1
|
Gai X, Ding W, He J, Guo J, Song K. Furfural production from xylan using a Pueraria Residues carbon-based solid-acid catalyst. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39440832 DOI: 10.1002/jsfa.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The conversion of biomass into high value-added platform compounds is an important method of biomass utilization. The conversion of hemicellulose represented by xylan into furfural can not only reduce the consumption of fossil fuels, but also promotes the development and utilization of non-edible biomass resources. In this study, a bifunctional solid-acid catalyst prepared from agricultural and forestry waste Pueraria (P. eduli) Residues was used to convert xylan into furfural in a biphasic system. RESULTS In this study, P. eduli Residues was used as raw material to prepare a P. eduli Residues-based carbon solid-acid catalyst (PR/C-SO3H-Fe) by one-step sulfonation carbonization and impregnation. The catalyst catalyzes the conversion of xylan to furfural in a biphasic system (2-methyltetrahydrofuran/water). The physicochemical properties of the catalysts were characterized by X-ray powder diffraction, scanning electron microscopy, differential thermogravimetric analysis, Brunauer-Emmett-Teller surface area, Fourier transform infrared spectroscopy and ammonia temperature-programmed desorption. Subsequently, the experimental conditions were studied and optimized, such as metal species, iron ion concentration, reaction time and temperature, volume ratio of organic phase to water phase and ratio of substrate to catalyst. The results showed that under conditions of 160 °C, 50 mg catalyst, 100 mg xylan and 7 mL reaction solvent, the yield of furfural could reach 78.94% after 3 h of reaction. CONCLUSION This study provides an effective research method for the conversion of xylan into furfural, and provides a reference for the catalytic conversion and utilization of hemicellulose in agricultural and forestry biomass. It also provides a feasible method for the resource utilization of agricultural and forestry waste. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangtong Gai
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Wei Ding
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Jian He
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Zhangjiajie, China
| | - Jie Guo
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Zhangjiajie, China
| | - Ke Song
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, China
- National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Zhangjiajie, China
| |
Collapse
|
2
|
Salgado-Ramos M, José Huertas-Alonso A, Lorente A, Prado Sánchez-Verdú M, Moreno A, Cabañas B. One-pot, microwave (MW)-assisted production of furfural from almond-, oil-, and wine-derived co-products through biorefinery-based approaches. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:280-292. [PMID: 38954920 DOI: 10.1016/j.wasman.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.
Collapse
Affiliation(s)
- Manuel Salgado-Ramos
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Alberto José Huertas-Alonso
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Almudena Lorente
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - María Prado Sánchez-Verdú
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Andrés Moreno
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain.
| | - Beatriz Cabañas
- Universidad de Castilla La Mancha, Departamento de Química Física, Instituto de Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
3
|
Yue Z, Sun LL, Wen JL, Yao SQ, Sun SN, Cao XF. Simultaneous production of furfural, lignin and cellulose-rich residue from Eucalyptus urophylla × E. grandis by ChCl/1,2-propanediol/MIBK biphasic system pretreatment. Int J Biol Macromol 2024; 275:133522. [PMID: 38945325 DOI: 10.1016/j.ijbiomac.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the β-O-4, β-β and β-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.
Collapse
Affiliation(s)
- Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Zhu L, Xu H, Yin X, Wang S. H 2SO 4 assisted hydrothermal conversion of biomass with solid acid catalysis to produce aviation fuel precursors. iScience 2023; 26:108249. [PMID: 37965136 PMCID: PMC10641505 DOI: 10.1016/j.isci.2023.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
With hydrothermal reaction, lignocellulosic biomass can be efficiently converted into furfural (FF) and levulinic acid (LA), both of which are key platform compounds that can be used for the subsequent preparation of aviation fuels. In order to reduce the acid concentration in traditional hydrolysis and provide a reaction system with good catalytic activity, we propose a biomass conversion route as dilute acid hydrolysis coupled with solid acid catalysis. Firstly, at different temperatures, the hemicellulose and cellulose in corn stover were step-hydrolyzed by sulfuric acid solution with a concentration of 0.9 wt. % to produce xylose and glucose, with conversion reaching 100% and 97.3%, respectively. Subsequently, a new resin-derived carbon-based solid acid catalyst was used to catalyze the aforementioned saccharide solutions to obtain FF with yield of 68.7 mol % and LA of 70.3 mol %, respectively. This work provides a promising approach for the efficient production of bio-aviation fuel precursors.
Collapse
Affiliation(s)
- Lingjun Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hao Xu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiaoyan Yin
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Lin Q, Zhan Q, Wu Y, Wang J, Li L, Peng F, Xu F, Ren J. Molecular scale behavior of xylan during solvent-controlled extraction and precipitation. Phys Chem Chem Phys 2023; 25:28078-28085. [PMID: 37622227 DOI: 10.1039/d3cp01385e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Solvent-controlled extraction and precipitation are the most fundamental methods for obtaining hemicellulose from lignocellulosic biomass and purification processes. However, the dissolution and precipitation mechanisms involved have scarcely been mentioned. In this study, the molecular scale behavior of xylan-type hemicellulose during solvent-controlled extraction and precipitation is investigated using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. To bring the model closer to the real extracted xylan, a high degree of polymerization (DP100) of xylan is established, and hemicelluloses with low DP (DP15 and DP50) are also investigated. Four phenomena are explained at the molecular level, including the influence of the polymerization degree and side chain on the solubility of xylan in water, the improvement of the xylan's solubility in NaOH, the precipitation of xylan in ethanol, and the acetyl group preservation of xylan in DMSO. This study contributes to an increased understanding of the dissolution and precipitation mechanisms of hemicellulose and provides a resource for the simulation of high DP hemicellulose, which gives a theoretical basis for the efficient extraction of high-purity hemicellulose as well as economic biorefining.
Collapse
Affiliation(s)
- Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiwen Zhan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yue Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianlin Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Libo Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Li Y, Sun LL, Cao DM, Cao XF, Sun SN. One-step conversion of corn stalk to glucose and furfural in molten salt hydrate/organic solvent biphasic system. BIORESOURCE TECHNOLOGY 2023; 386:129520. [PMID: 37468006 DOI: 10.1016/j.biortech.2023.129520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
An effective approach for glucose and furfural production by converting cellulose and hemicelluloses from corn stalk in a biphasic system of molten salt hydrate (MSH) and organic solvent using H2SO4 as catalyst was reported. Results showed that the system with LiBr·3H2O and dichloromethane (DCM) had excellent performance in cellulose and hemicelluloses conversion. Under the optimal reaction conditions (corn stalk:LiBr·3H2O:DCM ratio = 0.35:10:20 g/mL/mL, 0.05 mol/L H2SO4, 120 °C, 90 min), 58.9% glucose and 72.5% furfural were yielded. Meanwhile, lignin was obviously depolymerized by the cleavage of β-O-4' linkages and fractionated with high purity and low molecular weight for potential coproducts. Fluorescence microscopy and confocal Raman microscope displayed that the LiBr·3H2O/DCM treatment caused decreasing intensities in carbohydrate and lignin, suggesting the degradation of the main components of biomass. This research provided a promising biorefinery technology for the comprehensive utilization of corn stalk.
Collapse
Affiliation(s)
- Yu Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - De-Ming Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Zhou Q, Gu J, Wang J, De Girolamo A, Yang S, Zhang L. High production of furfural by flash pyrolysis of C6 sugars and lignocellulose by Pd-PdO/ZnSO 4 catalyst. Nat Commun 2023; 14:1563. [PMID: 36944654 PMCID: PMC10030963 DOI: 10.1038/s41467-023-37250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Furfural (C5H4O2) is an important platform chemical for the synthesis of next-generation bio-fuels. Herein, we report a novel and reusable heterogeneous catalyst, Pd-PdO/ZnSO4 with 1.1 mol% palladium (Pd), for the production of furfural by flash pyrolysis of lignocelluloses at 400 °C. For both dry and wet C6 cellulose and its monomers, the furfural yields reach 74-82 mol%, relative to 96 mol% from C5 xylan and 23-33 wt% from sugarcane bagasse and corncob. The catalyst has a well-defined structure and bifunctional property, comprising a ZnSO4 support for the dehydration and isomerization of glucose, and a local core-shell configuration for metallic Pd0 encapsulated by an oxide (PdO) layer. The PdO layer is active for the Grob fragmentation of formaldehyde (HCHO) from glucose, which is subsequently in-situ steam reformed into syn-gas (i.e. H2 and CO), whereas the Pd0 core is active in promoting the last dehydration step for the formation of furfural.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VIC, Australia
| | - Jinxing Gu
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VIC, Australia
| | - Jingwei Wang
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VIC, Australia
| | - Anthony De Girolamo
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VIC, Australia
| | - Sasha Yang
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VIC, Australia
| | - Lian Zhang
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VIC, Australia.
| |
Collapse
|
8
|
Sun LL, Yue Z, Sun SC, Li Y, Cao XF, Sun SN. Microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system for one-pot fractionation and valorization of Eucalyptus biomass. BIORESOURCE TECHNOLOGY 2023; 369:128392. [PMID: 36435421 DOI: 10.1016/j.biortech.2022.128392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The developing of pretreatment method to break the biomass barrier of lignocellulosic is a challenging task for achieve high value utilization. A fast microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system was constructed for pretreating Eucalyptus to the production of furfural and cellulose-rich residues and the extraction of lignin. Results showed that the combination of AlCl3·6H2O and HCl had the best catalytic ability for furfural production among the examined catalysts. Under the optimal conditions (140 °C, 15 min, 0.075 M AlCl3·6H2O, 0.05 M HCl), the furfural yield of 55.4 %, the glucose yield of 90.3 % and the delignification rate of 92.4 % could be achieved. Moreover, the extracted lignin samples with a low polydispersity (1.55-1.73) and molecular weight (1380-2040 g/mol) are promising to act as precursor for the value-add products processing. These findings demonstrated an ultrafast pretreatment process with excellent results in biomass fractionation and comprehensive utilization of biomass components.
Collapse
Affiliation(s)
- Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yu Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Novel Challenges on the Catalytic Synthesis of 5-Hydroxymethylfurfural (HMF) from Real Feedstocks. Catalysts 2022. [DOI: 10.3390/catal12121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The depletion of fossil resources makes the transition towards renewable ones more urgent. For this purpose, the synthesis of strategic platform-chemicals, such as 5-hydroxymethylfurfural (HMF), represents a fundamental challenge for the development of a feasible bio-refinery. HMF perfectly deals with this necessity, because it can be obtained from the hexose fraction of biomass. Thanks to its high reactivity, it can be exploited for the synthesis of renewable monomers, solvents, and bio-fuels. Sustainable HMF synthesis requires the use of waste biomasses, rather than model compounds such as monosaccharides or polysaccharides, making its production more economically advantageous from an industrial perspective. However, the production of HMF from real feedstocks generally suffers from scarce selectivity, due to their complex chemical composition and HMF instability. On this basis, different strategies have been adopted to maximize the HMF yield. Under this perspective, the properties of the catalytic system, as well as the choice of a suitable solvent and the addition of an eventual pretreatment of the biomass, represent key aspects of the optimization of HMF synthesis. On this basis, the present review summarizes and critically discusses the most recent and attractive strategies for HMF production from real feedstocks, focusing on the smartest catalytic systems and the overall sustainability of the adopted reaction conditions.
Collapse
|
10
|
Cousin E, Namhaed K, Pérès Y, Cognet P, Delmas M, Hermansyah H, Gozan M, Alaba PA, Aroua MK. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157599. [PMID: 35901885 DOI: 10.1016/j.scitotenv.2022.157599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As mentioned in several recent reviews, biomass-based furfural is attracting increasing interest as a feasible alternative for the synthesis of a wide range of non-petroleum-derived compounds. However, the lack of environmentally friendly, cost-effective, and sustainable industrial procedures is still evident. This review describes the chemical and biological routes for furfural production. The mechanisms proposed for the chemical transformation of xylose to furfural are detailed, as are the current advances in the manufacture of furfural from biomass. The main goal is to overview the different ways of improving the furfural synthesis process. A pretreatment process, particularly chemical and physico-chemical, enhances the digestibility of biomass, leading to the production of >70 % of available sugars for the production of valuable products. The combination of heterogeneous (zeolite and polymeric solid) catalyst and biphasic solvent system (water/GVL and water/CPME) is regarded as an attractive approach, affording >75 % furfural yield for over 80 % of selectivity with the possibility of catalyst reuse. Microwave heating as an activation technique reduces reaction time at least tenfold, making the process more sustainable. The state of the art in industrial processes is also discussed. It shows that, when sulfuric acid is used, the furfural yields do not exceed 55 % for temperatures close to 180 °C. However, the MTC process recently achieved an 83 % yield by continuously removing furfural from the liquid phase. Finally, the CIMV process, using a formic acid/acetic acid mixture, has been developed. The economic aspects of furfural production are then addressed. Future research will be needed to investigate scaling-up and biological techniques that produce acceptable yields and productivities to become commercially viable and competitive in furfural production from biomass.
Collapse
Affiliation(s)
- Elsa Cousin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Kritsana Namhaed
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Yolande Pérès
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Patrick Cognet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Michel Delmas
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Heri Hermansyah
- Biorefinery Lab, Bioprocess Engineering Program, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| | - Misri Gozan
- Biorefinery Lab, Bioprocess Engineering Program, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| | - Peter Adeniyi Alaba
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Malaysia; Department of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom; Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
11
|
Chemoenzymatic catalytic synthesis of furfurylamine from hemicellulose in biomasses. Int J Biol Macromol 2022; 222:1201-1210. [PMID: 36174871 DOI: 10.1016/j.ijbiomac.2022.09.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022]
Abstract
Recently, efficient synthesis of furan-based chemicals from biomacromolecule via chemoenzymatic approaches have been widely recognized. In this work, an efficient conversion of biomacromolecule (e.g., xylan in biomass) to furfurylamine (FLA) was developed in a tandem reaction by bridging with chemocatalysis and biocatalysis. Various biomasses (e.g., corncob, bagasse, bamboo shoot shell, corn stalk, rice straw stalk, reed, water bamboo and sunflower stalk) could produce different titer of furfural due to the diverse xylan content in biomass. After being catalyzed by shrimp shell-supported solid acid catalyst (Sn-DAT-SS) in deep eutectic solvent choline chloride:ethylene glycol (ChCl:EG) - water (10:90, v/v) at 170 °C after 30 min, corncob gave the highest furfural yield of 52.4 %. The potential catalytic mechanism for Sn-DAT-SS-catalyzing the conversion of biomass into furfural in ChCl:EG - water was proposed. It was found that by-products (formic acid, levulinic acid, 5-hydroxymethylfurfural) and soluble sugars (glucose, xylose, arabinose, cellobiose) produced during the conversion of biomass to furfural had certain inhibition effects on the biotransamination of furfural to FLA. Biomass-derived furfural (36.7-92.3 mM) could be fully aminated to FLA by E. coli CCZU-XLS160 cells harboring ω-transaminase after 24-72 h. The established chemoenzymatic strategy for converting biomacromolecules into valuable furan-based products was successfully developed in an eco-friendly system.
Collapse
|
12
|
Lee CBTL, Wu TY, Yong KJ, Cheng CK, Siow LF, Jahim JM. Investigation into Lewis and Brønsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154049. [PMID: 35202677 DOI: 10.1016/j.scitotenv.2022.154049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Furfural has been identified as a valuable biobased platform chemical that can be further converted into bioenergy and biochemicals. Furfural is derived from lignocellulosic biomass and can also be regarded as a sustainable alternative to petrochemical products. Herein, the performance of trivalent metal chlorides (FeCl3, AlCl3) and tetravalent metal chlorides (SnCl4, TeCl4) as Lewis acidic cocatalysts was investigated in an aqueous choline chloride-oxalic acid (16.4 wt% H2O) deep eutectic solvent (DES) system for producing furfural from oil palm fronds (OPFs). The metal chlorides with greater electrical field gradients were stronger Lewis acids that enhanced both furfural production and degradation reactions. The main degradation product in this reaction system was humin, and this result was confirmed by FTIR analysis. By subjecting OPFs to an aqueous DES reaction (120 °C, 45 min) with SnCl4 (2.50 wt%), a furfural yield of 59.4% was obtained; without incorporated metal chlorides, the furfural yield was 46.1%. Characterization studies showed synergistic Lewis and Brønsted acid interactions between metal chlorides and DES components. Overall, the residual OPFs showed high glucan content, which led to the production of glucose (71.4%) as a byproduct via enzymatic hydrolysis. Additionally, the aqueous DES system was recycled and reused for several additional runs. The proposed aqueous DES system presents a promising biorefinery approach for the conversion of OPFs to biochemicals.
Collapse
Affiliation(s)
- Cornelius Basil Tien Loong Lee
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Khai Jie Yong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Lee Fong Siow
- School of Science, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Zhang X, Zhu P, Li Q, Xia H. Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents. Front Chem 2022; 10:911674. [PMID: 35615315 PMCID: PMC9124943 DOI: 10.3389/fchem.2022.911674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Lignocellulose is recognized as an ideal raw material for biorefinery as it may be converted into biofuels and value-added products through a series of chemical routes. Furfural, a bio-based platform chemical generated from lignocellulosic biomass, has been identified as a very versatile alternative to fossil fuels. Deep eutectic solvents (DES) are new “green” solvents, which have been employed as green and cheap alternatives to traditional organic solvents and ionic liquids (ILs), with the advantages of low cost, low toxicity, and biodegradability, and also have been proven to be effective media for the synthesis of biomass-derived chemicals. This review summarizes the recent advances in the conversion of carbohydrates to furfural in DES solvent systems, which mainly focus on the effect of adding different catalysts to the DES system, including metal halides, water, solid acid catalyst, and certain oxides, on the production of furfural. Moreover, the challenges and perspectives of DES-assisted furfural synthesis in biorefinery systems are also discussed in this review.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Peng Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qinfang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Haian Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- *Correspondence: Haian Xia,
| |
Collapse
|
14
|
Tongtummachat T, Jaree A, Akkarawatkhoosith N. Continuous hydrothermal furfural production from xylose in a microreactor with dual-acid catalysts. RSC Adv 2022; 12:23366-23378. [PMID: 36090416 PMCID: PMC9382363 DOI: 10.1039/d2ra03609f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
An effective continuous furfural production from xylose in a microreactor over dual-acid catalysts was proposed. In this work, furfural was synthesized in an organic solvent-free system using formic acid and aluminum chloride as catalyst. The role of these catalysts in the consecutive reactions was examined and verified. The influence of operating conditions including xylose concentration, reaction temperature, residence time, total catalyst concentration, and catalyst ratio on the yield of furfural was investigated and optimized. The furfural yield of 92.2% was achieved at the reaction temperature of 180 °C, residence time of 15 min, catalyst molar ratio of 1 : 1, xylose concentration of 1 g L−1, and total catalyst concentration of 16 mM. The superior production performance of our process was highlighted in terms of the low catalyst concentration and short residence time compared to those of other systems based on the literature. In addition, a continuous in situ catalyst removal (purification) was demonstrated, providing further insights into the practical development of continuous furfural production. An effective continuous furfural production from xylose in a microreactor over dual-acid catalysts was proposed. In this work, furfural was synthesized in an organic solvent-free system using formic acid and aluminum chloride as catalyst.![]()
Collapse
Affiliation(s)
- Tiprawee Tongtummachat
- Bio-Based Chemical and Biofuel Engineering Laboratory, Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Phuttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Attasak Jaree
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nattee Akkarawatkhoosith
- Bio-Based Chemical and Biofuel Engineering Laboratory, Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Phuttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
15
|
Enhanced Furfural Production in Deep Eutectic Solvents Comprising Alkali Metal Halides as Additives. Molecules 2021; 26:molecules26237374. [PMID: 34885956 PMCID: PMC8659074 DOI: 10.3390/molecules26237374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The addition of alkali metal halide salts to acidic deep eutectic solvents is here reported as an effective way of boosting xylan conversion into furfural. These salts promote an increase in xylose dehydration due to the cation and anion interactions with the solvent being a promising alternative to the use of harsh operational conditions. Several alkali metal halides were used as additives in the DES composed of cholinium chloride and malic acid ([Ch]Cl:Mal) in a molar ratio of 1:3, with 5 wt.% of water. These mixtures were then used as both solvent and catalyst to produce furfural directly from xylan through microwave-assisted reactions. Preliminary assays were carried out at 150 and 130 °C to gauge the effect of the different salts in furfural yields. A Response Surface Methodology was then applied to optimize the operational conditions. After an optimization of the different operating conditions, a maximum furfural yield of 89.46 ± 0.33% was achieved using 8.19% of lithium bromide in [Ch]Cl:Mal, 1:3; 5 wt.% water, at 157.3 °C and 1.74 min of reaction time. The used deep eutectic solvent and salt were recovered and reused three times, with 79.7% yield in the third cycle, and the furfural and solvent integrity confirmed.
Collapse
|
16
|
Li T, Sun G, Xiong L, Zheng B, Duan Y, Yu R, Jiang J, Wang Y, Yang W. Transition-metal-free decarboxylation of D-glucaric acid to furan catalyzed by SnCl4 in a biphasic system. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Ji L, Tang Z, Yang D, Ma C, He YC. Improved one-pot synthesis of furfural from corn stalk with heterogeneous catalysis using corn stalk as biobased carrier in deep eutectic solvent-water system. BIORESOURCE TECHNOLOGY 2021; 340:125691. [PMID: 34358983 DOI: 10.1016/j.biortech.2021.125691] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Using acid-treated corn stalk (CS) as biobased carrier, heterogeous SO42-/SnO2-CS catalyst was firstly prepared to catalyze CS into fufural in deep eutectic solvent-water system. The physical properties of SO42-/SnO2-CS were captured by FT-IR, NH3-TPD, XRD, XPS, and BET. SO42-/SnO2-CS (1.2 wt%) could be used to catalyze CS (75.0 g/L) with MgCl2 (15.0 g/L) to produce furfural (102.3 mM) in the yield of 68.2% for 0.5 h at 170 °C in ChCl:EG-water (20:80, v:v). Moreover, enhanced synthesis of furfural was explored based on the structure changes of CS, furfural yields and formation of byproducts. Finally, the potential catalytic mechanism for catalyzing CS into furfural and byproducts was proposed using SO42-/SnO2-CS as catalyst in ChCl:EG-water containing MgCl2. In summary, this established ChCl:EG-water system and optimized catalytic condition facillitated to synthesize furfural from biomass with biobased solid acid catalyst.
Collapse
Affiliation(s)
- Li Ji
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Zhengyu Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Dong Yang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei Province, PR China.
| |
Collapse
|
18
|
Ye L, Han Y, Wang X, Lu X, Qi X, Yu H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Arora S, Gupta N, Singh V. pH-Controlled Efficient Conversion of Hemicellulose to Furfural Using Choline-Based Deep Eutectic Solvents as Catalysts. CHEMSUSCHEM 2021; 14:3953-3958. [PMID: 34324272 DOI: 10.1002/cssc.202101130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The valorization of hemicellulose isolated from lignocellulosic biomass (wheat straw, rice husk, and bagasse) to furfural was achieved by pH-controlled acid catalysis using choline-based Brønsted acidic (BA) and natural acidic (NA) deep eutectic solvents (DES) serving both as catalyst and solvent. The effect of pH variation on the catalytic activity of various BADES and NADES prepared in 1 : 1 molar ratio was observed, and choline chloride/p-toluene sulfonic acid (ChCl/p-TSA) was found to be the best with lower pH value of 1.0. The yield of furfural decreased from 85 to 51 % with increase in pH from 1.0 to 3.0. The molar ratio of hydrogen bond donor to acceptor components was varied from 1 : 1 to 1 : 9 to achieve the lowest possible pH values of the DESs and to increase the furfural yield. Further optimization of reaction conditions was also done in terms of DES loading, time of reaction, and temperature using the model DES to achieve higher furfural yield. The best results were obtained using 5 mmol DES at pH 1.0 in 1.5 h at 120 °C. ChCl/p-TSA and ChCl/oxalic acid among BADES and ChCl/levulinic acid among NADES investigated in this work yielding 85 % furfural were found to be most efficient. The reported methodology is advantageous in terms of using bio-based green solvents, mild reaction conditions, and efficient scale-up of the reaction. The DESs were found to be efficiently recyclable up to five consecutive runs for the process.
Collapse
Affiliation(s)
- Shalini Arora
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University) Sector-12, Chandigarh
| | - Neeraj Gupta
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, H.P, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University) Sector-12, Chandigarh
| |
Collapse
|
20
|
Dávila I, Diaz E, Labidi J. Acid hydrolysis of almond shells in a biphasic reaction system: Obtaining of purified hemicellulosic monosaccharides in a single step. BIORESOURCE TECHNOLOGY 2021; 336:125311. [PMID: 34049166 DOI: 10.1016/j.biortech.2021.125311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work is to comprehend the biphasic reaction systems through another perspective; the simultaneous purification and production of carbohydrates during the pretreatment of biomass. A dilute acid hydrolysis of almond shells in a 2-Methyltetrahydrofuran/H2O system was optimised to maximise the obtaining of hemicellulose-derived monosaccharides with the minimum formation of degradation products. The optimised conditions of the biphasic reaction system, which produced 205.3 g hemicellulose-derived monosaccharides/Kg almond shells, were replicated in a monophasic reaction system to assess the benefits of the biphasic reaction systems. The latest system allowed the removal of 85.3% of the furans generated during the dilute acid hydrolysis, creating antioxidant extract, together with the catalysis of the hydrolysis of the hemicelluloses in a 20%. Therefore, the proposed process could become a promising method to purify carbohydrates with an environmentally friendly procedure that allowed the obtaining of multiple added-value products in a single step.
Collapse
Affiliation(s)
- Izaskun Dávila
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain
| | - Estelle Diaz
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain.
| |
Collapse
|
21
|
Arturi K, Rohrbach T, Vogel F, Bjelić S. High Yields of Aromatic Monomers from Acidolytic Oxidation of Kraft Lignin in a Biphasic System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katarzyna Arturi
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Thomas Rohrbach
- Energy and Environment Division, Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Frédéric Vogel
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- Institute of Bioenergy and Resource Efficiency, University of Applied Sciences Northwestern Switzerland (FHNW), Klosterzelgstrasse 2, 5210 Windisch, Switzerland
| | - Saša Bjelić
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
22
|
Ding D, Hu J, Hui L, Liu Z, Shao L. Valorization of Miscanthus × giganteus by γ-Valerolactone/H 2O/FeCl 3 system toward efficient conversion of cellulose and hemicelluloses. Carbohydr Polym 2021; 270:118388. [PMID: 34364629 DOI: 10.1016/j.carbpol.2021.118388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
γ-Valerolactone (GVL), a biomass-derived green chemical, offers an environmentally responsible solvent for conversion of lignocellulose to high value-added chemicals. Herein, we report a two-step process for directly producing cellulosic residual, furfural and lignin from Miscanthus × giganteus (M. × giganteus) bypassing the isolation of xylose, which exhibits promising advantage in energy reduction. The optimized pretreatment (100 mM FeCl3 at 160 °C for 60 min) induced significant xylan removal (98.4%), resulting in rugged fibre surface, thus leading to the peak cellulose conversion of 99.3%. Furfural yield in the second step reached to 76.6% after 100 mM FeCl3 catalyzed GVL/H2O treatment at 180 °C for 10 min without addition of any chemical. The extracted lignin showed representative structure (such as β-O-4', β-β' linkages) and medium molecular weight (4275.5 g/mol). 79.6% of furfural can be recovered by distillation. This study proposes a systematic and energy efficient approach for maximizing biomass utilization.
Collapse
Affiliation(s)
- Dayong Ding
- College of Light Industry Science and Engineering, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jianquan Hu
- College of Light Industry Science and Engineering, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lanfeng Hui
- College of Light Industry Science and Engineering, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhong Liu
- College of Light Industry Science and Engineering, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lupeng Shao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
23
|
Catalytic Conversion of Xylose to Furfural by p-Toluenesulfonic Acid ( pTSA) and Chlorides: Process Optimization and Kinetic Modeling. Molecules 2021; 26:molecules26082208. [PMID: 33921241 PMCID: PMC8070381 DOI: 10.3390/molecules26082208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Furfural is one of the most promising precursor chemicals with an extended range of downstream derivatives. In this work, conversion of xylose to produce furfural was performed by employing p-toluenesulfonic acid (pTSA) as a catalyst in DMSO medium at moderate temperature and atmospheric pressure. The production process was optimized based on kinetic modeling of xylose conversion to furfural alongwith simultaneous formation of humin from xylose and furfural. The synergetic effects of organic acids and Lewis acids were investigated. Results showed that the catalyst pTSA-CrCl3·6H2O was a promising combined catalyst due to the high furfural yield (53.10%) at a moderate temperature of 120 °C. Observed kinetic modeling illustrated that the condensation of furfural in the DMSO solvent medium actually could be neglected. The established model was found to be satisfactory and could be well applied for process simulation and optimization with adequate accuracy. The estimated values of activation energies for xylose dehydration, condensation of xylose, and furfural to humin were 81.80, 66.50, and 93.02 kJ/mol, respectively.
Collapse
|
24
|
Morais ES, Da Costa Lopes AM, Freire MG, Freire CSR, Silvestre AJD. Unveiling Modifications of Biomass Polysaccharides during Thermal Treatment in Cholinium Chloride : Lactic Acid Deep Eutectic Solvent. CHEMSUSCHEM 2021; 14:686-698. [PMID: 33211400 DOI: 10.1002/cssc.202002301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Indexed: 05/12/2023]
Abstract
A deep analysis upon the chemical modifications of the cellulose and hemicelluloses fractions that take place during biomass delignification with deep eutectic solvents (DES) is lacking in literature, being this a critical issue given the continued research on DES for this purpose. This work intends to fill this gap by disclosing a comprehensive study on the chemical modifications of cellulose (microcrystalline cellulose and bleached kraft pulp) and hemicelluloses (xylans) during thermal treatment (130 °C) with cholinium chloride/lactic acid ([Ch]Cl/LA) at molar ratio 1 : 10, one of the best reported DES for biomass delignification. The obtained data revealed that [Ch]Cl/LA (1 : 10) has a negative impact on the polysaccharides fractions at prolonged treatments (>4 h), resulting on substantial modifications including the esterification of cellulose with lactic acid, shortening of fibers length, fibers agglomeration and side reactions of the hemicelluloses fraction (e. g., humin formation, lactic acid grafting). Wood delignification trials with [Ch]Cl/LA (1 : 10) at the same conditions also corroborate these findings. Moreover, the DES suffers degradation, including the formation of lactic acid derivatives and its polymerization. Therefore, short time delignification treatments are strongly recommended when using the [Ch]Cl/LA DES, so that a sustainable fractionation of biomass into high quality cellulose fibers, isolated lignin, and xylose/furfural co-production along with solvent recyclability could be achieved.
Collapse
Affiliation(s)
- Eduarda S Morais
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - André M Da Costa Lopes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
25
|
Bu CY, Yan YX, Zou LH, Ouyang SP, Zheng ZJ, Ouyang J. Comprehensive utilization of corncob for furfuryl alcohol production by chemo-enzymatic sequential catalysis in a biphasic system. BIORESOURCE TECHNOLOGY 2021; 319:124156. [PMID: 33010718 DOI: 10.1016/j.biortech.2020.124156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
A new process for the production of furfuryl alcohol from corncob was constructed by using deep eutectic solvents and whole cell catalysis in this paper. Firstly, the corncob was treated with deep eutectic solvents to convert the xylan into furfural, and then the pretreated corncob residue was enzymatically hydrolyzed to obtain a glucose-rich enzymatic hydrolysate, which was used to provide NADH for Bacillus coagulans NL01 during the process of furfural reduction. The furfural yield could reach 46% using the selected choline chloride-oxalic acid as catalysts and corncob as substrate under the optimized catalytic condition at 120 °C for 30 min. The final furfuryl alcohol yield of 20.7% was achieved with corncob as substrate. Moreover, this catalytic system realized the recycling of deep eutectic solvents three times, the high-value production of furfuryl alcohol, and the comprehensive utilization of corncob.
Collapse
Affiliation(s)
- Chong-Yang Bu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu-Xiu Yan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Li-Hua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shui-Ping Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhao-Juan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
26
|
Morais ES, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Enhanced Conversion of Xylan into Furfural using Acidic Deep Eutectic Solvents with Dual Solvent and Catalyst Behavior. CHEMSUSCHEM 2020; 13:784-790. [PMID: 31846225 DOI: 10.1002/cssc.201902848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
An efficient process for the production of furfural from xylan by using acidic deep eutectic solvents (DESs), which act both as solvents and catalysts, is developed. DESs composed of cholinium chloride ([Ch]Cl) and malic acid or glycolic acid at different molar ratios, and the effects of water and γ-valerolactone (GVL) contents, solid/liquid (S/L) ratio, and microwave heating are investigated. The best furfural yields are obtained with the DES [Ch]Cl:malic acid (1:3 molar ratio)+5 wt % water, under microwave heating for 2.5 min at 150 °C, a S/L ratio of 0.050, and GVL at a weight ratio of 2:1. Under these conditions, a remarkable furfural yield (75 %) is obtained. Direct distillation of furfural from the DES/GVL solvent and distillation from 2-methyltetrahydrofuran (2-MeTHF) after a back-extraction step enable 89 % furfural recovery from 2-MeTHF. This strategy allows recycling of the DES/GVL for at least three times with only small losses in furfural yield (>69 %). This is the fastest and highest-yielding process reported for furfural production using bio-based DESs as solvents and catalysts, paving the way for scale-up of the process.
Collapse
Affiliation(s)
- Eduarda S Morais
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João A P Coutinho
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
27
|
Qin LZ, He YC. Chemoenzymatic Synthesis of Furfuryl Alcohol from Biomass in Tandem Reaction System. Appl Biochem Biotechnol 2019; 190:1289-1303. [PMID: 31754985 DOI: 10.1007/s12010-019-03154-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/23/2019] [Indexed: 01/27/2023]
Abstract
In this study, chemoenzymatic synthesis of furfuryl alcohol from biomass (e.g., corncob, bamboo shoot shell, and rice straw) was attempted by the tandem catalysis with Lewis acid (SnCl4 or solid acid SO42-/SnO2-bentonite) and biocatalyst in one-pot manner. Compared with SnCl4, solid acid SO42-/SnO2-bentonite had higher catalytic activity for converting biomass into furfural, which could be biologically converted into furfuryl alcohol with Escherichia coli CCZU-H15 whole-cell harboring reductase activity. Sequential catalysis of biomass into furfural with SO42-/SnO2-bentonite (3.0 wt%) at 170 °C for 0.5 h and bioreduction of furfural with whole cells at 30 °C for 4.5 h were used for the effective synthesis of furfuryl alcohol in one-pot media. Corncob, bamboo shoot shell, and rice straw (3.0 g, dry weight) could be converted into 65.7, 50.3, and 58.5 mM furfuryl alcohol with the yields of 0.26, 0.25, and 0.23 g furfuryl alcohol/(g xylan in biomass) in 40 mL reaction media. Finally, an efficient process of recycling and reusing of SO42-/SnO2-bentonite catalyst and immobilized whole-cell biocatalyst was developed for the chemoenzymatic synthesis of furfuryl alcohol from biomass in the one-pot reaction system.
Collapse
Affiliation(s)
- Li-Zhen Qin
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China.,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Yu-Cai He
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China. .,State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
28
|
|
29
|
Wang X, Li H, Lin Q, Li R, Li W, Wang X, Peng F, Ren J. Efficient catalytic conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using recyclable ironic phosphates catalysts. BIORESOURCE TECHNOLOGY 2019; 290:121764. [PMID: 31310865 DOI: 10.1016/j.biortech.2019.121764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Efficient conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural was developed using recyclable ironic phosphates (FePO4) catalysts in the modified heterogeneous system. The effects of reaction conditions on the furfural yields were investigated, and the stability and water solubility of catalysts were evaluated. Results showed that the maximum furfural yield of 88.7% was obtained in the modified biphasic system by FePO4 catalysts at 190 °C for 120 min. The catalyst could be recycled and reused in conversion of the xylose-rich hydrolysate into furfural due to the unique feature that the catalyst showed solid state at room temperature and could be gradually dissolved into the aqueous phase upon increasing the reaction temperature and time. The experiments of five-time recycles showed that the FePO4 catalyst exhibited excellent stability and catalytic performances.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiying Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
30
|
Jia Q, Teng X, Yu S, Si Z, Li G, Zhou M, Cai D, Qin P, Chen B. Production of furfural from xylose and hemicelluloses using tin-loaded sulfonated diatomite as solid acid catalyst in biphasic system. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Shi H, Zhou M, Jia W, Li N, Niu M. Balancing the effect of pretreatment severity on hemicellulose extraction and pulping performance during auto-hydrolysis prior to kraft pulping of acacia wood. Biotechnol Prog 2019; 35:e2784. [PMID: 30748127 DOI: 10.1002/btpr.2784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 02/05/2019] [Indexed: 11/06/2022]
Abstract
When using a combination of pre-extraction and chemical pulping, a high yield of sugar recovery and minimal negative effect on the subsequent pulping step are expected. In this work, the P factor was utilized to investigate the effect of auto-hydrolysis severity on sugar recovery, removal of the main component, and impact on the kraft pulping of acacia wood chips. Using a P factor of 235, 84.34% of the polysaccharides in 14.05 g L-1 of dissolved sugars could be obtained. In addition, the soluble sugars were easily separated with a recovery yield of 3.54 g ·L-1 and Mw of 4,690 g mol-1 by direct precipitation using organic solvents. However, a maximum of 22.14 g L-1 of dissolved sugars was obtained with approximately 72.53% polysaccharides and Mw of 2,198 g mol-1 for a P factor of 601. Moreover, nearly 50% of the degraded carbohydrates remained in the auto-hydrolyzed wood chips. The decrease in the mass of pentosan, holocellulose, and klason lignin was 62, 30, and 8.76%, respectively. With intensifying severity, the screened yield and viscosity of pulps decreased markedly, whileas the Kappa number increased. No significant differences were observed in the morphology of the resultant fibers. Moreover, there was a decrease in the physical strength of the pulps due to the loss of the intrinsic strength of the pulp fibers, which in turn resulted from the cellulose damage. The combustion performance of the resultant pulping black liquor is improved due to the higher lignin content.
Collapse
Affiliation(s)
- Haiqiang Shi
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034, China.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Miaofang Zhou
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Wenchao Jia
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Na Li
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Meihong Niu
- Liaoning Key Laboratory of Pulp and Paper Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
32
|
Sato O, Mimura N, Masuda Y, Shirai M, Yamaguchi A. Effect of extraction on furfural production by solid acid-catalyzed xylose dehydration in water. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Luo Y, Li Z, Li X, Liu X, Fan J, Clark JH, Hu C. The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.06.042] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Liu Y, Ma C, Huang C, Fu Y, Chang J. Efficient Conversion of Xylose into Furfural Using Sulfonic Acid-Functionalized Metal–Organic Frameworks in a Biphasic System. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Liu
- School of Chemistry, Chemical Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Caijun Ma
- School of Chemistry, Chemical Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Chunxi Huang
- School of Chemistry, Chemical Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Yan Fu
- School of Chemistry, Chemical Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Jie Chang
- School of Chemistry, Chemical Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| |
Collapse
|
35
|
Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
The evolution from petroleum-based products to the bio-based era by using renewable resources is one of the main research challenges in the coming years. Lignocellulosic biomass, consisting of inedible plant material, has emerged as a potential alternative for the production of biofuels, biochemicals, and nanocellulose-based advanced materials. The lignocellulosic biomass, which consists mainly of carbohydrate-based polysaccharides (hemicellulose and cellulose), is a green intermediate for the synthesis of bio-based products. In recent years, the re-engineering of biomass into a variety of commodity chemicals and liquid fuels by using Lewis acid catalysts has attracted much attention. Much research has been focused on developing new chemical strategies for the valorization of different biomass components. Homogeneous Lewis acid catalysts seem to be one of the most promising catalysts due to their astonishing features such as being less corrosive to equipment and being friendlier to the environment, as well as having the ability to disrupt the bonding system effectively and having high selectivity. Thus, these catalysts have emerged as important tools for the highly selective transformation of biomass components into valuable chemicals and fuels. This review provides an insightful overview of the most important recent developments in homogeneous Lewis acid catalysis toward the production and upgrading of biomass. The chemical valorization of the main components of lignocellulosic biomass (hemicellulose and cellulose), the reaction conditions, and process mechanisms are reviewed.
Collapse
|
36
|
Di J, Ma C, Qian J, Liao X, Peng B, He Y. Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. BIORESOURCE TECHNOLOGY 2018; 262:52-58. [PMID: 29698837 DOI: 10.1016/j.biortech.2018.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
In this study, chemo-enzymatic synthesis of furfuralcohol from biomass-derived xylose was successfully demonstrated by a sequential acid-catalyzed dehydration under microwave and whole-cells reduction. After dry dewaxed chestnut shells (CNS, 75 g/L) was acid-hydrolyzed with dilute oxalic acid (0.5 wt%) at 140 °C for 40 min, the obtained CNS-derived xylose (17.9 g/L xylose) could be converted to furfural at 78.8% yield with solid acid SO42-/SnO2-Attapulgite (2.0 wt% catalyst loading) in the dibutyl phthalate-water (1:1, v:v) under microwave (600 W) at 180 °C for 10 min. In the dibutyl phthalate-water (1:1, v/v) media at 30 °C and pH 6.5, the furfural liquor (47.0 mM furfural) was biologically converted to furfuralcohol by recombinant Escherichia coli CCZU-Y10 whole-cells harboring an NADH-dependent reductase (PgCR) without extra addition of NAD+ and glucose, and furfural was completely converted to furfuralcohol after 2.5 h. Clearly, this one-pot synthesis strategy can be effectively used for furfuralcohol production.
Collapse
Affiliation(s)
- Junhua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Jianghao Qian
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Xiaolong Liao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Bo Peng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Yucai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
37
|
Hernández C, Milagres AMF, Vázquez-Marrufo G, Muñoz-Páez KM, García-Pérez JA, Alarcón E. An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Folia Microbiol (Praha) 2018; 63:467-478. [PMID: 29423709 DOI: 10.1007/s12223-018-0588-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/24/2018] [Indexed: 01/23/2023]
Abstract
Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, β-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, β-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N = 14) were analyzed by Pearson's correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and β-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. niger-T. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.
Collapse
Affiliation(s)
- Christian Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de las culturas veracruzanas no. 101, colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico
| | - Adriane M F Milagres
- Departamento de Biotecnología, Escola de engenharia de Lorena (EEL), Universidade de São Paulo, Estrada Municipal do Campinho s/n - Pte Nova, Lorena, SP, 12602-810, Brazil
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología (CMEB), Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Calle Morelia-Zinapecuaro Km 9.5, colonia La Palma, 58262, Tarímbaro, Michoacán, Mexico
| | - Karla María Muñoz-Páez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - José Antonio García-Pérez
- Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán, Zona Universitaria, 91090, Xalapa, Veracruz, Mexico
| | - Enrique Alarcón
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de las culturas veracruzanas no. 101, colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico.
| |
Collapse
|
38
|
Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Ye J, Zhou M, Wang K, Chen S, Xu J, Jiang J. Catalytic Conversion of Bamboo Meal to High-Yield Furfural With Solid Acid Catalyst FePO4
⋅2H2
O. ChemistrySelect 2017. [DOI: 10.1002/slct.201702115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun Ye
- Institute of New Technology of Forestry; Chinese Academy of Forestry; Beijing 100091 China
- Institute of Chemical Industry of Forest Products; Chinese Academy of Forestry, Jiangsu Province; Nanjing 210042 China
| | - Minghao Zhou
- Institute of Chemical Industry of Forest Products; Chinese Academy of Forestry, Jiangsu Province; Nanjing 210042 China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products; Chinese Academy of Forestry, Jiangsu Province; Nanjing 210042 China
| | - Shuigen Chen
- Institute of Chemical Industry of Forest Products; Chinese Academy of Forestry, Jiangsu Province; Nanjing 210042 China
| | - Junming Xu
- Institute of New Technology of Forestry; Chinese Academy of Forestry; Beijing 100091 China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products; Chinese Academy of Forestry, Jiangsu Province; Nanjing 210042 China
| |
Collapse
|
40
|
Li W, Zhu Y, Lu Y, Liu Q, Guan S, Chang HM, Jameel H, Ma L. Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst. BIORESOURCE TECHNOLOGY 2017; 245:258-265. [PMID: 28892699 DOI: 10.1016/j.biortech.2017.08.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 05/16/2023]
Abstract
With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaCt-700) in different solvents. The novel catalyst was characterized by elemental analysis, N2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass.
Collapse
Affiliation(s)
- Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuanshuai Zhu
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China.
| | - Yijuan Lu
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Qiyu Liu
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Shennan Guan
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China, Hefei 230026, PR China
| | - Hou-Min Chang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Longlong Ma
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
41
|
He YC, Jiang CX, Chong GG, Di JH, Wu YF, Wang BQ, Xue XX, Ma CL. Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO 42-/SnO 2-kaoline and E. coli CCZU-T15 cells in toluene-water media. BIORESOURCE TECHNOLOGY 2017; 245:841-849. [PMID: 28926917 DOI: 10.1016/j.biortech.2017.08.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 05/14/2023]
Abstract
One-pot synthesis of furfuralcohol from corncob-derived xylose was attempted by the tandem catalysis with solid acid SO42-/SnO2-kaoline and recombination Escherichia coli CCZU-T15 whole-cells in the toluene-water media. Using SO42-/SnO2-kaoline (3.5wt%) as catalyst, the furfural yield of 74.3% was obtained from corncob-derived xylose in the toluene-water (1:2, v:v) containing 10mM OP-10 at 170°C for 30min. After furfural liquor was mixed with corncob-hydrolysate from the enzymatic hydrolysis of oxalic acid-pretreated corncob residue, furfural (50.5mM) could be completely biotransformed to furfuralcohol with Escherichia coli CCZU-T15 whole-cells harboring an NADH-dependent reductase (ClCR) in the toluene-water (1:3, v:v) containing 12.5mM OP-10 and 1.6mM glucose/mM furfural at 30°C and pH 6.5. Furfuralcohol was obtained at 13.0% yield based on starting material corncob (100% furfuralcohol yield for bioreduction of furfural step). Clearly, this one-pot synthesis of furfuralcohol strategy shows high potential application for the effective utilization of corncob.
Collapse
Affiliation(s)
- Yu-Cai He
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China; Key Laboratory of Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Chun-Xia Jiang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Yan-Fei Wu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Bing-Qian Wang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Xin-Xia Xue
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
42
|
Xue XX, Di JH, He YC, Wang BQ, Ma CL. Effective Utilization of Carbohydrate in Corncob to Synthesize Furfuralcohol by Chemical-Enzymatic Catalysis in Toluene-Water Media. Appl Biochem Biotechnol 2017; 185:42-54. [PMID: 29082476 DOI: 10.1007/s12010-017-2638-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/17/2017] [Indexed: 11/27/2022]
Abstract
In this study, carbohydrates (cellulose plus hemicellulose) in corncob were effectively converted furfuralcohol (FOL) via chemical-enzymatic catalysis in a one-pot manner. After corncob (2.5 g, dry weight) was pretreated with 0.5 wt% oxalic acid, the obtained corncob-derived xylose (19.8 g/L xylose) could be converted to furfural at 60.1% yield with solid acid catalyst SO42-/SnO2-attapulgite (3.6 wt% catalyst loading) in the water-toluene (3:1, v/v) at 170 °C for 20 min. Moreover, the oxalic acid-pretreated corncob residue (1.152 g, dry weight) was enzymatically hydrolyzed to 0.902 g glucose and 0.202 g arabinose. Using the corncob-derived glucose (1.0 mM glucose/mM furfural) as cosubstrate, the furfural liquor (48.3 mM furfural) was successfully biotransformed to FOL by recombinant Escherichia coli CCZU-A13 cells harboring an NADH-dependent reductase (SsCR) in the water-toluene (4:1, v/v) under the optimum conditions (50 mM PEG-6000, 0.2 mM Zn2+, 0.1 g wet cells/mL, 30 °C, pH 6.5). After the bioreduction for 2 h, FAL was completely converted to FOL. The FOL yield was obtained at 0.11 g FOL/g corncob. Clearly, this one-pot synthesis strategy shows high potential application for the effective synthesis of FOL.
Collapse
Affiliation(s)
- Xin-Xia Xue
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Yu-Cai He
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China. .,Key Laboratory of Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Bing-Qian Wang
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
43
|
Yang T, Zhou YH, Zhu SZ, Pan H, Huang YB. Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions. CHEMSUSCHEM 2017; 10:4066-4079. [PMID: 28856818 DOI: 10.1002/cssc.201701290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/11/2017] [Indexed: 05/26/2023]
Abstract
A simple and efficient biphasic system with an earth-abundant metal salt catalyst was used to produce furfural from xylan with a high yield of up to 87.8 % under microwave conditions. Strikingly, the metal salt Al2 (SO4 )3 exhibited excellent catalytic activity for xylan conversion, owing to a combination of Lewis and Brønsted acidity and its ability to promote good phase separation. The critical role of the SO42- anion was first analyzed, which resulted in the aforementioned characteristics when combined with the Al3+ cation. The mixed solvent system with γ-valerolactone (GVL) as the organic phase provided the highest furfural yield, resulting from its good dielectric properties and dissolving capacity, which facilitated the absorption of microwave energy and promoted mass transfer. Mechanistic studies suggested that the xylan-to-furfural conversion proceeded mainly through a hydrolysis-isomerization-dehydration pathway and the hexa-coordinated Lewis acidic [Al(OH)2 (aq)]+ species were the active sites for xylose-xylulose isomerization. Detailed kinetic studies of the subreaction for the xylan conversion revealed that GVL regulates the reaction rates and pathways by promoting the rates of the key steps involved for furfural production and suppressing the side reactions for humin production. Finally, the Al2 (SO4 )3 catalyst was used for the production of furfural from several lignocellulosic feedstocks, revealing its great potential for other biomass conversions.
Collapse
Affiliation(s)
- Tao Yang
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, P.R: China
| | - Yi-Han Zhou
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, P.R: China
| | - Sheng-Zhen Zhu
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, P.R: China
| | - Hui Pan
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, P.R: China
| | - Yao-Bing Huang
- College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing, P.R: China
| |
Collapse
|
44
|
Zhang X, Bai Y, Cao X, Sun R. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2017; 238:1-6. [PMID: 28432947 DOI: 10.1016/j.biortech.2017.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Herein, an efficient biphasic pretreatment process was developed to improve the production of furfural (FF) and glucose from Eucalyptus. The influence of formic acid and NaCl on FF production from xylose in water and various biphasic systems was investigated. Results showed that the addition of formic acid and NaCl significantly promoted the FF yield, and the biphasic system of MIBK (methyl isobutyl ketone)/water exhibited the best performance for FF production. Then the Eucalyptus was pretreated in the MIBK/water system, and a maximum FF yield of 82.0% was achieved at 180°C for 60min. Surface of the pretreated Eucalyptus became relatively rough and loose, and its crystallinity index increased obviously due to the removal of hemicelluloses and lignin. The pretreated Eucalyptus samples showed much higher enzymatic hydrolysis rates (26.2-70.7%) than the raw Eucalyptus (14.5%).
Collapse
Affiliation(s)
- Xiudong Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuanyuan Bai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Runcang Sun
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
45
|
Zhang H, Xu Y, Yu S. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. BIORESOURCE TECHNOLOGY 2017; 234:343-349. [PMID: 28340439 DOI: 10.1016/j.biortech.2017.02.094] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 05/11/2023]
Abstract
A novel and green approach for the coproduction of xylooligosaccharides (XOS), in terms of a series of oligosaccharide components from xylobiose to xylohexose, and fermentable sugars was developed using the prehydrolysis of acetic acid that was fully recyclable and environmentally friendly, followed by enzymatic hydrolysis. Compared to hydrochloric acid and sulfuric acid, acetic acid hydrolysis provided the highest XOS yield of 45.91% and the highest enzymatic hydrolysis yield. More than 91% conversion of cellulose was achieved in a batch-hydrolysis using only a cellulase loading of 20FPU/g cellulose and even a high solid loading of 20% without any special strategies. The acetic acid pretreated corncob should be washed adequately before saccharification to achieve complete hydrolysis. Consequently, a mass balance analysis showed that 139.8g XOS, 328.1g glucose, 25.1g cellobiose, and 147.8g xylose were produced from 1000g oven dried raw corncob.
Collapse
Affiliation(s)
- Hongyu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| | - Shiyuan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| |
Collapse
|
46
|
Goldmann WM, Ahola J, Mikola M, Tanskanen J. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust. BIORESOURCE TECHNOLOGY 2017; 232:176-182. [PMID: 28231535 DOI: 10.1016/j.biortech.2017.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Hemicellulose has been extracted from birch (Betula pendula) sawdust by formic acid aided hot water extraction. The maximum amount of hemicellulose extracted was about 70mol% of the total hemicellulose content at 170°C, measured as the combined yield of xylose and furfural. Lower temperatures (130 and 140°C) favored hemicellulose hydrolysis rather than cellulose hydrolysis, even though the total hemicellulose yield was less than at 170°C. It was found that formic acid greatly increased the hydrolysis of hemicellulose to xylose and furfural at the experimental temperatures. The amount of lignin in the extract remained below the detection limit of the analysis (3g/L) in all cases. Formic acid aided hot water extraction is a promising technique for extracting hemicellulose from woody biomass, while leaving a solid residue with low hemicellulose content, which can be delignified to culminate in the three main isolated lignocellulosic fractions: cellulose, hemicellulose, and lignin.
Collapse
Affiliation(s)
- Werner Marcelo Goldmann
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu 90014, Finland.
| | - Juha Ahola
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu 90014, Finland
| | - Marja Mikola
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu 90014, Finland
| | - Juha Tanskanen
- Chemical Process Engineering, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu 90014, Finland
| |
Collapse
|
47
|
SO42−/Sn-MMT Solid Acid Catalyst for Xylose and Xylan Conversion into Furfural in the Biphasic System. Catalysts 2017. [DOI: 10.3390/catal7040118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Gao C, Ren J, Zhao C, Kong W, Dai Q, Chen Q, Liu C, Sun R. Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr Polym 2016; 151:189-197. [DOI: 10.1016/j.carbpol.2016.05.075] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022]
|
49
|
Value-added organonitrogen chemicals evolution from the pyrolysis of chitin and chitosan. Carbohydr Polym 2016; 156:118-124. [PMID: 27842805 DOI: 10.1016/j.carbpol.2016.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 11/22/2022]
Abstract
Thermogravimetric characteristics of chitin and chitosan and their potentials to produce value-added organonitrogen chemicals were separately evaluated via TG/DSC-FTIR and Py-GC/MS. Results shown that chitin had the better thermal stability and higher activation energy than chitosan because of the abundant acetamido group. Furthermore, the dominated volatilization in active pyrolysis of chitin contributed to its endothermic property, whereas the charring in chitosan led to the exothermal. During fast pyrolysis, the acetamido group in chitin and chitosan was converted into acetic acid or acetamide. Typical products from chitosan pyrolysis were aza-heterocyclic chemicals, i.e. pyridines, pyrazines, and pyrroles, with the total selectivity of 50.50% at 600°C. Herein, selectivity of pyrazine compounds was up to 22.99%. These aza-heterocyclic chemicals came from the nucleophilic addition reaction of primary amine and carbonyl. However, main reaction during chitin pyrolysis was ring-opening degradation, which led to the formation of acetamido chemicals, especially acetamido acetaldehyde with the highest selectivity of 27.27% at 450°C. In summary, chitosan had the potential to produce aza-heterocyclic chemicals, and chitin to acetamido chemicals.
Collapse
|
50
|
Deng A, Lin Q, Yan Y, Li H, Ren J, Liu C, Sun R. A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system. BIORESOURCE TECHNOLOGY 2016; 216:754-760. [PMID: 27295253 DOI: 10.1016/j.biortech.2016.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
A feasible approach was developed to produce furfural from the pre-hydrolysis liquor of corncob via biochar catalysts as the solid acid catalyst in a new biphasic system with dichloromethane (DCM) as the organic phase and the concentrated pre-hydrolysis liquor (CPHL) containing NaCl as the aqueous phase. The biochar catalyst possessing many acidity groups (SO3H, COOH and phenolic OH groups) was prepared by the carbonization and sulfonation process of the corncob hydrolyzed residue. The influence of the catalytic condition on furfural yield and selectivity was comparatively studied. It was found that 81.14% furfural yield and 83.0% furfural selectivity were obtained from CPHL containing 5wt% xylose using this biochar catalyst in the CPHL-NaCl/DCM biphasic system at 170°C for 60min. In addition, with the regeneration process, this catalyst displayed the high performance and excellent recyclability.
Collapse
Affiliation(s)
- Aojie Deng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuhuan Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huiling Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Runcang Sun
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|