1
|
Ruan L, Wu H, Wu S, Zhou L, Wu S, Shang C. Optimizing the Conditions of Pretreatment and Enzymatic Hydrolysis of Sugarcane Bagasse for Bioethanol Production. ACS OMEGA 2024; 9:29566-29575. [PMID: 39005808 PMCID: PMC11238294 DOI: 10.1021/acsomega.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
The agricultural waste sugarcane bagasse (SCB) is a kind of plentiful biomass resource. In this study, different pretreatment methods (NaOH, H2SO4, and sodium percarbonate/glycerol) were utilized and compared. Among the three pretreatment methods, NaOH pretreatment was the most optimal method. Response surface methodology (RSM) was utilized to optimize NaOH pretreatment conditions. After optimization by RSM, the solid yield and lignin removal were 54.60 and 82.30% under the treatment of 1% NaOH, a time of 60 min, and a solid-to-liquid ratio of 1:15, respectively. Then, the enzymolysis conditions of cellulase for NaOH-treated SCB were optimized by RSM. Under the optimal enzymatic hydrolysis conditions (an enzyme dose of 18 FPU/g, a time of 64 h, and a solid-to-liquid ratio of 1:30), the actual yield of reducing sugar in the enzyme-treated hydrolysate was 443.52 mg/g SCB with a cellulose conversion rate of 85.33%. A bacterium, namely, Bacillus sp. EtOH, which produced ethanol and Baijiu aroma substances, was isolated from the high-temperature Daqu of Danquan Baijiu in our previous study. At last, when the strain EtOH was cultured for 36 h in a fermentation medium (reducing sugar from cellulase-treated SCB hydrolysate, yeast extract, and peptone), ethanol concentration reached 2.769 g/L (0.353%, v/v). The sugar-to-ethanol and SCB-to-ethanol yields were 13.85 and 11.81% in this study, respectively. In brief, after NaOH pretreatment, 1 g of original SCB produced 0.5460 g of NaOH-treated SCB. Then, after the enzymatic hydrolysis, reducing sugar yield (443.52 mg/g SCB) was obtained. Our study provided a suitable method for bioethanol production from SCB, which achieved efficient resource utilization of agricultural waste SCB.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Haifeng Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shiya Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Lifei Zhou
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Shangxin Wu
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| | - Changhua Shang
- Key Laboratory of Ecology
of Rare and Endangered Species and Environmental Protection (Guangxi
Normal University), Ministry of Education & Guangxi Key Laboratory
of Landscape Resources Conservation and Sustainable Utilization in
Lijiang River Basin, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
2
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Crit Rev Biotechnol 2024; 44:218-235. [PMID: 36592989 DOI: 10.1080/07388551.2022.2151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Poonam Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | | | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, Brazil
| |
Collapse
|
4
|
Jiang J, Wang Y, Jiang Z, Yan Q, Yang S. High-level production of a novel alginate lyase (FsAly7) from Flammeovirga sp. for efficient production of low viscosity soluble dietary fiber from sodium alginate. Carbohydr Polym 2024; 326:121605. [PMID: 38142093 DOI: 10.1016/j.carbpol.2023.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Sodium alginate is one of the most abundant sustainable gum source for dietary fiber production. However, the preparation efficiencies of low viscosity soluble dietary fiber from sodium alginate remain low. Here, a novel alginate lyase gene (FsAly7) from Flammeovirga sp. was identified and high-level expressed in Pichia pastoris for low viscosity soluble dietary fiber production. The highest enzyme production of 3050 U mL-1 was achieved, which is by far the highest yield ever reported. FsAly7 was used for low viscosity soluble dietary fiber production from sodium alginate, and the highest degradation rate of 85.5 % was achieved under a high substrate content of 20 % (w/v). The molecular weight of obtained soluble dietary fiber converged to 10.75 kDa. FsAly7 catalyzed the cleavage of glycosidic bonds in alginate chains with formation of unsaturated non-reducing ends simultaneously in the degradation process, thus altered the chemical structures of hydrolysates. The soluble dietary fiber exhibited excellent properties, including low viscosity, high oil adsorption capacity activity (2.20 ± 0.03 g g-1) and high emulsifying activity (60.05 ± 2.96 mL/100 mL). This investigation may provide a novel alginate lyase catalyst as well as a solution for the efficient production of low viscosity soluble dietary fiber from sodium alginate.
Collapse
Affiliation(s)
- Jun Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yue Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
5
|
Enzymatic Hydrolysis Strategies for Cellulosic Sugars Production to Obtain Bioethanol from Eucalyptus globulus Bark. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cellulosic sugars production for the valorization of lignocellulosic biomass residues in an industrial site has economic benefits and is promising if integrated into a biorefinery. Enzymatic hydrolysis (EH) of pretreated Eucalyptus globulus bark, an industrial residue of low-economic value widely available in Portuguese pulp and paper mills, could be an excellent approach to attain resource circularity and pulp mill profitability. This work evaluated the potential for improving cellulosic sugars concentrations by operating with high solids loading and introducing the additives Triton X-100, PEG 4000 and Tween 80 using a commercial enzymatic consortium with a dosage of 25 FPU gcarbohydrates−1. Additives did not improve enzymatic hydrolysis performance, but the effect of increasing solids loading to 14% (w/v) in batch operation was accomplished. The fed-batch operation strategy was investigated and, when starting with 11% (w/v) solids loading, allowed the feeding of 3% (w/v) fresh feedstock sequentially at 2, 4 and 6 h, attaining 20% (w/v) total solids loading. After 24 h of operation, the concentration of cellulosic sugars reached 161 g L−1, corresponding to an EH conversion efficiency of 76%. Finally, the fermentability of the fed-batch hydrolysate using the Ethanol Red® strain was evaluated in a 5 L bioreactor scale. The present results demonstrate that Eucalyptus globulus bark, previously pretreated by kraft pulping, is a promising feedstock for cellulosic sugars production, allowing it to become the raw material for feeding a wide range of bioprocesses.
Collapse
|
6
|
Dey P, Chakrabortty S, Haldar D, Rangarajan V, Ashok S. On-site enriched production of cellulase enzyme using rice straw waste and its hydrolytic performance evaluation through systematic dynamic modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36710-36727. [PMID: 36562976 DOI: 10.1007/s11356-022-24797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The application of on-site produced cellulolytic enzymes in place of commercial enzymes towards hydrolytic preparations of reducing sugars using inexpensive lignocellulosic wastes is considered the most efficient strategy to accomplish a cost-effective biofuel production process. Along with improved production, intrinsic and systematic performance evaluation of the produced enzyme during the hydrolysis process through kinetic intervention remains a crucial requirement for achieving the improved performance of the process. With this motivation, the present study primarily deals with the nutritionally optimized production strategy of cellulases from rice straw (RS) waste using Trichoderma reesei (MTCC 164). The highest cellulase production was obtained 8.09 ± 0.32 g/l in batch mode at optimized combinations of 3.5% (w/v) RS inducer, 3.0% (w/v) lactose, and 1.5% (w/v) peptone. Production was further improved through pH-regulated (pH 5.5 to 6.5) fed-batch fermentations. The enzyme produced at pH 6 was considered for hydrolysis studies at 4 to 10% (w/w) solid loading due to reasonable exoglucanase, endoglucanase, and maximum β-glucosidase activity levels of 9.3 U/ml, 3.87 U/ml, and 2.65 U/ml respectively. Multi-reaction systematic kinetic modeling was implemented to evaluate enzyme performance during hydrolysis, and the values of inhibitory kinetic parameters (K2r = 7.1 < K1r = 18.5 < K3r = 276.6) suggested that sequential conversion of cellulose to glucose by existing enzyme components was more dominant over direct conversion.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India.
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, 403726, India
| | - Sowmya Ashok
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| |
Collapse
|
7
|
Characterization of a New Glucose-Tolerant GH1 β-Glycosidase from Aspergillus fumigatus with Transglycosylation Activity. Int J Mol Sci 2023; 24:ijms24054489. [PMID: 36901919 PMCID: PMC10003650 DOI: 10.3390/ijms24054489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Concern over environmental impacts has spurred many efforts to replace fossil fuels with biofuels such as ethanol. However, for this to be possible, it is necessary to invest in other production technologies, such as second generation (2G) ethanol, in order to raise the levels of this product and meet the growing demand. Currently, this type of production is not yet economically feasible, due to the high costs of the enzyme cocktails used in saccharification stage of lignocellulosic biomass. In order to optimize these cocktails, the search for enzymes with superior activities has been the goal of several research groups. For this end, we have characterized the new β-glycosidase AfBgl1.3 from A. fumigatus after expression and purification in Pichia pastoris X-33. Structural analysis by circular dichroism revealed that increasing temperature destructured the enzyme; the apparent Tm value was 48.5 °C. The percentages of α-helix (36.3%) and β-sheet (12.4%) secondary structures at 25 °C were predicted. Biochemical characterization suggested that the optimal conditions for AfBgl1.3 were pH 6.0 and temperature of 40 °C. At 30 and 40 °C, the enzyme was stable and retained about 90% and 50% of its activity, respectively, after pre-incubation for 24 h. In addition, the enzyme was highly stable at pH between 5 and 8, retaining over 65% of its activity after pre-incubation for 48 h. AfBgl1.3 co-stimulation with 50-250 mM glucose enhanced its specific activity by 1.4-fold and revealed its high tolerance to glucose (IC50 = 2042 mM). The enzyme was active toward the substrates salicin (495.0 ± 49.0 U mg-1), pNPG (340.5 ± 18.6 U mg-1), cellobiose (89.3 ± 5.1 U mg-1), and lactose (45.1 ± 0.5 U mg-1), so it had broad specificity. The Vmax values were 656.0 ± 17.5, 706.5 ± 23.8, and 132.6 ± 7.1 U mg-1 toward p-nitrophenyl-β-D-glucopyranoside (pNPG), D-(-)-salicin, and cellobiose, respectively. AfBgl1.3 displayed transglycosylation activity, forming cellotriose from cellobiose. The addition of AfBgl1.3 as a supplement at 0.9 FPU/g of cocktail Celluclast® 1.5L increased carboxymethyl cellulose (CMC) conversion to reducing sugars (g L-1) by about 26% after 12 h. Moreover, AfBgl1.3 acted synergistically with other Aspergillus fumigatus cellulases already characterized by our research group-CMC and sugarcane delignified bagasse were degraded, releasing more reducing sugars compared to the control. These results are important in the search for new cellulases and in the optimization of enzyme cocktails for saccharification.
Collapse
|
8
|
Reena R, Alphy MP, Reshmy R, Thomas D, Madhavan A, Chaturvedi P, Pugazhendhi A, Awasthi MK, Ruiz H, Kumar V, Sindhu R, Binod P. Sustainable valorization of sugarcane residues: Efficient deconstruction strategies for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 361:127759. [PMID: 35961508 DOI: 10.1016/j.biortech.2022.127759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The global climate crisis and the ongoing increase in fossil-based fuels have led to an alternative solution of using biomass for fuel production. Sugarcane bagasse (SCB) is an agricultural residue with a global production of more than 100 million metric tons and it has various applications in a biorefinery concept. This review brings forth the composition, life cycle assessment, and various pretreatments for the deconstruction techniques of SCB for the production of valuable products. The ongoing research in the production of biofuels, biogas, and electricity utilizing the bagasse was elucidated. SCB is used in the production of carboxymethyl cellulose, pigment, lactic acid, levulinic acid, and xylooligosaccharides and it has prospective in meeting the demand for global energy and environmental sustainability.
Collapse
Affiliation(s)
- Rooben Reena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689 122, Kerala, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India; School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Hector Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Vinod Kumar
- Fermentation Technology Division, CSIR - Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, J & K, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
9
|
Gao W, Li Z, Liu T, Wang Y. Production of high-concentration fermentable sugars from lignocellulosic biomass by using high solids fed-batch enzymatic hydrolysis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Nwamba MC, Song G, Sun F, Mukasekuru MR, Ren H, Zhang Q, Cao T, Wang H, Sun H, Hong J. Efficiency enhancement of a new cellulase cocktail at low enzyme loading for high solid digestion of alkali catalyzed atmospheric glycerol organosolvent pre-treated sugarcane bagasse. BIORESOURCE TECHNOLOGY 2021; 338:125505. [PMID: 34273627 DOI: 10.1016/j.biortech.2021.125505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The acquisition during biomass saccharification of elevated levels of fermentable sugars with lower cellulase concentration is central to ensuring an economically viable and industrially relevant hydrolytic process. Thus, using a new cellulase preparation (LT4) at low cellulase loading (2 mg protein/g dried substrate), this study assessed the possible boosting effect of integrating accessory enzymes and additives on high-solids hydrolysis of sugarcane bagasse via fed-batch feeding. Hydrolysis which commenced with initial 8% solids loading and subsequent substrate feeding of 4% solids at 6 h, 18 h, and 24 h respectively, proved optimal for the 20% high-solids saccharification producing 158 g/L total sugars and 83% glucose yield after 72 h with the combined optimized additives and accessory enzymes. The results obtained indicate that the integration of accessory enzymes and additives offers a benignant approach to minimizing the enzyme load and cost of high solids saccharification of lignocellulosic heteropolymers while also boosting enzyme hydrolytic performance.
Collapse
Affiliation(s)
- Marknoah Chinenye Nwamba
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Marie Rose Mukasekuru
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhang
- Vland Biotech Ltd Co., Qingdao 266102, Shandong Province, China
| | - Tishuang Cao
- Vland Biotech Ltd Co., Qingdao 266102, Shandong Province, China
| | - Huaming Wang
- Vland Biotech Ltd Co., Qingdao 266102, Shandong Province, China
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Baral P, Kumar V, Agrawal D. Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform. Crit Rev Biotechnol 2021; 42:873-891. [PMID: 34530648 DOI: 10.1080/07388551.2021.1973363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the techno-commercial success of any lignocellulosic biorefinery, the cost-effective production of fermentable sugars for the manufacturing of bio-based products is indispensable. High-solids enzymatic saccharification (HSES) is a straightforward approach to develop an industrially deployable sugar platform. Economic incentives such as reduced capital and operational expenditure along with environmental benefits in the form of reduced effluent discharge makes this strategy more lucrative for exploitation. However, HSES suffers from the drawback of non-linear and disproportionate sugar yields with increased substrate loadings. To overcome this bottleneck, researchers tend to perform HSES at high enzyme loadings. Nonetheless, the production costs of cellulases are one of the key contributors that impair the entire process economics. This review highlights the relentless efforts made globally to attain a high-titer of sugars and their fermentation products by performing efficient HSES at low cellulase loadings. In this context, technical innovations such as advancements in new pretreatment strategies, next-generation cellulase cocktails, additives, accessory enzymes, novel reactor concepts and enzyme recycling studies are especially showcased. This review further covers new insights, learnings and prospects in the area of lignocellulosic bioprocessing.
Collapse
Affiliation(s)
- Pratibha Baral
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| |
Collapse
|
12
|
Improved high solids loading enzymatic hydrolysis and fermentation of cotton microdust by surfactant addition and optimization of pretreatment. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Yunan NAM, Shin TY, Sabaratnam V. Upcycling the Spent Mushroom Substrate of the Grey Oyster Mushroom Pleurotus pulmonarius as a Source of Lignocellulolytic Enzymes for Palm Oil Mill Effluent Hydrolysis. J Microbiol Biotechnol 2021; 31:823-832. [PMID: 33958505 PMCID: PMC9705832 DOI: 10.4014/jmb.2103.03020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Mushroom cultivation along with the palm oil industry in Malaysia have contributed to large volumes of accumulated lignocellulosic residues that cause serious environmental pollution when these agroresidues are burned. In this study, we illustrated the utilization of lignocellulolytic enzymes from the spent mushroom substrate of Pleurotus pulmonarius for the hydrolysis of palm oil mill effluent (POME). The hydrolysate was used for the production of biohydrogen gas and enzyme assays were carried out to determine the productivities/activities of lignin peroxidase, laccase, xylanase, endoglucanase and β-glucosidase in spent mushroom substrate. Further, the enzyme cocktails were concentrated for the hydrolysis of POME. Central composite design of response surface methodology was performed to examine the effects of enzyme loading, incubation time and pH on the reducing sugar yield. Productivities of the enzymes for xylanase, laccase, endoglucanase, lignin peroxidase and β-glucosidase were 2.3, 4.1, 14.6, 214.1, and 915.4 U g-1, respectively. A maximum of 3.75 g/l of reducing sugar was obtained under optimized conditions of 15 h incubation time with 10% enzyme loading (v/v) at a pH of 4.8, which was consistent with the predicted reducing sugar concentration (3.76 g/l). The biohydrogen cumulative volume (302.78 ml H2.L-1 POME) and 83.52% biohydrogen gas were recorded using batch fermentation which indicated that the enzymes of spent mushroom substrate can be utilized for hydrolysis of POME.
Collapse
Affiliation(s)
- Nurul Anisa Mat Yunan
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Yee Shin
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Corresponding author Phone/Fax: +60379676753 E-mail:
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Enzymatic Saccharification with Sequential-Substrate Feeding and Sequential-Enzymes Loading to Enhance Fermentable Sugar Production from Sago Hampas. Processes (Basel) 2021. [DOI: 10.3390/pr9030535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sago hampas composed of a high percentage of polysaccharides (starch, cellulose and hemicellulose) that make it a suitable substrate for fermentation. However, the saccharification of sago hampas through the batch process is always hampered by its low sugar concentration due to the limitation of the substrate that can be loaded into the system. Increased substrate concentration in the system reduces the ability of enzyme action toward the substrate due to substrate saturation, which increases viscosity and causes inefficient mixing. Therefore, sequential-substrate feeding has been attempted in this study to increase the amount of substrate in the system by feeding the substrate at the selected intervals. At the same time, sequential-enzymes loading has been also evaluated to maximize the amount of enzymes loaded into the system. Results showed that this saccharification with sequential-substrate feeding and sequential-enzymes loading has elevated the solid loading up to 20% (w/v) and reduced the amount of enzymes used per substrate input by 20% for amylase and 50% for cellulase. The strategies implemented have enhanced the fermentable sugar production from 80.33 g/L in the batch system to 119.90 g/L in this current process. It can be concluded that sequential-substrate feeding and sequential-enzymes loading are capable of increasing the total amount of substrate, the amount of fermentable sugar produced, and at the same time maximize the amount of enzymes used in the system. Hence, it would be a promising solution for both the economic and waste management of the sago hampas industry to produce value-added products via biotechnological means.
Collapse
|
15
|
Cheng MH, Kadhum HJ, Murthy GS, Dien BS, Singh V. High solids loading biorefinery for the production of cellulosic sugars from bioenergy sorghum. BIORESOURCE TECHNOLOGY 2020; 318:124051. [PMID: 32889119 DOI: 10.1016/j.biortech.2020.124051] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 05/16/2023]
Abstract
A novel process applying high solids loading in chemical-free pretreatment and enzymatic hydrolysis was developed to produce sugars from bioenergy sorghum. Hydrothermal pretreatment with 50% solids loading was performed in a pilot scale continuous reactor followed by disc refining. Sugars were extracted from the enzymatic hydrolysis at 10% to 50% solids content using fed-batch operations. Three surfactants (Tween 80, PEG 4000, and PEG 6000) were evaluated to increase sugar yields. Hydrolysis using 2% PEG 4000 had the highest sugar yields. Glucose concentrations of 105, 130, and 147 g/L were obtained from the reaction at 30%, 40%, and 50% solids content, respectively. The maximum sugar concentration of the hydrolysate, including glucose and xylose, obtained was 232 g/L. Additionally, the glucose recovery (73.14%) was increased compared to that of the batch reaction (52.74%) by using two-stage enzymatic hydrolysis combined with fed-batch operation at 50% w/v solids content.
Collapse
Affiliation(s)
- Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haider Jawad Kadhum
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, USA; College of Agriculture, Al-Qasim Green University, Babylon, Iraq
| | - Ganti S Murthy
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, USA; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology-Indore, India
| | - Bruce S Dien
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Enhanced Enzymatic Hydrolysis and Structure Properties of Bamboo by Moderate Two-Step Pretreatment. Appl Biochem Biotechnol 2020; 193:1011-1022. [PMID: 33237555 DOI: 10.1007/s12010-020-03472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
A moderate two-step pretreatment method was investigated to improve the enzymatic saccharification of bamboo residues. SEM and FTIR were employed to characterize the structure changes. Fed-batch enzymatic saccharification was performed to obtain high concentration of fermentable sugar. Bamboo was impregnated at low severity of conditions (room temperature, 2% H2SO4 or 2% NaOH, 48 h) to initially alter the structure of bamboo, and then further pretreated by steam explosion at 1.0 MPa for 6 min. The highest delignification of 51% and the highest enzymatic hydrolysis of 47.1% were reached at 2% NaOH impregnation followed by steam explosion. The changes in the structural characteristics showed beneficial effects on the enzymatic hydrolysis. When a mixer of cellulase (30 FPU) and β-glucosidase (10 CBU) was further used, the maximum enzymatic hydrolysis of 78.9% and total glucose yield of 68.2% were obtained. The maximum sugar release from the holocellulose was 500 mg/g bamboo, approximately 83.3% conversion efficiency based on monomeric sugar recovery. With fed-batch saccharification, a final substrate loading of 30% brought 107.7 g/L glucose, 35.81 g/L xylose, and 7.82 g/L arabinose release, respectively. This study provided an effective strategy for potential utilization of bamboo residues.
Collapse
|
17
|
Intasit R, Cheirsilp B, Louhasakul Y, Boonsawang P. Consolidated bioprocesses for efficient bioconversion of palm biomass wastes into biodiesel feedstocks by oleaginous fungi and yeasts. BIORESOURCE TECHNOLOGY 2020; 315:123893. [PMID: 32736320 DOI: 10.1016/j.biortech.2020.123893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 05/12/2023]
Abstract
Consolidated bioprocesses for bioconversion of lignocellulosic biomass into biodiesel feedstocks were developed. Palm empty fruit bunch (EFB) was biologically pretreated coupling with fungal lipid production (121.4 ± 2.7 mg/g-EFB) by lignocellulolytic oleaginous fungi prior to lipid production by oleaginous yeasts. In subsequent separate hydrolysis and fermentation (SHF) of fungal pretreated EFB (FPEFB), the oleaginous yeast with the maximum lipid yield of 37.0 ± 0.1 mg/g-FPEFB was screened. While a higher lipid yield of 47.9 ± 1.5 mg/g-FPEFB was achieved in simultaneous saccharification and fermentation (SSF) with less enzyme requirement. Fed-batch SSF of non-sterile FPEFB was proven as a practical and efficient strategy to increase lipid yield up to 53.4 ± 0.5 mg/g-FPEFB. Total lipid yield by both fungi and yeast was 165.0 ± 4.4 mg/g-EFB. Interestingly, the consolidated bioprocesses of enzyme and lipid production also achieved comparable total lipid yield of 149.3 ± 6.6 mg/g-EFB. These strategies may contribute greatly to cost-effective and sustainable bioconversion of lignocellulosic biomass into biodiesel feedstocks.
Collapse
Affiliation(s)
- Rawitsara Intasit
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Yasmi Louhasakul
- Biology Program, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Sateng, Muang, Yala 95000, Thailand
| | - Piyarat Boonsawang
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
18
|
Expeditious production of concentrated glucose-rich hydrolysate from sugarcane bagasse and its fermentation to lactic acid with high productivity. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Conversion of Exhausted Sugar Beet Pulp into Fermentable Sugars from a Biorefinery Approach. Foods 2020; 9:foods9101351. [PMID: 32987649 PMCID: PMC7598709 DOI: 10.3390/foods9101351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, the production of a hydrolysate rich in fermentable sugars, which could be used as a generic microbial culture medium, was carried out by using exhausted sugar beet pulp pellets (ESBPPs) as raw material. For this purpose, the hydrolysis was performed through the direct addition of the fermented ESBPPs obtained by fungal solid-state fermentation (SSF) as an enzyme source. By directly using this fermented solid, the stages for enzyme extraction and purification were avoided. The effects of temperature, fermented to fresh solid ratio, supplementation of fermented ESBPP with commercial cellulase, and the use of high-solid fed-batch enzymatic hydrolysis were studied to obtain the maximum reducing sugar (RS) concentration and productivity. The highest RS concentration and productivity, 127.3 g·L−1 and 24.3 g·L−1·h−1 respectively, were obtained at 50 °C and with an initial supplementation of 2.17 U of Celluclast® per gram of dried solid in fed-batch mode. This process was carried out with a liquid to solid ratio of 4.3 mL·g−1 solid, by adding 15 g of fermented solid and 13.75 g of fresh solid at the beginning of the hydrolysis, and then the same amount of fresh solid 3 times every 2.5 h. By this procedure, ESBPP can be used to produce a generic microbial feedstock, which contains a high concentration of monosaccharides.
Collapse
|
20
|
Pretreatment of Mango (Mangifera indica L. Anacardiaceae) Seed Husk for Bioethanol Production by Dilute Acid Treatment and Enzymatic Hydrolysis. Appl Biochem Biotechnol 2020; 193:1338-1350. [PMID: 32888162 DOI: 10.1007/s12010-020-03387-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
One of the targets of the Sustainable Development Goals is clean and affordable energy. This is also the aim of the Biofuels Act of 2007 in the Philippines. However, this law is confronted with challenges such as the limitation of lignocellulosic feedstock, specifically available for bioethanol production. The present study sought to address the issue by exploring the potential of mango seed husk (MSH), a by-product of the mango industry, in bioethanol production. MSH is considered a waste material and its utilization also permit value-addition as this can serve as an alternative and affordable source of feedstock in energy production. Two pretreatment strategies are employed to exploit the cellulose and hemicellulose content of MSH, namely, dilute acid treatment and enzymatic hydrolysis. Results show that the %H2SO4 resulting in the highest glucose concentration and yield is 4% v/v at 95 °C hydrolysis temperature, 1:10 (w/v) solid-to-solvent ratio, and 60-min hydrolysis time. For enzymatic hydrolysis using a commercial enzyme preparation, the reaction time up to 72 h did not affect glucose concentration and yield at the following conditions: 50 °C hydrolysis temperature, 150 rpm, pH 5.0, 10% solids loading, and 4% enzyme loading. This could be attributed to the lignin and non-structural compounds present in MSHs. However, a combined process strategy of dilute acid pretreatment followed by enzymatic hydrolysis in the pretreatment of MSH contributes to an increased concentration and yield of sugars in the hydrolysates, which is advantageous for bioethanol production. Graphical Abstract.
Collapse
|
21
|
Gong Z, Wang X, Yuan W, Wang Y, Zhou W, Wang G, Liu Y. Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:13. [PMID: 31993091 PMCID: PMC6977323 DOI: 10.1186/s13068-019-1639-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/17/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lignocellulosic biomass has been commonly regarded as a potential feedstock for the production of biofuels and biochemicals. High sugar yields and the complete bioconversion of all the lignocellulosic sugars into valuable products are attractive for the utilization of lignocelluloses. It is essential to pretreat and hydrolyze lignocelluloses at high solids loadings during industrial processes, which is more economical and environmentally friendly as capital cost, energy consumption, and water usage can be reduced. However, oligosaccharides are inevitably released during the high solids loading enzymatic hydrolysis and they are more recalcitrant than monosaccharides for microorganisms. RESULTS A fed-batch enzymatic hydrolysis of corn stover pretreated by the sodium hydroxide-methanol solution (SMs) at high solids loading was demonstrated to reach the high concentrations and yields of fermentable sugars. Glucose, xylose, cello-oligosaccharides, and xylo-oligosaccharides achieved 146.7 g/L, 58.7 g/L, 15.6 g/L, and 24.7 g/L, respectively, when the fed-batch hydrolysis was started at 12% (w/v) solids loading, and 7% fresh substrate and a standardized blend of cellulase, β-glucosidase, and hemicellulase were fed consecutively at 3, 6, 24, and 48 h to achieve a final solids loading of 40% (w/v). The total conversion of glucan and xylan reached 89.5% and 88.5%, respectively, when the oligosaccharides were taken into account. Then, a fed-batch culture on the hydrolysates was investigated for lipid production by Cutaneotrichosporon oleaginosum. Biomass, lipid content, and lipid yield were 50.7 g/L, 61.7%, and 0.18 g/g, respectively. The overall consumptions of cello-oligosaccharides and xylo-oligosaccharides reached 74.1% and 68.2%, respectively. CONCLUSIONS High sugars concentrations and yields were achieved when the enzyme blend was supplemented simultaneously with the substrate at each time point of feeding during the fed-batch enzymatic hydrolysis. Oligosaccharides were co-utilized with monosaccharides during the fed-batch culture of C. oleaginosum. These results provide a promising strategy to hydrolyze alkaline organosolv-pretreated corn stover into fermentable sugars with high concentrations and yields for microbial lipid production.
Collapse
Affiliation(s)
- Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Xuemin Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Wei Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Guanghui Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
22
|
da Silva AS, Espinheira RP, Teixeira RSS, de Souza MF, Ferreira-Leitão V, Bon EPS. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:58. [PMID: 32211072 PMCID: PMC7092515 DOI: 10.1186/s13068-020-01697-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts.
Collapse
Affiliation(s)
- Ayla Sant’Ana da Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Roberta Pereira Espinheira
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Ricardo Sposina Sobral Teixeira
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Marcella Fernandes de Souza
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Viridiana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Elba P. S. Bon
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| |
Collapse
|
23
|
Xu C, Zhang J, Zhang Y, Guo Y, Xu H, Xu J, Wang Z. Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. BIORESOURCE TECHNOLOGY 2019; 292:121993. [PMID: 31442837 DOI: 10.1016/j.biortech.2019.121993] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Obtaining higher amount of final sugars with low cellulase dosage has great economic benefits for the industrial biorefinery of lignocellulosic biomass. The optimization of accessory enzymes and additives were performed using single factor and orthogonal experiment firstly, after that, fed-batch strategy was applied to enhance the high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse (SCB). A novel enzymatic hydrolysis procedure with 22% (w/v) substrate content and cellulase dosage of only 4 FPU/g dry biomass (DM) was developed, after digested for 48 h, the achieved glucose titer, yield and productivity were 122 g/L, 80% and 2.54 g L-1 h-1, respectively. Results obtained in this study indicated a potential finding for the industrial application of lignocellulosic biomass.
Collapse
Affiliation(s)
- Chao Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of China Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of China Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huijuan Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jingliang Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
24
|
Fan M, Li J, Bi G, Ye G, Zhang H, Xie J. Enhanced co-generation of cellulosic ethanol and methane with the starch/sugar-rich waste mixtures and Tween 80 in fed-batch mode. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:227. [PMID: 31572494 PMCID: PMC6757364 DOI: 10.1186/s13068-019-1562-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The mixed-feedstock fermentation is a promising approach to enhancing the co-generation of cellulosic ethanol and methane from sugarcane bagasse (SCB) and molasses. However, the unmatched supply of the SCB and molasses remains a main obstacle built upon binary feedstock. Here, we propose a cellulose-starch-sugar ternary waste combinatory approach to overcome this bottleneck by integrating the starch-rich waste of Dioscorea composita Hemls. extracted residue (DER) in mixed fermentation. RESULTS The substrates of the pretreated SCB, DER and molasses with varying ratios were conducted at a relatively low solids loading of 12%, and the optimal mixture ratio of 1:0.5:0.5 for the pretreated SCB/DER/molasses was determined by evaluating the ethanol concentration and yield. Nevertheless, it was found that the ethanol yield decreased from 79.19 ± 0.20 to 62.31 ± 0.61% when the solids loading increased from 12 to 44% in batch modes, regardless of the fact that the co-fermentation of three-component feedstock was performed under the optimal condition defined above. Hence, different fermentation processes such as fed-batch and fed-batch + Tween 80 were implemented to further improve the ethanol concentration and yield at higher solids loading ranging between 36 and 44%. The highest ethanol concentration of 91.82 ± 0.86 g/L (69.33 ± 0.46% of theoretical yield) was obtained with fed-batch + Tween 80 mode during the simultaneous saccharification and fermentation at a high solids loading of 44%. Moreover, after the ethanol recovery, the remaining stillage was digested for biomethane production and finally yielded 320.72 ± 6.98 mL/g of volatile solids. CONCLUSIONS Integrated DER into the combination of SCB and molasses would be beneficial for ethanol production. The co-generation of bioethanol and biomethane by mixed cellulose-starch-sugar waste turns out to be a sustainable solution to improve the overall efficacy in biorefinery.
Collapse
Affiliation(s)
- Meishan Fan
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 China
| | - Jun Li
- School of International Relations, Sun Yat-sen University, Guangzhou, China
| | - Guican Bi
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 China
| | - Guangying Ye
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 China
| | - Hongdan Zhang
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 China
| | - Jun Xie
- College of Forestry and Landscape Architecture, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
25
|
Mithra MG, Jeeva ML, Sajeev MS, Padmaja G. Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon 2018; 4:e00885. [PMID: 30417150 PMCID: PMC6218405 DOI: 10.1016/j.heliyon.2018.e00885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/07/2018] [Accepted: 10/23/2018] [Indexed: 11/02/2022] Open
Abstract
The ethanol yields from lignocellulo-starch biomass (peels of sweet potato, elephant foot yam, tannia, greater yam and beet root) by fed-batch separate hydrolysis and fermentation (F-SHF) and simultaneous saccharification and fermentation (F-SSF) using Saccharomyces cerevisiae were compared. Fed-batch saccharification of steam or dilute sulphuric acid pretreated biomass enhanced the reducing sugar yield which resulted in high RS consumption, volumetric ethanol productivity and ethanol yield during the first 24 h fermentation under F-SHF mode, while continuous production and utilization of reducing sugars occurred up to 72 h in F-SSF. Dilute sulphuric acid pretreated residues under F-SHF gave higher ethanol yield (34-43 g/L) and productivity (274-346 ml/kg dry biomass) than steam pretreatment (27-36 g/L and 223-295 ml/kg respectively), while F-SSF was superior for steam pretreated peels of sweet potato, elephant foot yam and tannia giving ethanol yields from 281 to 302 ml/kg. Glucose and xylose were present in all the hydrolysates with a preponderance of glucose and fermentation resulted in significant reduction in glucose levels in both F-SHF and F-SSF. Higher levels of total soluble phenolics and hydroxymethyl furfural were observed in the hydrolysates from dilute sulphuric acid pretreatment and yeast assimilated/detoxified part of the inhibitors, while only trivial amounts of furfural were present due to the low xylose content in the hydrolysates. Continuous formation led to higher accumulation of inhibitors in F-SSF despite supplementation with the detoxification mix comprising Tween 20, polyethylene glycol and sodium borohydride. F-SHF of dilute sulphuric acid pretreated biomass could be considered as a comparatively advantageous process where only one time feeding of enzyme cocktail and yeast was adopted compared to multiple feeds of enzymes and yeast along with other additives such as detoxification mix or nutrient solution in F-SSF.
Collapse
Affiliation(s)
- M G Mithra
- Division of Crop Utilization, ICAR- Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India
| | - M L Jeeva
- Division of Crop Protection, ICAR- Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India
| | - M S Sajeev
- Division of Crop Utilization, ICAR- Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India
| | - G Padmaja
- Division of Crop Utilization, ICAR- Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India
| |
Collapse
|
26
|
Wang C, Su X, Sun W, Zhou S, Zheng J, Zhang M, Sun M, Xue J, Liu X, Xing J, Chen S. Efficient production of succinic acid from herbal extraction residue hydrolysate. BIORESOURCE TECHNOLOGY 2018; 265:443-449. [PMID: 29935453 DOI: 10.1016/j.biortech.2018.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, six different herbal-extraction residues were evaluated for succinic acid production in terms of chemical composition before and after dilute acid pretreatment (DAP) and sugar release performance. Chemical composition showed that pretreated residues of Glycyrrhiza uralensis Fisch (GUR) and Morus alba L. (MAR) had the highest cellulose content, 50% and 52%, respectively. Higher concentrations of free sugars (71.6 g/L total sugar) and higher hydrolysis yield (92%) were both obtained under 40 FPU/g DM at 10% solid loading for GUR. Using scanning electron microscopy (SEM), GUR was found to show a less compact structure due to process of extraction. Specifically, the fibers in pretreated GUR were coarse and disordered compared with that of GUR indicated by SEM. Finally, 65 g/L succinic acid was produced with a higher yield of 0.89 g/g total sugar or 0.49 g/g GUR. Our results illustrate the potential of GUR for succinic acid production.
Collapse
Affiliation(s)
- Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Sijing Zhou
- Beijing Radiation Center, Beijing 100015, PR China
| | - Junyu Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China
| | - Mengting Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengchu Sun
- School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Jianping Xue
- School of Life Science, Huai Bei Normal University, Huaibei 23500, PR China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, PR China.
| |
Collapse
|
27
|
Dey P, Pal P, Kevin JD, Das DB. Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process – a critical review. REV CHEM ENG 2018. [DOI: 10.1515/revce-2018-0014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To meet the worldwide rapid growth of industrialization and population, the demand for the production of bioethanol as an alternative green biofuel is gaining significant prominence. The bioethanol production process is still considered one of the largest energy-consuming processes and is challenging due to the limited effectiveness of conventional pretreatment processes, saccharification processes, and extreme use of electricity in common fermentation and purification processes. Thus, it became necessary to improve the bioethanol production process through reduced energy requirements. Membrane-based separation technologies have already gained attention due to their reduced energy requirements, investment in lower labor costs, lower space requirements, and wide flexibility in operations. For the selective conversion of biomasses to bioethanol, membrane bioreactors are specifically well suited. Advanced membrane-integrated processes can effectively contribute to different stages of bioethanol production processes, including enzymatic saccharification, concentrating feed solutions for fermentation, improving pretreatment processes, and finally purification processes. Advanced membrane-integrated simultaneous saccharification, filtration, and fermentation strategies consisting of ultrafiltration-based enzyme recycle system with nanofiltration-based high-density cell recycle fermentation system or the combination of high-density cell recycle fermentation system with membrane pervaporation or distillation can definitely contribute to the development of the most efficient and economically sustainable second-generation bioethanol production process.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Karunya Nagar Coimbatore 641114 , India
| | - Parimal Pal
- Department of Chemical Engineering , National Institute of Technology , Durgapur , India
| | - Joseph Dilip Kevin
- Department of Biotechnology , Karunya Institute of Technology and Sciences , Coimbatore , India
| | - Diganta Bhusan Das
- Department of Chemical Engineering, School of AACME , Loughborough University , Loughborough, Leicestershire , UK
| |
Collapse
|
28
|
Acid Assisted Organosolv Delignification of Beechwood and Pulp Conversion towards High Concentrated Cellulosic Ethanol via High Gravity Enzymatic Hydrolysis and Fermentation. Molecules 2018; 23:molecules23071647. [PMID: 29976912 PMCID: PMC6099605 DOI: 10.3390/molecules23071647] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Future biorefineries will focus on converting low value waste streams to chemical products that are derived from petroleum or refined sugars. Feedstock pretreatment in a simple, cost effective, agnostic manner is a major challenge. Methods: In this work, beechwood sawdust was delignified via an organosolv process, assisted by homogeneous inorganic acid catalysis. Mixtures of water and several organic solvents were evaluated for their performance. Specifically, ethanol (EtOH), acetone (AC), and methyl- isobutyl- ketone (MIBK) were tested with or without the use of homogeneous acid catalysis employing sulfuric, phosphoric, and oxalic acids under relatively mild temperature of 175 °C for one hour. Results: Delignification degrees (DD) higher than 90% were achieved, where both AC and EtOH proved to be suitable solvents for this process. Both oxalic and especially phosphoric acid proved to be good alternative catalysts for replacing sulfuric acid. High gravity simultaneous saccharification and fermentation with an enzyme loading of 8.4 mg/gsolids at 20 wt.% initial solids content reached an ethanol yield of 8.0 w/v%. Conclusions: Efficient delignification combining common volatile solvents and mild acid catalysis allowed for the production of ethanol at high concentration in an efficient manner.
Collapse
|
29
|
Squinca P, Badino AC, Farinas CS. A closed-loop strategy for endoglucanase production using sugarcane bagasse liquefied by a home-made enzymatic cocktail. BIORESOURCE TECHNOLOGY 2018; 249:976-982. [PMID: 29145125 DOI: 10.1016/j.biortech.2017.10.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Use of the same lignocellulosic biomass as feedstock for enzymes and ethanol production has been suggested as a lower cost option in future biorefineries. Here, we propose a closed-loop strategy to produce the cellulolytic enzymes required for biomass hydrolysis using sugarcane bagasse liquefied by a home-made enzymatic cocktail as carbon source and inducer. The fed-batch liquefaction conditions were firstly evaluated using commercial enzymes. Subsequently, the effects of different liquefied materials and solids loadings on endoglucanase production by Aspergillus niger cultivated in submerged fermentation were investigated. The liquefied bagasse produced using the home-made cocktail was more favorable for endoglucanase production, resulting in improvement up to 17%, compared to bagasse liquefied by commercial enzymes. The results indicated that liquefied bagasse produced by home-made enzymatic cocktail could provide a cost-effective carbon source and inducer for cellulolytic enzyme production, and could contribute to closing loops within the biorefinery, thus reducing costs and minimizing waste.
Collapse
Affiliation(s)
- Paula Squinca
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, 13565-905 São Carlos, SP, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, 13561-206 São Carlos, SP, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, 13565-905 São Carlos, SP, Brazil
| | - Cristiane S Farinas
- Graduate Program of Chemical Engineering, Federal University of São Carlos, C.P. 676, 13565-905 São Carlos, SP, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, 13561-206 São Carlos, SP, Brazil.
| |
Collapse
|
30
|
Gaikwad A. Interactions of mixing and reaction kinetics of depolymerization of cellulose to renewable fuels. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2017.1371015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ashwin Gaikwad
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| |
Collapse
|
31
|
Comparison of One-Stage Batch and Fed-Batch Enzymatic Hydrolysis of Pretreated Hardwood for the Production of Biosugar. Appl Biochem Biotechnol 2017; 184:1441-1452. [PMID: 29064030 DOI: 10.1007/s12010-017-2633-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Fed-batch method has shown a great promise in debottlenecking the high-solid enzymatic hydrolysis for the commercialization of cellulosic biosugar conversion for biofuel/biochemical production. To further improve enzymatic hydrolysis efficiency at high solid loading, fed-batch methods of green liquor-pretreated hardwood were performed to evaluate their effects on sugar recovery by comparing with one-stage batch method in this study. Among all the explored conditions, the fed-batch at 15% consistency gave higher sugar recovery on green liquor-pretreated hardwood compared to that of one-stage batch. By using general linear model analysis, the percentage of enzymatic sugar recovery in fed-batch consistency method (increasing consistency from the initial 10.7 to 15% at intervals of 24 and 48 h) was higher than that of batch hydrolysis at higher density of 15% consistency. Under that best fed-batch condition, the total sugar recovery of pretreated hardwood in enzymatic hydrolysate reached approximately 48.41% at Cellic® enzyme loading of 5 filter-paper unit (FPU)/g and 58.83% at Cellic® enzyme loading of 10 FPU/g with a hydrolysis time of 96 h.
Collapse
|
32
|
Loman AA, Islam SMM, Li Q, Ju LK. Enzyme recycle and fed-batch addition for high-productivity soybean flour processing to produce enriched soy protein and concentrated hydrolysate of fermentable sugars. BIORESOURCE TECHNOLOGY 2017; 241:252-261. [PMID: 28575788 DOI: 10.1016/j.biortech.2017.05.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Despite having high protein and carbohydrate, soybean flour utilization is limited to partial replacement of animal feed to date. Enzymatic process can be exploited to increase its value by enriching protein content and separating carbohydrate for utilization as fermentation feedstock. Enzyme hydrolysis with fed-batch and recycle designs were evaluated here for achieving this goal with high productivities. Fed-batch process improved carbohydrate conversion, particularly at high substrate loadings of 250-375g/L. In recycle process, hydrolysate retained a significant portion of the limiting enzyme α-galactosidase to accelerate carbohydrate monomerization rate. At single-pass retention time of 6h and recycle rate of 62.5%, reducing sugar concentration reached up to 120g/L using 4ml/g enzyme. When compared with batch and fed-batch processes, the recycle process increased the volumetric productivity of reducing sugar by 36% (vs. fed-batch) to 57% (vs. batch) and that of protein product by 280% (vs. fed-batch) to 300% (vs. batch).
Collapse
Affiliation(s)
- Abdullah Al Loman
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - S M Mahfuzul Islam
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Qian Li
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA.
| |
Collapse
|
33
|
Hafid HS, Nor 'Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:95-105. [PMID: 28527863 DOI: 10.1016/j.wasman.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H2SO4) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production.
Collapse
Affiliation(s)
- Halimatun Saadiah Hafid
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Abdul Rahman Nor 'Aini
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Ahmad Tarmezee Talib
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Azhari Samsu Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Md Shah Umi Kalsom
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
34
|
Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose. Appl Biochem Biotechnol 2017; 182:1108-1120. [DOI: 10.1007/s12010-016-2385-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
35
|
Chen HZ, Liu ZH. Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci 2016; 17:489-499. [PMID: 32624794 DOI: 10.1002/elsc.201600102] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/24/2016] [Accepted: 10/20/2016] [Indexed: 02/01/2023] Open
Abstract
Solid state enzymatic hydrolysis (SSEH) has many advantages, such as higher sugar concentration, lower operating costs, and less energy input. It should be a potential approach for the industrial application of lignocellulosic ethanol. The purpose of this work is to review the enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading and introduce its both challenges and perspectives. The limitations of SSEH, including inhibition effects, water constraint, and rheology characteristic, are summarized firstly. Various strategies for overcoming these limitations are proposed correspondingly. Fed batch process and its feeding strategy to improve the SSEH efficiency are then discussed. Finally, several intensification methods, hydrolysis reactor, and pilot- and demonstration-scale operations of SSEH are described. In-depth analysis of main limitations and development of novel intensification methods and reactors should provide an effective way to achieve large-scale implementation of SSEH.
Collapse
Affiliation(s)
- Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
36
|
A Neurospora crassa ÿ-glucosidase with potential for lignocellulose hydrolysis shows strong glucose tolerance and stimulation by glucose and xylose. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Cardona MJ, Tozzi EJ, Karuna N, Jeoh T, Powell RL, McCarthy MJ. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass. BIORESOURCE TECHNOLOGY 2015; 198:488-496. [PMID: 26432053 DOI: 10.1016/j.biortech.2015.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase.
Collapse
Affiliation(s)
- M J Cardona
- Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - E J Tozzi
- Aspect Imaging, One Shields Ave, Davis, CA 95616, USA
| | - N Karuna
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - T Jeoh
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| | - R L Powell
- Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - M J McCarthy
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
38
|
Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes. J Biotechnol 2015; 211:5-9. [DOI: 10.1016/j.jbiotec.2015.06.422] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 11/23/2022]
|
39
|
Khatun MM, Li YH, Liu CG, Zhao XQ, Bai FW. Fed-batch saccharification and ethanol fermentation of Jerusalem artichoke stalks by an inulinase producing Saccharomyces cerevisiae MK01. RSC Adv 2015. [DOI: 10.1039/c5ra23901j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biorefinery of Jerusalem artichoke to produce ethanol as biofuel value-added product inulin.
Collapse
Affiliation(s)
- M. Mahfuza Khatun
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- China
| | - Yong-Hao Li
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- China
| | - Chen-Guang Liu
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- China
| | - Xin-Qing Zhao
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Feng-Wu Bai
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian 116023
- China
- School of Life Science and Biotechnology
| |
Collapse
|