Collapse
Affiliation(s)
- Mirko Cucina
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy
| | - Chiara Tacconi
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy
| | - Simone Sordi
- ACS Dobfar Spa, Viale Addetta 4/12, 20067 Tribiano (MI), Italy
| | - Daniela Pezzolla
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy
| | - Giovanni Gigliotti
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy.
| | - Claudia Zadra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 06123 Perugia, Italy
| |
Collapse
|
33
|
Wang K, Wu Y, Li W, Wu C, Chen Z. Insight into effects of mature compost recycling on N 2O emission and denitrification genes in sludge composting. BIORESOURCE TECHNOLOGY 2018; 251:320-326. [PMID: 29289876 DOI: 10.1016/j.biortech.2017.12.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N2O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N2O emission rate in mesophilic phase and CO2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N2O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO3--N and NO2--N concentrations. The correlation matrices indicated that NO3--N, narG and norB were the main factors influencing N2O emission rate in sludge composting with mature compost recycling, but the N2O emission rate was significantly correlated to NO2--N, nirK and norB in the control.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Chuandong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
34
|
Jeong ST, Kim GW, Hwang HY, Kim PJ, Kim SY. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:115-122. [PMID: 28910713 DOI: 10.1016/j.scitotenv.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 05/15/2023]
Abstract
Livestock manure application can stimulate greenhouse gas (GHG) emissions, especially methane (CH4) in rice paddy. The stabilized organic matter (OM) is recommended to suppress CH4 emission without counting the additional GHG emission during the composting process. To evaluate the effect of compost utilization on the net global warming potential (GWP) of a rice cropping system, the fluxes of GHGs from composting to land application were calculated by a life cycle assessment (LCA) method. The model framework was composed of GHG fluxes from industrial activities and biogenic GHG fluxes from the composting and rice cultivation processes. Fresh manure emitted 30MgCO2-eq.ha-1, 90% and 10% of which were contributed by CH4 and nitrous oxide (N2O) fluxes, respectively, during rice cultivation. Compost utilization decreased net GWP by 25% over that of the fresh manure during the whole process. The composting process increased the GWP of the industrial processes by 35%, but the 60% reduction in CH4 emissions from the rice paddy mainly influenced the reduction of GWP during the overall process. Therefore, compost application could be a good management strategy to reduce GHG emissions from rice paddy systems.
Collapse
Affiliation(s)
- Seung Tak Jeong
- Division of Applied Life Science (BK 21+ Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gil Won Kim
- Division of Applied Life Science (BK 21+ Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun Young Hwang
- Division of Applied Life Science (BK 21+ Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pil Joo Kim
- Division of Applied Life Science (BK 21+ Program), Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Sang Yoon Kim
- National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|
35
|
Maeda K, Toyoda S, Philippot L, Hattori S, Nakajima K, Ito Y, Yoshida N. Relative Contribution of nirK- and nirS- Bacterial Denitrifiers as Well as Fungal Denitrifiers to Nitrous Oxide Production from Dairy Manure Compost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14083-14091. [PMID: 29182319 DOI: 10.1021/acs.est.7b04017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N2O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N2O were surveyed to isotopocule analysis, and its 15N site preference (SP) and δ18O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N2O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N2O production. N2O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ18O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N2O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N2O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N2O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.
Collapse
Affiliation(s)
- Koki Maeda
- NARO, Hokkaido Agricultural Research Center, Dairy Research Division , 1 Hitsujigaoka, Sapporo 062-8555, Japan
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Instititute of Technology , 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Laurent Philippot
- INRA, UMR 1229, Soil and Environmental Microbiology , 17 rue Sully BP 86510, Dijon 21065 Cedex, France
| | - Shohei Hattori
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Instititute of Technology , 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Keiichi Nakajima
- NARO, Hokkaido Agricultural Research Center, Dairy Research Division , 1 Hitsujigaoka, Sapporo 062-8555, Japan
| | - Yumi Ito
- NARO, Hokkaido Agricultural Research Center, Dairy Research Division , 1 Hitsujigaoka, Sapporo 062-8555, Japan
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Instititute of Technology , 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550, Japan
| |
Collapse
|
36
|
He X, Chen L, Han L, Liu N, Cui R, Yin H, Huang G. Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting. BIORESOURCE TECHNOLOGY 2017; 245:309-317. [PMID: 28898825 DOI: 10.1016/j.biortech.2017.08.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of biochar powder on oxygen supply efficiency and global warming potential (GWP) in the large-scale aerobic composting pattern which includes cyclical forced-turning with aeration at the bottom of composting tanks in China. A 55-day large-scale aerobic composting experiment was conducted in two different groups without and with 10% biochar powder addition (by weight). The results show that biochar powder improves the holding ability of oxygen, and the duration time (O2>5%) is around 80%. The composting process with above pattern significantly reduce CH4 and N2O emissions compared to the static or turning-only styles. Considering the average GWP of the BC group was 19.82% lower than that of the CK group, it suggests that rational addition of biochar powder has the potential to reduce the energy consumption of turning, improve effectiveness of the oxygen supply, and reduce comprehensive greenhouse effects.
Collapse
Affiliation(s)
- Xueqin He
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Longjian Chen
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxiu Cui
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongjie Yin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
37
|
Arriaga H, Viguria M, López DM, Merino P. Ammonia and greenhouse gases losses from mechanically turned cattle manure windrows: A regional composting network. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:557-563. [PMID: 28652023 DOI: 10.1016/j.jenvman.2017.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
An on-farm composting network operates in the Basque Country (northern Spain), in which solid manure produced in livestock farms (mostly dairy and beef cattle) is composted through windrow turning. This network aims to produce a valuable resource (compost) for the farmers whereas the volume of the solid manure was reduced at farm level The objective of the study was to assess the gaseous losses (NH3 and GHG) from 6 on-farm composting windrows (either deep litter systems or solid fraction after slurry separation) after turning operations. Monitored turning events occurred 1 to 4 months after establishing the heaps on the field. Ammonia and greenhouse gas (GHG) losses were estimated by the open and close chamber techniques, respectively. Results showed overall low emission rates related to the long degradation period of the windrows. Maximum NH3 release was at 2.0 mg m-2 d-1 after the second/third turning events. Baseline N2O losses were below 50 mg m-2 d-1, with maximum rates close to 500 mg m-2 d-1 some days after turning works. Methane emissions were mostly below 100 mg m-2 d-1, while CO2 losses were lower than 25 g m-2 d-1. Carbon dioxide peaks (≈250 g m-2 d-1) were reached after the second/third turnings. Overall, gaseous N and C losses accounted for 0.1 and 1% of the initial N and C content of the windrows, respectively. The present study concluded that two/three turning operations in aged solid manure-derived compost windrows do not have significant effects on NH3 and GHG losses. The magnitude of the gaseous losses from on-farm composting systems is dependent on the manure management practices at farm level (e.g. moment of windrow stacking).
Collapse
Affiliation(s)
- Haritz Arriaga
- NEIKER-Tecnalia, Basque Institute for Agricultural Research and Development, 48160, Derio, Basque Country, Spain.
| | - Maialen Viguria
- NEIKER-Tecnalia, Basque Institute for Agricultural Research and Development, 48160, Derio, Basque Country, Spain
| | - Diana M López
- NEIKER-Tecnalia, Basque Institute for Agricultural Research and Development, 48160, Derio, Basque Country, Spain
| | - Pilar Merino
- NEIKER-Tecnalia, Basque Institute for Agricultural Research and Development, 48160, Derio, Basque Country, Spain
| |
Collapse
|
38
|
Wu S, He H, Inthapanya X, Yang C, Lu L, Zeng G, Han Z. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16560-16577. [PMID: 28551738 DOI: 10.1007/s11356-017-9168-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Shaohua Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Huijun He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xayanto Inthapanya
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhenfeng Han
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
39
|
Li S, Song L, Gao X, Jin Y, Liu S, Shen Q, Zou J. Microbial Abundances Predict Methane and Nitrous Oxide Fluxes from a Windrow Composting System. Front Microbiol 2017; 8:409. [PMID: 28373862 PMCID: PMC5357657 DOI: 10.3389/fmicb.2017.00409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
Manure composting is a significant source of atmospheric methane (CH4) and nitrous oxide (N2O) that are two potent greenhouse gases. The CH4 and N2O fluxes are mediated by methanogens and methanotrophs, nitrifying and denitrifying bacteria in composting manure, respectively, while these specific bacterial functional groups may interplay in CH4 and N2O emissions during manure composting. To test the hypothesis that bacterial functional gene abundances regulate greenhouse gas fluxes in windrow composting systems, CH4 and N2O fluxes were simultaneously measured using the chamber method, and molecular techniques were used to quantify the abundances of CH4-related functional genes (mcrA and pmoA genes) and N2O-related functional genes (amoA, narG, nirK, nirS, norB, and nosZ genes). The results indicate that changes in interacting physicochemical parameters in the pile shaped the dynamics of bacterial functional gene abundances. The CH4 and N2O fluxes were correlated with abundances of specific compositional genes in bacterial community. The stepwise regression statistics selected pile temperature, mcrA and NH4+ together as the best predictors for CH4 fluxes, and the model integrating nirK, nosZ with pmoA gene abundances can almost fully explain the dynamics of N2O fluxes over windrow composting. The simulated models were tested against measurements in paddy rice cropping systems, indicating that the models can also be applicable to predicting the response of CH4 and N2O fluxes to elevated atmospheric CO2 concentration and rising temperature. Microbial abundances could be included as indicators in the current carbon and nitrogen biogeochemical models.
Collapse
Affiliation(s)
- Shuqing Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China; Jiangsu Key Laboratory and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Lina Song
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Xiang Gao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Yaguo Jin
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China; Jiangsu Key Laboratory and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Qirong Shen
- Jiangsu Key Laboratory and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University Nanjing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural UniversityNanjing, China; Jiangsu Key Laboratory and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
40
|
Agyarko-Mintah E, Cowie A, Van Zwieten L, Singh BP, Smillie R, Harden S, Fornasier F. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:129-137. [PMID: 28041672 DOI: 10.1016/j.wasman.2016.12.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
The poultry industry produces abundant quantities of nutrient-rich litter, much of which is composted before use as a soil amendment. However, a large proportion of nitrogen (N) in poultry litter is lost via volatilisation during composting, with negative environmental and economic consequences. This study examined the effect of incorporating biochar during composting of poultry litter on ammonia (NH3) volatilisation and N retention. Biochars produced at 550°C from greenwaste (GWB) and poultry litter (PLB) feedstocks were co-composted with a mixture of raw poultry litter and sugarcane straw [carbon (C):N ratio 10:1] in compost bins. Ammonia emissions accounted for 17% of the total N (TN) lost from the control and 12-14% from the biochar-amended compost. The TN emitted as NH3, as a percentage of initial TN, was significantly lower (P<0.05) i.e. by 60% and 55% in the compost amended with GWB and PLB, respectively, relative to the control. The proportion of N retained in the finished compost, as a percentage of initial TN, was 84%, 78% and 67% for the GWB, PLB and nil biochar control, respectively. Lower concentration of dissolved organic C (DOC) together with higher activity of beta-glucosidase and leucine-aminopeptidase were found in the GWB-amended compost (cf. control). It is hypothesized that lower NH3 emission in the GWB-amended compost was caused not just by the higher surface area of this biochar but could also be related to greater incorporation of ammonium (NH4+) in organic compounds during microbial utilisation of DOC. Furthermore, the GWB-amended compost retained more NH4+ at the end of composting than the PLB-amended compost. Results showed that addition of biochar, especially GWB, generated multiple benefits in composting of poultry litter: decrease of NH3 volatilisation, decrease in NH3 toxicity towards microorganisms, and improved N retention, thus enhancing the fertiliser value of the composted litter. It is suggested that the latter benefit is linked to a beneficial modification of the microbial environment.
Collapse
Affiliation(s)
- Eunice Agyarko-Mintah
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, Armidale, NSW 2351, Australia; Ministry of Food and Agriculture (MOFA), Accra Metropolitan Assembly, Ghana.
| | - Annette Cowie
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, Armidale, NSW 2351, Australia; NSW Department of Primary Industries, Trevenna Rd., Armidale, NSW 2351, Australia.
| | - Lukas Van Zwieten
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, Armidale, NSW 2351, Australia; NSW Department of Primary Industries, Wollongbar Primary Industries Institute, 1243 Bruxner Highway, Wollongbar, NSW 2477, Australia.
| | - Bhupinder Pal Singh
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, Armidale, NSW 2351, Australia; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd., Menangle, NSW 2568, Australia.
| | - Robert Smillie
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, Armidale, NSW 2351, Australia.
| | - Steven Harden
- NSW Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Calala, NSW 2340.
| | - Flavio Fornasier
- CREA - Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, Via Trieste 23, 34170 Gorizia, Italy.
| |
Collapse
|
41
|
Owen JJ, Silver WL. Greenhouse gas emissions from dairy manure management in a Mediterranean environment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:545-559. [PMID: 27859918 DOI: 10.1002/eap.1465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/17/2016] [Accepted: 09/26/2016] [Indexed: 05/22/2023]
Abstract
Livestock agriculture is a major source of anthropogenic greenhouse gas (GHG) emissions, with a substantial proportion of emissions derived from manure management. Accurate estimates of emissions related to management practices and climate are needed for identifying the best approaches to minimize, and potentially mitigate, GHG emissions. Current emissions models such as those of the IPCC, however, are based on emissions factors that have not been broadly tested against field-scale measurements, due to a lack of data. We used a diverse set of measurements over 22 months across a range of substrate conditions on a working dairy to determine patterns and controls on soil-based GHG fluxes. Although dairy soils and substrates differed by management unit, GHG fluxes were poorly predicted by these or climate variables. The manure pile had the greatest GHG emissions, and though temperature increased and O2 concentration decreased following mixing, we detected almost no change in GHG fluxes due to mixing. Corral fluxes were characterized by hotspots and hot moments driven by patterns in deposition. Annual scraping kept the soil and accumulated manure pack thin, producing drier conditions, particularly in the warm dry season. Summed over area, corral fluxes had the greatest non-CO2 global warming potential. The field had net CH4 consumption, but CH4 uptake was insufficient to offset N2 O emissions on an area basis. All sites emitted N2 O with a similar or greater climate impact than CH4 . Our results highlight the importance of N2 O emissions, a less commonly measured GHG, from manure management and present potential opportunities for GHG emissions reductions.
Collapse
Affiliation(s)
- Justine J Owen
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, 94720, USA
| | - Whendee L Silver
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, 94720, USA
| |
Collapse
|
42
|
Agyarko-Mintah E, Cowie A, Singh BP, Joseph S, Van Zwieten L, Cowie A, Harden S, Smillie R. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:138-149. [PMID: 27940078 DOI: 10.1016/j.wasman.2016.11.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/04/2016] [Accepted: 11/19/2016] [Indexed: 05/22/2023]
Abstract
Biochar has intrinsic and nascent structural and sorption properties that may alter the physical and chemical properties of a composting mixture thus influencing the production of greenhouse gases [GHGs; nitrous oxide (N2O) and methane (CH4)]. In this study, contrasting biochars produced from greenwaste (GWB) or poultry litter (PLB) were incorporated into a composting mixture containing poultry litter and straw, and GHG emissions were measured in situ during composting using Fourier Transform Infrared Spectroscopy (FTIR). Emissions of N2O from the biochar-amended composting mixtures decreased significantly (P<0.05) soon after commencement of the composting process compared with the non-amended control. The cumulative emissions of N2O over 8weeks in the GWB composting mixture (GWBC), PLB composting mixture (PLBC) and control (no biochar) were 4.2, 5.0 and 14.0gN2O-Nkg-1 of total nitrogen (TN) in composting mixture, respectively (P<0.05). The CH4 emissions were significantly (P<0.05) lower in the GWBC and PLBC treatments than the control during the period from day 8 to day 36, when anaerobic conditions likely prevailed. The cumulative CH4 emissions were 12, 18 and 80mg CH4-Ckg-1 of total carbon (TC) for the GWBC, PLBC and control treatments, respectively, though due to wide variation between replicates this difference was not statistically significant. The cumulative N2O and CH4 emissions were similar between the GWBC and PLBC despite differences in properties of the two biochars. X-ray Photoelectron Spectroscopy (XPS) analysis and SEM imaging of the composted biochars indicated the presence of iron oxide compounds and amine-NH3 on the surface and pores of the biochars (PLB>GWB). The change in nitrogen (N) functional groups on the biochar surface after composting is evidence for sorption and/or reaction with N from labile organic N, mineral N, and gaseous N (e.g. N2O). The concentration of NH4+ increased during the thermophilic phase and then decreased during the maturation phase, while NO3- accumulated during the maturation phase. Total N retained was significantly (P<0.05) higher in the PLBC (740g) and the GWBC (660g) relative to the control (530g). The TC retained was significantly higher in the GWBC (10.0kg) and the PLBC (8.5kg) cf. the control (6.0kg). Total GHG emissions across the composting period were 50, 63 and 183kg CO2-eqt-1 of initial mass of GWBC, PLBC and control (dry weight basis) respectively. These results support the co-composting of biochar to lower net emissions of GHGs while increasing N retention (and fertiliser N value) in the mature compost.
Collapse
Affiliation(s)
- Eunice Agyarko-Mintah
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, NSW 2351, Australia; Ministry of Food and Agriculture (MOFA), Accra Metropolitan Assembly, Ghana.
| | - Annette Cowie
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, NSW 2351, Australia; NSW Department of Primary Industries, Trevenna Rd, Armidale, NSW 2351, Australia.
| | - Bhupinder Pal Singh
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, NSW 2351, Australia; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd., Menangle NSW 2568, Private Bag 4008, Narellan, NSW 2570, Australia.
| | - Stephen Joseph
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, NSW 2351, Australia; Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Lukas Van Zwieten
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, NSW 2351, Australia; NSW Department of Primary Industries, Wollongbar Primary Industries Institute, 1243 Bruxner Highway, Wollongbar, NSW 2477, Australia.
| | - Alan Cowie
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, NSW 2351, Australia
| | - Steven Harden
- NSW Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Calala, NSW 2340, Australia.
| | - Robert Smillie
- School of Environment and Rural Science, Agronomy and Soil Science, University of New England, NSW 2351, Australia.
| |
Collapse
|
43
|
Whittaker C, Yates NE, Powers SJ, Donovan N, Misselbrook T, Shield I. Testing the Use of Static Chamber Boxes to Monitor Greenhouse Gas Emissions from Wood Chip Storage Heaps. BIOENERGY RESEARCH 2016; 10:353-362. [PMID: 32104527 PMCID: PMC7010367 DOI: 10.1007/s12155-016-9800-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This study explores the use of static chamber boxes to detect whether there are fugitive emissions of greenhouse gases (GHGs) from a willow chip storage heap. The results from the boxes were compared with those from 3-m stainless steel probes inserted into the core of the heap horizontally and vertically at intervals. The results from probes showed that there were increases of carbon dioxide (CO2) concentrations in the heap over the first 10 days after heap establishment, which were correlated with a temperature rise to 60 °C. As the CO2 declined, there was a small peak in methane (CH4) concentration in probes orientated vertically in the heap. Static chambers positioned at the apex of the heap detected some CO2 fluxes as seen in the probes; however, the quantities were small and random in nature. A small (maximum 5 ppm) flux in CH4 occurred at the same time as the probe concentrations peaked. Overall, the static chamber method was not effective in monitoring fluxes from the heap as there was evidence that gases could enter and leave around the edges of the chambers during the course of the experiment. In general, the use of standard (25 cm high) static chambers for monitoring fluxes from wood chip heaps is not recommended.
Collapse
Affiliation(s)
- Carly Whittaker
- Department of Agro-Ecology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - Nicola E. Yates
- Department of Agro-Ecology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - Stephen J. Powers
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - Neil Donovan
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB UK
| | - Tom Misselbrook
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB UK
| | - Ian Shield
- Department of Agro-Ecology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| |
Collapse
|
44
|
Zeng J, Shen X, Han L, Huang G. Dynamics of oxygen supply and consumption during mainstream large-scale composting in China. BIORESOURCE TECHNOLOGY 2016; 220:104-109. [PMID: 27566518 DOI: 10.1016/j.biortech.2016.08.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
This study characterized some physicochemical and biological parameters to systematically evaluate the dynamics of oxygen supply and consumption during large-scale trough composting in China. The results showed that long active phases, low maximum temperatures, low organic matter losses and high pore methane concentrations were observed in different composting layers. Pore oxygen concentrations in the top, middle and bottom layers maintained <5vol.% for 40, 42 and 45days, respectively, which accounted for more than 89% of the whole period. After each mechanical turning, oxygen was consumed at a stable respiration rate to a concentration of 5vol.% in no more than 99min and remained anaerobic in the subsequent static condition. The daily percentage of time under aerobic condition was no more than 14% of a single day. Therefore, improving FAS, adjusting aeration interval or combining turning with forced aeration was suggested to provide sufficient oxygen during composting.
Collapse
Affiliation(s)
- Jianfei Zeng
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiuli Shen
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
45
|
Jayasundara S, Ranga Niroshan Appuhamy J, Kebreab E, Wagner-Riddle C. Methane and nitrous oxide emissions from Canadian dairy farms and mitigation options: An updated review. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review examined methane (CH4) and nitrous oxide (N2O) mitigation strategies for Canadian dairy farms. The primary focus was research conducted in Canada and cold climatic regions with similar dairy systems. Meta-analyses were conducted to assess the impact of a given strategy when sufficient data were available. Results indicated that options to reduce enteric CH4from dairy cows were increasing the dietary starch content and dietary lipid supplementation. Replacing barley or alfalfa silage with corn silage with higher starch content decreased enteric CH4per unit of milk by 6%. Increasing dietary lipids from 3% to 6% of dry matter (DM) reduced enteric CH4yield by 9%. Strategies such as nitrate supplementation and 3-nitrooxypropanol additive indicated potential for reducing enteric CH4by about 30% but require extensive research on toxicology and consumer acceptance. Strategies to reduce emissions from manure are anaerobic digestion, composting, solid–liquid separation, covering slurry storage and flaring CH4, and reducing methanogen inoculum by complete emptying of slurry storage at spring application. These strategies have potential to reduce emissions from manure by up to 50%. An integrated approach of combining strategies through diet and manure management is necessary for significant GHG mitigation and lowering carbon footprint of milk produced in Canada.
Collapse
Affiliation(s)
- Susantha Jayasundara
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
46
|
Ge J, Huang G, Huang J, Zeng J, Han L. Particle-Scale Modeling of Methane Emission during Pig Manure/Wheat Straw Aerobic Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4374-4383. [PMID: 27045933 DOI: 10.1021/acs.est.5b04141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inefficient aerobic composting techniques significantly contribute to the atmospheric methane (CH4) levels. Macro-scale models assuming completely aerobic conditions cannot be used to analyze CH4 generation in strictly anaerobic environments. This study presents a particle-scale model for aerobic pig manure/wheat straw composting that incorporates CH4 generation and oxidation kinetics. Parameter estimation revealed that pig manure is characterized by high CH4 yield coefficient (0.6414 mol CH4 mol(-1) Cman) and maximum CH4 oxidation rate (0.0205 mol CH4 kg(-1) VS(aero) h(-1)). The model accurately predicted CH4 emissions (R(2) = 0.94, RMSE = 2888 ppmv, peak time deviation = 0 h), particularly in the self-heating and cooling phases. During mesophilic and thermophilic stages, a rapid increase of CH4 generation (0.0130 mol CH4 kg(-1) VS h(-1)) and methanotroph inactivation were simulated, implying that additional measures should be performed during these phases to mitigate CH4 emissions. Furthermore, CH4 oxidation efficiency was related to oxygen permeation through the composting particles. Reducing the ambient temperature and extending the aeration duration can decrease CH4 emission, but the threshold temperature is required to trigger the self-heating phase. These findings provide insights into CH4 emission during composting and may inform responsible strategies to counteract climate change.
Collapse
Affiliation(s)
- Jinyi Ge
- Laboratory of Biomass & Bioprocessing Engineering, College of Engineering, China Agricultural University , (East Campus), Box 191, Beijing 100083, China
| | - Guangqun Huang
- Laboratory of Biomass & Bioprocessing Engineering, College of Engineering, China Agricultural University , (East Campus), Box 191, Beijing 100083, China
| | - Jing Huang
- Laboratory of Biomass & Bioprocessing Engineering, College of Engineering, China Agricultural University , (East Campus), Box 191, Beijing 100083, China
| | - Jianfei Zeng
- Laboratory of Biomass & Bioprocessing Engineering, College of Engineering, China Agricultural University , (East Campus), Box 191, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass & Bioprocessing Engineering, College of Engineering, China Agricultural University , (East Campus), Box 191, Beijing 100083, China
| |
Collapse
|
47
|
Kumari P, Lee J, Choi HL. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:594-8. [PMID: 26949962 PMCID: PMC4782096 DOI: 10.5713/ajas.15.0406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/15/2015] [Accepted: 07/06/2015] [Indexed: 11/27/2022]
Abstract
We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.
Collapse
Affiliation(s)
- Priyanka Kumari
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Joonhee Lee
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea
| | - Hong-Lim Choi
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea ; Resourcification Research Center for Crop-Animal Farming (ReCAF), College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
48
|
Ding L, Lu Q, Xie L, Liu J, Cao W, Shi Z, Li B, Wang C, Zhang G, Ren S. Greenhouse gas emissions from dairy open lot and manure stockpile in northern China: A case study. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:267-279. [PMID: 26891681 DOI: 10.1080/10962247.2015.1124058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED The open lots and manure stockpiles of dairy farm are major sources of greenhouse gas (GHG) emissions in typical dairy cow housing and manure management system in China. GHG (CO(2), CH(4) and N(2)O) emissions from the ground level of brick-paved open lots and uncovered manure stockpiles were estimated according to the field measurements of a typical dairy farm in Beijing by closed chambers in four consecutive seasons. Location variation and manure removal strategy impacts were assessed on GHG emissions from the open lots. Estimated CO(2), CH(4) and N(2)O emissions from the ground level of the open lots were 137.5±64.7 kg hd(-1) yr(-1), 0.45±0.21 kg hd(-1) yr(-1) and 0.13±0.08 kg hd(-1) yr(-1), respectively. There were remarkable location variations of GHG emissions from different zones (cubicle zone vs. aisle zone) of the open lot. However, the emissions from the whole open lot were less affected by the locations. After manure removal, lower CH(4) but higher N(2)O emitted from the open lot. Estimated CO(2), CH(4) and N(2)O emissions from stockpile with a stacking height of 55±12 cm were 858.9±375.8 kg hd(-1) yr(-1), 8.5±5.4 kg hd(-1) yr(-1) and 2.3±1.1 kg hd(-1) yr(-1), respectively. In situ storage duration, which estimated by manure volatile solid contents (VS), would affect GHG emissions from stockpiles. Much higher N(2)O was emitted from stockpiles in summer due to longer manure storage. IMPLICATIONS This study deals with greenhouse gas (GHG) emissions from open lots and stockpiles. It's an increasing area of concern in some livestock producing countries. The Intergovernmental Panel on Climate Change (IPCC) methodology is commonly used for estimation of national GHG emission inventories. There is a shortage of on-farm information to evaluate the accuracy of these equations and default emission factors. This work provides valuable information for improving accounting practices within China or for similar manure management practice in other countries.
Collapse
Affiliation(s)
- Luyu Ding
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Qikun Lu
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Lina Xie
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Jie Liu
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Wei Cao
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Zhengxiang Shi
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Baoming Li
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Chaoyuan Wang
- a Department of Agricultural Structure and Bioenvironmental Engineering , College of Water Resources and Civil Engineering, China Agricultural University , Beijing , People's Republic of China
| | - Guoqiang Zhang
- b Department of Engineering , Aarhus University , Tjele , Denmark
| | - Shixi Ren
- c Agricultural Bureau of Yanqing County , Beijing , People's Republic of China
| |
Collapse
|
49
|
Biala J, Lovrick N, Rowlings D, Grace P. Greenhouse-gas emissions from stockpiled and composted dairy-manure residues and consideration of associated emission factors. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an16009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Emissions from stockpiled pond sludge and yard scrapings were compared with composted dairy-manure residues blended with shredded vegetation residues and chicken litter over a 5-month period at a farm in Victoria (Australia). Results showed that methane emissions occurred primarily during the first 30–60 days of stockpiling and composting, with daily emission rates being highest for stockpiled pond sludge. Cumulated methane (CH4) emissions per tonne wet feedstock were highest for stockpiling of pond sludge (969 g CH4/t), followed by composting (682 g CH4/t) and stockpiling of yard scrapings (120 g CH4/t). Sizeable nitrous oxide (N2O) fluxes were observed only when temperatures inside the compost windrow fell below ~45−50°C. Cumulated N2O emissions were highest for composting (159 g N2O/t), followed by stockpiling of pond sludge (103 g N2O/t) and yard scrapings (45 g N2O/t). Adding chicken litter and lime to dairy-manure residues resulted in a very low carbon-to-nitrogen ratio (13 : 1) of the composting mix, and would have brought about significant N2O losses during composting. These field observations suggested that decisions at composting operations, as in many other businesses, are driven more by practical and economic considerations rather than efforts to minimise greenhouse-gas emissions. Total greenhouse-gas emissions (CH4 + N2O), expressed as CO2-e per tonne wet feedstock, were highest for composting (64.4 kg), followed by those for stockpiling of pond sludge (54.5 kg) and yard scraping (16.3 kg). This meant that emissions for composting and stockpiling of pond sludge exceeded the new Australian default emission factors for ‘waste composting’ (49 kg). This paper proposes to express greenhouse-gas emissions from secondary manure-management systems (e.g. composting) also as emissions per tonne wet feedstock, so as to align them with the approach taken for ‘waste composting’ and to facilitate the development of emission-reduction methodologies for improved manure management at the farm level.
Collapse
|
50
|
Ermolaev E, Jarvis Å, Sundberg C, Smårs S, Pell M, Jönsson H. Nitrous oxide and methane emissions from food waste composting at different temperatures. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 46:113-119. [PMID: 26321382 DOI: 10.1016/j.wasman.2015.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 08/15/2015] [Accepted: 08/15/2015] [Indexed: 06/04/2023]
Abstract
Emissions of methane (CH₄) and nitrous oxide (N₂O) from composting of source-sorted food waste were studied at set temperatures of 40, 55 and 67°C in 10 trials performed in a controlled environment 200L compost reactor. CH₄ and N₂O concentrations were generally low. In trials with 16% O₂, the mean total CH₄ emission at all temperatures was 0.007% of the mineralized carbon (C), while at 67°C this fraction was 0.001%. Total CH₄ production was higher in the 40°C trial and the limited oxygen (1% O₂) trial, with emissions of 0.029 and 0.132% of the mineralized C respectively. An early increase in N₂O production was observed in trials with higher initial nitrate contents. Increased CH₄ and N₂O production in trials at 40 and 55°C after 50% of the initial C was mineralized resulted in higher total greenhouse gas emissions. Overall, the global warming potentials in CO₂-equivalents from CH₄ emissions were higher than from N₂O, except for composts run at 67°C.
Collapse
Affiliation(s)
- Evgheni Ermolaev
- Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Sweden.
| | - Åsa Jarvis
- Swedish University of Agricultural Sciences (SLU), Department of Microbiology, Sweden
| | - Cecilia Sundberg
- Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Sweden
| | - Sven Smårs
- Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Sweden
| | - Mikael Pell
- Swedish University of Agricultural Sciences (SLU), Department of Microbiology, Sweden
| | - Håkan Jönsson
- Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Sweden
| |
Collapse
|