1
|
Wang H, Zhan J, Jiang H, Jia H, Pan Y, Zhong X, Huo J, Zhao S. Metagenomics-Metabolomics Exploration of Three-Way-Crossbreeding Effects on Rumen to Provide Basis for Crossbreeding Improvement of Sheep Microbiome and Metabolome of Sheep. Animals (Basel) 2024; 14:2256. [PMID: 39123781 PMCID: PMC11311065 DOI: 10.3390/ani14152256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of this experiment was to explore the effects of three-way hybridization on rumen microbes and metabolites in sheep using rumen metagenomics and metabolomics. Healthy Hu and CAH (Charolais × Australian White × Hu) male lambs of similar birth weight and age were selected for short-term fattening after intensive weaning to collect rumen fluid for sequencing. Rumen metagenomics diversity showed that Hu and CAH sheep were significantly segregated at the species, KEGG-enzyme, and CAZy-family levels. Moreover, the CAH significantly increased the ACE and Chao1 indices. Further, correlation analysis of the abundance of the top 80 revealed that the microorganisms were interrelated at the species, KEGG-enzyme, and CAZy-family levels. Overall, the microbiome significantly affected metabolites of the top five pathways, with the strongest correlation found with succinic acid. Meanwhile, species-level microbial markers significantly affected rumen differential metabolites. In addition, rumen microbial markers in Hu sheep were overall positively correlated with down-regulated metabolites and negatively correlated with up-regulated metabolites. In contrast, rumen microbial markers in CAH lambs were overall negatively correlated with down-regulated metabolites and positively correlated with up-regulated metabolites. These results suggest that three-way crossbreeding significantly affects rumen microbial community and metabolite composition, and that significant interactions exist between rumen microbes and metabolites.
Collapse
Affiliation(s)
- Haibo Wang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinshun Zhan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haoyun Jiang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haobin Jia
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Yue Pan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaojun Zhong
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Junhong Huo
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Characterization of Biofilm Microbiome Formation Developed on Novel 3D-Printed Zeolite Biocarriers during Aerobic and Anaerobic Digestion Processes. FERMENTATION 2022. [DOI: 10.3390/fermentation8120746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Aerobic or anaerobic digestion is involved in treating agricultural and municipal waste, and the addition of biocarriers has been proven to improve them further. We synthesized novel biocarriers utilizing zeolites and different inorganic binders and compared their efficiency with commercially available biocarriers in aerobic and anaerobic digestion systems. Methods: We examined BMP and several physicochemical parameters to characterize the efficiency of novel biocarriers on both systems. We also determined the SMP and EPS content of synthesized biofilm and measured the adherence and size of the forming biofilm. Finally, we characterized the samples by 16S rRNA sequencing to determine the crucial microbial communities involved. Results: Evaluating BMP results, ZSM-5 zeolite with bentonite binder emerged, whereas ZSM-5 zeolite with halloysite nanotubes binder stood out in the wastewater treatment experiment. Twice the relative frequencies of archaea were found on novel biocarriers after being placed in AD batch reactors, and >50% frequencies of Proteobacteria after being placed in WWT reactors, compared to commercial ones. Conclusions: The newly synthesized biocarriers were not only equally efficient with the commercially available ones, but some were even superior as they greatly enhanced aerobic or anaerobic digestion and showed strong biofilm formation and unique microbiome signatures.
Collapse
|
3
|
Community succession and straw degradation characteristics using a microbial decomposer at low temperature. PLoS One 2022; 17:e0270162. [PMID: 35802565 PMCID: PMC9269364 DOI: 10.1371/journal.pone.0270162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/03/2022] [Indexed: 11/19/2022] Open
Abstract
This study explored changes in the microbial community structure during straw degradation by a microbial decomposer, M44. The microbial community succession at different degradation periods was analyzed using MiSeq high-throughput sequencing. The results showed that 14 days after inoculation, the filter paper enzyme and endoglucanase activities increased to 2.55 U·mL-1 and 2.34 U·mL-1. The xylanase, laccase, and lignin peroxidase activities rose to 9.86 U·mL-1, 132.16 U·L-1, and 85.43 U·L-1 after 28 d, which was consistent with changes in the straw degradation rate. The degradation rates of straw, lignin, cellulose, and hemicellulose were 31.43%, 13.67%, 25.04%, and 21.69%, respectively, after 28 d of fermentation at 15°C. Proteobacteria, Firmicutes, and Bacteroidetes were the main bacterial species in samples at different degradation stages. The dominant genera included Pseudomonas, Delftia, and Paenibacillus during the initial stage (1 d, 7 d) and the mid-term stage (14 d). The key functional microbes during the late stage (21 d, 28 d) were Rhizobium, Chryseobacterium, Sphingobacterium, Brevundimonas, and Devosia. Changes in the bacterial consortium structure and straw degradation characteristics during different degradation periods were clarified to provide a theoretical basis for the rational utilization of microbial decomposer M44.
Collapse
|
4
|
Zhu QL, Wu B, Pisutpaisal N, Wang YW, Ma KD, Dai LC, Qin H, Tan FR, Maeda T, Xu YS, Hu GQ, He MX. Bioenergy from dairy manure: technologies, challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148199. [PMID: 34111785 DOI: 10.1016/j.scitotenv.2021.148199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Dairy manure (DM) is a kind of cheap cellulosic biomass resource which includes lignocellulose and mineral nutrients. Random stacks not only leads damage to the environment, but also results in waste of natural resources. The traditional ways to use DM include returning it to the soil or acting as a fertilizer, which could reduce environmental pollution to some extent. However, the resource utilization rate is not high and socio-economic performance is not utilized. To expand the application of DM, more and more attention has been paid to explore its potential as bioenergy or bio-chemicals production. This article presented a comprehensive review of different types of bioenergy production from DM and provided a general overview for bioenergy production. Importantly, this paper discussed potentials of DM as candidate feedstocks not only for biogas, bioethanol, biohydrogen, microbial fuel cell, lactic acid, and fumaric acid production by microbial technology, but also for bio-oil and biochar production through apyrolysis process. Additionally, the use of manure for replacing freshwater or nutrients for algae cultivation and cellulase production were also discussed. Overall, DM could be a novel suitable material for future biorefinery. Importantly, considerable efforts and further extensive research on overcoming technical bottlenecks like pretreatment, the effective release of fermentable sugars, the absence of robust organisms for fermentation, energy balance, and life cycle assessment should be needed to develop a comprehensive biorefinery model.
Collapse
Affiliation(s)
- Qi-Li Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China; Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino,Wakamatsu, Kitakyushu 808-0196, Japan.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Nipon Pisutpaisal
- The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
| | - Yan-Wei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Ke-Dong Ma
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Li-Chun Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Han Qin
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Fu-Rong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino,Wakamatsu, Kitakyushu 808-0196, Japan.
| | - Yan-Sheng Xu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Guo-Quan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China.
| | - Ming-Xiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China; Chengdu National Agricultural Science and Technology Center, Chengdu, PR China.
| |
Collapse
|
5
|
Ali SS, Jiao H, Mustafa AM, Koutra E, El-Sapagh S, Kornaros M, Elsamahy T, Khalil M, Bulgariu L, Sun J. Construction of a novel microbial consortium valued for the effective degradation and detoxification of creosote-treated sawdust along with enhanced methane production. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126091. [PMID: 34118544 DOI: 10.1016/j.jhazmat.2021.126091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass represents an unlimited and ubiquitous energy source, which can effectively address current global challenges, including climate change, greenhouse gas emissions, and increased energy demand. However, lignocellulose recalcitrance hinders microbial degradation, especially in case of contaminated materials such as creosote (CRO)-treated wood, which necessitates appropriate processing in order to eliminate pollution. This study might be the first to explore a novel bacterial consortium SST-4, for decomposing birchwood sawdust, capable of concurrently degrading lignocellulose and CRO compounds. Afterwards, SST-4 which stands for molecularly identified bacterial strains Acinetobacter calcoaceticus BSW-11, Shewanella putrefaciens BSW-18, Bacillus cereus BSW-23, and Novosphingobium taihuense BSW-25 was evaluated in terms of biological sawdust pre-treatment, resulting in effective lignocellulose degradation and 100% removal of phenol and naphthalene. Subsequently, the maximum biogas production observed was 18.7 L/kg VS, while cumulative methane production was 162.8 L/kg VS, compared to 88.5 without microbial pre-treatment. The cumulative energy production from AD-I and AD-II through biomethanation was calculated as 3177.1 and 5843.6 KJ/kg, respectively. The pretreatment process exhibited a significant increase in the energy yield by 83.9%. Lastly, effective CRO detoxification was achieved with EC50 values exceeding 90%, showing the potential for an integrated process of effective contaminated wood management and bioenergy production.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, Patras 26504, Greece
| | - Shimaa El-Sapagh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, Patras 26504, Greece
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maha Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Laura Bulgariu
- Department of Environmental Engineering and Management, Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Fazzino F, Mauriello F, Paone E, Sidari R, Calabrò PS. Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. CHEMOSPHERE 2021; 271:129602. [PMID: 33453477 DOI: 10.1016/j.chemosphere.2021.129602] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The management of the huge amount of orange peel waste (OPW) is a complex issue although it has a very high potential in terms of biorefining. One of the main problems in the valorisation of OPW is the seasonality of its production with the ensiling method being largely proposed as a possible solution. During the ensiling process, value added chemicals including lactic acid, acetic acid and ethanol are spontaneously produced together with a significant loss of volatile solids (VS) . In this contribution, the stimulation of lactic acid bacteria by either a biological (inoculation with leachate coming from a previous ensiling process) or chemical (MnCl2 supplementation) methods has been tested with the aim to increase the chemicals production preventing, at the same time, the VS loss. The inoculation with the leachate improves both the VS recovery (+7%) and the concentration of lactic acid (+113%) with respect to the uninoculated one (control). The overall yields of the process are noticeable, up to about 55 g·kgTS-1 of lactic acid, 26 g·kgTS-1 of acetic acid and 120 g g·kgTS-1 of ethanol have been produced. On the other hand, the chemical stimulation enhances the production of liquid products together with a significant VS loss. The proposed preservation method, due to its simplicity, can be easily implemented at full-scale allowing the production of added-value chemicals and the concurrent storage of the OPW that can be further valorised (e.g. animal feed, pectin or biomethane production).
Collapse
Affiliation(s)
- Filippo Fazzino
- Università Degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, Loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Francesco Mauriello
- Università Degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, Loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Emilia Paone
- Università Degli Studi di Firenze, Dipartimento di Ingegneria Industriale (DIEF), Via di S. Marta 3, I-50139, Firenze, Italy
| | - Rossana Sidari
- Università Degli Studi Mediterranea di Reggio Calabria, Department Agraria, Loc. Feo di Vito, 89122, Reggio Calabria, Italy
| | - Paolo S Calabrò
- Università Degli Studi Mediterranea di Reggio Calabria, Department of Civil, Energy, Environmental and Materials Engineering, Via Graziella, Loc. Feo di Vito, 89122, Reggio Calabria, Italy.
| |
Collapse
|
7
|
Ali SS, Mustafa AM, Kornaros M, Sun J, Khalil M, El-Shetehy M. Biodegradation of creosote-treated wood by two novel constructed microbial consortia for the enhancement of methane production. BIORESOURCE TECHNOLOGY 2021; 323:124544. [PMID: 33360721 DOI: 10.1016/j.biortech.2020.124544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 05/07/2023]
Abstract
Lignocellulose biodegradation is limited because of its recalcitrant structure particularly when polluted by toxic and carcinogenic compounds such as creosote oil (CRO). As far as we know, this might be the first report that explores the biodegradation of creosote treated wood (CTW) to serve biomethane production. Two novel CTW-degrading microbial consortia, designated as CTW-1 and CTW-2, were screened and constructed to enhance methane production from CRO-treated pine sawdust. After 12 days of biological pretreatment by CTW-1 and CTW-2, a significant reduction in lignocellulosic content of CTW was recorded; estimated as 49 and 43%, respectively. More than 64 and 91% of cumulative biogas and methane yields were obtained from biodegraded CTW over control. Ecotoxicity of treated and untreated CTW was compared by Microtox test. The biodegraded CTW hydrolysates showed a toxicity decrease of more than 80%, suggesting the promising role of constructed microbial consortia for biofuel production and bioremediation.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 20092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Maha Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed El-Shetehy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Biology, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Microbial structure and function diversity of open dumpsite compost used as fertilizer by peasant farmers. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Zhu Q, Dai L, Wang Y, Tan F, Chen C, He M, Maeda T. Enrichment of waste sewage sludge for enhancing methane production from cellulose. BIORESOURCE TECHNOLOGY 2021; 321:124497. [PMID: 33307481 DOI: 10.1016/j.biortech.2020.124497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Low ability of waste sewage sludge to degrade cellulose is observed due to its less cellulolytic bacteria content. The enrichment of sewage sludge in the absence or presence of carboxymethylcellulose (CMC) was conducted to improve anaerobic digestion (AD) of cellulose in this study. Compared to initial sewage sludge (IS), enriched sludge without CMC addition (ES) displayed 69.81% higher CH4 yield and about 1.7-fold greater anaerobic biodegradation of cellulose. In particular, bacterial and archaeal diversities in samples inoculated with ES were significantly altered, with Ruminiclostridium and Methanobacterium as the predominant genera. Enriched sludge with CMC addition (ESC) displayed enhanced methane production at initial cellulose fermentation but showed no distinct difference compared with the control after incubation 24 days. These findings suggest that enrichment of waste sewage sludge without CMC addition is more beneficial for promoting AD of cellulose, providing a novel insight for efficient energy utilization of lignocellulosic wastes.
Collapse
Affiliation(s)
- Qili Zhu
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan; Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Lichun Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Yanwei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Furong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Chenghan Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu 610041, PR China
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.
| |
Collapse
|
10
|
Zheng G, Yin T, Lu Z, Boboua SYB, Li J, Zhou W. Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. BIORESOURCE TECHNOLOGY 2020; 304:123064. [PMID: 32115346 DOI: 10.1016/j.biortech.2020.123064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
In this study, a novel psychrotrophic lignocelluloses degrading microbial consortium LTF-27 was successfully obtained from cold perennial forest soil by successive enrichment culture under facultative anaerobic static conditions. The microbial consortium showed efficient degradation of rice straw, which cellulose, hemicelluloses and lignin lost 71.7%, 65.6% and 12.5% of its weigh, respectively, in 20 days at 15 °C. The predominant liquid products were acetic acid and butyric acid during degrading lignocellulose in anaerobic digestion (AD) process inoculated with the LTF-27. The consortium mainly composed of Parabacteroides, Alcaligenes, Lysinibacillus, Sphingobacterium, and Clostridium, along with some unclassified uncultured bacteria, indicating powerful synergistic interaction in AD process. A multi-species lignocellulolytic enzyme system working cooperatingly on lignocelluolse degradation was revealed by proteomics analysis of cellulose bound fraction of the crude extracellular enzyme, which provides key theoretical base for further exploration and application of LTF-27.
Collapse
Affiliation(s)
- Guoxiang Zheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China.
| | - Ting Yin
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Zhaoxin Lu
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Stopira Yannick Benz Boboua
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Jiachen Li
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Wenlong Zhou
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| |
Collapse
|
11
|
Comparative analysis of bacterial community and functional species in oil reservoirs with different in situ temperatures. Int Microbiol 2020; 23:557-563. [PMID: 32337649 DOI: 10.1007/s10123-020-00125-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Temperature is supposed to be one of the primary drivers for the bacterial diversification as well as hydrocarbon formation process of oil reservoirs. However, the bacterial community compositions are not systematically elucidated in oil reservoirs with different temperatures. Herein, the diversity of indigenous bacteria and the functional species in the water samples from oil reservoirs with different in situ temperatures was investigated by high-throughput sequencing technology. The results showed that samples in the high (65 °C) and super high (80 °C) temperature oil reservoir had significantly high bacterial richness, even more than twice as much as moderate temperature (36 °C) ones, which showed relatively high bacterial diversity. Meanwhile, the bacterial compositions were almost similar in the high temperature oil reservoirs but there were different relative abundances of the bacterial communities. Phylogenetic analysis revealed that indigenous bacteria fell into 20 phylotypes in which Proteobacteria were the principal phylum in all of samples. At the genus level, 10 out of 22 major genera displayed statistically significant differences. Among of them, Pseudomonas was extremely dominant in all of samples, while Halomonas, Caldicoprobacter, Arcobacter, and Marinobacter tended to be enriched in the high temperature oil reservoirs. Moreover, the abundance of bacterial populations exhibited important distinction in oil reservoir such as hydrocarbon-oxidizing, fermentative, nitrate-reducing, sulfate-reducing, and methanogenic bacteria. Those bacteria were strongly correlated to in situ temperature variation.
Collapse
|
12
|
Ali SS, Mustafa AM, Kornaros M, Manni A, Sun J, Khalil MA. Construction of novel microbial consortia CS-5 and BC-4 valued for the degradation of catalpa sawdust and chlorophenols simultaneously with enhancing methane production. BIORESOURCE TECHNOLOGY 2020; 301:122720. [PMID: 31945685 DOI: 10.1016/j.biortech.2019.122720] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
This study might be the first to explore the novel constructed microbial consortia CS-5 and BC-4 for enhancing methane (CH4) production during anaerobic digestion (AD) with simultaneous degradation of catalpa sawdust and chlorophenols (CPs). Significant reduction in cellulose, hemicellulose and lignin contents was achieved after the biodegradation of catalpa sawdust for 15 days by CS-5 and BC-4, with a total weight loss of 69.2 and 56.3%, respectively. The synergistic microbial consortia enhanced cumulative biogas and CH4 yields by 76.3 and 64.3%, respectively higher than the corresponding control at the end of AD. More than 90% of CH4 was produced within 18 days of AD as a result of microbial pretreatment of catalpa sawdust. These consortia resulted in remarkably higher energy conversion efficiency of 44.3% (218.1 LN CH4/kg TS) over the control. CS-5 and BC-4 removed more than 69 and 77% of the total amount of CPs tested after 15 days.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Mustafa
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece
| | - Alessandro Manni
- Department of Industrial Engineering, University of Rome Tor Vergata, Italy
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Maha A Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Biology Department, Faculty of Science, Taif University, Saudi Arabia
| |
Collapse
|
13
|
Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol 2019; 104:489-508. [DOI: 10.1007/s00253-019-10239-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
14
|
Suksong W, Kongjan P, Prasertsan P, O-Thong S. Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 291:121851. [PMID: 31374416 DOI: 10.1016/j.biortech.2019.121851] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Thermotolerant cellulolytic consortium for improvement biogas production from oil palm empty fruit bunches (EFB) by prehydrolysis and bioaugmentation strategies was investigated via solid-state anaerobic digestion (SS-AD). The prehydrolysis EFB with Clostridiaceae and Lachnospiraceae rich consortium have maximum methane yield of 252 and 349 ml CH4 g-1 VS with total EFB degradation efficiency of 62% and 86%, respectively. Clostridiaceae and Lachnospiraceae rich consortium augmentation in biogas reactor have maximum methane yield of 217 and 85.2 ml CH4 g-1 VS with degradation efficiency of 42% and 16%, respectively. The best improvement of biogas production was achieved by prehydrolysis EFB with Lachnospiraceae rich consortium with maximum methane production of 113 m3 CH4 tonne-1 EFB. While, Clostridiaceae rich consortium was suitable for augmentation in biogas reactor with maximum methane production of 70.6 m3 CH4 tonne-1 EFB. Application of thermotolerant cellulolytic consortium into the SS-AD systems could enhance biogas production of 3-11 times.
Collapse
Affiliation(s)
- Wantanasak Suksong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Prawit Kongjan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Poonsuk Prasertsan
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Sompong O-Thong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand; Research Center in Energy and Environment, Faculty of Science, Thaksin University, Phatthalung, Thailand.
| |
Collapse
|
15
|
Contrasting Effects of Sediment Microbial Fuel Cells (SMFCs) on the Degradation of Macrophyte Litter in Sediments from Different Areas of a Shallow Eutrophic Lake. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eutrophication is one of the major ecological problems of our era. It accelerates the growth of aquatic plant and algae, eventually leading to ecological deterioration. Based on a 700-day lab experiment, this paper investigated the contrasting effects of sediment microbial fuel cells (SMFCs) on the removal of macrophyte litter in a macrophyte-dominated area and an algae-dominated area from two bay areas of a shallow eutrophic lake. The results revealed that the removal efficiencies of total organic carbon increased by 14.4% in the macrophyte-dominated area and 7.8% in the algae-dominated area. Moreover, it was found that sediment samples from the macrophyte-dominated area became more humified and had a higher electricity generation compared to the sediment samples from the algae-dominated area. Pyrosequencing analysis further determined that SMFC promoted more aromatic compound-degrading bacteria growth in sediments from the macrophyte-dominated area than from the algae-dominated area. Our study demonstrated that SMFC could enhance organic matter degradation, especially plant litter degradation, but this influence showed different from sediment sources. Thus, SMFC is capable of providing a useful strategy for delaying the terrestrialization of lakes areas suffering from eutrophication.
Collapse
|
16
|
Gao M, Guo B, Zhang L, Zhang Y, Liu Y. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater. WATER RESEARCH 2019; 160:249-258. [PMID: 31152950 DOI: 10.1016/j.watres.2019.05.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Decentralized wastewater treatment represents a promising sustainable option for future wastewater management. Blackwater collected from toilets contains high concentrations of organic matter, ideal for energy recovery using anaerobic digestion. Up-flow anaerobic sludge blanket (UASB) reactors treating conventional toilet (CT, 9 L water per flush) and vacuum toilet (VT, 1 L water per flush) blackwater with increments of loadings were successfully operated to steady state in three phases. The organic loading rates were maintained at comparable levels between the two reactors. The methanisation rates were 0.23-0.29 and 0.41-0.48 gCH4-COD/gfeedCOD in the CT and VT reactors, and the COD removal rates were 72% and 89%, respectively. The enriched microbial consortia and the community dynamics under different loading phases were compared. The rank abundance distributions and alpha-diversity showed that archaeal communities were predominated by mono-enrichments in both CT and VT reactors, while bacterial communities showed lower diversity in the VT reactor. Through principal coordinates analysis (beta-diversity), clear divergences of archaeal and bacterial communities between the CT and VT reactors were revealed, and the archaeal community developed at a slower rate than the bacterial community. The enriched archaea were hydrogenotrophic methanogens, Methanolinea in the CT reactor (56.6%), and Methanogenium in the VT reactor (62.3%). The enriched bacteria were Porphyromonadaceae in both CT (15.9%) and VT (13.4%) reactors, sulfate-reducing bacteria in the CT reactor, and Fibrobacteraceae in the VT reactor (13.8%). Links between enriched consortia and ammonia stress were discussed. Isotope fraction analysis of the biogas showed a slight shift from acetoclastic methanogenesis to hydrogenotrophic methanogenesis. A closer look into the predicted metagenomic functional profiles showed agreeing results, where hydrogenotrophic methanogenesis and fhs gene abundances were higher in the VT reactor. We demonstrated that different blackwater types enriched different microbial consortia, probably due to ammonia concentrations and sulfate loadings, which should be taken into consideration for practical applications.
Collapse
Affiliation(s)
- Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
17
|
Singh R, Bennett JP, Gupta M, Sharma M, Eqbal D, Alessi AM, Dowle AA, McQueen-Mason SJ, Bruce NC, Yazdani SS. Mining the biomass deconstructing capabilities of rice yellow stem borer symbionts. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:265. [PMID: 31719844 PMCID: PMC6839054 DOI: 10.1186/s13068-019-1603-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/25/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Efficient deconstruction of lignocellulosic biomass into simple sugars in an economically viable manner is a prerequisite for its global acceptance as a feedstock in bioethanol production. This is achieved in nature by suites of enzymes with the capability of efficiently depolymerizing all the components of lignocellulose. Here, we provide detailed insight into the repertoire of enzymes produced by microorganisms enriched from the gut of the crop pathogen rice yellow stem borer (Scirpophaga incertulas). RESULTS A microbial community was enriched from the gut of the rice yellow stem borer for enhanced rice straw degradation by sub-culturing every 10 days, for 1 year, in minimal medium with rice straw as the main carbon source. The enriched culture demonstrated high cellulolytic and xylanolytic activity in the culture supernatant. Metatranscriptomic and metaexoproteomic analysis revealed a large array of enzymes potentially involved in rice straw deconstruction. The consortium was found to encode genes ascribed to all five classes of carbohydrate-active enzymes (GHs, GTs, CEs, PLs, and AAs), including carbohydrate-binding modules (CBMs), categorized in the carbohydrate-active enzymes (CAZy) database. The GHs were the most abundant class of CAZymes. Predicted enzymes from these CAZy classes have the potential to digest each cell-wall components of rice straw, i.e., cellulose, hemicellulose, pectin, callose, and lignin. Several identified CAZy proteins appeared novel, having an unknown or hypothetical catalytic counterpart with a known class of CBM. To validate the findings, one of the identified enzymes that belong to the GH10 family was functionally characterized. The enzyme expressed in E. coli efficiently hydrolyzed beechwood xylan, and pretreated and untreated rice straw. CONCLUSIONS This is the first report describing the enrichment of lignocellulose degrading bacteria from the gut of the rice yellow stem borer to deconstruct rice straw, identifying a plethora of enzymes secreted by the microbial community when growing on rice straw as a carbon source. These enzymes could be important candidates for biorefineries to overcome the current bottlenecks in biomass processing.
Collapse
Affiliation(s)
- Rahul Singh
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Joseph P. Bennett
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Mayank Gupta
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Medha Sharma
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Danish Eqbal
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anna M. Alessi
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Adam A. Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Simon J. McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Neil C. Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, UK
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
18
|
Kong X, Du J, Ye X, Xi Y, Jin H, Zhang M, Guo D. Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. BIORESOURCE TECHNOLOGY 2018; 263:33-39. [PMID: 29729539 DOI: 10.1016/j.biortech.2018.04.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
The major obstacle of methane production from lignocellulose lies in the inefficient deconstruction of biomass. In this study, an anaerobic microbial consortium TC-5 was enriched with high lignocellulose-degradation capacity to enhance methane production from wheat straw. High degradation ratio of 45.7% of un-pretreated wheat straw was achieved due to a multi-species lignocellulolytic enzyme presented in the crude culture supernatant. The specific activity of xylanase, xylan esterase and β-xylosidase reached the highest level of 4.23, 0.15 and 0.48 U/mg, while cellobiohydrolase, endoglucanase and β-glucosidase showed the highest specific activity of 0.36, 0.22 and 0.41 U/mg during 9 days' degradation. Inoculation of TC-5 in digestion sludge during anaerobic digestion of wheat straw resulted in remarkable enhancement of 22.2% and 36.6% in methane yield under mesophilic and thermophilic conditions, respectively. This work demonstrates the potential of TC-5 for enhancing the production of biogas and other chemicals through biomass based biorefinery.
Collapse
Affiliation(s)
- Xiangping Kong
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Jing Du
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Xiaomei Ye
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China.
| | - Yonglan Xi
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Hongmei Jin
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Min Zhang
- East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Biomass Conversion Laboratory, Circular Agriculture Research Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, People's Republic of China
| | - Dong Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing 211816, People's Republic of China
| |
Collapse
|
19
|
Abd‐Aziz S, Ibrahim MF, Jenol MA. Biological Pretreatment of Lignocellulosic Biomass for Volatile Fatty Acid Production. EMERGING AREAS IN BIOENGINEERING 2018:191-201. [DOI: 10.1002/9783527803293.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Auer L, Lazuka A, Sillam-Dussès D, Miambi E, O'Donohue M, Hernandez-Raquet G. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Front Microbiol 2017; 8:2623. [PMID: 29312279 PMCID: PMC5744482 DOI: 10.3389/fmicb.2017.02623] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.
Collapse
Affiliation(s)
- Lucas Auer
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - Adèle Lazuka
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - David Sillam-Dussès
- Laboratoire d'Éthologie Expérimentale et Comparée, Université Paris 13 - Sorbonne Paris Cité, Villetaneuse, France
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Institut de Recherche Pour le Développement – Sorbonne Universités, Bondy, France
| | - Edouard Miambi
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Université Paris-Est Créteil, Créteil, France
| | - Michael O'Donohue
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| | - Guillermina Hernandez-Raquet
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INSA, Toulouse, France
| |
Collapse
|
21
|
Shrestha S, Fonoll X, Khanal SK, Raskin L. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2017; 245:1245-1257. [PMID: 28941664 DOI: 10.1016/j.biortech.2017.08.089] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 05/23/2023]
Abstract
Lignocellulosic biomass is the most abundant renewable bioresource on earth. In lignocellulosic biomass, the cellulose and hemicellulose are bound with lignin and other molecules to form a complex structure not easily accessible to microbial degradation. Anaerobic digestion (AD) of lignocellulosic biomass with a focus on improving hydrolysis, the rate limiting step in AD of lignocellulosic feedstocks, has received considerable attention. This review highlights challenges with AD of lignocellulosic biomass, factors contributing to its recalcitrance, and natural microbial ecosystems, such as the gastrointestinal tracts of herbivorous animals, capable of performing hydrolysis efficiently. Biological strategies that have been evaluated to enhance hydrolysis of lignocellulosic biomass include biological pretreatment, co-digestion, and inoculum selection. Strategies to further improve these approaches along with future research directions are outlined with a focus on linking studies of microbial communities involved in hydrolysis of lignocellulosics to process engineering.
Collapse
Affiliation(s)
- Shilva Shrestha
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA; Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Xavier Fonoll
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA.
| |
Collapse
|
22
|
Ma S, Huang Y, Wang C, Fan H, Dai L, Zhou Z, Liu X, Deng Y. Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw. Int J Syst Evol Microbiol 2017; 67:1607-1612. [PMID: 27902335 PMCID: PMC5817277 DOI: 10.1099/ijsem.0.001664] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, anaerobic, fermentative bacterium, strain A6T, was obtained from an anaerobic batch digester treating animal manure and rice straw. Cells were Gram-stain-positive, slightly curved rods with a size of 0.6-1×2.5-8.2 µm, non-motile and produced terminal spores. The temperature, pH and NaCl concentration ranges for growth were 40-60 °C, 6.5-8.0 and 0-15.0 g l-1, with optimum growth noted at 50-55 °C, pH 7.5 and in the absence of NaCl, respectively. Yeast extract was required for growth. d-Glucose, maltose, d-xylose, d-galactose, d-fructose, d-ribose, lactose, raffinose, sucrose, d-arabinose, cellobiose, d-mannose and yeast extract were used as carbon and energy sources. The fermentation products from glucose were ethanol, lactate, acetate, propionate, butyrate, valerate, iso-butyrate, iso-valerate, H2 and CO2. The G+C content of the genomic DNA was 36.6 mol%. The predominant fatty acids were C16 : 0, iso-C17 : 1, C14 : 0, C16 : 1ω7c, C16 : 0 N-alcohol and C13 : 0 3-OH. Respiratory quinones were not detected. The polar lipid profile comprised phosphoglycolipids, phospholipids, glycolipids, a diphosphatidylglycerol, a phosphatidylglycerol and an unidentified lipid. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was closely related to Defluviitalea saccharophila DSM 22681T with a similarity of 96.0 %. Based on the morphological, physiological and taxonomic characterization, strain A6T is considered to represent a novel species of the genus Defluviitalea, for which the name Defluviitalea raffinosedens sp. nov. is proposed. The type strain is A6T (=DSM 28090T=ACCC 19951T).
Collapse
Affiliation(s)
- Shichun Ma
- Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,Present address: Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin Nan Road, Chengdu 610041, Sichuan, P.R. China.,Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yan Huang
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Cong Wang
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, Sichuan, P.R. China.,Present address: College of Light Industry, Textile and Food Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, Sichuan, P.R. China
| | - Hui Fan
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Lirong Dai
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Zheng Zhou
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Xing Liu
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yu Deng
- Key Laboratory of Energy Microbiology and Application, Ministry of Agriculture, Chengdu, Sichuan, P.R. China.,Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| |
Collapse
|
23
|
Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LMS, da Silva AR, Antunes LP, da Silva AM, Setubal JC. Genome-Centric Analysis of a Thermophilic and Cellulolytic Bacterial Consortium Derived from Composting. Front Microbiol 2017; 8:644. [PMID: 28469608 PMCID: PMC5395642 DOI: 10.3389/fmicb.2017.00644] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 11/22/2022] Open
Abstract
Microbial consortia selected from complex lignocellulolytic microbial communities are promising alternatives to deconstruct plant waste, since synergistic action of different enzymes is required for full degradation of plant biomass in biorefining applications. Culture enrichment also facilitates the study of interactions among consortium members, and can be a good source of novel microbial species. Here, we used a sample from a plant waste composting operation in the São Paulo Zoo (Brazil) as inoculum to obtain a thermophilic aerobic consortium enriched through multiple passages at 60°C in carboxymethylcellulose as sole carbon source. The microbial community composition of this consortium was investigated by shotgun metagenomics and genome-centric analysis. Six near-complete (over 90%) genomes were reconstructed. Similarity and phylogenetic analyses show that four of these six genomes are novel, with the following hypothesized identifications: a new Thermobacillus species; the first Bacillus thermozeamaize genome (for which currently only 16S sequences are available) or else the first representative of a new family in the Bacillales order; the first representative of a new genus in the Paenibacillaceae family; and the first representative of a new deep-branching family in the Clostridia class. The reconstructed genomes from known species were identified as Geobacillus thermoglucosidasius and Caldibacillus debilis. The metabolic potential of these recovered genomes based on COG and CAZy analyses show that these genomes encode several glycoside hydrolases (GHs) as well as other genes related to lignocellulose breakdown. The new Thermobacillus species stands out for being the richest in diversity and abundance of GHs, possessing the greatest potential for biomass degradation among the six recovered genomes. We also investigated the presence and activity of the organisms corresponding to these genomes in the composting operation from which the consortium was built, using compost metagenome and metatranscriptome datasets generated in a previous study. We obtained strong evidence that five of the six recovered genomes are indeed present and active in that composting process. We have thus discovered three (perhaps four) new thermophillic bacterial species that add to the increasing repertoire of known lignocellulose degraders, whose biotechnological potential can now be investigated in further studies.
Collapse
Affiliation(s)
- Leandro N Lemos
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Roberta V Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Ronaldo B Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Layla F Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Livia M S Moura
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Amanda R da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São PauloSão Paulo, Brazil
| | - Luciana P Antunes
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil.,Biocomplexity Institute, Virginia TechBlacksburg, VA, USA
| |
Collapse
|
24
|
Sanz JL, Rojas P, Morato A, Mendez L, Ballesteros M, González-Fernández C. Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. CHEMOSPHERE 2017; 168:1013-1021. [PMID: 27836273 DOI: 10.1016/j.chemosphere.2016.10.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Microalgae biomasses are considered promising feedstocks for biofuel and methane productions. Two Continuously Stirred Tank Reactors (CSTR), fed with fresh (CSTR-C) and heat pre-treated (CSTR-T) Chlorella biomass were run in parallel in order to determine methane productions. The methane yield was 1.5 times higher in CSTR-T with regard to CSTR-C. Aiming to understand the microorganism roles within of the reactors, the sludge used as an inoculum (I), plus raw (CSTR-C) and heat pre-treated (CSTR-T) samples were analyzed by high-throughput pyrosequencing. The bacterial communities were dominated by Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes. Spirochaetae and Actinobacteria were only detected in sample I. Proteobacteria, mainly Alfaproteobacteria, were by far the dominant phylum within of the CSTR-C bioreactor. Many of the sequences retrieved were related to bacteria present in activated sludge treatment plants and they were absent after thermal pre-treatment. Most of the sequences affiliated to the Bacteroidetes were related to uncultured groups. Anaerolineaceae was the sole family found of the Chloroflexi phylum. All of the genera identified of the Firmicutes phylum carried out macromolecule hydrolysis and by-product fermentation. The proteolytic bacteria were prevalent over the saccharolytic microbes. The percentage of the proteolytic genera increased from the inoculum to the CSTR-T sample in a parallel fashion with an available protein increase owing to the high protein content of Chlorella. To relate the taxa identified by high-throughput sequencing to their functional roles remains a future challenge.
Collapse
Affiliation(s)
- Jose Luis Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, c/ Darwin 2, 28049, Madrid, Spain.
| | - Patricia Rojas
- Department of Molecular Biology, Universidad Autónoma de Madrid, c/ Darwin 2, 28049, Madrid, Spain.
| | - Ana Morato
- Department of Molecular Biology, Universidad Autónoma de Madrid, c/ Darwin 2, 28049, Madrid, Spain.
| | - Lara Mendez
- IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| | - Mercedes Ballesteros
- IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; CIEMAT, Avda Complutense, 28040, Madrid, Spain.
| | | |
Collapse
|
25
|
Priyadarshinee R, Kumar A, Mandal T, Dasguptamandal D. Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23349-23368. [PMID: 27687765 DOI: 10.1007/s11356-016-7633-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/07/2016] [Indexed: 05/07/2023]
Abstract
Lignocellulose biomass predominantly constitutes the main feedstock for pulp and paper industry. Though some products of pulp and paper industry require the presence of lignin content, for most of the useful products formation lies in the efficient and selective removal of lignin component to make use of the intact cellulose fraction during the pretreatment of pulp. Lignin is a recalcitrant heteropolymer comprised of several complex stable bonds and linkages. The chemicals or intense energy processes used for delignification process release the hazardous chemicals compounds in the wastewater which cause toxicity and environmental pollution. The implementation of bacterial species has elucidated an effective approach in the generation of value-added products while degrading lignin from pulp biomass as well as detoxification of effluent. The direct use of bacterial cells in lignocellulose biomass and wastewater streams is promising as it outperforms the practical and technical constraints largely confronted by fungal and enzymatic means. The present review paper thus unleashed the potential of ligninolytic bacteria towards delignification of pulp biomass and treatment of effluent together with bioconversion of biomass and lignin into value-added products. Graphical abstract Schematic illustration of potential possible contribution of ligninolytic bacteria towards pulp and paper industry.
Collapse
Affiliation(s)
- Rashmi Priyadarshinee
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Anuj Kumar
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Dalia Dasguptamandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
26
|
Wei S. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste. Appl Microbiol Biotechnol 2016; 100:9821-9836. [PMID: 27761635 DOI: 10.1007/s00253-016-7926-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
Anaerobic digestion of lignocellulosic waste is considered to be an efficient way to answer present-day energy crisis and environmental challenges. However, the recalcitrance of lignocellulosic material forms a major obstacle for obtaining maximum biogas production. The use of biological pretreatment and bioaugmentation for enhancing the performance of anaerobic digestion is quite recent and still needs to be investigated. This paper reviews the status and perspectives of recent studies on biotechnology concept and investigates its possible use for enhancing biogas production from lignocellulosic waste with main emphases on biological pretreatment and bioaugmentation techniques.
Collapse
Affiliation(s)
- Suzhen Wei
- Department of Resource and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, 860000, China.
| |
Collapse
|
27
|
Yu J, Zhao Y, Liu B, Zhao Y, Wu J, Yuan X, Zhu W, Cui Z. Accelerated acidification by inoculation with a microbial consortia in a complex open environment. BIORESOURCE TECHNOLOGY 2016; 216:294-301. [PMID: 27253477 DOI: 10.1016/j.biortech.2016.05.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 06/05/2023]
Abstract
Bioaugmentation using microbial consortia is helpful in some anaerobic digestion (AD) systems, but accelerated acidification to produce methane has not been performed effectively with corn stalks and cow dung. In this study, the thermophilic microbial consortia MC1 was inoculated into a complex open environment (unsterilized and sterilized systems) to evaluate the feasibility of bioaugmentation to improve acidification efficiency. The results indicated that MC1 itself degraded lignocellulose efficiently, and accumulated more organic acids within 3days. Similar trends were also observed in the unsterilized system, where the hemicellulose degradation rate and organic acid concentrations increased significantly by two-fold and 20.1% (P<0.05), respectively, and clearly reduced the loss of product. Microbial composition did not change obviously after inoculating MC1, but the abundance of members of MC1, such as Bacillus and Clostridium, increased clearly on day 3. Finally, the acidogenic fluid improved methane yield significantly (P<0.05) via bioaugmentation.
Collapse
Affiliation(s)
- Jiadong Yu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bin Liu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yubin Zhao
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingwei Wu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wanbin Zhu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Yuan X, Ma L, Wen B, Zhou D, Kuang M, Yang W, Cui Z. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). BIORESOURCE TECHNOLOGY 2016; 207:293-301. [PMID: 26896713 DOI: 10.1016/j.biortech.2016.02.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 05/25/2023]
Abstract
Microbial pretreatment is beneficial in some anaerobic digestion systems, but the consortia used to date have not been able to effectively increase methane production from cotton stalk. In this study, a thermophilic microbial consortium (MC1) was used for pretreatment in order to enhance biogas and methane production yields. The results indicated that the concentrations of soluble chemical oxygen demand and volatile organic products increased significantly in the early stages of pretreatment. Ethanol, acetic acid, propionic acid, and butyric acid were the predominant volatile organic products in the MC1 hydrolysate. Biogas and methane production yields from cotton stalk were significantly increased following MC1 pretreatment. In addition, the methane production rate from the treated cotton stalk was greater than that from the untreated sample.
Collapse
Affiliation(s)
- Xufeng Yuan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lei Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Boting Wen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Dayun Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Weihua Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Poszytek K, Ciezkowska M, Sklodowska A, Drewniak L. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production. Front Microbiol 2016; 7:324. [PMID: 27014244 PMCID: PMC4791528 DOI: 10.3389/fmicb.2016.00324] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 11/26/2022] Open
Abstract
The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants.
Collapse
Affiliation(s)
- Krzysztof Poszytek
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Martyna Ciezkowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Aleksandra Sklodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
30
|
Troshina O, Oshurkova V, Suzina N, Machulin A, Ariskina E, Vinokurova N, Kopitsyn D, Novikov A, Shcherbakova V. Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01. Int J Syst Evol Microbiol 2015; 65:4315-4322. [DOI: 10.1099/ijsem.0.000575] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, saccharolytic bacterial strain designated GLS2T was isolated from aggregates of the psychrotolerant archaeon Methanosarcina mazei strain JL01 isolated from arctic permafrost. Bacterial cells were non-motile, spherical, ovoid and annular with diameter 0.2–4 μm. They were chemoorganoheterotrophs using a wide range of mono-, di- and trisaccharides as carbon and energy sources. The novel isolate required yeast extract and vitamins for growth. The bacteria exhibited resistance to a number of β-lactam antibiotics, rifampicin, streptomycin and vancomycin. Optimum growth was observed between 30 and 34 °C, at pH 6.8–7.5 and with 1–2 g NaCl l− 1. Isolate GLS2T was a strict anaerobe but it tolerated oxygen exposure. On the basis of 16S rRNA gene sequence similarity, strain GLS2T was shown to belong to the genus Sphaerochaeta within the family Spirochaetaceae. Its closest relatives were Sphaerochaeta globosa BuddyT (99.3 % 16S rRNA gene sequence similarity) and Sphaerochaeta pleomorpha GrapesT (95.4 % similarity). The G+C content of DNA was 47.2 mol%. The level of DNA–DNA hybridization between strains GLS2T and BuddyT was 34.7 ± 8.8 %. Major polar lipids were phosphoglycolipids, phospholipids and glycolipids; major fatty acids were C14 : 0, C16 : 0, C16 : 0 3-OH, C16 : 0 dimethyl acetal (DMA), C16 : 1n8 and C16 : 1 DMA; respiratory quinones were not detected. The results of DNA–DNA hybridization, physiological and biochemical tests demonstrated genotypic and phenotypic differentiation of strain GLS2T from the four species of the genus Sphaerochaeta with validly published names that allowed its separation into a new lineage at the species level. Strain GLS2T therefore represents a novel species, for which the name Sphaerochaeta associata sp. nov. is proposed, with the type strain GLS2T ( = DSM 26261T = VKM B-2742T).
Collapse
Affiliation(s)
- Olga Troshina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Viktoria Oshurkova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Natalia Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Andrei Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Elena Ariskina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Natalia Vinokurova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Dmitry Kopitsyn
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65-1, 119991 Moscow, Russia
| | - Andrei Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65-1, 119991 Moscow, Russia
| | - Viktoria Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
31
|
Lazuka A, Auer L, Bozonnet S, Morgavi DP, O'Donohue M, Hernandez-Raquet G. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium. BIORESOURCE TECHNOLOGY 2015; 196:241-9. [PMID: 26247975 DOI: 10.1016/j.biortech.2015.07.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 05/15/2023]
Abstract
A rumen-derived microbial consortium was enriched on raw wheat straw as sole carbon source in a sequential batch-reactor (SBR) process under strict mesophilic anaerobic conditions. After five cycles of enrichment the procedure enabled to select a stable and efficient lignocellulolytic microbial consortium, mainly constituted by members of Firmicutes and Bacteroidetes phyla. The enriched community, designed rumen-wheat straw-derived consortium (RWS) efficiently hydrolyzed lignocellulosic biomass, degrading 55.5% w/w of raw wheat straw over 15days at 35°C and accumulating carboxylates as main products. Cellulolytic and hemicellulolytic activities, mainly detected on the cell bound fraction, were produced in the earlier steps of degradation, their production being correlated with the maximal lignocellulose degradation rates. Overall, these results demonstrate the potential of RWS to convert unpretreated lignocellulosic substrates into useful chemicals.
Collapse
Affiliation(s)
- Adèle Lazuka
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Lucas Auer
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Sophie Bozonnet
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Diego P Morgavi
- INRA, UR1213 Herbivores, Centre de Theix, F-63122 St-Genès-Champanelle, France
| | - Michael O'Donohue
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Guillermina Hernandez-Raquet
- Université de Toulouse, INSA, UPS, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse Cedex 4, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.
| |
Collapse
|
32
|
Kinet R, Destain J, Hiligsmann S, Thonart P, Delhalle L, Taminiau B, Daube G, Delvigne F. Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach. BIORESOURCE TECHNOLOGY 2015; 189:138-144. [PMID: 25879181 DOI: 10.1016/j.biortech.2015.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
A cellulolytic consortium was isolated from a composting plant in order to boost the initial hydrolysis step encountered in anaerobic digestion. Improvement of the cellulose degradation, as well as biogas production, was observed for the cultures inoculated with the exogenous consortium. Metagenomics analyses pointed out a weak richness (related to the number of OTUs) of the exogenous consortium induced by the selective pressure (cellulose as sole carbon source) met during the initial isolation steps. Main microbial strains determined were strictly anaerobic and belong to the Clostridia class. During cellulose anaerobic degradation, pH drop induced a strong modification of the microbial population. Despite the fact that richness and evenness were very weak, the exogenous consortium was able to adapt and to maintain the cellulolytic degradation potential. This important result point out the fact that simplified microbial communities could be used in order to increase the robustness of mixed cultures involved in environmental biotechnology.
Collapse
Affiliation(s)
- R Kinet
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium.
| | - J Destain
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| | - S Hiligsmann
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| | - P Thonart
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| | - L Delhalle
- Quality Partner S.A., Rue Hayeneux, 62, Herstal B-4040, Belgium
| | - B Taminiau
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b, Liège B-4000, Belgium
| | - G Daube
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b, Liège B-4000, Belgium
| | - F Delvigne
- Unit of BioIndustry, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés, 2, Gembloux B-5030, Belgium
| |
Collapse
|
33
|
Zhang J, Guo RB, Qiu YL, Qiao JT, Yuan XZ, Shi XS, Wang CS. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw. BIORESOURCE TECHNOLOGY 2015; 179:306-313. [PMID: 25549904 DOI: 10.1016/j.biortech.2014.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Yan-Ling Qiu
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China.
| | - Jiang-Tao Qiao
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Xian-Zheng Yuan
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Xiao-Shuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| | - Chuan-Shui Wang
- Shandong Industrial Engineering Laboratory of Biogas Production and Utilization, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, PR China
| |
Collapse
|
34
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
35
|
Čater M, Zorec M, Marinšek Logar R. Methods for Improving Anaerobic Lignocellulosic Substrates Degradation for Enhanced Biogas Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40362-014-0019-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Microbial ecology of anaerobic digesters: the key players of anaerobiosis. ScientificWorldJournal 2014; 2014:183752. [PMID: 24701142 PMCID: PMC3950365 DOI: 10.1155/2014/183752] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/10/2013] [Indexed: 11/17/2022] Open
Abstract
Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.
Collapse
|
37
|
Wu YR, He J. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. BIORESOURCE TECHNOLOGY 2013; 139:5-12. [PMID: 23639408 DOI: 10.1016/j.biortech.2013.03.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/16/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
Two sediment-free microbial consortia (LI3 and LP3) were established to depolymerize lignin under anaerobic conditions. During depolymerizing high molecular weight lignin to low molecular weight molecules, the two cultures produced biomethane up to 151.7 and 113.0 mL g(-1) total lignin. Furthermore, LI3 and LP3 could also utilize the biomass - oil palm empty fruit bunch fiber (OPEFB) to produce 190.6 and 195.6 mL methaneg(-1) total lignin in OPEFB, and at the same time improve the bioavailability of lignocellulosic matters for further enzymatic hydrolysis. The microbial community analysis by denature gradient gel electrophoresis (DGGE) and the high-density 16S rDNA gene microarray (PhyloChip) exhibited that Methanomethylovorans sp. (LI3) and Methanoculleus sp. (LP3) were the main methanogens present, and phylum Firmicutes and Bacteroidetes were mainly involved in the lignin depolymerization. The established microbial consortia with both lignin depolymerization and biomethane production provide profound application on the environmental friendly pretreatment of lignocellulosic materials.
Collapse
Affiliation(s)
- Yi-Rui Wu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
38
|
Wang Y, Liu Q, Yan L, Gao Y, Wang Y, Wang W. A novel lignin degradation bacterial consortium for efficient pulping. BIORESOURCE TECHNOLOGY 2013; 139:113-9. [PMID: 23648760 DOI: 10.1016/j.biortech.2013.04.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 05/11/2023]
Abstract
A lignin degradation bacterial consortium named LDC was screened from the sludge of a reeds pond by a restricted subculture. It could break down 60.9% lignin in reeds at 30°C under conditions of static culture within 15 days. In order to analyze the diversity of LDC, plate isolation, 16S rDNA clone library and ARDRA (Amplified Ribosomal DNA Restriction Analysis) were performed. Six bacterial strains were isolated from LDC and eighteen DNA phylotypes were identified from 230 bacterial analyzed clones. They were classified into Clostridiales(9.1%), Geovibrio thiophilus (5.1%), Desulfomicrobium (10.9%), Pseudomonas sp. (25.2%), Azoarcus sp. (5.1%), Thauera (5.1%), Paenibacillus sp. (5.1%), Cohnella sp. (2.2%), Acinetobacter sp. (3.1%), Microbacterium (7.8%), and uncultured bacterium (21.3%). In addition, physical characteristics of paper hand-sheets between biological pretreatment and chemical pretreatment were compared. The results showed that LDC had the capability of lignin degradation and was efficient for pulping, which would provide a new choice for biopulping.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | | | | | | | | | | |
Collapse
|
39
|
Ibarbalz FM, Figuerola ELM, Erijman L. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks. WATER RESEARCH 2013; 47:3854-64. [PMID: 23651515 DOI: 10.1016/j.watres.2013.04.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 05/12/2023]
Abstract
Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks.
Collapse
Affiliation(s)
- Federico M Ibarbalz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|