1
|
Zhang ZX, Xu YS, Li ZJ, Xu LW, Ma W, Li YF, Guo DS, Sun XM, Huang H. Turning waste into treasure: A new direction for low-cost production of lipid chemicals from Thraustochytrids. Biotechnol Adv 2024; 73:108354. [PMID: 38588906 DOI: 10.1016/j.biotechadv.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Thraustochytrids are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with Thraustochytrids fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of Thraustochytrids in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of Thraustochytrids in converting waste into treasure, providing precise cost reduction strategies for future commercial production.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lu-Wei Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Feng Li
- Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; Zhihe Biotechnology (Changzhou) Co. Ltd, 1 Hanshan Road, Xuejia Town, Xinbei District, Changzhou, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2023:129434. [PMID: 37399951 DOI: 10.1016/j.biortech.2023.129434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The fermentation production of docosahexaenoic acid (DHA) is an industrial process with huge consumption of freshwater resource and nutrient, such as carbon sources and nitrogen sources. In this study, seawater and fermentation wastewater were introduced into the fermentation production of DHA, which could solve the problem of fermentation industry competing with humans for freshwater. In addition, a green fermentation strategy with pH control using waste ammonia, NaOH and citric acid as well as FW recycling was proposed. It could provide a stable external environment for cell growth and lipid synthesis while alleviating the dependence on organic nitrogen sources of Schizochytrium sp. It was proved that this strategy has good industrialization potential for DHA production, and the biomass, lipid and DHA yield reached to 195.8 g/L, 74.4 g/L and 46.4 g/L in 50 L bioreactor, respectively. This study provides a green and economic bioprocess technology for DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
3
|
Duan XY, Liu HH, Song LP, Wang C, Yang H, Lu XY, Ji XJ, Tian Y. Efficient production of cordycepin by engineered Yarrowia lipolytica from agro-industrial residues. BIORESOURCE TECHNOLOGY 2023; 377:128964. [PMID: 36972806 DOI: 10.1016/j.biortech.2023.128964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Cordycepin, a nucleoside compound with a variety of biological activities, has been extensively applied in the nutraceutical and pharmaceutical industries. The advancement of microbial cell factories using agro-industrial residues provides a sustainable pathway for cordycepin biosynthesis. Herein, the cordycepin production was enhanced by the modification of glycolysis and pentose phosphate pathway in engineered Yarrowia lipolytica. Then, cordycepin production based on economical and renewable substrates (sugarcane molasses, waste spent yeast, and diammonium hydrogen phosphate) was analyzed. Furthermore, the effects of C/N molar ratio and initial pH on cordycepin production were evaluated. Results indicated that the maximum cordycepin productivity of 656.27 mg/L/d (72 h) and cordycepin titer was 2286.04 mg/L (120 h) by engineered Y. lipolytica in the optimized medium, respectively. The cordycepin productivity in the optimized medium was increased by 28.81% compared with the original medium. This research establishes a promising way for efficient cordycepin production from agro-industrial residues.
Collapse
Affiliation(s)
- Xi-Yu Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Li-Ping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China.
| |
Collapse
|
4
|
Yen SW, Nagarajan D, Chen WH, Lee DJ, Chang JS. Fermentative production of astaxanthin from sorghum distillery residue by an indigenous Aurantiochytrium sp. CJ6 strain using a continuous-feeding fed-batch process. BIORESOURCE TECHNOLOGY 2023; 376:128817. [PMID: 36868426 DOI: 10.1016/j.biortech.2023.128817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, Aurantiochytrium sp. CJ6 was cultivated heterotrophically on a waste resource, sorghum distillery residue (SDR) hydrolysate without adding any nitrogen sources. Mild sulfuric acid treatment released sugars that supported the growth of CJ6. Optimal operating parameters (salinity, 2.5%; pH, 7.5; with light exposure) determined using batch cultivation attained biomass concentration and astaxanthin content of 3.72 g/L and 69.32 µg/g dry cell weight (DCW), respectively. Using continuous-feeding fed-batch (CF-FB) fermentation, the biomass concentration of CJ6 increased to 6.3 g/L with biomass productivity and sugar utilization rate of 0.286 mg/L/d and 1.26 g/L/d, respectively. Meanwhile, CJ6 obtained maximum astaxanthin content (93.9 µg/g DCW) and astaxanthin concentration (0.565 mg/L) after 20-day cultivation. Thus, the CF-FB fermentation strategy seems to have a high potential for the cultivation of thraustochytrids to produce the high-value product (astaxanthin) using SDR as the feedstock to achieve circular economy.
Collapse
Affiliation(s)
- Shih-Wei Yen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsin Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
5
|
Du Y, Tong L, Wang Y, Liu M, Yuan L, Mu X, He S, Wei S, Zhang Y, Chen Z, Zhang Z, Guo D. Development of a kinetics‐integrated
CFD
model for the industrial scale‐up of
DHA
fermentation using
Schizochytrium
sp. AIChE J 2022. [DOI: 10.1002/aic.17750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuan‐Hang Du
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Ling‐Ling Tong
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Yue Wang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Meng‐Zhen Liu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Xin‐Ya Mu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Shao‐Jie He
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Shi‐Xiang Wei
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Yi‐Dan Zhang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Zi‐Lei Chen
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| | - Zhi‐Dong Zhang
- Institute of Applied Microbiology Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology Urumqi Xinjiang China
| | - Dong‐Sheng Guo
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing China
| |
Collapse
|
6
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Formulation of New Media from Dairy and Brewery Wastes for a Sustainable Production of DHA-Rich Oil by Aurantiochytrium mangrovei. Mar Drugs 2021; 20:md20010039. [PMID: 35049894 PMCID: PMC8778784 DOI: 10.3390/md20010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Mozzarella stretching water (MSW) is a dairy effluent generated from mozzarella cheese production that does not have a real use and is destined to disposal, causing environmental problems and representing a high disposal cost for dairy producers. Spent brewery yeast (SBY) is another promising food waste produced after brewery manufacturing that could be recycled in new biotechnological processes. Aurantiochytrium mangrovei is an aquatic protist known as producer of bioactive lipids such as omega 3 long chain polyunsaturated fatty acids (ω3 LC-PUFA), in particular docosahexaenoic acid (DHA). In this work MSW and SBY have been used to formulate new sustainable growth media for A. mangrovei cultivation and production of DHA in an attempt to valorize these effluents. MSW required an enzymatic hydrolysis to enhance the biomass production. The new media obtained from hydrolysed MSW was also optimized using response surface methodologies, obtaining 10.14 g L-1 of biomass in optimized medium, with a DHA content of 1.21 g L-1.
Collapse
|
8
|
Eiríksdóttir H, Stefánsson MÖ, Einarsson H. Development of Growth Media from Agricultural By-Products for Cultivation of PUFA-Producing Sicyoidochytrium minutum. Mar Drugs 2021; 20:8. [PMID: 35049865 PMCID: PMC8777685 DOI: 10.3390/md20010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The demand for novel sources of marine oils, which contain polyunsaturated fatty acids (PUFAs), has increased due to the realization of the importance of PUFAs, e.g., docosahexaenoic acid (DHA), in the human diet. However, the natural supply is limited. By-product peptones (BYPP) intended as a growth medium for the PUFA-producing strain Sicyoidochytrium minutum of family Thraustochytriaceae were produced after several experiments on the pancreatic digestion of bovine lungs and spleens. S. minutum was able to grow in a medium containing BYPP made from the pancreatic digestion of lung and spleen with glycerol, resulting in 1.14 ± 0.03 g cell dry weight (CDW)/L and 1.44 ± 0.24 g CDW/L, respectively, after 5 days of incubation at 25 °C, compared to 1.92 ± 0.25 g CDW/L in Basal Medium (BM) containing tryptone, peptone, and glycerol. The lipid content, obtained after growth in lung BYPP media with glycerol as a carbon source, was significantly higher (28.17% ± 1.33 of dry weight) than in the control basal medium (BM) (21.72% ± 2.45); however, DHA as a percentage of total fatty acids was lower in BYPP than in the control BM (25.24% ± 1.56 and 33.02% ± 2.37, respectively). It is concluded that low-value by-products from abattoirs can be used as ingredients for the cultivation of oligogenic Thraustochytriaceae.
Collapse
Affiliation(s)
- Heiðrún Eiríksdóttir
- BioPol ehf, 545 Skagaströnd, Iceland
- Iceland Institute of Natural History, 210 Gardabaer, Iceland
| | - Magnús Örn Stefánsson
- BioPol ehf, 545 Skagaströnd, Iceland
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02115, USA
| | - Hjörleifur Einarsson
- Faculty of Natural Resource Sciences, School of Business and Science, University of Akureyri, 600 Akureyri, Iceland
| |
Collapse
|
9
|
Reboleira J, Félix R, Félix C, de Melo MMR, Silva CM, Saraiva JA, Bandarra NM, Teixeira B, Mendes R, Paulo MC, Coutinho J, Lemos MFL. Evaluating the Potential of the Defatted By-Product of Aurantiochytrium sp. Industrial Cultivation as a Functional Food. Foods 2021; 10:foods10123058. [PMID: 34945609 PMCID: PMC8701938 DOI: 10.3390/foods10123058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
While Aurantiochytrium sp. is an increasingly popular source of polyunsaturated fatty acids (PUFAs), its extraction generates high amounts of waste, including the spent, defatted residue. The composition and bioactivities of this by-product could prove to be a major part of the sustainable valorisation of this organism within the framework of a circular economy. In this study, the defatted biomass of commercial Aurantiochytrium sp. was nutritionally characterised, and its amino acid profile was detailed. Additionally, the antioxidant and prebiotic potentials of an enzymatically digested sample of defatted Aurantiochytrium sp. were evaluated under a set of miniaturised in vitro assays. The nutritional profile of the spent Aurantiochytrium biomass revealed a protein and dietary-fibre rich product, with values reaching 26.7% and 31.0% for each, respectively. It also held high concentrations of glutamic and aspartic acid, as well as a favourable lysine/arginine ratio of 3.73. The digested samples demonstrated significant Weissela cibaria and Bifidobacterium bifidum growth-enhancing potential. Residual ferric reducing antioxidant power (FRAP) activity was likely attributed to antioxidant amino acids or peptides. The study demonstrated that some of the nutritional and functional potential that reside in the defatted Aurantiochytrium sp. waste encourages additional studies and the development of food supplements employing this resource's by-products under a biorefinery framework.
Collapse
Affiliation(s)
- João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (J.R.); (R.F.); (C.F.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (J.R.); (R.F.); (C.F.)
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (J.R.); (R.F.); (C.F.)
| | - Marcelo M. R. de Melo
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.M.R.d.M.); (C.M.S.)
| | - Carlos M. Silva
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.M.R.d.M.); (C.M.S.)
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Narcisa M. Bandarra
- Division of Aquaculture and Upgrading, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; (N.M.B.); (B.T.); (R.M.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Bárbara Teixeira
- Division of Aquaculture and Upgrading, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; (N.M.B.); (B.T.); (R.M.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Rogério Mendes
- Division of Aquaculture and Upgrading, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; (N.M.B.); (B.T.); (R.M.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Maria C. Paulo
- Depsiextracta Tecnologias e Biológicas, Lda., Zona Industrial do Monte da Barca Rua H, Lote 62, 2100-057 Coruche, Portugal; (M.C.P.); (J.C.)
| | - Joana Coutinho
- Depsiextracta Tecnologias e Biológicas, Lda., Zona Industrial do Monte da Barca Rua H, Lote 62, 2100-057 Coruche, Portugal; (M.C.P.); (J.C.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (J.R.); (R.F.); (C.F.)
- Correspondence:
| |
Collapse
|
10
|
Production of Omega-3 Oil by Aurantiochytrium mangrovei Using Spent Osmotic Solution from Candied Fruit Industry as Sole Organic Carbon Source. Processes (Basel) 2021. [DOI: 10.3390/pr9101834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osmotic dehydration is an important phase in the production of dried products, including most fruits and vegetables, in the food industry. The drying process for candied fruit produces a liquid waste called “spent osmotic solution”, which is characterized by a high content of organic compounds, mostly dissolved sugars. The sugar content of this food by-product could be valorized through the growth of biomass with a high added value. In this study, the spent osmotic solution from the candied fruit industry was used as an organic carbon source for the growth and production of docosahexaenoic acid (DHA) in the cultivation of Aurantiochytrium mangrovei RCC893. The carbon content of the standard media was completely replaced by the sugars present in this food by-product. After that, the growth condition of this strain was optimized through response surface methodologies using a central composite design (CCD), and the optimal combination of the spent osmotic solution and nitrogen was established. Moreover, a scale-up trial was performed using the optimal conditions obtained after CCD to evaluate the scalability of the process.
Collapse
|
11
|
Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon. ENERGIES 2021. [DOI: 10.3390/en14102952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inexpensive carbon sources offering an alternative to glucose are searched for to reduce costs of docosahexaenoic acid production by microalgae. The use of waste glycerol seems substantiated and prospective in this case. The objective of this study was to determine the production yield of heterotrophic microalgae Schizochytrium sp. biomass and the efficiency of docosahexaenoic acid production in various types of cultures with waste glycerol. Cultivation conditions were optimized using the Plackett–Burman method and Response Surface Methodology. The highest technological performance was obtained in the fed-batch culture, where the concentration of Schizochytrium sp. biomass reached 103.44 ± 1.50 g/dm3, the lipid concentration in Schizochytrium sp. biomass was at 48.85 ± 0.81 g/dm3, and the docosahexaenoic acid concentration at 21.98 ± 0.36 g/dm3. The highest docosahexaenoic acid content, accounting for 61.76 ± 3.77% of total fatty acids, was determined in lipid bodies of the Schizochytrium sp. biomass produced in the batch culture, whereas the lowest one, accounting for 44.99 ± 2.12% of total fatty acids, in those of the biomass grown in the fed-batch culture.
Collapse
|
12
|
Chang M, Zhang T, Li L, Lou F, Ma M, Liu R, Jin Q, Wang X. Choreography of multiple omics reveals the mechanism of lipid turnover in Schizochytrium sp. S31. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Adamo G, Fierli D, Romancino DP, Picciotto S, Barone ME, Aranyos A, Božič D, Morsbach S, Raccosta S, Stanly C, Paganini C, Gai M, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Randazzo L, Parkes R, Capasso Palmiero U, Rao E, Paterna A, Santonicola P, Iglič A, Corcuera L, Kisslinger A, Di Schiavi E, Liguori GL, Landfester K, Kralj-Iglič V, Arosio P, Pocsfalvi G, Touzet N, Manno M, Bongiovanni A. Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. J Extracell Vesicles 2021; 10:e12081. [PMID: 33936568 PMCID: PMC8077145 DOI: 10.1002/jev2.12081] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular, inter-organismal and cross kingdom communication via extracellular vesicles (EVs) is intensively studied in basic science with high expectation for a large variety of bio-technological applications. EVs intrinsically possess many attributes of a drug delivery vehicle. Beyond the implications for basic cell biology, academic and industrial interests in EVs have increased in the last few years. Microalgae constitute sustainable and renewable sources of bioactive compounds with a range of sectoral applications, including the formulation of health supplements, cosmetic products and food ingredients. Here we describe a newly discovered subtype of EVs derived from microalgae, which we named nanoalgosomes. We isolated these extracellular nano-objects from cultures of microalgal strains, including the marine photosynthetic chlorophyte Tetraselmis chuii, using differential ultracentrifugation or tangential flow fractionation and focusing on the nanosized small EVs (sEVs). We explore different biochemical and physical properties and we show that nanoalgosomes are efficiently taken up by mammalian cell lines, confirming the cross kingdom communication potential of EVs. This is the first detailed description of such membranous nanovesicles from microalgae. With respect to EVs isolated from other organisms, nanoalgosomes present several advantages in that microalgae are a renewable and sustainable natural source, which could easily be scalable in terms of nanoalgosome production.
Collapse
Affiliation(s)
- Giorgia Adamo
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - David Fierli
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Daniele P Romancino
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Maria E Barone
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Anita Aranyos
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Darja Božič
- University of Ljubljana (UL) Ljubljana Slovene
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Samuele Raccosta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Christopher Stanly
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Meiyu Gai
- Max Planck Institute for Polymer Research (MPIP) Mainz Germany
| | - Antonella Cusimano
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| | - Vincenzo Martorana
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rosina Noto
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rita Carrotta
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Fabio Librizzi
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Loredana Randazzo
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Rachel Parkes
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | | | - Estella Rao
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Angela Paterna
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Ales Iglič
- University of Ljubljana (UL) Ljubljana Slovene
| | | | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS) - National Research Council of Italy (CNR) Naples Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) - National Research Council of Italy (CNR) Naples Italy
| | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources (IBBR) - National Research Council of Italy (CNR) Naples Italy
| | - Nicolas Touzet
- Centre for Environmental Research Innovation and Sustainability Institute of Technology Sligo Sligo Ireland
| | - Mauro Manno
- Institute of Biophysics (IBF) - National Research Council of Italy (CNR) Palermo Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB) - National Research Council of Italy (CNR) Palermo Italy
| |
Collapse
|
14
|
Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol. ENERGIES 2021. [DOI: 10.3390/en14061685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of this study was to optimize biomass and docosahexaenoic acid (DHA) production by Schizochytrium sp. grown on waste glycerol as an organic carbon source. Parameters having a significant effect on biomass and DHA yields were screened using the fractional Plackett–Burman design and the response surface methodology (RSM). Schizochytrium sp. growth was most significantly influenced by crude glycerin concentration in the growth medium (150 g/dm3), process temperature (27 °C), oxygen in the bioreactor (49.99% v/v), and the concentration of peptone as a source of nitrogen (9.99 g/dm3). The process parameter values identified as optimal for producing high DHA concentrations in the biomass were as follows: glycerin concentration 149.99 g/dm3, temperature 26 °C, oxygen concentration 30% (v/v), and peptone concentration 2.21 g/dm3. The dry cell weight (DCW) obtained under actual laboratory conditions was 66.69 ± 0.66 g/dm3, i.e., 1.27% lower than the predicted value. The DHA concentration obtained in the actual culture was at 17.25 ± 0.33 g/dm3, which was 3.03% lower than the predicted value. The results obtained suggest that a two-step culture system should be employed, with the first phase focused on high production of Schizochytrium sp. biomass, and the second focused on increasing DHA concentration in the cells.
Collapse
|
15
|
Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, Huang H. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv 2021; 48:107725. [PMID: 33727145 DOI: 10.1016/j.biotechadv.2021.107725] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
As fungus-like protists, thraustochytrids have been increasingly studied for their faster growth rates and high lipid content. In the 1990s, thraustochytrids were used as docosahexaenoic acid (DHA) producers for the first time. Thraustochytrids genera, such as Thraustochytrium, Schizochytrium, and Aurantiochytrium have been developed and patented as industrial strains for DHA production. The high DHA yield is attributed to its unique and efficient polyketide-like synthase (PKS) pathway. Moreover, thraustochytrids possess a completed mevalonate (MVA) pathway, so it can be used as host for terpenoid production. In order to improve strain performance, the metabolic engineering strategies have been applied to promote or disrupt intracellular metabolic pathways, such as genetic engineering and addition of chemical activators. However, it is difficult to realize industrialization only by improving strain performance. Various operation strategies were developed to enlarge the production quantities from the laboratory-scale, including two-stage cultivation strategies, scale-up technologies and bioreactor design. Moreover, an economical and effective downstream process is also an important consideration for the industrial application of thraustochytrids. Downstream costs accounts for 20-60% of the overall process costs, which represents an attractive target for increasing the cost-competitiveness of thraustochytrids, including how to improve the efficiency of lipid extraction and the further application of biomass residues. This review aims to overview the whole lipid biotechnology of thraustochytrids to provide the background information for researchers.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Zheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Sustainable production of food grade omega-3 oil using aquatic protists: Reliability and future horizons. N Biotechnol 2021; 62:32-39. [PMID: 33486117 DOI: 10.1016/j.nbt.2021.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production of omega-3 polyunsaturated fatty acids (PUFAs) has become a commercial alternative to fish oil in the past twenty years. Compared to PUFA production by fatty fishes, that from microorganisms has increased due to its promising sustainability and high product safety and to increasing awareness in the expanding vegan market. Although autotrophic production by microalgae seems to be more sustainable in the long term, to date most of the microbial production of omega-3 is carried out under heterotrophic conditions using conventional fermentation technologies. The present review critically analyzes the main reasons for this discrepancy and reports on the recent advances and the most promising approaches for its future development in the context of sustainability and circular economy.
Collapse
|
17
|
Picciotto S, Barone ME, Fierli D, Aranyos A, Adamo G, Božič D, Romancino DP, Stanly C, Parkes R, Morsbach S, Raccosta S, Paganini C, Cusimano A, Martorana V, Noto R, Carrotta R, Librizzi F, Capasso Palmiero U, Santonicola P, Iglič A, Gai M, Corcuera L, Kisslinger A, Di Schiavi E, Landfester K, Liguori GL, Kralj-Iglič V, Arosio P, Pocsfalvi G, Manno M, Touzet N, Bongiovanni A. Isolation of extracellular vesicles from microalgae: towards the production of sustainable and natural nanocarriers of bioactive compounds. Biomater Sci 2021; 9:2917-2930. [DOI: 10.1039/d0bm01696a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biophysical and biochemical characterisation of microalgae-derived extracellular vesicles.
Collapse
|
18
|
Lee GI, Shin WS, MoonGeun Jung S, Kim W, Lee C, Kwon JH. Effects of soybean curd wastewater on growth and DHA production in Aurantiochytrium sp. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. SUSTAINABILITY 2020. [DOI: 10.3390/su12239980] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgal biomass is currently considered as a sustainable and renewable feedstock for biofuel production (biohydrogen, biomethane, biodiesel) characterized by lower emissions of hazardous air pollutants than fossil fuels. Photobioreactors for microalgae growth can be exploited using many industrial and domestic wastes. It allows locating the commercial microalgal systems in areas that cannot be employed for agricultural purposes, i.e., near heating or wastewater treatment plants and other industrial facilities producing carbon dioxide and organic and nutrient compounds. Despite their high potential, the large-scale algal biomass production technologies are not popular because the systems for biomass production, separation, drainage, and conversion into energy carriers are difficult to explicitly assess and balance, considering the ecological and economical concerns. Most of the studies presented in the literature have been carried out on a small, laboratory scale. This significantly limits the possibility of obtaining reliable data for a comprehensive assessment of the efficiency of such solutions. Therefore, there is a need to verify the results in pilot-scale and the full technical-scale studies. This study summarizes the strengths and weaknesses of microalgal biomass production technologies for bioenergetic applications.
Collapse
|
20
|
Humaidah N, Nakai S, Nishijima W, Gotoh T, Furuta M. Application of Aurantiochytrium sp. L3W for food-processing wastewater treatment in combination with polyunsaturated fatty acids production for fish aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140735. [PMID: 32679499 DOI: 10.1016/j.scitotenv.2020.140735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 05/05/2023]
Abstract
Thraustochytrids such as Aurantiochytrium are heterotrophic microorganisms that are known to produce valuable polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). In this study, Aurantiochytrium sp. strain L3W was used to remove dissolved organic carbon (DOC) and dissolved nitrogen (DN) from bean-boiling (BB) and miso-processing (MP) wastewater and to simultaneously produce PUFAs. Strain L3W removed 52% of the DOC and 37% of the DN from sterilized BB wastewater and produced biomass that contained 137 mg/g of fatty acids (FAs), including 96.2 mg/g of DHA. Growth of strain L3W in sterilized MP wastewater resulted in the production of biomass containing 147.6 mg/g of FAs, including 97.8 mg/g of DHA, and removal of 47% of the DOC and 55% of the DN from the wastewater. The biomass of strain L3W was digestible by the enzymes extracted from the stomachs of rainbow trout. These results confirmed the potential for use of strain L3W to remove DOC and DN from food processing wastewater and to produce PUFAs. This study also provided the first evidence that the raw biomass of Aurantiochytrium sp. can be used as a fish feed additive.
Collapse
Affiliation(s)
- Nurlaili Humaidah
- Department of Chemical Engineering, Hiroshima University 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan; Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia
| | - Satoshi Nakai
- Department of Chemical Engineering, Hiroshima University 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Wataru Nishijima
- Environmental Research and Management Center, Hiroshima University 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takehiko Gotoh
- Department of Chemical Engineering, Hiroshima University 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Megumi Furuta
- Department of Chemical Engineering, Hiroshima University 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
21
|
Xu X, Huang C, Xu Z, Xu H, Wang Z, Yu X. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects. Appl Microbiol Biotechnol 2020; 104:9433-9447. [PMID: 32978687 DOI: 10.1007/s00253-020-10927-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
The marine oleaginous protist Aurantiochytrium sp. (Schizochytrium sp.) is a well-known docosahexaenoic acid (DHA) producer and its different DHA products are the ideal substitute for the traditional fish oil resource. However, the cost of the DHA products derived from Aurantiochytrium sp. (Schizochytrium sp.) is still high, limiting their wide applications. In order to reduce the cost or improve the productivity of DHA from the microbial resource, many researches are focusing on exploring the renewable and low-cost materials as feedbacks, and/or the stimulators for biomass and DHA production. In addition, the genetic engineering is also being used in the Aurantiochytrium sp. (Schizochytrium sp.) system for further improvement. These break the bottleneck of the DHA production by Aurantiochytrium sp. (Schizochytrium sp.) in some degree. In this review, the strategies used currently to reduce cost and improve DHA productivity, mainly from the utilizations of low-cost materials and effective stimulators to the genetic engineering perspectives, are summarized, and the availabilities from the cost perspective are also evaluated. This review provides an overview about the strategies to revolve the production cost and yield of the DHA by Aurantiochytrium sp. (Schizochytrium sp.), a theoretical basis for genetic modification of Aurantiochytrium sp. (Schizochytrium sp.), and a practical basis for the development of DHA industry. KEY POINTS : • Utilizations of various low-cost materials for DHA production • Inducing the growth and DHA biosynthesis by the effective stimulators • Reducing cost and improving DHA productivity by genetic modification • The availability from cost perspective is evaluated.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Changyi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhexian Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Huixia Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
22
|
Kothri M, Mavrommati M, Elazzazy AM, Baeshen MN, Moussa TAA, Aggelis G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol Lett 2020; 367:5735438. [PMID: 32053204 DOI: 10.1093/femsle/fnaa028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of non-fish sources of polyunsaturated fatty acids (PUFAs) is of great biotechnological importance. Although various oleaginous microalgae and fungi are able of accumulating storage lipids (single cell oils - SCOs) containing PUFAs, the industrial applications utilizing these organisms are rather limited due to the high-fermentation cost. However, combining SCO production with other biotechnological applications, including waste and by-product valorization, can overcome this difficulty. In the current review, we present the major sources of fungi (i.e. members of Mucoromycota, fungoid-like Thraustochytrids and genetically modified strains of Yarrowia lipolytica) and microalgae (e.g. Isochrysis, NannochloropsisandTetraselmis) that have come recently to the forefront due to their ability to produce PUFAs. Approaches adopted in order to increase PUFA productivity and the potential of using various residues, such as agro-industrial, food and aquaculture wastes as fermentation substrates for SCO production have been considered and discussed. We concluded that several organic residues can be utilized as feedstock in the SCO production increasing the competitiveness of oleaginous organisms against conventional PUFA producers.
Collapse
Affiliation(s)
- Maria Kothri
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Mavrommati
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ahmed M Elazzazy
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed N Baeshen
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| | - Tarek A A Moussa
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece.,Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| |
Collapse
|
23
|
Lipid Induction in Scenedesmus abundans GH-D11 by Reusing the Volatile Fatty Acids in the Effluent of Dark Anaerobic Fermentation of Biohydrogen. Appl Biochem Biotechnol 2020; 191:258-272. [DOI: 10.1007/s12010-020-03294-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
|
24
|
Moon M, Park WK, Suh WI, Chang YK, Lee B. Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction. Sci Rep 2019; 9:19959. [PMID: 31882916 PMCID: PMC6934592 DOI: 10.1038/s41598-019-56406-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using Aurantiochytrium sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L-1. Increasing the nutrient level in the medium by supplementation of 9 g L-1 KH2PO4 and 20 g L-1 yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L-1, respectively) were achieved when 35 g L-1 sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using Aurantiochytrium sp. KRS101 and proper cultivation strategy.
Collapse
Affiliation(s)
- Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), 25, Samso-ro 270beon-gil, Buk-gu, Gwangju, 61003, Republic of Korea
| | - Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul, 03016, Republic of Korea
| | - William I Suh
- Advanced Biomass R&D Center, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass R&D Center, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Bongsoo Lee
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-Gu, Daejeon, 35349, Republic of Korea.
| |
Collapse
|
25
|
Jin H, Zhang H, Zhou Z, Li K, Hou G, Xu Q, Chuai W, Zhang C, Han D, Hu Q. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnol Bioeng 2019; 117:96-108. [PMID: 31612991 PMCID: PMC6916281 DOI: 10.1002/bit.27190] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 11/12/2022]
Abstract
Although production of biodiesels from microalgae is proved to be technically feasible, a commercially viable system has yet to emerge. High‐cell‐density fermentation of microalgae can be coupled with photoautotrophic cultivation to produce oils. In this study, by optimizing culturing conditions and employing a sophisticated substrate feed control strategy, ultrahigh‐cell‐density of 286 and 283.5 g/L was achieved for the unicellular alga Scenedesmus acuminatus grown in 7.5‐L bench‐scale and 1,000‐L pilot‐scale fermenters, respectively. The outdoor scale‐up experiments indicated that heterotrophically grown S. acuminatus cells are more productive in terms of both biomass and lipid accumulation when they are inoculated in photobioreactors for lipid production as compared to the cells originally grown under photoautotrophic conditions. Technoeconomic analysis based on the pilot‐scale data indicated that the cost of heterotrophic cultivation of microalgae for biomass production is comparable with that of the open‐pond system and much lower than that of tubular PBR, if the biomass yield was higher than 200 g/L. This study demonstrated the economic viability of heterotrophic cultivation on large‐scale microalgal inocula production, but ultrahigh‐productivity fermentation is a prerequisite. Moreover, the advantages of the combined heterotrophic and photoautotrophic cultivation of microalgae for biofuels production were also verified in the pilot‐scale.
Collapse
Affiliation(s)
- Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hu Zhang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Zhou
- Research Center of Hydrobiology, Jinan University, Guangzhou, China
| | - Kunpeng Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guoli Hou
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Quan Xu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Chuai
- Microalgae Biotechnology Center, SDIC Biotech Investment Co., Ltd., State Development & Investment Corp., Beijing, China
| | - Chengwu Zhang
- Research Center of Hydrobiology, Jinan University, Guangzhou, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Microalgae Biotechnology Center, SDIC Biotech Investment Co., Ltd., State Development & Investment Corp., Beijing, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Beijing Key Laboratory of Algae Biomass, SDIC Biotech Investment Corporation, Beijing, China
| |
Collapse
|
26
|
Ribeiro VR, Fernandes IDAA, Mari IP, Stafussa AP, Rossetto R, Maciel GM, Haminiuk CWI. Bringing together Saccharomyces cerevisiae and bioactive compounds from plants: A new function for a well-known biosorbent. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
27
|
Isolation, Characterization and Biotechnological Potentials of Thraustochytrids from Icelandic Waters. Mar Drugs 2019; 17:md17080449. [PMID: 31370264 PMCID: PMC6723786 DOI: 10.3390/md17080449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 11/16/2022] Open
Abstract
The following study reports on the first thraustochytrid isolates identified from Iceland. They were collected from three different locations off the northern coast of the country (Location A, Skagaströnd; Location B, Hveravík; and Location C, Eyjafjörður). Using 18S rDNA sequence analysis, isolates from Locations A and B were identified within the Thraustochytrium kinnei species while other isolates within the Sicyoidochytrium minutum species when compared to other known strains. Cells isolated from Locations A ( 2 . 10 ± 0 . 70 g/L) and B ( 1 . 54 ± 0 . 17 g/L) produced more biomass than the ones isolated from Location C ( 0 . 43 ± 0 . 02 g/L). This study offers the first-time examination of the utility of byproducts from fisheries as a nitrogen source in media formulation for thraustochytrids. Experiments showed that isolates produced more biomass (per unit of substrate) when cultured on nitrogen of marine ( 2 . 55 ± 0 . 74 g/L) as compared to of commercial origin ( 1 . 06 ± 0 . 57 g/L). Glycerol ( 2 . 43 ± 0 . 56 g/L) was a better carbon source than glucose ( 1 . 84 ± 0 . 57 g/L) in growth studies. Fatty acid (FA) profiles showed that the isolates from Location C (S. minutum) had low ratios of monounsaturated ( 4 . 21 ± 2 . 96 % ) and omega-6 ( 0 . 68 ± 0 . 59 % ) FAs. However, the isolates also had high ratios of docosahexaenoic acid (DHA; 35 . 65 ± 1 . 73 % ) and total omega-3 FAs ( 40 . 39 ± 2 . 39 % ), indicating that they could serve as a source of marine oils for human consumption and in aquaculture feeds. The T. kinnei isolates from Location A could be used in biodiesel production due to their high ratios of monounsaturated ( 18 . 38 ± 6 . 27 % ) long chain ( 57 . 43 ± 8 . 27 % ) FAs.
Collapse
|
28
|
Furlan VJM, Batista I, Bandarra N, Mendes R, Cardoso C. Conditions for the Production of Carotenoids by Thraustochytrium sp. ATCC 26185 and Aurantiochytrium sp. ATCC PRA-276. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1603175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Irineu Batista
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| | - Narcisa Bandarra
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| | - Rogério Mendes
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| | - Carlos Cardoso
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| |
Collapse
|
29
|
Yu XJ, Huang CY, Chen H, Wang DS, Chen JL, Li HJ, Liu XY, Wang Z, Sun J, Wang ZP. High-Throughput Biochemical Fingerprinting of Oleaginous Aurantiochytrium sp. Strains by Fourier Transform Infrared Spectroscopy (FT-IR) for Lipid and Carbohydrate Productions. Molecules 2019; 24:molecules24081593. [PMID: 31013676 PMCID: PMC6514702 DOI: 10.3390/molecules24081593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022] Open
Abstract
The traditional biochemical methods for analyzing cellular composition of oleaginous microorganisms are time-consuming, polluting, and expensive. In the present study, an FT-IR method was used to analyze the cellular composition of the marine oleaginous protist Aurantiochytrium sp. during various research processes, such as strains screening, medium optimization, and fermentation, and was evaluated as a green, low-cost, high throughput, and accurate method compared with the traditional methods. A total of 109 Aurantiochytrium sp. strains were screened for lipid and carbohydrate production and the best results were found for the strains No. 6 and No. 32. The yields and productivities could reach up to 47.2 g/L and 0.72 g/L/h for lipid, 21.6 g/L and 0.33 g/L/h for docosahexaenoic acid (DHA) in the strain No. 6, and 15.4 g/L and 0.18 g/L/h for carbohydrate in the strain No. 32, under the optimal conditions, respectively. These results confirmed potentials of the two Aurantiochytrium sp. strains for lipid, DHA, and carbohydrate productions at industrial scales. The FT-IR method in this study will facilitate research on the oleaginous Aurantiochytrium sp., and the obtained two strains for lipid and carbohydrate productions will provide the foundations for their applications in medical, food, and feed industries.
Collapse
Affiliation(s)
- Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Chang-Yi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Hong Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Dong-Sheng Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, Jiangxi, China.
| | - Jing-Liang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Hui-Juan Li
- Department of Bioengineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, Jiangsu, China.
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, Zhejiang, China.
| | - Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| |
Collapse
|
30
|
Production of Lipid Containing High Levels of Docosahexaenoic Acid by Cultivation of Aurantiochytrium sp. KRS101 Using Jerusalem Artichoke Extract. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0419-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Yin FW, Guo DS, Ren LJ, Ji XJ, Huang H. Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. BIORESOURCE TECHNOLOGY 2018; 266:482-487. [PMID: 29990764 DOI: 10.1016/j.biortech.2018.06.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Fermentation wastewater (FW) and algal residue are major by-products of docosahexaenoic acid (DHA) fermentations utilizing Schizochytrium sp. In order to reduce production costs and environmental pollution, we explored the application of FW and algal-residue extract (AE) for DHA production. Components analysis showed that FW and AE contained some mineral elements and protein residues, respectively. When they were used for DHA fermentation, results showed that 20% replacement of fresh water by FW and 80% replacement of yeast extract nitrogen by AE reached DHA content of 22.23 g/L and 27.10 g/L, respectively. Furthermore, a novel medium that utilizes a mixture of FW and AE was applied for DHA fermentation, whereby the final DHA yield reached 28.45 g/L, 24.56% higher than conventional medium. The strategy of valorizing fermentation waste provides a new method for reducing the costs and reducing environmental pollution of microbial fermentations.
Collapse
Affiliation(s)
- Feng-Wei Yin
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
32
|
Liang Y, Liu Y, Tang J, Ma J, Cheng JJ, Daroch M. Transcriptomic Profiling and Gene Disruption Revealed that Two Genes Related to PUFAs/DHA Biosynthesis May be Essential for Cell Growth of Aurantiochytrium sp. Mar Drugs 2018; 16:md16090310. [PMID: 30200435 PMCID: PMC6164183 DOI: 10.3390/md16090310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Aurantiochytrium sp. PKU#SW7 is a thraustochytrid strain that was found to exhibit high potential for docosahexaenoic acid (DHA, C22:6n-3) production. In this work, the transcriptome of Aurantiochytrium sp. PKU#SW7 was analyzed for the study of genes involved in basic metabolic functions and especially in the mechanisms of DHA biosynthesis. Sequence annotation and functional analysis revealed that the strain contains components of fatty acid synthesis (FAS) and polyketide synthase (PKS) pathways. Fatty acid desaturases and elongases were identified as components of FAS pathway, whilst key components of PKS pathway were also found in the cDNA library. The relative contribution of the two pathways to the synthesis of DHA was unknown, as both pathways appeared to be lacking full complement of genes for standalone synthesis of DHA. Further analysis of two putative genes encoding the very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase and dehydrase/isomerase involved in FAS and PKS pathways, respectively, revealed that under various salinity conditions, their relative expression levels changed corresponding to the variation of DHA content in Aurantiochytrium sp. Independent knock outs of these genes in Aurantiochytrium sp. resulted in poor cell growth, probably due to little or no intracellular DHA accumulation. Hence, it can be speculated that both genes are engaged in DHA biosynthesis and DHA in Aurantiochytrium sp. could be produced by jointed actions of both FAS and PKS systems.
Collapse
Affiliation(s)
- Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Ying Liu
- Guangdong Engineering Research Centre for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Jiong Ma
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jay J Cheng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
33
|
Xiao R, Li X, Zheng Y. Comprehensive Study of Cultivation Conditions and Methods on Lipid Accumulation of a Marine Protist, Thraustochytrium striatum. Protist 2018; 169:451-465. [DOI: 10.1016/j.protis.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
|
34
|
Diwan B, Parkhey P, Gupta P. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery. Folia Microbiol (Praha) 2018; 63:547-568. [DOI: 10.1007/s12223-018-0602-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
35
|
Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:227. [PMID: 30151055 PMCID: PMC6100726 DOI: 10.1186/s13068-018-1225-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 05/13/2023]
Abstract
Microalgae are capable of producing sustainable bioproducts and biofuels by using carbon dioxide or other carbon substances in various cultivation modes. It is of great significance to exploit microalgae for the economical viability of biofuels and the revenues from high-value bioproducts. However, the industrial performance of microalgae is still challenged with potential conflict between cost of microalgae cultivation and revenues from them, which is mainly ascribed to the lack of comprehensive understanding of carbon metabolism and energy conversion. In this review, we provide an overview of the recent advances in carbon and energy fluxes of light-dependent reaction, Calvin-Benson-Bassham cycle, tricarboxylic acid cycle, glycolysis pathway and processes of product biosynthesis in microalgae, with focus on the increased photosynthetic and carbon efficiencies. Recent strategies for the enhanced production of bioproducts and biofuels from microalgae are discussed in detail. Approaches to alter microbial physiology by controlling light, nutrient and other environmental conditions have the advantages of increasing biomass concentration and product yield through the efficient carbon conversion. Engineering strategies by regulating carbon partitioning and energy route are capable of improving the efficiencies of photosynthesis and carbon conversion, which consequently realize high-value biomass. The coordination of carbon and energy fluxes is emerging as the potential strategy to increase efficiency of carbon fixation and product biosynthesis. To achieve more desirable high-value products, coordination of multi-stage cultivation with engineering and stress-based strategies occupies significant positions in a long term.
Collapse
Affiliation(s)
- Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Weiyang Zhao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yuelian Li
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
37
|
Park WK, Moon M, Shin SE, Cho JM, Suh WI, Chang YK, Lee B. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol Adv 2017; 36:26-46. [PMID: 28911809 DOI: 10.1016/j.biotechadv.2017.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
Thraustochytrids were first discovered in 1934, and since the 1960's they have been increasingly studied for their beneficial and deleterious effects. This review aims to provide an enhanced understanding of these protists with a particular emphasis on their taxonomy, ecology and biotechnology applications. Over the years, thraustochytrid taxonomy has improved with the development of modern molecular techniques and new biochemical markers, resulting in the isolation and description of new strains. In the present work, the taxonomic history of thraustochytrids is reviewed, while providing an up-to-date classification of these organisms. It also describes the various biomarkers that may be taken into consideration to support taxonomic characterization of the thraustochytrids, together with a review of traditional and modern techniques for their isolation and molecular identification. The originality of this review lies in linking taxonomy and ecology of the thraustochytrids and their biotechnological applications as producers of docosahexaenoic acid (DHA), carotenoids, exopolysaccharides and other compounds of interest. The paper provides a summary of these aspects while also highlighting some of the most important recent studies in this field, which include the diversity of polyunsaturated fatty acid metabolism in thraustochytrids, some novel strategies for biomass production and recovery of compounds of interest. Furthermore, a detailed overview is provided of the direct and current applications of thraustochytrid-derived compounds in the food, fuel, cosmetic, pharmaceutical, and aquaculture industries and of some of the commercial products available. This review is intended to be a source of information and references on the thraustochytrids for both experts and those who are new to this field.
Collapse
Affiliation(s)
- Loris Fossier Marchan
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Kim J Lee Chang
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Peter D Nichols
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Wilfrid J Mitchell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Jane L Polglase
- Jane L Polglase Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tony Gutierrez
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
39
|
Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium
sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 2017. [DOI: 10.1002/aic.15783] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Gan-Lu Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - He Huang
- School of Pharmaceutical Sciences; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xinmofan Road Nanjing 210009 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| |
Collapse
|
40
|
Finco AMDO, Mamani LDG, Carvalho JCD, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 2016; 37:656-671. [PMID: 27653190 DOI: 10.1080/07388551.2016.1213221] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.
Collapse
Affiliation(s)
- Ana Maria de Oliveira Finco
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Luis Daniel Goyzueta Mamani
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Júlio Cesar de Carvalho
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | | | - Vanete Thomaz-Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Carlos Ricardo Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| |
Collapse
|
41
|
Combination of calcium and magnesium ions prevents substrate inhibition and promotes biomass and lipid production in thraustochytrids under higher glycerol concentration. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Lutzu GA, Zhang W, Liu T. Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus. ENVIRONMENTAL TECHNOLOGY 2015; 37:1568-1581. [PMID: 26714635 DOI: 10.1080/09593330.2015.1121292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work investigates the potential use of a brewery wastewater as a medium for the cultivation of the oleaginous species Scenedesmus dimorphus with the double aim of removing nutrients and to produce biomass as feedstock for biodiesel. For this purpose, effects of nitrogen (61.8-247 mg L(-1)), phosphorous (1.4-5.5 mg L(-1)), and iron (1.5-6 mg L(-1)) concentrations on growth, nutrients uptake, lipid accumulation, and fatty acids profile of this microalga were investigated. Results showed that brewery wastewater can be used as a culture medium even if nitrogen and phosphorous concentrations should have been modified to improve both biomass (6.82 g L(-1)) and lipid accumulation (44.26%). The analysis revealed a C16-C18 composition of 93.47% fatty acids methyl esters with a relative high portion of unsaturated ones (67.24%). High removal efficiency (>99%) for total nitrogen and total phosphorous and a reduction of up to 65% in chemical oxygen demand were achieved, respectively. The final microalgae biomass, considering its high lipid content as well as its compliance with the standards for the quality of biodiesel, and considering also the high removal efficiencies obtained for macronutrients and organic carbon, makes the brewery wastewater a viable option as a priceless medium for the cultivation of microalgae.
Collapse
Affiliation(s)
- Giovanni Antonio Lutzu
- a Key Laboratory of Biofuel , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science , Qingdao , People's Republic of China
| | - Wei Zhang
- a Key Laboratory of Biofuel , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science , Qingdao , People's Republic of China
| | - Tianzhong Liu
- a Key Laboratory of Biofuel , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science , Qingdao , People's Republic of China
| |
Collapse
|
43
|
Kim K, Shin H, Moon M, Ryu BG, Han JI, Yang JW, Chang YK. Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101. BIORESOURCE TECHNOLOGY 2015; 198:828-835. [PMID: 26457831 DOI: 10.1016/j.biortech.2015.09.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Five technologies, coagulation, electro-flotation (EF), electro-coagulation-flotation (ECF), centrifugation, and membrane filtration, were systematically assessed for their adequacy of harvesting Aurantiochytrium sp. KRS101, a heterotrophic microalgal species that has much higher biomass concentration than photoautotrophic species. Coagulation, EF, and ECF were found to have limited efficiency. Centrifugation was overly powerful to susceptible cells like Aurantiochytrium sp. KRS101, inducing cell rupture and consequently biomass loss of over 13%. Membrane filtration, in particular equipped with an anti-fouling turbulence generator, turned out to be best suited: nearly 100% of harvesting efficiency and low water content in harvested biomass were achieved. With rotation rate increased, high permeate fluxes could be attained even with extremely concentrated biomass: e.g., 219.0 and 135.0 L/m(2)/h at 150.0 and 203.0 g/L, respectively. Dynamic filtration appears to be indeed a suitable means especially to obtain highly concentrated biomass that have no need of dewatering and can be directly processed.
Collapse
Affiliation(s)
- Kyochan Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Heewon Shin
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Myounghoon Moon
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Byung-Gon Ryu
- Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedukdaero, Yuseong-gu, Daejeon 305-353, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ji-Won Yang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
44
|
Australian thraustochytrids: Potential production of dietary long-chain omega-3 oils using crude glycerol. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Ryu BG, Kim W, Heo SW, Kim D, Choi GG, Yang JW. Advanced treatment of residual nitrogen from biologically treated coke effluent by a microalga-mediated process using volatile fatty acids (VFAs) under stepwise mixotrophic conditions. BIORESOURCE TECHNOLOGY 2015; 191:488-495. [PMID: 25881553 DOI: 10.1016/j.biortech.2015.03.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge.
Collapse
Affiliation(s)
- Byung-Gon Ryu
- Environmental and Energy Program, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea; Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedukdaero Yuseong, Daejeon 305-353, Republic of Korea
| | - Woong Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Sung-Woon Heo
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Donghyun Kim
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Gang-Guk Choi
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ji-Won Yang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea; Advanced Biomass R&D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
46
|
Gupta A, Abraham RE, Barrow CJ, Puri M. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. BIORESOURCE TECHNOLOGY 2015; 184:373-378. [PMID: 25497057 DOI: 10.1016/j.biortech.2014.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
In this work, a newly isolated marine thraustochytrid strain, Schizochytrium sp. DT3, was used for omega-3 fatty acid production by growing on lignocellulose biomass obtained from local hemp hurd (Cannabis sativa) biomass. Prior to enzymatic hydrolysis, hemp was pretreated with sodium hydroxide to open the biomass structure for the production of sugar hydrolysate. The thraustochytrid strain was able to grow on the sugar hydrolysate and accumulated polyunsaturated fatty acids (PUFAs). At the lowest carbon concentration of 2%, the PUFAs productivity was 71% in glucose and 59% in the sugars hydrolysate, as a percentage of total fatty acids. Saturated fatty acids (SFAs) levels were highest at about 49% of TFA using 6% glucose as the carbon source. SFAs of 41% were produced using 2% of SH. This study demonstrates that SH produced from lignocellulose biomass is a potentially useful carbon source for the production of omega-3 fatty acids in thraustochytrids, as demonstrated using the new strain, Schizochytrium sp. DT3.
Collapse
Affiliation(s)
- Adarsha Gupta
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Reinu E Abraham
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|
47
|
Prochazkova G, Kastanek P, Branyik T. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer's yeast. BIORESOURCE TECHNOLOGY 2015; 177:28-33. [PMID: 25479390 DOI: 10.1016/j.biortech.2014.11.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
One of the key bottlenecks of the economically viable production of low added value microalgal products (food supplements, feed, biofuels) is the harvesting of cells from diluted culture medium. The main goals of this work were to prepare a novel flocculation agent based on spent brewer's yeast, a brewery by-product, and to test its harvesting efficiency on freshwater Chlorella vulgaris in different environments. The yeast was first autolyzed/hydrolyzed and subsequently chemically modified with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE). Second, optimal dosage of modified spent yeast (MSY) flocculant for harvesting C. vulgaris was determined in culture media of various compositions. It was found that the absence of phosphorus ions decreased (0.4 mg MSY/g biomass), while the presence of algogenic organic matter (AOM) increased (51 mg MSY/g biomass) the required dosage of flocculant as compared to complete mineral medium with phosphorus and without AOM (12 mg MSY/g biomass).
Collapse
Affiliation(s)
- Gita Prochazkova
- Department of Biotechnology, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Petr Kastanek
- EcoFuel Laboratories Ltd., Ocelarska 392/9, 190 00 Prague, Czech Republic
| | - Tomas Branyik
- Department of Biotechnology, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
48
|
Song X, Zang X, Zhang X. Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry. J Oleo Sci 2015; 64:197-204. [PMID: 25748379 DOI: 10.5650/jos.ess14164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The low-cost substrates from food industry, including maize starch hydrolysate and soybean meal hydrolysate, were used to produce docosahexaenoic acid (DHA) by Schizochytrium limacinum OUC88. Glucose derived from maize starch hydrolysate was used as the carbon source and soybean meal hydrolysate as the nitrogen sources. In 10L bioreactor fermentation, by using the soybean meal hydrolysate as the main nitrogen source, the biomass of Schizochytrium limacinum OUC88 reached 85.27 g L(-1), and the yields of DHA was 20.7g L(-1). As a comparison, when yeast extract was used as the main nitrogen source, the yields of biomass and DHA were 68.93 g L(-1) and 13.3 g L(-1), respectively. From the results of this study, these hydrolysates can provide all the nutrients required for high-density cultivation of S. limacinum OUC88 and DHA production, that will improve the economical and competitive efficiency of commercial DHA production.
Collapse
Affiliation(s)
- Xiaojin Song
- College of Marine Life Sciences, Ocean University of China
| | | | | |
Collapse
|
49
|
Yang X, Jin G, Gong Z, Shen H, Bai F, Zhao ZK. Recycling microbial lipid production wastes to cultivate oleaginous yeasts. BIORESOURCE TECHNOLOGY 2015; 175:91-6. [PMID: 25459808 DOI: 10.1016/j.biortech.2014.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 05/10/2023]
Abstract
To reduce wastes and the costs of microbial lipid production, it is imperative to recycle resources, including spent cell mass, mineral nutrients and water. In the present study, lipid production by the oleaginous yeast Rhodosporidium toruloides was used as a model system to demonstrate resources recycling. It was found that the hydrolysates of spent cell mass were good media to support cell growth of various oleaginous yeasts. When serial repitching experiments were performed using 70g/L glucose and the hydrolysates alone as nutrients, it produced 16.6, 14.6 and 12.9g/L lipids, for three successive cycles, while lipid titre remained almost constant when spent water was also recycled. The cell mass hydrolysates could be used as equivalents to the mixture of yeast extract and peptone to support lipid production from corn stalk hydrolysates. Our results showed efficient recycling of lipid production wastes and should be helpful to advance microbial lipid technology.
Collapse
Affiliation(s)
- Xiaobing Yang
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojie Jin
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Zhiwei Gong
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Hongwei Shen
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Zongbao Kent Zhao
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| |
Collapse
|
50
|
Heterotrophic growth of microalgae: metabolic aspects. World J Microbiol Biotechnol 2014; 31:1-9. [DOI: 10.1007/s11274-014-1773-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/04/2014] [Indexed: 01/27/2023]
|