1
|
Effects of particle filling and gradation on the properties of coal-water slurries blended with semicoke. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
2
|
Wang H, Long X, Sun Y, Wang D, Wang Z, Meng H, Jiang C, Dong W, Lu N. Electrochemical impedance spectroscopy applied to microbial fuel cells: A review. Front Microbiol 2022; 13:973501. [PMID: 35935199 PMCID: PMC9355145 DOI: 10.3389/fmicb.2022.973501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is an efficient and non-destructive test for analyzing the bioelectrochemical processes of microbial fuel cells (MFCs). The key factors limiting the output performance of an MFC can be identified by quantifying the contribution of its various internal parts to the total impedance. However, little attention has been paid to the measurement conditions and diagrammatic processes of the EIS for MFC. This review, starting with the analysis of admittance of bioelectrode, introduces conditions for the EIS measurement and summarizes the representative equivalent circuit plots for MFC. Despite the impedance from electron transfer and diffusion process, the effect of unnoticeable capacitance obtained from the Nyquist plot on MFCs performance is evaluated. Furthermore, given that distribution of relaxation times (DRT) is an emerging method for deconvoluting EIS data in the field of fuel cell, the application of DRT-analysis to MFC is reviewed here to get insight into bioelectrode reactions and monitor the biofilm formation. Generally, EIS measurement is expected to optimize the construction and compositions of MFCs to overcome the low power generation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Xizi Long
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
- *Correspondence: Xizi Long,
| | - Yingying Sun
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Wen Dong
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| | - Nan Lu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Wang Y, Singh RP, Geng C, Fu D. Carbon-to-nitrogen ratio influence on the performance of bioretention for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17652-17660. [PMID: 32189202 DOI: 10.1007/s11356-019-07438-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Bioretention cell (BRC), bioretention cell with microbial fuel cell (BRC-MFC), and an enhanced combined BRC-MFC system with bimetallic zero-valent iron (BRC-MFC-BZVI) were implemented in current study to treat the domestic wastewater. Nitrogen removal characteristics of three systems were investigated by adjusting influent carbon/nitrogen ratio (C/N ratio of 2.54-19.36). Results revealed that the nitrification and denitrification performances were mainly influenced by organic matter and system combination, which further affected nitrogen removal. When the influent C/N ratio was between 2 to 3, compared with BRC system, in BRC-MFC and BRC-MFC-BZVI system, chemical oxygen demand (COD), total nitrogen (TN), and ammonical nitrogen (NH4+-N) removal efficiencies were still reached to 83.04%, 61.06%, and 42.26% and 86.53%, 43.61%, and 50.99% respectively, which simultaneously achieved high-efficiency of organic matter and nitrogen removal. The efficient supply of electrons in the BRC-MFC and BRC-MFC-BZVI processes was the main reason to achieve profound denitrification removal under the condition of low C/N. Removal rates of nitrate (NO3--N) and nitrite (NO2--N) were relatively higher due to microbial-driven redox reactions caused by driving electrons to flow in the closed circuit of metal wire connection. Moreover, phylogenetic diversity of bacterial communities mainly induced the catalytic iron, which further enhanced biological nitrogen reduction. The maximum efficient removal of organic matter (OM), TN, and NH4 + -N were obtained in the BRC-MFC-BZVI system, which were 98.42% (C/N = 10.42), 55.61% (C/N = 4.16), and 61.13% (C/N = 4.16), respectively.
Collapse
Affiliation(s)
- Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, 287 Langongping, Lanzhou, 730050, China
- School of Civil Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
| | - Rajendra Prasad Singh
- School of Civil Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China
- Monash University Joint research Centre for Future Cities, Southeast University, Nanjing, 210096, China
| | - Chongchong Geng
- School of Civil Engineering, Lanzhou University of Technology, 287 Langongping, Lanzhou, 730050, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, China.
- Monash University Joint research Centre for Future Cities, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Liu F, Sun L, Wan J, Shen L, Yu Y, Hu L, Zhou Y. Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. J Environ Sci (China) 2020; 89:252-263. [PMID: 31892397 DOI: 10.1016/j.jes.2019.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Plants constitute a major element of constructed wetlands (CWs). In this study, a coupled system comprising an integrated vertical flow CW (IVCW) and a microbial fuel cell (MFC) for swine wastewater treatment was developed to research the effects of macrophytes commonly employed in CWs, Canna indica, Acorus calamus, and Ipomoea aquatica, on decontamination and electricity production in the system. Because of the different root types and amounts of oxygen released by the roots, the rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4+-N) removal from the swine wastewater differed as well. In the unplanted, Canna indica, Acorus calamus, and Ipomoea aquatica systems, the COD removal rates were 80.20%, 88.07%, 84.70%, and 82.20%, respectively, and the NH4+-N removal rates were 49.96%, 75.02%, 70.25%, and 68.47%, respectively. The decontamination capability of the Canna indica system was better than those of the other systems. The average output voltages were 520±42, 715±20, 660±27, and 752±26mV for the unplanted, Canna indica, Acorus calamus, and Ipomoea aquatica systems, respectively, and the maximum power densities were 0.2230, 0.4136, 0.3614, and 0.4964W/m3, respectively. Ipomoea aquatica had the largest effect on bioelectricity generation promotion. In addition, electrochemically active bacteria, Geobacter and Desulfuromonas, were detected in the anodic biofilm by high-throughput sequencing analysis, and Comamonas (Proteobacteria), which is widely found in MFCs, was also detected in the anodic biofilm. These results confirmed the important role of plants in IVCW-MFCs.
Collapse
Affiliation(s)
- Feng Liu
- School of Resources Environmental & Chemical Engineering, Nanchang University, Jiangxi 330031, China; School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China; Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Lei Sun
- School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Jinbao Wan
- School of Resources Environmental & Chemical Engineering, Nanchang University, Jiangxi 330031, China.
| | - Liang Shen
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China; Jiangxi Engineering Laboratory of Waterborne Coating, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Yanhong Yu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Lingling Hu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, China
| |
Collapse
|
5
|
A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New Conductive Bioanode for (Plant) Microbial Fuel Cell. ENERGIES 2020. [DOI: 10.3390/en13030574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. In this work, the potential of exploiting electrochemically active self-assembled biofilms in fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of electrode materials was studied. Three-dimensional robust bioanodes were successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM imaging and DNA sequencing of the microbial community. The electric conductivity of the PU/AC electrode enhanced over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3 mA·m−2 projected surface area of anode compartment and 22 mW·m−3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW·m−2 plant growth area (PGA) at a current density of 5.6 mA·m−2 PGA. A paddy field test showed that the PU/AC electrode was suitable as an anode material in combination with a graphite felt cathode. Finally, this study offers insights on the role of electrochemically active biofilms as natural enhancers of the conductivity of electrodes and as transformers of inert low-cost electrode materials into living electron acceptors.
Collapse
|
6
|
|
7
|
Noori MT, Ghangrekar MM, Mukherjee CK, Min B. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnol Adv 2019; 37:107420. [PMID: 31344446 DOI: 10.1016/j.biotechadv.2019.107420] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
Abstract
The occurrence of biofouling in MFC can cause severe problems such as hindering proton transfer and increasing the ohmic and charge transfer resistance of cathodes, which results in a rapid decline in performance of MFC. This is one of the main reasons why scaling-up of MFCs has not yet been successfully accomplished. The present review article is a wide-ranging attempt to provide insights to the biofouling mechanisms on surfaces of MFC, mainly on proton exchange membranes and cathodes, and their effects on performance of MFC based on theoretical and practical evidence. Various biofouling mitigation techniques for membranes are discussed, including preparation of antifouling composite membranes, modification of the physical and chemical properties of existing membranes, and coating with antifouling agents. For cathodes of MFC, use of Ag nanoparticles, Ag-based composite nanoparticles, and antifouling chemicals is outlined in considerable detail. Finally, prospective techniques for mitigation of biofouling are discussed, which have not been given much previous attention in the field of MFC research. This article will help to enhance understanding of the severity of biofouling issues in MFCs and provides up-to-date solutions. It will be beneficial for scientific communities for further strengthening MFC research and will also help in progressing this cutting-edge technology to scale-up, using the most efficient methods as described here.
Collapse
Affiliation(s)
- Md T Noori
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Republic of Korea
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, 721302, India
| | - C K Mukherjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, 721302, India
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Republic of Korea.
| |
Collapse
|
8
|
Garba ZN, Zhou W, Lawan I, Xiao W, Zhang M, Wang L, Chen L, Yuan Z. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:59-75. [PMID: 30981144 DOI: 10.1016/j.jenvman.2019.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
In this review article, a significant number of published articles (over three decades) were consulted in order to provide comprehensive literature information about chlorophenols, their sources into the environment, classification, and toxicity, various wastewater treatment methods for their removal as well as the characteristics of their adsorption by various adsorbents. Organizing the scattered available information on a wide range of potentially effective adsorbents in the removal of chlorophenols is the principal objective of this article. Various adsorbents such as natural materials, waste materials from industries, agricultural by-products and biomass-based activated carbon in the removal of various chlorophenols have been compiled and discussed here. Crucial factors like temperature, solution pH, contact time and initial solution concentration are also reported and discussed here. The π-π dispersion interaction mechanism, hydrogen bonding formation mechanism, and the electron donor-acceptor complex mechanism were proposed for the chlorophenols adsorption onto various adsorbents with the help of current literature. Conclusions have been drawn proposing a few suggestions for future research on mitigating the effect of chlorophenols in the environment.
Collapse
Affiliation(s)
- Zaharaddeen N Garba
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China; Department of Chemistry, Ahmadu Bello University Zaria, Nigeria.
| | - Weiming Zhou
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Ibrahim Lawan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Wei Xiao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Mingxi Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Liwei Wang
- Chemistry and Chemical Engineering Department, Minjiang University, Fuzhou, Fujian province, 350108, China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China.
| |
Collapse
|
9
|
Sudirjo E, Buisman CJN, Strik DPBTB. Marine Sediment Mixed With Activated Carbon Allows Electricity Production and Storage From Internal and External Energy Sources: A New Rechargeable Bio-Battery With Bi-Directional Electron Transfer Properties. Front Microbiol 2019; 10:934. [PMID: 31156566 PMCID: PMC6527962 DOI: 10.3389/fmicb.2019.00934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Marine sediment has a great potential to generate electricity with a bioelectrochemical system (BES) like the microbial fuel cell (MFC). In this study, we investigated the potential of marine sediment and activated carbon (AC) to generate and store electricity. Both internal and external energy supply was validated for storage behavior. Four types of anode electrode compositions were investigated. Two types were mixtures of different volumes of AC and Dutch Eastern Scheldt marine sediment (67% AC and 33% AC) and the others two were 100% AC or 100% marine sediment based. Each composition was duplicated. Operating these BES's under MFC mode with solely marine sediment as the anode electron donor resulted in the creation of a bio-battery. The recharge time of such bio-battery does depend on the fuel content and its usage. The results show that by usage of marine sediment and AC electricity was generated and stored. The 100% AC and the 67% AC mixed with marine sediment electrode were over long term potentiostatic controlled at -100 mV vs. Ag/AgCl which resulted in a cathodic current and an applied voltage. After switching back to the MFC operation mode at 1000 Ω external load, the electrode turned into an anode and electricity was generated. This supports the hypothesis that external supply electrical energy was recovered via bi-directional electron transfer. With open cell voltage experiments these AC marine bioanodes showed internal supplied electric charge storage up to 100 mC at short self-charging times (10 and 60 s) and up to 2.4°C (3,666 C/m3 anode) at long charging time (1 h). Using a hypothetical cell voltage of 0.2 V, this value represents an internal electrical storage density of 0.3 mWh/kg AC marine anode. Furthermore it was remarkable that the BES with 100% marine sediment based electrode also acted like a capacitor similar to the charge storage behaviors of the AC based bioanodes with a maximum volumetric storage of 1,373 C/m3 anode. These insights give opportunities to apply such BES systems as e.g., ex situ bio-battery to store and use electricity for off-grid purpose in remote areas.
Collapse
Affiliation(s)
- Emilius Sudirjo
- Government of Landak Regency, West Kalimantan, Indonesia.,Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Tang J, Zhang C, Shi X, Sun J, Cunningham JA. Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:396-403. [PMID: 30639863 DOI: 10.1016/j.jenvman.2018.12.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) will face challenges in the coming decades including reducing energy consumption and decreasing carbon emissions. These challenges can be addressed by combining electrochemical, biological, and bio-electrochemical technologies within existing WWTPs. The results from this review indicate that electrochemical technology is an effective advanced treatment method for WWTPs. However, electrochemical technology is not yet economically suitable as a stand-alone unit for treating wastewater because it consumes energy in the operation process. Electricity generation from biological and bio-electrochemical technologies can provide the power supply needed for WWTP electrochemical processes while reducing greenhouse gas emissions. WWTPs coupled with electrochemical, biological, and bio-electrochemical technologies can increase electricity recovery in WWTPs, impart energy self-sufficiency to the WWTPs, and decrease greenhouse gas emissions.
Collapse
Affiliation(s)
- Jiawei Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China.
| | - Xuelu Shi
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
| | - Jiajun Sun
- Beijing Engineering Research Center of Process Pollution Control, Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jeffrey A Cunningham
- Dept. Civil & Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
11
|
Liu F, Sun L, Wan J, Tang A, Deng M, Wu R. Organic matter and ammonia removal by a novel integrated process of constructed wetland and microbial fuel cells. RSC Adv 2019; 9:5384-5393. [PMID: 35515927 PMCID: PMC9060656 DOI: 10.1039/c8ra10625h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
A novel approach, combining a microbial fuel cell (MFC) with an integrated vertical flow constructed wetland (IVCW), was developed, and its ability to simultaneously produce electrical energy while treating swine wastewater was verified. The system combined the singular water flow path of a traditional vertical flow constructed wetland (upflow and downflow)-microbial fuel cell (CW-MFC), which demonstrates better characteristics in the aerobic, anoxic, and anaerobic regions. It not only enhanced the anti-pollution load ability and the organic compound removal effect, but also improved the gradient difference in the redox potential of the system. The results showed that the structure and substrate distribution in the device could both improve swine wastewater treatment and increase bioelectricity generation capabilities. The average chemical oxygen demand (COD) and ammonia nitrogen (NH4 +-N) removal efficiencies were as high as 79.65% and 77.5%, respectively. Long-term and stable bioelectricity generation was achieved under continuous flow conditions. The peak values of the output voltage and power density were 713 mV and 456 mW m-3. The activated carbon layer at the bottom of this system provided a larger surface for the growth of microbes. It showed significant promotion of the relative abundance of electrochemically active bacteria, which might result in the increase of bioelectricity generation in integrated vertical flow constructed wetland-microbial fuel cells (IVCW-MFCs). The electrochemically active bacteria, Geobacter and Desulfuromonas, were detected in the anodic biofilm by high-throughput sequencing analysis.
Collapse
Affiliation(s)
- Feng Liu
- School of Resources Environmental & Chemical Engineering, Nanchang University Nanchang 330031 China +8613576295727
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Fenglin Street Nanchang Jiangxi 330013 China
| | - Lei Sun
- School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University Fenglin Street Nanchang Jiangxi 330013 China
| | - Jinbao Wan
- School of Resources Environmental & Chemical Engineering, Nanchang University Nanchang 330031 China +8613576295727
| | - Aiping Tang
- School of Environment and Chemical Engineering, Nanchang Hangkong University Nanchang 330063 China
| | - Mi Deng
- School of Resources Environmental & Chemical Engineering, Nanchang University Nanchang 330031 China +8613576295727
| | - Rongwei Wu
- College of New Energy and Environmental Engineering, Nanchang Institute of Technology Nanchang 330044 China
| |
Collapse
|
12
|
Zhang M, Wang Y, Liang P, Zhao X, Liang M, Zhou B. Combined photoelectrocatalytic microbial fuel cell (PEC-MFC) degradation of refractory organic pollutants and in-situ electricity utilization. CHEMOSPHERE 2019; 214:669-678. [PMID: 30292049 DOI: 10.1016/j.chemosphere.2018.09.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
A new photoelectrocatalytic (PEC) and microbial fuel cell (MFC) process was developed and applied to simultaneously remove refractory organic pollutants (i.e., phenol and aniline) from wastewater while recovering energy for in-situ utilization. The current generated by the MFC process was applied to drive the PEC reaction. Compared with single PEC or MFC processes, the PEC-MFC combined process showed higher pollutant and chemical oxygen demand (COD) removal capacities and electricity production. Over 95% of the phenol or aniline was removed by these process, even at high initial concentrations. The COD removal efficiencies for phenol and aniline were ca. 96% (from 700 to 29 mg L-1) and 70% (from 165 to 49 mg L-1), respectively. Although the PEC process showed a limited contribution to phenol and aniline removals (16.5% and 43%, respectively), the utilization of PEC-treated phenol or aniline streams resulted in a MFC with higher voltage output, higher coulombic efficiency, maximal volumetric power density, and lower internal resistance as compared to untreated water. High-performance liquid chromatography coupled with mass spectrometry measurements revealed quinones/hydroquinones and low molecular weight organic acids to be produced as intermediates after the PEC process, which could improve the production of electricity in the MFC.
Collapse
Affiliation(s)
- Manman Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, PR China
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Peng Liang
- Environment Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Beijing 100085, PR China
| | - Mingxing Liang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Bin Zhou
- The Administrative Center for China's Agenda 21, Beijing 100038, PR China
| |
Collapse
|
13
|
Chen Q, Pu W, Hou H, Hu J, Liu B, Li J, Cheng K, Huang L, Yuan X, Yang C, Yang J. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells. BIORESOURCE TECHNOLOGY 2018; 249:567-573. [PMID: 29091839 DOI: 10.1016/j.biortech.2017.09.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m-3) 2.3 times higher than carbon cloth anode (10.4 W m-3). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials.
Collapse
Affiliation(s)
- Qin Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Wenhong Pu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jianfeng Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Kai Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Long Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xiqing Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Changzhu Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Lin G, Liu C, Zhang L, Hu T, Peng J, Li J, Wang S. High temperature dielectric properties of spent adsorbent with zinc sulfate by cavity perturbation technique. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:36-45. [PMID: 28208091 DOI: 10.1016/j.jhazmat.2017.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Dielectric properties of spent adsorbent with zinc sulfate are investigated by cavity perturbation technique at 2450MHz from 20°C to approximately 1000°C. Two weight loss stages are observed for spent adsorbent by thermogravimetric-differential scanning calorimeter (TG-DSC) analysis, and zinc sulfate is decomposed to ZnO·2ZnSO4 and ZnO at about 750°C and 860°C. Microwave absorption capability of ZnSO4 increases with increasing temperature and declines after ZnO generation on account of the poor dielectric properties. Dielectric properties of spent adsorbent are dependent on apparent density and noticed an interestingly linearly relationship at room temperature. The three parameters increase gently from 20°C to 400°C, but a sharp increase both in real part and imaginary part are found subsequently due to the volatiles release and regeneration of carbon. And material conductivity is improved, which contributes to the π-electron conduction appearance. Relationship between penetration depth and temperature further elaborate spent adsorbent is an excellent microwave absorber and the microwave absorption capability order of zinc compounds is ZnO·2ZnSO4, ZnSO4 and ZnO. Heating characteristics suggest that heating rate is related with dielectric properties of materials. The pore structures of spent adsorbent are improved significantly and the surface is smoother after microwave-regeneration.
Collapse
Affiliation(s)
- Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Chenhui Liu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China; Faculty of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650093, China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Jinhui Peng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Jing Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| |
Collapse
|
15
|
Yu YY, Zhai DD, Si RW, Sun JZ, Liu X, Yong YC. Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems. Int J Mol Sci 2017; 18:ijms18010090. [PMID: 28054970 PMCID: PMC5297724 DOI: 10.3390/ijms18010090] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 02/02/2023] Open
Abstract
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed.
Collapse
Affiliation(s)
- Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Dan-Dan Zhai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Rong-Wei Si
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Jian-Zhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Xiang Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Wang H, Liu J, He W, Qu Y, Li D, Jiang Q, Feng Y. Enhanced Power Generation of Oxygen-Reducing Biocathode with an Alternating Hydrophobic and Hydrophilic Surface. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31995-32003. [PMID: 27797478 DOI: 10.1021/acsami.6b10876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Most oxygen-reducing biocathodes for microbial electrochemical systems (MESs) require energy-intensive aeration of the catholyte, which negates the energy-saving benefits of MESs. To avoid aeration and enhance oxygen-utilization efficiency, columnar activated carbon with half of its surface coated by polytetrafluoroethylene (PTFE-coated CAC) was fabricated as biocathode material, and its performance was investigated using a tide-type biocathode MES (TBMES). The TBMES with PTFE-coated biocathode achieved a maximum power density of 8.2 ± 0.8 W m-3, which was 39% higher than that of the untreated control (CAC biocathode). The PTFE-coated biocathode was able to store a cumulative total charge (Qm) of (10.8 ± 0.2) × 104 C m-3 during one charge-discharge cycle, whereas the Qm of CAC biocathode was only (6.9 ± 0.1) × 104 C m-3, demonstrating that the oxygen entrapment capability of PTFE-coated biocathode was 54 ± 3.8% higher than that of the control. Internal resistance analysis under both oxygen sufficient and reoxygenation conditions suggested the oxygen entrapped by this surface-hydrophobic biocathode was basically sufficient for cathodic oxygen reduction reaction. The slight difference in cathodic microbial communities of the two biocathodes further indicated that the higher accessibility of oxygen due to the hydrophobic surface was the primary cause for the better performance of the PTFE-coated biocathode, while the higher biocatalytic activity of the cathodic biofilm was a minor factor.
Collapse
Affiliation(s)
- Haiman Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jia Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Youpeng Qu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , No 73 Huanghe Road, Nangang District, Harbin 150090, China
- School of Life Science and Technology, Harbin Institute of Technology , No. 2 Yikuang Street, Nangang District, Harbin 150080, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Qing Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , No 73 Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|
17
|
Tharali AD, Sain N, Osborne WJ. Microbial fuel cells in bioelectricity production. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1230787] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y, Huang X. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. WATER RESEARCH 2016; 98:396-403. [PMID: 27131320 DOI: 10.1016/j.watres.2016.04.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
A novel stacked microbial fuel cell (MFC) which had a total volume of 72 L with granular activated carbon (GAC) packed bed electrodes was constructed and verified to present remarkable power generation and COD removal performance due to its advantageous design of stack and electrode configuration. During the fed-batch operation period, a power density of 50.9 ± 1.7 W/m(3) and a COD removal efficiency of 97% were achieved within 48 h. Because of the differences among MFC modules in the stack, reversal current occurred in parallel circuit connection with high external resistances (>100 Ω). This reversal current consequently reduced the electrochemical performance of some MFC modules and led to a lower power density in parallel circuit connection than that in independent circuit connection. While increasing the influent COD concentrations from 200 to 800 mg/L at hydraulic retention time of 1.25 h in continuous operation mode, the power density of stacked MFC increased from 25.6 ± 2.5 to 42.1 ± 1.2 W/m(3) and the COD removal rates increased from 1.3 to 5.2 kg COD/(m(3) d). This study demonstrated that this novel MFC stack configuration coupling with GAC packed bed electrode could be a feasible strategy to effectively scale up MFC systems.
Collapse
Affiliation(s)
- Shijia Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xuechen Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yong Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
19
|
Oon YL, Ong SA, Ho LN, Wong YS, Dahalan FA, Oon YS, Lehl HK, Thung WE. Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery. BIORESOURCE TECHNOLOGY 2016; 203:190-197. [PMID: 26724550 DOI: 10.1016/j.biortech.2015.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
This study demonstrated a successful operation of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) in wastewater treatment and energy recovery. The goals of this study were to investigate the effect of circuit connection, organic loading rates, and electrode spacing on the performance of wastewater treatment and bioelectricity generation. The average influent of COD, NO3(-) and NH4(+) were 624 mg/L, 142 mg/L, 40 mg/L, respectively and their removal efficiencies (1 day HRT) were 99%, 46%, and 96%, respectively. NO3(-) removal was relatively higher in the closed circuit system due to lower dissolved oxygen in the system. Despite larger electrode spacing, the voltage outputs from Anode 2 (A2) (30 cm) and Anode 3 (A3) (45 cm) were higher than from Anode 1 (A1) (15 cm) as a result of insufficient fuel supply to A1. The maximum power density and Coulombic efficiency were obtained at A2, which were 93 mW/m(3) and 1.42%, respectively.
Collapse
Affiliation(s)
- Yoong-Ling Oon
- School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Soon-An Ong
- School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Li-Ngee Ho
- School of Materials Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Farrah Aini Dahalan
- School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Yoong-Sin Oon
- School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Harvinder Kaur Lehl
- School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Wei-Eng Thung
- School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
20
|
Long-term operation of double chambered microbial fuel cell for bio-electro denitrification. Bioprocess Biosyst Eng 2016; 39:893-900. [DOI: 10.1007/s00449-016-1568-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/05/2016] [Indexed: 01/28/2023]
|
21
|
Tursun H, Liu R, Li J, Abro R, Wang X, Gao Y, Li Y. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance. Front Microbiol 2016; 7:6. [PMID: 26858695 PMCID: PMC4726804 DOI: 10.3389/fmicb.2016.00006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency.
Collapse
Affiliation(s)
- Hairti Tursun
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Rui Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Jing Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Rashid Abro
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Yanmei Gao
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
22
|
Novel Self-driven Microbial Nutrient Recovery Cell with Simultaneous Wastewater Purification. Sci Rep 2015; 5:15744. [PMID: 26503712 PMCID: PMC4621542 DOI: 10.1038/srep15744] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/30/2015] [Indexed: 11/24/2022] Open
Abstract
Conventional wastewater purification technologies consume large amounts of energy, while the abundant chemical energy and nutrient resources contained in sewage are wasted in such treatment processes. A microbial nutrient recovery cell (MNRC) has been developed to take advantage of the energy contained in wastewater, in order to simultaneously purify wastewater and recover nutrient ions. When wastewater was circulated between the anode and cathode chambers of the MNRC, the organics (COD) were removed by bacteria while ammonium and phosphate (NH4+-N and PO43−-P) were recovered by the electrical field that was produced using in situ energy in the wastewater without additional energy input. The removal efficiencies from wastewater were >82% for COD, >96% for NH4+-N, and >64% for PO43−-P in all the operational cycles. Simultaneously, the concentrations of NH4+ and PO43− in the recovery chamber increased to more than 1.5 and 2.2 times, respectively, compared with the initial concentrations in wastewater. The MNRC provides proof-of-concept as a sustainable, self-driven approach to efficient wastewater purification and nutrient recovery in a comprehensive bioelectrochemical system.
Collapse
|
23
|
Liu S, Song H, Wei S, Yang F, Li X. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems. BIORESOURCE TECHNOLOGY 2014; 166:575-583. [PMID: 24956029 DOI: 10.1016/j.biortech.2014.05.104] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
To optimize the performance of a vertical subsurface flow constructed wetland-microbial fuel cell (CW-MFC), studies of bio-cathode materials and reactor configurations were carried out. Three commonly used bio-cathode materials including stainless steel mesh (SSM), carbon cloth (CC) and granular activated carbon (GAC) were compared and evaluated. GAC-SSM bio-cathode achieved the highest maximum power density of 55.05 mWm(-2), and it was most suitable for CW-MFCs application because of its large surface area and helpful capillary water absorption. Two types of CW-MFCs with roots were constructed, one was placed in the anode and the other was placed in the cathode. Both planted CW-MFCs obtained higher power output than non-planted CW-MFC. Periodic voltage fluctuations of planted CW-MFCs were caused by light/dark cycles, and the influent substrate concentration significantly affected the amplitude of oscillation. The coulombic efficiencies of CW-MFCs decreased greatly with the increase of the influent substrate concentration.
Collapse
Affiliation(s)
- Shentan Liu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hailiang Song
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Size Wei
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Fei Yang
- School of Public Health, Central South University, Changsha 410078, China
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
24
|
Zhu X, Logan BE. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. BIORESOURCE TECHNOLOGY 2014; 159:24-29. [PMID: 24632437 DOI: 10.1016/j.biortech.2014.02.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg(2+) and Ca(2+) dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24 mg of CO2 was absorbed into the alkaline solution and 13 mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822 mg/L) and achieved 22% desalination (initially 35 g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals.
Collapse
Affiliation(s)
- Xiuping Zhu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
25
|
Zhang X, Shi J, Liang P, Wei J, Huang X, Zhang C, Logan BE. Power generation by packed-bed air-cathode microbial fuel cells. BIORESOURCE TECHNOLOGY 2013; 142:109-114. [PMID: 23732924 DOI: 10.1016/j.biortech.2013.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 06/02/2023]
Abstract
Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676 ± 93 mW/m(2), followed by semi-coke (376 ± 47 mW/m(2)), graphite (122 ± 14 mW/m(2)) and carbon felt (60 ± 43 mW/m(2)). Increasing the mass of activated carbon and semi-coke from 5 to ≥ 15 g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (∼3 or ∼6 cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, THU-VEOLIA Environment Joint Research Center for Advanced Environmental Technology, School of Environment, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2085-2091. [PMID: 23360098 DOI: 10.1021/es3027659] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oxygen-reducing biocathodes previously developed for microbial fuel cells (MFCs) have required energy-intensive aeration of the catholyte. To avoid the need for aeration, the ability of biocathodes to function with passive oxygen transfer was examined here using air cathode MFCs. Two-chamber, air cathode MFCs with biocathodes produced a maximum power density of 554 ± 0 mW/m(2), which was comparable to that obtained with a Pt cathode (576 ± 16 mW/m(2)), and 38 times higher than that produced without a catalyst (14 ± 3 mW/m(2)). The maximum current density with biocathodes in this air-cathode MFC was 1.0 A/m(2), compared to 0.49 A/m(2) originally produced in a two-chamber MFC with an aqueous cathode (with cathode chamber aeration). Single-chamber, air-cathode MFCs with the same biocathodes initially produced higher voltages than those with Pt cathodes, but after several cycles the catalytic activity of the biocathodes was lost. This change in cathode performance resulted from direct exposure of the cathodes to solutions containing high concentrations of organic matter in the single-chamber configuration. Biocathode performance was not impaired in two-chamber designs where the cathode was kept separated from the anode solution. These results demonstrate that direct-air biocathodes can work very well, but only under conditions that minimize heterotrophic growth of microorganisms on the cathodes.
Collapse
Affiliation(s)
- Xue Xia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Chen X, Liang P, Wei Z, Zhang X, Huang X. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation. BIORESOURCE TECHNOLOGY 2012; 119:88-93. [PMID: 22728187 DOI: 10.1016/j.biortech.2012.05.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity.
Collapse
Affiliation(s)
- Xi Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | |
Collapse
|
28
|
Xia X, Sun Y, Liang P, Huang X. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization. BIORESOURCE TECHNOLOGY 2012; 120:26-33. [PMID: 22784950 DOI: 10.1016/j.biortech.2012.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/09/2012] [Accepted: 06/09/2012] [Indexed: 06/01/2023]
Abstract
The long-term effect of set potential on oxygen reducing biocathodes was investigated in terms of electrochemical and biological characteristics. Three biocathodes were poised at 200, 60 and -100 mV vs. saturated calomel electrode (SCE) for 110 days, including the first 17 days for startup. Electrochemical analyses showed that 60 mV was the optimum potential during long-term operation. The performance of all the biocathodes kept increasing after startup, suggesting a period longer than startup time needed to make potential regulation more effective. The inherent characteristics without oxygen transfer limitation were studied. Different from short-term regulation, the amounts of biomass were similar while the specific electrochemical activity was significantly influenced by potential. Moreover, potential showed a strong selection for cathode bacteria. Clones 98% similar with an uncultured Bacteroidetes bacterium clone CG84 accounted for 75% to 80% of the sequences on the biocathodes that showed higher electrochemical activity (60 and -100 mV).
Collapse
Affiliation(s)
- Xue Xia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | | | | | | |
Collapse
|
29
|
Foo KY, Hameed BH. Microwave-assisted regeneration of activated carbon. BIORESOURCE TECHNOLOGY 2012; 119:234-240. [PMID: 22728787 DOI: 10.1016/j.biortech.2012.05.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons.
Collapse
Affiliation(s)
- K Y Foo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | | |
Collapse
|
30
|
Zhuang L, Yuan Y, Yang G, Zhou S. In situ formation of graphene/biofilm composites for enhanced oxygen reduction in biocathode microbial fuel cells. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Erable B, Féron D, Bergel A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. CHEMSUSCHEM 2012; 5:975-87. [PMID: 22615123 DOI: 10.1002/cssc.201100836] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/23/2012] [Indexed: 05/24/2023]
Abstract
The slow kinetics of the electrochemical oxygen reduction reaction (ORR) is a crucial bottleneck in the development of microbial fuel cells (MFCs). This article firstly gives an overview of the particular constraints imposed on ORR by MFC operating conditions: neutral pH, slow oxygen mass transfer, sensitivity to reactive oxygen species, fouling and biofouling. A review of the literature is then proposed to assess how microbial catalysis could afford suitable solutions. Actually, microbial catalysis of ORR occurs spontaneously on the surface of metallic materials and is an effective motor of microbial corrosion. In this framework, several mechanisms have been proposed, which are reviewed in the second part of the article. The last part describes the efforts made in the domain of MFCs to determine the microbial ecology of electroactive biofilms and define efficient protocols for the formation of microbial oxygen-reducing cathodes. Although no clear mechanism has been established yet, several promising solutions have been recently proposed.
Collapse
Affiliation(s)
- Benjamin Erable
- Laboratoire de Génie Chimique, CNRS, Université de Toulouse, 4 allée Emile Monso, BP84234, 31432 Toulouse, France
| | | | | |
Collapse
|
32
|
Wei J, Liang P, Zuo K, Cao X, Huang X. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells. CHEMSUSCHEM 2012; 5:1065-1070. [PMID: 22639403 DOI: 10.1002/cssc.201100718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/03/2012] [Indexed: 06/01/2023]
Abstract
A simple and low-cost modification method was developed to improve the power generation performance of inexpensive semicoke electrode in microbial fuel cells (MFCs). After carbonization and activation with water vapor at 800-850 °C, the MFC with the activated coke (modified semicoke) anode produced a maximum power density of 74 Wm(-3) , 17 Wm(-3) , and 681 mWm(-2) (normalized to anodic liquid volume, total reactor volume, and projected membrane surface area, respectively), which was 124 % higher than MFCs using a semicoke anode (33 Wm(-3) , 8 Wm(-3) , and 304 mWm(-2) ). When they were used as biocathode materials, activated coke produced a maximum power density of 177 Wm(-3) , 41 Wm(-3) , and 1628 mWm(-2) (normalized to cathodic liquid volume, total reactor volume, and projected membrane surface area, respectively), which was 211 % higher than that achieved by MFCs using a semicoke cathode (57 Wm(-3) , 13 Wm(-3) , and 524 mWm(-2) ). A substantial increase was also noted in the conductivity, C/O mass ratio, and specific area for activated coke, which reduced the ohmic resistance, increased biomass density, and promoted electron transfer between bacteria and electrode surface. The activated coke anode also produced a higher Coulombic efficiency and chemical oxygen demand removal rate than the semicoke anode.
Collapse
Affiliation(s)
- Jincheng Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, THU-VEOLIA Environment Joint Research Center for Advanced Environmental Technology, School of Environment, Tsinghua University, Beijing, 100084, P.R. China
| | | | | | | | | |
Collapse
|
33
|
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol 2012; 78:5212-9. [PMID: 22610438 DOI: 10.1128/aem.00480-12] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV (versus the potential of a standard hydrogen electrode) but not at -339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. -400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO(2) was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than -400 mV.
Collapse
|
34
|
Sun Y, Wei J, Liang P, Huang X. Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express 2012; 2:21. [PMID: 22458430 PMCID: PMC3349616 DOI: 10.1186/2191-0855-2-21] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/29/2012] [Indexed: 11/10/2022] Open
Abstract
Biocathode MFCs using microorganisms as catalysts have important advantages in lowering cost and improving sustainability. Electrode materials and microbial synergy determines biocathode MFCs performance. In this study, four materials, granular activated carbon (GAC), granular semicoke (GS), granular graphite (GG) and carbon felt cube (CFC) were used as packed cathodic materials. The microbial composition on each material and its correlation with the electricity generation performance of MFCs were investigated. Results showed that different biocathode materials had an important effect on the type of microbial species in biocathode MFCs. The microbes belonging to Bacteroidetes and Proteobacteria were the dominant phyla in the four materials packed biocathode MFCs. Comamonas of Betaproteobacteria might play significant roles in electron transfer process of GAC, GS and CFC packed biocathode MFCs, while in GG packed MFC Acidovorax may be correlated with power generation. The biocathode materials also had influence on the microbial diversity and evenness, but the differences in them were not positively related to the power production.
Collapse
|