1
|
Deogratias UK, Jin D, Zhang X, Forde NAH, Bhrane GY, Jalloh MA, Wu P. Double-edged effects and regulation mechanism of hydroxylamine in novel nitrogen removal processes: A comprehensive review. JOURNAL OF WATER PROCESS ENGINEERING 2025; 69:106826. [DOI: 10.1016/j.jwpe.2024.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Zhao N, Qi P, Li J, Tan B, Kong W, Lu H. Tracking the nitrogen transformation in saline wastewater by marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox. WATER RESEARCH 2024; 272:122995. [PMID: 39708377 DOI: 10.1016/j.watres.2024.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox (MFeADA) was investigated for nitrogen removal from saline wastewater for the first time. The study demonstrated that varying influent doses of Fe(II), which participate in the Fe cycle, significantly influenced nitrogen removal performance by altering the fate of nitrite. When 50 mg/L Fe(II) was added, the nitrogen removal was mainly performed by the anammox and Fe(II)-driven autotrophic denitratation (FeAD). As the Fe(II) rose to 100-150 mg/L, the anammox, FeAD and Feammox mainly occurred. Optimal nitrogen removal efficiency, reaching 93 %, was achieved at an influent Fe(II) concentration of 150 mg/L. As the Fe(II) reached 250 mg/L, however, nitrate was directly reduced to dinitrogen gas by the excessive Fe(II) through the Fe(II)-driven autotrophic denitrification (FeADN). Candidatus Scalindua (4.1 %), Marinicella (5.3 %) and SM1A02 (31.8 %) were the dominant functional microbes. In addition, the normalized nitrate reductase abundance was about 3.1 times that of nitrite reductase, leading to the occurrence of FeAD, which achieved a stable nitrite supply for marine anammox bacteria. This novel study can promote the practical implementation of the MFeADA process in nitrogen-laden saline wastewater treatment.
Collapse
Affiliation(s)
- Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Panqing Qi
- College of Engineering, Peking University, Beijing 100871, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Bowei Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weichuan Kong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Yuan W, Yang D, Zhang X, Jiang C, Wang D, Zuo J, Xu S, Zhuang X. Enhanced nitrogen removal of the anaerobic ammonia oxidation process by coupling with an efficient nitrate reducing bacterium (Bacillus velezensis M3-1). J Environ Sci (China) 2024; 146:3-14. [PMID: 38969459 DOI: 10.1016/j.jes.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 07/07/2024]
Abstract
Bacillus velezensis M3-1 strain isolated from the sediment of Myriophyllum aquatium constructed wetlands was found to efficiently convert NO3--N to NO2--N, and the requirements for carbon source addition were not very rigorous. This work demonstrates, for the first time, the feasibility of using the synergy of anammox and Bacillus velezensis M3-1 microorganisms for nitrogen removal. In this study, the possibility of M3-1 that converted NO3--N produced by anammox to NO2--N was verified in an anaerobic reactor. The NO3--N reduction ability of M3-1 and denitrifying bacteria in coupling system was investigated under different C/N conditions, and it was found that M3-1 used carbon sources preferentially over denitrifying bacteria. By adjusting the ratio of NH4+-N to NO2--N, it was found that the NO2--N converted from NO3--N by M3-1 participated in the original anammox.The nitrogen removal efficacy (NRE) of the coupled system was increased by 12.1%, compared to the control group anammox system at C/N = 2:1. Functional gene indicated that it might be a nitrate reducing bacterium.This study shows that the nitrate reduction rate achieved by the Bacillus velezensis M3-1 can be high enough for removing nitrate produced by anammox process, which would enable improve nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Wanlian Yuan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongmin Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xupo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cancan Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jialiang Zuo
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Li H, Chen H, He X, Lu Y, Gao H, Song H, Cheng S. Enhancing the nitrogen removal of anammox sludge by setting up novel redox mediators-mediated anammox process. CHEMOSPHERE 2024; 365:143360. [PMID: 39303793 DOI: 10.1016/j.chemosphere.2024.143360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria have been proven weak-electroactive. However, the impact of exogenous anthraquinone-2,6-disulfonate (AQDS) on the anammox activity, although it usually plays essential roles in the life activities of many other electroactive microorganisms, is still unknown. Therefore, this study further explored the influences of AQDS on the anammox activity and the interaction mechanism with anammox bacteria, as well as the behaviors of NH4+, NO2-, and NO3-. The results showed that exogenous AQDS increased the ammonium and total nitrogen removal rates by 12.8% and 10.7%, respectively. Interestingly, the conversion from NO2- to NO3- was significantly reduced after adding AQDS, resulting in a 40.1% reduction in NO3- production of anammox process. In this study, we found for the first time that anammox bacteria could not only carry out the conventional anammox process but also perform a weak redox mediator-mediated anammox process, which could achieve the 1:1 consumption of NH4+ and NO2-. The redox mediator-mediated anammox process was related to an endogenous redox mediator (ERM) synthesized and secreted by anammox bacteria, whose redox midpoint potential was around -0.26 V (vs. Ag/AgCl). After adding AQDS, not only the ERM-mediated anammox process was enhanced, but also two novel redox mediator-mediated anammox processes were introduced, including the AQDS-mediated anammox process and ERM-AQDS-mediated anammox process. These three redox mediator-mediated anammox processes significantly improved the nitrogen removal performance of anammox bacteria and reduced energy consumption. These findings will help reduce the dependence of anammox technology on NO2-, reduce the cost of subsequent treatment of NO3-, and provide new visions for optimizing and applying anammox technology.
Collapse
Affiliation(s)
- Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hua Chen
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyuan He
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Lu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
5
|
Ponce-Jahen SJ, Cercado B, Estrada-Arriaga EB, Rangel-Mendez JR, Cervantes FJ. Anammox with alternative electron acceptors: perspectives for nitrogen removal from wastewaters. Biodegradation 2024; 35:47-70. [PMID: 37436663 PMCID: PMC10774155 DOI: 10.1007/s10532-023-10044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.
Collapse
Affiliation(s)
- Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - Bibiana Cercado
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro Sanfandila, Querétaro, 76703, Pedro Escobedo, Mexico
| | - Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, C.P. 62550, Morelos, Mexico
| | - J Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª Sección, SLP78216, San Luis Potosí, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
6
|
Yu L, Ju CJ, Jing KY, Wang ZY, Niyazi S, Wang Q. The role of anthraquinone-2-sulfonate on intra/extracellular electron transfer of anaerobic nitrate reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117455. [PMID: 36758409 DOI: 10.1016/j.jenvman.2023.117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To improve the electron (e-) transfer efficiency, exogenous redox mediators (RMs) were usually employed to enhance the denitrification efficiency due to the electron shuttling. Previous studies were mainly focused on how to improve the extracellular electron transfer (EET) by exogenous RMs. However, the intracellular electron transfer (IET), another crucial e- transfer pathway, of biological denitrification was scarcely reported, especially for the relationship between the denitrification and IET. In this study, Coenzyme Q, Complexes I, II and III were determined as the core components in the IET chain of denitrification by using four specific respiration chain inhibitors (RCIs). Anthraquinone-2-sulfonate (AQS) partially recovered the IET of denitrification from NO3--N to N2 gas when the RCIs were added. Specifically, the generations of N2 gas were improved by 9.68%-18.25% in the experiments with RCIs and AQS, comparing to that with RCIs. nrfA gene was not detected by reverse transcription-polymerase chain reaction, suggesting that Klebsiella oxytoca strain could not conduct dissimilatory nitrate reduction to ammonium. Nitrate assimilation was considered as the main NH4+-N formation way of K. oxytoca strain. The two e- transfer pathways of denitrification were constructed and the roles of AQS on the IET and EET of denitrification were specifically discussed. The results of this study provided a better understanding of the e- transfer pathways of denitrification, and suggested a potential practical use of exogenous RM on bio-treatment of nitrate-containing wastewater.
Collapse
Affiliation(s)
- Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng-Jia Ju
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Yan Jing
- College of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zi-Yang Wang
- Soil Environment Research Institute, Jiangsu Provincial Academy of Environmental Science, 210003, Nanjing, China
| | - Shareen Niyazi
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
7
|
Zhang B, Wang J, Huang JJ, Razaqpur AG, Han X, Fan L. Promotion of anammox process by different graphene-based materials: Roles of particle size and oxidation degree. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154816. [PMID: 35341875 DOI: 10.1016/j.scitotenv.2022.154816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (RGO) have been applied in the anaerobic ammonium oxidation (anammox) process for nitrogen removal as electron shuttles. However, there is still controversy about their efficacy. In this study, nine graphene-based materials with a gradient of three particle sizes (large (l), medium (m) and small (s) sizes) and oxidation degrees, were used to compare their effects on the anammox process efficiency. The graphene-based materials include GO and its reduced products (RGO250 and RGO800) obtained at temperatures of 250 °C and 800 °C respectively. It was observed that their enhancements on the anammox process were in the order of GO > RGO800 > RGO250. In detail, at the dose of 100 mg/L, specific anammox activities (SAA) were promoted by 6.7% (l-GO), 4.9% (l-RGO800), 11.5% (m-GO), 7.3% (m-RGO800), 13.2% (s-GO) and 8.3% (s-RGO800) compared to the control respectively; while RGO250 with the same dose inhibited the process. In addition, the enhancement of the anammox process was increasing with the decreasing size of GO and RGO800. The nitrite reductase (NIR) activity was greatly increased by up to 24.9% with the presence of GO, which might be attributed to organized and specific electron transport with oxygen functional groups. The finding of hydroxyl on RGO and increasing content of oxygen determined after reaction detected by Fourier transform infrared spectroscopy and energy dispersive spectrometer respectively, indicated the essential condition for RGO's function on transferring electrons for key enzymes in annamox bacteria. Most importantly, O/C (Oxygen/Carbon) ratios of graphene-based materials had greater effects on the promotion of the anammox process than the particle size and electrical conductivity.
Collapse
Affiliation(s)
- Beichen Zhang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jingshu Wang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Abdul Ghani Razaqpur
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Liang Fan
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
8
|
Wang W, Liu Q, Xue H, Wang T, Fan Y, Zhang Z, Wang H, Wang Y. The feasibility and mechanism of redox-active biochar for promoting anammox performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152813. [PMID: 34995590 DOI: 10.1016/j.scitotenv.2021.152813] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Redox-active biochar has been regarded as an effective additive to promote heterotrophic denitrification, yet little is known about the feasibility of adding biochar for promoting anammox performance. In this study, we investigated the effects of different biochar doses (3-14 g/L; 1.5-7.1 g/g VSS) on anammox performance. Results showed that, in a short term (40 days), biochar could enhance anammox nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) by 0-18.0% and 0.2%-11.6%, respectively; this enhancement effect increased at 3-10 g biochar/L assays and reached a plateau at 10-14 g biochar/L assays. The optimal biochar dosage was identified to be 10 g/L (5.1 g/g VSS), with the NRR and NRE being 5.6%-18.0% and 4.0%-11.6% higher than those of the control, respectively. The highest specific anammox activity was simultaneously obtained at 10 g biochar/L assay, being 51% higher than that of the control. It revealed that biochar promoted the secretion of extracellular polymeric substances (increased by 30%-40% compared with that of the control) and increased the ratio of extracellular proteins to polysaccharides as well, directly enhancing the extracellular electron transfer capacity (ETC) of anammox biomass. The increased ETC of anammox biomass would further accelerate the metabolic activities of anammox bacteria, and promote the relative abundance of anammox bacteria, i.e., Ca. Brocadia was enriched by 5.8-12.6 folds than that of the control. These results demonstrate that biochar is feasible to enhance anammox activity and nitrogen removal performance, facilitating to a fast startup and enhanced nitrogen removal of anammox system.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Qinghua Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yufei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zhuoran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Gao Y, Li J, Dong H, Qiang Z. Nitrogen removal mechanism of marine anammox bacteria treating nitrogen-laden saline wastewater in response to ultraviolet (UV) irradiation: High UV tolerance and microbial community shift. BIORESOURCE TECHNOLOGY 2021; 320:124325. [PMID: 33157444 DOI: 10.1016/j.biortech.2020.124325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Salt stress can be naturally overcome by marine anammox bacteria (MAB), while their low growth rate and sensitivity to operational conditions are still challenges for the application of anammox. To enhance the enrichment of MAB and decipher the effects of ultraviolet (UV) irradiation on MAB, UV was introduced in the nitrogen removal of MAB treating nitrogen-laden saline wastewater for the first time. The results indicated that MAB were resistant to a fairly high UV-C dose, 12000 mJ/cm2. Their relative abundance was enhanced by 1.2 folds under 12000 mJ/cm2 UV-C. However, the relative abundance of Actinobacteria, Acidobacteria, Chloroflexi and Marinicella were greatly dropped with enhanced UV-C dose. The tolerance mechanism was diversified, e.g. excessive extracellular polymeric substances, special structure of MAB and interspecific competition/cooperation. Although further study was still needed, the findings shed a light on MAB enrichment and exploited great potentials of MAB in nitrogen-laden saline wastewater treatment.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Zhang X, Xia Y, Wang C, Li J, Wu P, Ma L, Wang Y, Wang Y, Da F, Liu W, Xu L. Enhancement of nitrite production via addition of hydroxylamine to partial denitrification (PD) biomass: Functional genes dynamics and enzymatic activities. BIORESOURCE TECHNOLOGY 2020; 318:124274. [PMID: 33096441 DOI: 10.1016/j.biortech.2020.124274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the activity of partial denitrification (PD) biomass/key enzymes, functional gene expressions in response to 0 ~ 50 mg/L hydroxylamine (NH2OH) addition. Results indicated that NH2OH contributed to nitrite (NO2--N) production, facilitating the maximum increase of nitrate (NO3--N) to NO2--N transformation ratio to 80.47 ± 2.82%, leading to 2.56-fold NO2--N higher than those of control. The observed transient inhibitory effect on NO3--N reduction process was attributed by high-level NH2OH (35 ~ 50 mg/L). Enzymatic assays revealed the enhanced activity of both NO3--N and NO2--N reductase while the former showed obvious superiority which led to high NO2--N accumulation. These results were further confirmed by the corresponding functional genes (narG, napA, nirS and nirK). Besides, negative influence of NH2OH addition was limited to PD aggregates, due to the increasing secretion of extracellular polymeric substances (EPS) as well as proteins/polysaccharides ratios in tightly-bound structure of EPS.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yunkang Xia
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Jiajia Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China.
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuguang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Fanghua Da
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| |
Collapse
|
11
|
Liu W, Lian J, Guo J, Guo Y, Yue L, Niu Y, Duan L. Perchlorate bioreduction by anaerobic granular sludge immobilised with Fe-HA complex: Performance, extracellular polymeric substances and microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122898. [PMID: 32464563 DOI: 10.1016/j.jhazmat.2020.122898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
An iron-humic acid (Fe-HA) complex was used as a redox mediator in perchlorate (ClO4-) bioreduction. Bioreduction performance, extracellular polymeric substances (EPS), and microbial community structure were comprehensively explored using different types of anaerobic granular sludge (AnGS) immobilised without the Fe-HA complex (AnGSCON) and with the Fe-HA complex (AnGSFH). The ClO4- was completely removed by AnGSCON by day 20, while the ClO4- was completely removed by AnGSFH by day 6. The AnGS immobilised with the Fe-HA complex significantly increased the ClO4- bioreduction. The acceleration of ClO4- bioreduction was also explained by the mixed liquor volatile suspended solids (MLVSS), MLVSS/mixed liquor suspended solids (MLSS), EPS composition, and microbial community structure. Compared with AnGSCON, the MLVSS and MLVSS/MLSS of the AnGSFH increased 1.4- and 1.2-fold, respectively. Humic substances in the EPS were stimulated by the Fe-HA complex. The microbial community structure analysis indicated that perchlorate and quinone reducing bacteria were enriched by the Fe-HA complex. Based on the analysis, the ClO4- bioreduction mechanism of the AnGSFH was revealed because the Fe-HA complex in the AnGS increased the biomass concentration, biological activity, and redox-active mediator and shifted the microbial community structure.
Collapse
Affiliation(s)
- Weilong Liu
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China; China Nuclear Power Engineering Co., Ltd. Hebei Branch, Yuhua East Road 56#, Shijiazhuang, 050019, PR China
| | - Jing Lian
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China.
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin, 300384, PR China.
| | - Yankai Guo
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| | - Lin Yue
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| | - Yanyan Niu
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| | - Lili Duan
- School of Environmental Science and Engineering Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang, 050018, PR China
| |
Collapse
|
12
|
Liu L, Ji M, Wang F, Yan Z, Tian Z. Response of nitrogen removal performance, functional genes abundances and N-acyl-homoserine lactones release to carminic acid of anammox biomass. BIORESOURCE TECHNOLOGY 2020; 299:122567. [PMID: 31869627 DOI: 10.1016/j.biortech.2019.122567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Carminic acid (CA) can serve as a redox mediator and influence the electron transfer process. CA dosages of 0-5 mg/L were added to anaerobic ammonia oxidation (anammox) biomass. The results illustrated that CA not only reduced the inorganic nitrogen removal efficiency, but also decreased the nitrogen removal rate. The deterioration of nitrogen removal performance was due to the excess production of nitrate-nitrogen. The concentration of extracellular polymeric substances showed a decrease together with a decline in N-acyl-homoserine lactones release. CA addition decreased the activity of anammox bacteria while increasing the nitrifying potential. Quantitative reverse transcription polymerase chain reaction showed a decrease in anammox functional genes (nirS, hzo, and hzsB) and promotion of the expression of the nxrB gene, which corresponded with a decrease in anammox bacteria activity and the improvement of nitrifying potential. As a result, CA should not be added to anammox biomass.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Zhao Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhongke Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
13
|
Liu L, Ji M, Wang F, Tian Z, Wang T, Wang S, Wang S, Yan Z. Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated- L-homoserine lactones (AHLs) release in the anammox system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135285. [PMID: 31822421 DOI: 10.1016/j.scitotenv.2019.135285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Fulvic acid (FA) can serve as electron shuttles between bacteria and electron acceptors. It explored the short-term effect of FA dose on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release change in the anaerobic ammonium oxidation (anammox) system. The results demonstrated that the total inorganic nitrogen removal efficiency increased with the FA dosages from 0.5 mM to 1 mM. FA addition improved anammox bacteria activity, together with extracellular polymeric substances production. FA addition from 0.5 mM to 1 mM stimulated AHLs release in both water and biomass phases, which indicated that the quorum sensing could be improved. These findings revealed that the addition of FA could improve quorum sensing and then enhance nitrogen removal performance.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| | - Zhongke Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Tianyi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Shuya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Siyu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Zhao Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
14
|
He C, Wei L, Lai F, Zhou C, Ni G, Hu J, Yin X. Immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal. RSC Adv 2019; 9:41351-41360. [PMID: 35540042 PMCID: PMC9076434 DOI: 10.1039/c9ra05525h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal was investigated. Three redox mediators (RMs), namely, 2-methyl-1,4-naphthoquinone (ME), anthraquinone (AQ) and 1-dichloroanthraquinone (1-AQ) were catalyzed to reduce nitrate to only nitrite by denitrification to integrate with the anammox process for nitrogen removal. First, our experimental results showed that there were 35.8, 42.2 and 53.0 mg-N L−1 nitrite accumulation values with the addition of ME, AQ and 1-AQ, respectively, at the dose of 75 µM by the denitrification process at C/N = 2, which were 25.6%, 48.2% and 86.1% higher than that of the control without the addition of any RMs. Nitrate reductase activities were higher than that of nitrite reductase affected by RMs, which was the main reason for nitrite accumulation and further maintenance of the anammox process. Second, owing to the stable nitrite production by the partial denitrifying biomass with the addition of 1-AQ, the nitrogen removal rate of the reactor that integrated the partial denitrification and anammox process reached 1788.36 g-N m−3 d−1 only using ammonia and nitrate as the influent nitrogen resource in the long-term operation. Third, the 16S rDNA sequencing results demonstrated that Yersinia frederiksenii and Thauera were the primary groups of the denitrifying biomass, which were considered the dominant partial denitrification species. In this study, immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal was investigated.![]()
Collapse
Affiliation(s)
- Chuan He
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Li'e Wei
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Faying Lai
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Chunhuo Zhou
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Guorong Ni
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Jianmin Hu
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 PR China
| | - Xin Yin
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China .,Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 PR China
| |
Collapse
|
15
|
Gu L, Huang B, Han F, Pan B, Xu Z, Gu X, Xu H, Pan X, Dionysiou DD. Spontaneous changes in dissolved organic matter affect the bio-removal of steroid estrogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:616-624. [PMID: 31279207 DOI: 10.1016/j.scitotenv.2019.06.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Microbial action is the main pathway removing steroid estrogens (SEs) from both aerobic and anaerobic natural waters. The rate is influenced by other active substances present, particularly dissolved organic matter (DOM). DOM in natural surface waters has unstable components which undergo spontaneous photochemical oxidation, biological oxidation, chemical oxidation changes. How these changes influence the biosorption and bio-removal of SEs was the subject of this research. Photo oxidation-induced DOM increased the proportion of the fluorescence in area V, but biological oxidation and chemical oxidation caused fluorescence area V to decrease. All three oxidation processes can reduce the proportions of molecular weight (MW) > 5 kg·mol-1 and increase the proportions of MW < 5 kg·mol-1. Both the electron transfer capacity decreased monotonically with photo oxidation and chemical oxidation ageing, but biological oxidation ageing increased them. 17β-estradiol (E2) was the SEs used in the experiments. In aerobic conditions, fresh river humic acids (RHA) and aged RHA had the stronger mediating effect on the rate of E2 bio-removal under aerobic conditions. Its greater effectiveness was probably related to its binding with E2. Binding, biosorption of E2 and bio-removal of E2 were strongly positively correlated with the elemental C (R > 0.8, p ≤ 0.01) and SUVA254 (R > 0.8, p ≤ 0.01) by correlation matrix. Besides, fresh river fulvic acids (RFA) and aged RFA had the bigger mediating effect on E2 bio-removal under anaerobic conditions, and this imply that changes in aged DOM affected by other electron transfer groups in an anaerobic water environment. In anaerobic conditions, biosorption of E2 and binding action could cluster together with SUVA254, p(v), and 1 kg·mol-1 < MW < 5 kg·mol-1 by redundancy analysis, and but bio-removal of E2 could be well polymerized with EAC, EDC, p(iv), and MW > 5 kg·mol-1.
Collapse
Affiliation(s)
- Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China.
| | - Fengxia Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Huayu Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
16
|
Effects of NaCl and phenol on anammox performance in mainstream reactors with low nitrogen concentration and low temperature. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Tomaszewski M, Cema G, Ciesielski S, Łukowiec D, Ziembińska-Buczyńska A. Cold anammox process and reduced graphene oxide - Varieties of effects during long-term interaction. WATER RESEARCH 2019; 156:71-81. [PMID: 30904712 DOI: 10.1016/j.watres.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Because of its energy efficiency, the anaerobic ammonium oxidation (anammox) process has been recognized as the most promising biological nitrogen removal process, but its implementation in mainstream wastewater treatment plants is limited by its relatively high optimal temperature (30 °C). Recently, it was shown that during short-term batch experiments, reduced graphene oxide (RGO) displayed accelerated reaction activity at low temperatures (10-15 °C). In this study, the long-term effects of RGO on the low-temperature anammox process in a sequencing batch reactor (SBR), are studied for the first time, including different methods of interaction. The results presented here show that RGO can stimulate anammox activity up to 17% through two factors: bacterial growth stimulation, which was especially significant at higher temperatures (>15 °C), and an increase of the anammox reaction rate, which occurred only below 15 °C. The bacterial community structure was not influenced by addition of RGO. Moreover, after incubation in an anammox bioreactor, RGO showed signs of degradation and chemical changes as evidenced by the presence of oxygen and calcium on its surface. According to the literature and the obtained results, it is proposed that RGO is oxidized and oxygen is reduced by the organic mediator that is involved in the enzymatic reactions. However, activated sludge is a very complex structure created by numerous, undefined microorganisms, which makes it difficult to determine the exact oxidation mechanism.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | - Slawomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| | - Dariusz Łukowiec
- Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18a, 44-100 Gliwice, Poland
| | | |
Collapse
|
18
|
Tomaszewski M, Cema G, Ziembińska-Buczyńska A. Short-term effects of reduced graphene oxide on the anammox biomass activity at low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:206-211. [PMID: 30056228 DOI: 10.1016/j.scitotenv.2018.07.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient process for nitrogen removal from wastewater, but its common use is limited by its relatively high optimal temperature (30 °C). One of the major bottlenecks of the implementation of mainstream PN/A process is the low activity of the anammox bacteria at low temperature. Due to this reason over the past years, numerous researchers have attempted to overcome this limitation. Recently it was shown that the reduced graphene oxide (RGO) can accelerate the anammox bacteria activity. However all these studies were performed at high temperatures (over 30 °C). Thus, in this study, supporting the anammox process at low temperatures (10-30 °C) by the RGO was investigated for the first time. The statistical analysis confirmed that RGO significantly affects the anammox activity. The stimulation effect of RGO on the anammox bacteria activity is of particular importance at low temperatures, when drastic decrease in process activity is observed at temperatures below 15 °C. The short-term experimental results demonstrated stimulation of the anammox activity at 13 °C, up to 28% by 15 mg RGO/L, but concentrations above 40 mg RGO/L caused the process inhibition, up to 30% with 50 mg RGO/L. However, the effect of RGO probably depends on the nanomaterial dose per biomass unit and the optimal range of this value was evaluated as 20 to 45 mg RGO/g VSS (volatile suspended solids).
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | | |
Collapse
|
19
|
Zhang ZZ, Cheng YF, Xu LZJ, Bai YH, Xu JJ, Shi ZJ, Shen YY, Jin RC. Evaluating the effects of metal oxide nanoparticles (TiO 2, Al 2O 3, SiO 2 and CeO 2) on anammox process: Performance, microflora and sludge properties. BIORESOURCE TECHNOLOGY 2018; 266:11-18. [PMID: 29940437 DOI: 10.1016/j.biortech.2018.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/12/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of engineered metal oxide nanoparticles (MONPs) in consumer products raises great concerns about their environmental impacts, but their potential impacts on anaerobic ammonium oxidation (anammox) process in wastewater treatment remain unclear. In this study, the presence of MONPs (1, 50, 200 mg L-1) exhibited no visible effects on the nitrogen removal performance of anammox reactors, but high levels (200 mg L-1) of SiO2NPs, Al2O3NPs and CeO2NPs had a distinct effect on shaping the anammox community. Long-term exposure of MONPs caused different responses in the relative abundance of Ca. Kuenenia, the level of functional gene HzsA and the activities of three key enzymes involved in anammox metabolism, but no significant inhibition effects on specific anammox activity were detected. Overall, the effects of MONPs on anammox community structure and sludge properties depended on their types and levels and followed the order SiO2 > CeO2 > Al2O3 > TiO2.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yang-Yang Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
20
|
Wang S, Guo J, Lian J, Ngo HH, Guo W, Liu Y, Song Y. Rapid start-up of the anammox process by denitrifying granular sludge and the mechanism of the anammox electron transport chain. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Qiao S, Zheng N, Tian T, Yu C, Zhou J. Effects of short-term exposure to linear anionic surfactants (SDBS, SLS and SDS) on anammox biomass activity. RSC Adv 2016. [DOI: 10.1039/c6ra06238e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work demonstrates the feasibility of nitrogen removal from wastewater containing linear anionic surfactants, including sodium dodecyl benzene sulfonate, sodium lauryl sulfate and sodium dodecyl sulfonate, by using the anammox process.
Collapse
Affiliation(s)
- Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Nan Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Cong Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China)
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
22
|
Xu Q, Guo J, Niu C, Lian J, Hou Z, Guo Y, Li S. The denitrification characteristics of novel functional biocarriers immobilised by non-dissolved redox mediators. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|