1
|
Vuković JP, Tišma M. The role of NMR spectroscopy in lignocellulosic biomass characterisation: A mini review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100219. [PMID: 39263258 PMCID: PMC11388798 DOI: 10.1016/j.fochms.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Lignocellulosic biomass (LB) is promising feedstock for the production of various bio-based products. However, due to its heterogenous character, complex chemical structure and recalcitrance, it is necessary to know its structural composition in order to optimize pretreatment process and further (bio)conversion into bio-based products. Nuclear Magnetic Resonance (NMR) spectroscopy is a fast and reliable method that can provide advanced data on the molecular architecture and composition of lignocellulosic biomass. In this brief overview, characteristic examples of the use of high-resolution NMR spectroscopy for the investigation of various types of LB and their structural units are given and the main drawbacks and future perspectives are outlined.
Collapse
Affiliation(s)
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| |
Collapse
|
2
|
Huamani-Palomino RG, Mayta S, Córdova BM, Yáñez-S M, Venâncio T, Rivera E, Quintana M. Study of the effect of bleaching agents on the crystalline index of cellulose-based materials derived from corn husk by CP/MAS 13C NMR and FT-IR spectroscopies. Carbohydr Polym 2024; 346:122593. [PMID: 39245485 DOI: 10.1016/j.carbpol.2024.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
This work proposes an evaluation of the Crystalline Index (CrI) in function of the bleaching process employed during cellulose extraction from corn husk, for further characterization using CP/MAS 13C NMR, XRD, and FT-IR. In that sense, CrI values were calculated by FT-IR and the bands associated with the crystalline and amorphous regions were observed at 1424 cm-1 and 896 cm-1, respectively. Similarly, the signals due to ordered (89.1 ppm) and disordered (84.2 ppm) cellulose chains were detected by solid-state 13C NMR, while the Segal equation was only used for comparison purposes. Additionally, PCA studies showed consistent results attributed to the crystalline region in cellulose domains analyzed by both, FT-IR and solid-state 13C NMR. The results revealed the coexistence of cellulose I/cellulose II and its effect on CrI, as well as the incomplete mercerization process, in some cases non-cellulosic residues can cause an overestimation of CrI. Additionally, the thermal stability and the glass transition temperature were determined by TGA/DTA and DSC analyses. Finally, a partially fibrillated-network morphology with a diameter of 20.47 ± 2.77 μm was observed in cellulose bleached with peracetic acid, whereas organosolv method provides flexible and clean microfibrils with diameter sizes between 10 and 9 μm.
Collapse
Affiliation(s)
- Ronny G Huamani-Palomino
- Group of Biomaterials and Polymers, National University of Engineering (UNI), Av. Tupac Amaru 210, Lima, Peru.
| | - Sergio Mayta
- Group of Biomaterials and Polymers, National University of Engineering (UNI), Av. Tupac Amaru 210, Lima, Peru; Center for the Development of Advanced Materials and Nanotechnology, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| | - Bryan M Córdova
- Group of Biomaterials and Polymers, National University of Engineering (UNI), Av. Tupac Amaru 210, Lima, Peru
| | - Mauricio Yáñez-S
- Facultad de Recursos Naturales, Departamento de Cs. Biológicas y Químicas, Universidad Católica de Temuco, Campus San Juan Pablo II, Temuco, Chile
| | - Tiago Venâncio
- Laboratório de Ressonância Magnética Nuclear, Departamento de Química, Universidade Federal de Sao Carlos, São Carlos, São Paulo CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - María Quintana
- Center for the Development of Advanced Materials and Nanotechnology, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| |
Collapse
|
3
|
Demir G, Arar Ö, Arda M. Tripolyphosphate-functionalized cellulose: A green solution for cadmium contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125042. [PMID: 39343346 DOI: 10.1016/j.envpol.2024.125042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
This study introduces a highly efficient tripolyphosphate -tethered cellulose sorbent for cadmium (Cd2⁺) removal from aqueous solutions. Characterization through FTIR and SEM revealed the material's structural properties. The sorbent achieved 99% Cd2⁺ removal even at a minimal dosage of 0.05 g. Optimal sorption occurred within the pH range of 4-6, influenced by the sorbent's weak acidic functional groups. Rapid kinetics, reaching equilibrium within a minute, and a high sorption capacity (up to 18.03 mg/g at 50 °C) were observed. Langmuir isotherm modeling confirmed monolayer sorption, and thermodynamic studies indicated a spontaneous, endothermic process with increased randomness at the solid-liquid interface. Selectivity studies demonstrated strong Cd2⁺ removal performance in the presence of competing ions, with minimal interference from monovalent ions but notable effects from divalent ions. The sorbent exhibited consistent reusability over multiple cycles. XPS analysis conclusively established an ion exchange mechanism between Cd2⁺ and negatively charged P3O105- groups as the primary removal pathway. This research highlights the potential of TPP-tethered cellulose as a promising sorbent for effective Cd2⁺ remediation.
Collapse
Affiliation(s)
| | - Özgür Arar
- Chemistry Department, Ege University, Izmir, Turkey.
| | - Müşerref Arda
- Chemistry Department, Ege University, Izmir, Turkey.
| |
Collapse
|
4
|
Hou J, Zhang Q, Tian F, Liu F, Jiang J, Qin J, Wang H, Wang J, Chang S, Hu X. Structure changes of lignin and their effects on enzymatic hydrolysis for bioethanol production: a focus on lignin modification. J Biotechnol 2024; 393:61-73. [PMID: 39067576 DOI: 10.1016/j.jbiotec.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Enzymatic hydrolysis contributes to obtaining fermentable sugars using pretreated lignocellulose materials for bioethanol generation. Unfortunately, the pretreatment of lignocellulose causes low substrate enzymatic hydrolysis, which is due to the structure changes of lignin to produce main phenolic by-products and non-productive cellulase adsorption. It is reported that modified lignin enhances the speed of enzymatic hydrolysis through single means to decrease the negative effects of fermentation inhibitors or non-productive cellulase adsorption. However, a suitable modified lignin should be selected to simultaneously reduce the fermentation inhibitors concentration and non-productive cellulase adsorption for saving resources and maximizing the enzymatic hydrolysis productivity. Meanwhile, the adsorption micro-mechanisms of modified lignin with fermentation inhibitors and cellulase remain elusive. In this review, different pretreatment effects toward lignin structure, and their impacts on subsequent enzymatic hydrolysis are analyzed. The main modification methods for lignin are presented. Density functional theory is used to screen suitable modification methods for the simultaneous reduction of fermentation inhibitors and non-productive cellulase adsorption. Lignin-fermentation inhibitors and lignin-cellulase interaction mechanisms are discussed using different advanced analysis techniques. This article addresses the gap in previous reviews concerning the application of modified lignin in the enhancement of bioethanol production. For the first time, based on existing studies, this work posits the hypothesis of applying theoretical simulations to screen efficient modified lignin-based adsorbents, in order to achieve a dual optimization of the detoxification and saccharification processes. We aim to improve the integrated lignocellulose transformation procedure for the effective generation of cleaner bioethanol.
Collapse
Affiliation(s)
- Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fuwen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingxian Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiaolong Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huifeng Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shufang Chang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
5
|
Liu Z, Peng Z, Yi L, Wang L, Chen J, Chen B, Guo L. Thermodynamic Model for Hydrogen Production from Rice Straw Supercritical Water Gasification. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3038. [PMID: 38930407 PMCID: PMC11206053 DOI: 10.3390/ma17123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Supercritical water gasification (SCWG) technology is highly promising for its ability to cleanly and efficiently convert biomass to hydrogen. This paper developed a model for the gasification of rice straw in supercritical water (SCW) to predict the direction and limit of the reaction based on the Gibbs free energy minimization principle. The equilibrium distribution of rice straw gasification products was analyzed under a wide range of parameters including temperatures of 400-1200 °C, pressures of 20-50 MPa, and rice straw concentrations of 5-40 wt%. Coke may not be produced due to the excellent properties of supercritical water under thermodynamic constraints. Higher temperatures, lower pressures, and biomass concentrations facilitated the movement of the chemical equilibrium towards hydrogen production. The hydrogen yield was 47.17 mol/kg at a temperature of 650 °C, a pressure of 25 MPa, and a rice straw concentration of 5 wt%. Meanwhile, there is an absorptive process in the rice straw SCWG process for high-calorific value hydrogen production. Energy self-sufficiency of the SCWG process can be maintained by adding small amounts of oxygen (ER < 0.2). This work would be of great value in guiding rice straw SCWG experiments.
Collapse
Affiliation(s)
- Zhigang Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China; (Z.L.); (B.C.)
- International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, China; (L.Y.); (L.W.)
| | - Zhiyong Peng
- International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, China; (L.Y.); (L.W.)
| | - Lei Yi
- International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, China; (L.Y.); (L.W.)
| | - Le Wang
- International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, China; (L.Y.); (L.W.)
| | - Jingwei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China; (Z.L.); (B.C.)
- International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, China; (L.Y.); (L.W.)
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China; (Z.L.); (B.C.)
| |
Collapse
|
6
|
John AJ, Selvarajan E. Ionic liquid-assisted pretreatment of lignocellulosic biomass using purified Streptomyces MS2A cellulase for bioethanol production. Int J Biol Macromol 2024; 270:132149. [PMID: 38740158 DOI: 10.1016/j.ijbiomac.2024.132149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
In recent years, the process of producing bioethanol from lignocellulosic biomass through biorefining has become increasingly important. However, to obtain a high yield of ethanol, the complex structures in the feedstock must be broken down into simple sugars. A cost-effective and innovative method for achieving this is ionic liquid pre-treatment, which is widely used to efficiently hydrolyze the lignocellulosic material. The study aims to produce a significant profusion of bioethanol via catalytic hydrolysis of ionic liquid-treated lignocellulose biomass. The current study reports the purification of Streptomyces sp. MS2A cellulase via ultrafiltration and gel permeation chromatography. The kinetic parameters and the biochemical nature of the purified cellulase were analyzed for the effective breakdown of the EMIM[OAC] treated lignocellulose chain. The two-step cellulase purification resulted in 6.28 and 12.44 purification folds. The purified cellulase shows a Km value of 0.82 ± 0.21 mM, and a Vmax value of 85.59 ± 8.87 μmol min-1 mg-1 with the catalytic efficiency of 1.027 S-1. The thermodynamic parameters like ΔH, ΔS, and ΔG of the system were studied along with the thermal deactivation kinetics of cellulase. The optimal temperature and pH of the purified cellulase enzyme for hydrolysis was found to be 40 °C and 7. The rice husk and wheat husk used in this study were pretreated with the EMIM [OAC] ionic liquid and the change in the structure of lignocellulosic biomass was observed via HRSEM. The ionic liquid treated biomass showed the highest catalytic hydrolysis yield of 106.66 ± 0.19 mol/ml on the third day. The obtained glucose was fermented with Saccharomyces cerevisiae to yield 23.43 g of ethanol/l of glucose from the rice husk (RH) and 24.28 g of ethanol/l of glucose from the wheat husk (WH).
Collapse
Affiliation(s)
- Ashwini J John
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
7
|
Lu X, Zhao Y, Wang C, Zhang H, Liu P. Necessity of Different Lignocellulose on Exopolysaccharide Synthesis and Its Hypoglycemic Activity In Vitro of Inonotus obliquus. Appl Biochem Biotechnol 2024; 196:3420-3440. [PMID: 37659052 DOI: 10.1007/s12010-023-04716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Current work proposes elm sawdust, poplar sawdust, pine sawdust, and cotton straw with different lignocellulose compositions and structures as the research objects to investigate the relationship between the hypoglycemic activity of mycelium polysaccharides from Inonotus obliquus and lignocellulose biodegradation. Four kinds of lignocellulosic materials could significantly increase the exopolysaccharide content and α-glucosidase inhibition rate and advance the occurrence time of α-glucosidase inhibition activity. Among all groups, the polysaccharide synthesis promotion effect of the cotton straw group was the best, which exopolysaccharide yield was 92.05% higher than that of the control group after 11-day fermentation. Meanwhile, the highest α-glucosidase inhibitory activity was found in the elm sawdust group on the 11th day (30.99%, which was 137.47% higher than control), and the exopolysaccharide in the elm sawdust group showed its effectiveness on glucose consumption of insulin resistant HepG2 cells at the concentration of 20 µg/mL, significantly higher than that of the metformin group (P < 0.05). The cellulose in the non-crystalline region of elm and pine and the hemicellulose of poplar were mainly used in the fermentation of I. obliquus, while the cellulose in the crystalline zone and amorphous zone of cotton straw was degraded to improve the exopolysaccharide content of I. obliquus. This paper revealed the necessity of different kinds of lignocellulose for the synthesis of active polysaccharide from I. obliquus and provided a new idea for the regulation of polysaccharide synthesis pathway.
Collapse
Affiliation(s)
- Xiaohong Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuanyuan Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunhong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haiyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ping Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Show BK, Ross AB, Biswas R, Chaudhury S, Balachandran S. Draft genome sequence data on Bacillus safensis U41 isolated from soils of Santiniketan, India. Data Brief 2024; 54:110547. [PMID: 38882190 PMCID: PMC11179240 DOI: 10.1016/j.dib.2024.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
The draft genome sequence of an isolate of Bacillus safensis U41 from the soils of Santiniketan (23040'12″ N and 87039'52″ E) is reported here. Bacillus safensis is a bacterium that produces cellulases, which is essential for the breakdown of plant biomass. As such, it is a valuable source of digestive enzymes from plant biomass, especially cellulases. The genomic DNA was extracted from a single colony using a QIAgen Blood and Tissue kit (QIAgen Inc., Canada). Sequencing was performed via Illumina HiSeq X using 2 × 150 paired-end chemistry, generating 7,352,576 reads with sequence coverage of 509x. The assembly produced 20 contigs over 200 base pairs (bp) in length, with an N50 value of 901304 and an L50 of 2. The genome size was 3,732,407 bp, and the average GC content was 41.43 %. Genome annotation and gene predictions were performed using Prokka v.1.14.6, which identified 3783 coding sequences, 64 tRNA genes, and 3 rRNA genes.
Collapse
Affiliation(s)
- Binoy Kumar Show
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Andrew B Ross
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Raju Biswas
- Department of Botany, Siksha-Bhavana, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Shibani Chaudhury
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan 731235, West Bengal, India
| |
Collapse
|
9
|
Dey P, Bhattacharjee S, Yadav DK, Hmar BZ, Gayen K, Bhowmick TK. Valorization of waste biomass for synthesis of carboxy-methyl-cellulose as a sustainable edible coating on fruits: A review. Int J Biol Macromol 2023; 253:127412. [PMID: 37844815 DOI: 10.1016/j.ijbiomac.2023.127412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The coating on fruits and vegetables increases the shelf-life by providing protection against their spoilage. The existing petroleum-based coating materials have considerable health threats. Edible coating materials prepared with the cellulose derivative extracted from the waste biomass could be a sustainable alternative and environment friendly process to increase the shelf-life periods of the post-harvest crops. Selection of suitable waste biomass and extraction of cellulose are the critical steps for the synthesis of cellulose-based edible film. Conversion of extracted cellulose into cellulosic macromolecular derivatives such as carboxy-methyl-cellulose (CMC) is vital for synthesizing edible coating formulation. Applications of sophisticated tools and methods for the characterization of the coated fruits would be helpful to determine the efficiency of the coating material. In this review, we focused on: i) criteria for the selection of suitable waste biomass for extraction of cellulose, ii) pretreatment and extraction process of cellulose from the different waste biomasses, iii) synthesis processes of CMC by using extracted cellulose, iv) characterizations of CMC as food coating materials, v) various formulation techniques for the synthesis of the CMC based food coating materials and vi) the parameters which are used to evaluate the shelf-life performance of different coated fruits.
Collapse
Affiliation(s)
- Puspita Dey
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Satyajit Bhattacharjee
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India
| | - Dev Kumar Yadav
- DRDO-Defence Food Research Laboratory, Mysore 570 011, India
| | | | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology, Agartala, West Tripura, Tripura 799046, India.
| |
Collapse
|
10
|
Tang C, Gandla ML, Jönsson LJ. LPMO-supported saccharification of biomass: effects of continuous aeration of reaction mixtures with variable fractions of water-insoluble solids and cellulolytic enzymes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:156. [PMID: 37865768 PMCID: PMC10590502 DOI: 10.1186/s13068-023-02407-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND High substrate concentrations and high sugar yields are important aspects of enzymatic saccharification of lignocellulosic substrates. The benefit of supporting the catalytic action of lytic polysaccharide monooxygenase (LPMO) through continuous aeration of slurries of pretreated softwood was weighed against problems associated with increasing substrate content (quantitated as WIS, water-insoluble solids, in the range 12.5-17.5%), and was compared to the beneficial effect on the saccharification reaction achieved by increasing the enzyme preparation (Cellic CTec3) loadings. Aerated reactions were compared to reactions supplied with N2 to assess the contribution of LPMO to the saccharification reactions. Analysis using 13C NMR spectroscopy, XRD, Simons' staining, BET analysis, and SEM analysis was used to gain further insights into the effects of the cellulolytic enzymes on the substrate under different reaction conditions. RESULTS Although glucose production after 72 h was higher at 17.5% WIS than at 12.5% WIS, glucan conversion decreased with 24% (air) and 17% (N2). Compared to reactions with N2, the average increases in glucose production for aerated reactions were 91% (12.5% WIS), 70% (15.0% WIS), and 67% (17.5% WIS). Improvements in glucan conversion through aeration were larger (55-86%) than the negative effects of increasing WIS content. For reactions with 12.5% WIS, increased enzyme dosage with 50% improved glucan conversion with 25-30% for air and N2, whereas improvements with double enzyme dosage were 30% (N2) and 39% (air). Structural analyses of the solid fractions revealed that the enzymatic reaction, particularly with aeration, created increased surface area (BET analysis), increased disorder (SEM analysis), decreased crystallinity (XRD), and increased dye adsorption based on the cellulose content (Simons' staining). CONCLUSIONS The gains in glucan conversion with aeration were larger than the decreases observed due to increased substrate content, resulting in higher glucan conversion when using aeration at the highest WIS value than when using N2 at the lowest WIS value. The increase in glucan conversion with double enzyme preparation dosage was smaller than the increase achieved with aeration. The results demonstrate the potential in using proper aeration to exploit the inherent capacity of LPMO in enzymatic saccharification of lignocellulosic substrates and provide detailed information about the characteristics of the substrate after interaction with cellulolytic enzymes.
Collapse
Affiliation(s)
- Chaojun Tang
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
11
|
Deshmukh MP, Pande A, Choudhari V, Pendse DS. Investigation of bioethanol production from jatropha deoiled cake and its blending effects for environmental sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103640-103651. [PMID: 37688707 DOI: 10.1007/s11356-023-29614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
This paper describes the process of extracting ethanol from Jatropha curcas and its various blending effects on spark-ignited engine performance for environmental sustainability. Alternatives to conventional fuel sources have to be found because of the depletion of fossil fuels and stringent regulations. Every day, the growing population and improved transportation increase the energy demand. Bioethanol is an effective substitute for gasoline and SI engine diesel. Worldwide, passenger cars typically blend 10% bioethanol with gasoline. Some nations, like India, have stated plans to blend 20% bioethanol with gasoline starting shortly. From leftover jatropha deoiled cake (JDC), bioethanol was produced utilizing the fermentation and vacuum distillation methods. Four different blends were prepared on a volumetric basis at different engine speeds at a constant compression ratio of 10:1 and the wide-open throttle was tested for various performances and emissions. Bioethanol enrichments reduce CO and CO2 emissions but increase nitrogen oxide emissions. JDCE 15 was found to have the best engine performance out of all the fuel blends tested. This study suggests that, if NOx emission reduction measures are carried out, JDC can be used as a source for the manufacturing of second-generation bioethanol.
Collapse
Affiliation(s)
- Minal P Deshmukh
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India.
| | - Ashwini Pande
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Vishnu Choudhari
- School of Health Sciences and Technology, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Dhanashri S Pendse
- School of Chemical Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| |
Collapse
|
12
|
Fan M, Liu Z, Xie J, Chen Y. An optimum biomass fractionation strategy into maximum carbohydrates conversion and lignin valorization from poplar. BIORESOURCE TECHNOLOGY 2023; 385:129344. [PMID: 37369319 DOI: 10.1016/j.biortech.2023.129344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Appropriate fractionation of lignocellulosic biomass into useable forms is a key challenge to achieving an economic bioethanol production. In the present study, four different fractionation strategies of hydrothermal-, NaOH-, ethanol-, and NaOH catalyzed ethanol pretreatment were investigated to compare their abilities of cellulose conversion. Results showed that NaOH catalyzed ethanol pretreatment showed a rather high extent of delignification of 85.92%, which also enhanced the retention of cellulose (92.56%) and hemicellulose (76.57%); while other pretreatments tended to produce cellulose fraction which was insufficient to achieve the whole component utilization. After simultaneous saccharification and fermentation at high solids loading, synergistic maximization of xylose (42.47 g/L) and ethanol (85.74 g/L) output was achieved via alkaline ethanol pretreatment. Lignin characterization information showed that alkaline ethanol pretreatment facilitates the cleavage of β-O-4 linkage and further converts into arylglycerol. Moreover, less condensed substructure units with high processing activity were also generated in S- and G- lignin.
Collapse
Affiliation(s)
- Meishan Fan
- Institute of Biomass Engineering, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China; Henry Fok School of Biology & Agriculture, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, PR China
| | - Zhu Liu
- Henry Fok School of Biology & Agriculture, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, PR China
| | - Jun Xie
- Institute of Biomass Engineering, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China.
| | - Yong Chen
- Institute of Biomass Engineering, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
| |
Collapse
|
13
|
Jiang L, Huang X, Tian C, Zhong Y, Yan M, Miao C, Wu T, Zhou X. Preparation and Characterization of Porous Cellulose Acetate Nanofiber Hydrogels. Gels 2023; 9:484. [PMID: 37367154 DOI: 10.3390/gels9060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
The currently reported methods for preparing cellulose acetate hydrogels use chemical reagents as cross-linking agents, and the prepared ones are non-porous structured cellulose acetate hydrogels. Nonporous cellulose acetate hydrogels limit the range of applications, such as limiting cell attachment and nutrient delivery in tissue engineering. This research creatively proposed a facile method to prepare cellulose acetate hydrogels with porous structures. Water was added to the cellulose acetate-acetone solution as an anti-solvent to induce the phase separation of the cellulose acetate-acetone solution to obtain a physical gel with a network structure, where the cellulose acetate molecules undergo re-arrangement during the replacement of acetone by water to obtain hydrogels. The SEM and BET test results showed that the hydrogels are relatively porous. The maximum pore size of the cellulose acetate hydrogel is 380 nm, and the specific surface area reaches 62 m2/g. The porosity of the hydrogel is significantly higher than that of the cellulose acetate hydrogel reported in the previous literature. The XRD results show that the nanofibrous morphology of cellulose acetate hydrogels is caused by the deacetylation reaction of cellulose acetate.
Collapse
Affiliation(s)
- Lijie Jiang
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyu Huang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chaochao Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yidan Zhong
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, China
| | - Xiaofan Zhou
- National-Provincial Joint Engineering Research Center of Electromechanical Product Packaging, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Tang W, Tang Z, Qian H, Huang C, He Y. Implementing dilute acid pretreatment coupled with solid acid catalysis and enzymatic hydrolysis to improve bioconversion of bamboo shoot shells. BIORESOURCE TECHNOLOGY 2023; 381:129167. [PMID: 37182678 DOI: 10.1016/j.biortech.2023.129167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Exploiting bamboo shoot shells (BSS) as feedstocks for biorefining is a crucial scheme to advance the bioavailability of bamboo shoots. This work applied traditional dilute sulfuric acid pretreatment (DAP) to treat BSS and simultaneously prepared the solid-acid-catalyst by using BSS as carbon-based carriers. The biocatalysis of the prehydrolysate from DAP and enzymatic hydrolysis of pretreated BSS was subsequently performed to achieve efficient bioconversion of its carbohydrates. The results displayed that 0.1 g/L H2SO4 employed in DAP was the optimal condition for furfural conversion of BSS during biocatalysis, reaching the maximum of 41%. Meanwhile, the enzymatic hydrolysis efficiency of the pretreated BSS also reached the maximum of 97%. This increment of efficiency was ascribed to the enhancement of accessibility and cellulosic crystal size, and also the reduction of surface area of lignin in BSS. Ultimately, the efficient bioutilization of BSS and bioconversion of its carbohydrates were realized by DAP technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haojie Qian
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
15
|
Harrison TR, Gupta VK, Alam P, Perriman AW, Scarpa F, Thakur VK. From trash to treasure: Sourcing high-value, sustainable cellulosic materials from living bioreactor waste streams. Int J Biol Macromol 2023; 233:123511. [PMID: 36773882 DOI: 10.1016/j.ijbiomac.2023.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
The appreciation of how conventional and fossil-based materials could be harmful to our planet is growing, especially when considering single-use and non-biodegradable plastics manufactured from fossil fuels. Accordingly, tackling climate change and plastic waste pollution entails a more responsible approach to sourcing raw materials and the adoption of less destructive end-of-life pathways. Livestock animals, in particular ruminants, process plant matter using a suite of mechanical, chemical and biological mechanisms through the act of digestion. The manure from these "living bioreactors" is ubiquitous and offers a largely untapped source of lignocellulosic biomass for the development of bio-based and biodegradable materials. In this review, we assess recent studies made into manure-based cellulose materials in terms of their material characteristics and implications for sustainability. Despite the surprisingly diverse body of research, it is apparent that progress towards the commercialisation of manure-derived cellulose materials is hindered by a lack of truly sustainable options and robust data to assess the performance against conventional materials alternatives. Nanocellulose, a natural biopolymer, has been successfully produced by living bioreactors and is presented as a candidate for future developments. Life cycle assessments from non-wood sources are however minimal, but there are some initial indications that manure-derived nanocellulose would offer environmental benefits over traditional wood-derived sources.
Collapse
Affiliation(s)
- Thomas R Harrison
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Parvez Alam
- Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; John Curtain School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Fabrizio Scarpa
- Bristol Composites Institute, University of Bristol, Bristol BS8 1TR, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
16
|
Li Z, Zhang G, Charalampopoulos D, Guo Z. Ionic liquid-mediated regeneration of cellulose dramatically improves decrystallization, TEMPO-mediated oxidation and alkyl/alkenyl succinylation. Int J Biol Macromol 2023; 236:123983. [PMID: 36907307 DOI: 10.1016/j.ijbiomac.2023.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
This work demonstrated a successful strategy that simple ionic liquids (ILs) mediated pretreatment could effectively reduce crystallinity of cellulose from 71 % to 46 % (by C2MIM.Cl) and 53 % (by C4MIM.Cl). The IL-mediated regeneration of cellulose greatly promoted its reactivity for TEMPO-catalyzed oxidation, which the resulting COO- density (mmol/g) increased from 2.00 for non-IL-treated cellulose to 3.23 (by C2MIM.Cl) and 3.42 (C4MIM.Cl); and degree of oxidation enhanced from 35 % to 59 % and 62 %, respectively. More significantly, the yield of oxidized cellulose increased from 4 % to 45-46 %, by 11-fold. IL-regenerated cellulose can also be directly subjected to alkyl/alkenyl succinylation without TEMPO-mediated oxidation, producing nanoparticles with properties similar to oxidized celluloses (55-74 nm in size, -70-79 mV zeta-potential and 0.23-0.26 PDI); but in a much higher overall yield (87-95 %) than IL-regeneration-coupling-TEMPO-oxidation (34-45 %). Alkyl/alkenyl succinylated TEMPO-oxidized cellulose showed 2-2.5 times higher ABTS* scavenging ability than non-oxidized cellulose; however, alkyl/alkenyl succinylation also resulted in a significant decline in Fe2+ chelating property.
Collapse
Affiliation(s)
- Ziqian Li
- Department of Biological and Chemical Engineering, Gustav weids vej 10A, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark
| | - Guoqiang Zhang
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Gustav weids vej 10A, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
17
|
Cellulosic Ethanol Production from Weed Biomass Hydrolysate of Vietnamosasa pusilla. Polymers (Basel) 2023; 15:polym15051103. [PMID: 36904344 PMCID: PMC10007069 DOI: 10.3390/polym15051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Lignocellulosic biomass can be used as a renewable and sustainable energy source to help reduce the consequences of global warming. In the new energy age, the bioconversion of lignocellulosic biomass into green and clean energy displays remarkable potential and makes efficient use of waste. Bioethanol is a biofuel that can diminish reliance on fossil fuels while minimizing carbon emissions and increasing energy efficiency. Various lignocellulosic materials and weed biomass species have been selected as potential alternative energy sources. Vietnamosasa pusilla, a weed belonging to the Poaceae family, contains more than 40% glucan. However, research on the applications of this material is limited. Thus, here we aimed to achieve maximum fermentable glucose recovery and bioethanol production from weed biomass (V. pusilla). To this end, V. pusilla feedstocks were treated with varying concentrations of H3PO4 and then subjected to enzymatic hydrolysis. The results indicated that after pretreatment with different concentrations of H3PO4, the glucose recovery and digestibility at each concentration were markedly enhanced. Moreover, 87.5% of cellulosic ethanol was obtained from V. pusilla biomass hydrolysate medium without detoxification. Overall, our findings reveal that V. pusilla biomass can be introduced into sugar-based biorefineries to produce biofuels and other valuable chemicals.
Collapse
|
18
|
Srivastava N, Singh R, Srivastava M, Mohammad A, Harakeh S, Pratap Singh R, Pal DB, Haque S, Tayeb HH, Moulay M, Kumar Gupta V. Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach. BIORESOURCE TECHNOLOGY 2023; 369:128471. [PMID: 36521823 DOI: 10.1016/j.biortech.2022.128471] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Biomass to biofuels production technology appears to be one of the most sustainable strategies among various renewable energy resources. Herein, pretreatment is an unavoidable and key step to increase free cellulose availability and digestibility to produce green fuels. Various existing pretreatment technologies of lignocellulosics biomasses (LCBs) face distinct challenges e.g., energy consuming, cost intensive, may lead partial removal of lignin, complex inhibitors production as well as may cause environmental pollutions. These, limitations may be overcome with the application of nanomaterials, employed as nanocatalysts during the pretreatment process of LCBs. In this prospect, the present review focuses and summarizes results of numerous studies and exploring the utilizations of magnetic, carbon based nanostructure, and nanophotocatalysts mediated pretreatment processes along with their possible mechanisms to improve the biofuels production compared to conventional chemical based pretreatment approaches. Furthermore, different aspects of nanomaterials based pretreatment methods with their shortcomings and future prospects have been discussed.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj Kanpur 208002, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hossam H Tayeb
- Nanomedicine Unit, Center of Innovation in Personalised Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
19
|
Second Generation Bioethanol Production from Soybean Hulls Pretreated with Imidazole as a New Solvent. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Soybean hulls (SH) are the main industrial waste from soybean processing, representing 5–8% of the whole grain. Imidazole was employed for the hydrothermal pretreatment of SH and further bioethanol production. Different pretreatment temperatures (120 and 180 °C) and times (1 and 3 h) were tested. Lignin removal and glucose yield were significantly influenced by temperature. After 48 h of enzymatic hydrolysis of imidazole-treated SH (120 °C, 1 h), 32.7 g/L of glucose and 9.4 g/L of xylose were obtained. A maximum bioethanol yield of 78.9% was reached after 12 h of fermentation by Saccharomyces cerevisiae using SH enzymatic hydrolysate. Imidazole appears to be a potential alternative to pretreat lignocellulosic wastes such as SH for the production of second-generation biofuels and other biomolecules.
Collapse
|
20
|
Lymperatou A, Engelsen TK, Skiadas IV, Gavala HN. Prediction of methane yield and pretreatment efficiency of lignocellulosic biomass based on composition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:302-310. [PMID: 36410147 DOI: 10.1016/j.wasman.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic biomass is considered a key resource for the future expansion of biogas production through anaerobic digestion (AD), and research on the development of pretreatment technologies for improving biomass conversion is an intensive and fast-growing field. Consequently, there is a need for creating tools able to predict the efficiency of a certain pretreatment on different biomass types, fast and accurately, and to assist in selecting a pretreatment technology for a specific biomass. In this study, seven different types of raw lignocellulosic biomass of industrial relevance were systematically analyzed regarding their composition (carbohydrates, lignin, lipids, ash, extractives, etc.) and subjected to a common pretreatment. The aim of the study was to identify the most important characteristics that make a biomass good receptor of the specific pretreatment prior to AD. A simple ammonia pretreatment was chosen as a case study and partial least squares regression (PLS-R) was used for modeling initially the ultimate methane yield of raw and pretreated biomass. In the sequel, PLS-R was used for modeling the efficiency of the pretreatment on increasing the ultimate methane yield and hydrolysis rate as a function of the biomass composition. The fit of the models was satisfactory, ranging from R2 = 0.89 to R2 = 0.97. The results showed that the most decisive characteristics for predicting the efficiency of the pretreatment were the lipid (r = -0.88), ash (r = +0.79), protein (r = -0.61), and hemicellulose/lignin (r = -0.53) content of raw biomass. Finally, the approach followed in this study facilitated an improved understanding of the mechanism of the pretreatment and presented a methodology to be followed for developing tools for the prediction of pretreatment efficiency in the field of lignocellulosic biomass valorization.
Collapse
Affiliation(s)
- Anna Lymperatou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark
| | - Thor K Engelsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark
| | - Ioannis V Skiadas
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark
| | - Hariklia N Gavala
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
21
|
Liu G, Han D, Yang S. Combinations of mild chemical and bacterial pretreatment for improving enzymatic saccharification of corn stover. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Guoqing Liu
- Department of Food Engineering, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Dongjing Han
- Department of Food Engineering, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Shaohua Yang
- Department of Food Engineering, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| |
Collapse
|
22
|
Ahmad F, Yang G, Zhu Y, Poulsen M, Li W, Yu T, Mo J. Tripartite Symbiotic Digestion of Lignocellulose in the Digestive System of a Fungus-Growing Termite. Microbiol Spectr 2022; 10:e0123422. [PMID: 36250871 PMCID: PMC9769757 DOI: 10.1128/spectrum.01234-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
Fungus-growing termites are efficient in degrading and digesting plant substrates, achieved through the engagement of symbiotic gut microbiota and lignocellulolytic Termitomyces fungi cultivated for protein-rich food. Insights into where specific plant biomass components are targeted during the decomposition process are sparse. In this study, we performed several analytical approaches on the fate of plant biomass components and did amplicon sequencing of the 16S rRNA gene to investigate the lignocellulose digestion in the symbiotic system of the fungus-growing termite Odontotermes formosanus (Shiraki) and to compare bacterial communities across the different stages in the degradation process. We observed a gradual reduction of lignocellulose components throughout the process. Our findings support that the digestive tract of young workers initiates the degradation of lignocellulose but leaves most of the lignin, hemicellulose, and cellulose, which enters the fresh fungus comb, where decomposition primarily occurs. We found a high diversity and quantity of monomeric sugars in older parts of the fungus comb, indicating that the decomposition of lignocellulose enriches the old comb with sugars that can be utilized by Termitomyces and termite workers. Amplicon sequencing of the 16S rRNA gene showed clear differences in community composition associated with the different stages of plant biomass decomposition which could work synergistically with Termitomyces to shape the digestion process. IMPORTANCE Fungus-farming termites have a mutualist association with fungi of the genus Termitomyces and gut microbiota to support the nearly complete decomposition of lignocellulose to gain access to nutrients. This elaborate strategy of plant biomass digestion makes them ecologically successful dominant decomposers in (sub)tropical Old World ecosystems. We employed acid detergent fiber analysis, high-performance anion-exchange chromatography (HPAEC), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), and amplicon sequencing of the 16S rRNA gene to examine which lignocellulose components were digested and which bacteria were abundant throughout the decomposition process. Our findings suggest that although the first gut passage initiates lignocellulose digestion, the most prominent decomposition occurs within the fungus comb. Moreover, distinct bacterial communities were associated with different stages of decomposition, potentially contributing to the breakdown of particular plant components.
Collapse
Affiliation(s)
- Farhan Ahmad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
- Entomology Section, Central Cotton Research Institute, Multan, Punjab, Pakistan
- Entomology Section, Central Cotton Research Institute, Sakrand, Shaheed Benazirabad, Sindh, Pakistan
| | - Guiying Yang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Yaning Zhu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - Wuhan Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Ting Yu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| |
Collapse
|
23
|
Kukkar D, Sharma PK, Kim KH. Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass. ENVIRONMENTAL RESEARCH 2022; 215:114369. [PMID: 36165858 DOI: 10.1016/j.envres.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose wastes stemming from agricultural residues can offer an excellent opportunity as alternative energy solutions in addition to fossil fuels. Besides, the unrestrained burning of agricultural residues can lead to the destruction of the soil microflora and associated soil sterilization. However, the difficulties associated with the biodegradation of lignocellulose biomasses remain as a formidable challenge for their sustainable management. In this respect, metagenomics can be used as an effective option to resolve such dilemma because of its potential as the next generation sequencing technology and bioinformatics tools to harness novel microbial consortia from diverse environments (e.g., soil, alpine forests, and hypersaline/acidic/hot sulfur springs). In light of the challenges associated with the bulk-scale biodegradation of lignocellulose-rich agricultural residues, this review is organized to help delineate the fundamental aspects of metagenomics towards the assessment of the microbial consortia and novel molecules (such as biocatalysts) which are otherwise unidentifiable by conventional laboratory culturing techniques. The discussion is extended further to highlight the recent advancements (e.g., from 2011 to 2022) in metagenomic approaches for the isolation and purification of lignocellulolytic microbes from different ecosystems along with the technical challenges and prospects associated with their wide implementation and scale-up. This review should thus be one of the first comprehensive reports on the metagenomics-based analysis of different environmental samples for the isolation and purification of lignocellulose degrading enzymes.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul - 04763, South Korea.
| |
Collapse
|
24
|
Singhvi M, Kim BS. Green hydrogen production through consolidated bioprocessing of lignocellulosic biomass using nanobiotechnology approach. BIORESOURCE TECHNOLOGY 2022; 365:128108. [PMID: 36270388 DOI: 10.1016/j.biortech.2022.128108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The main objective of this study was to develop a sustainable process for hydrogen production by implementing nanotechnology in combination with consolidated bioprocessing (CBP) approach from lignocellulosic biomass (LCB). Peroxidase mimicking CeFe3O4 nanoparticles (NPs, 4.0 g/L) were applied for degradation of lignin from raw corn cob (CC) biomass for generation of cellulose-hemicellulose fractions amenable towards Clostridium cellulovorans during fermentation process. NP-treated biomass exhibited 43.26 % lignin removal from raw CC which was further employed for hydrogen fermentation by C. cellulovorans through CBP method. The strain yielded maximum 78.45 mL of cumulative hydrogen with hydrogen production rate of 1.55 mL/h using NP-treated CC. To the best of our knowledge, this is the first study on enhanced hydrogen production using NP-treated CC biomass in single pot fermentation which can prove to be a simpler, easier, and more economical process.
Collapse
Affiliation(s)
- Mamata Singhvi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
25
|
Lay CH, Dharmaraja J, Shobana S, Arvindnarayan S, Krishna Priya R, Jeyakumar RB, Saratale RG, Park YK, Kumar V, Kumar G. Lignocellulose biohydrogen towards net zero emission: A review on recent developments. BIORESOURCE TECHNOLOGY 2022; 364:128084. [PMID: 36220533 DOI: 10.1016/j.biortech.2022.128084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This review mainly determines novel and advance physical, chemical, physico-chemical, microbiological and nanotechnology-based pretreatment techniques in lignocellulosic biomass pretreatment for bio-H2 production. Further, aim of this review is to gain the knowledge on the lignocellulosic biomass pretreatment and its priority on the efficacy of bio-H2 and positive findings. The influence of various pretreatment techniques on the structure of lignocellulosic biomass have presented with the pros and cons, especially about the cellulose digestibility and the interference by generation of inhibitory compounds in the bio-enzymatic technique as such compounds is toxic. The result implies that the stepwise pretreatment technique only can ensure eventually the lignocellulosic biomass materials fermentation to yield bio-H2. Though, the mentioned pretreatment steps are still a challenge to procure cost-effective large-scale conversion of lignocellulosic biomass into fermentable sugars along with low inhibitory concentration.
Collapse
Affiliation(s)
- Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, Taiwan
| | - Jeyaprakash Dharmaraja
- Division of Chemistry, Faculty of Science and Humanities, AAA College of Engineering and Technology, Amathur-626005, Virudhunagar District, Tamil Nadu, India
| | - Sutha Shobana
- Green Technology and Sustainable Development in Construction Research Group, Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Sundaram Arvindnarayan
- Department of Mechanical Engineering, Lord Jegannath College of Engineering and Technology, Marungoor - 629402, Kanyakumari District, Tamil Nadu, India
| | - Retnam Krishna Priya
- Research Department of Physics, Holy Cross College (Autonomous), Nagercoil - 629004, Kanyakumari District, Tamil Nadu, India
| | - Rajesh Banu Jeyakumar
- Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
26
|
Tang W, Huang C, Ling Z, Lai C, Yong Q. Efficient utilization of waste wheat straw through humic acid and ferric chloride co-assisted hydrothermal pretreatment for fermentation to produce bioethanol. BIORESOURCE TECHNOLOGY 2022; 364:128059. [PMID: 36191752 DOI: 10.1016/j.biortech.2022.128059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The adsorbed ash and lignin contained in waste wheat straw (WWS) have been the essential factors restricting its high-value utilization in biorefinery. Hence, humic acid (HA) and FeCl3 as the additives of hydrothermal pretreatment were applied to simultaneously enhance the removal of lignin and eliminate the acid buffering of ash in WWS, respectively. The results showed that the xylan and lignin removal of WWS pretreated with 10 g/L HA and 20 mM FeCl3 could be efficiently increased from 61.4% to 72.9% and from 14.7% to 38.7%, respectively. The enzymatic hydrolysis efficiency and ethanol yield of WWS were increased this way from 44.4% to 82.7% and from 20.55% to 36.86%, respectively. According to the characterization of WWS, the synergistic interaction between HA and FeCl3 was beneficial to the cellulose accessibility and surface lignin area of WWS changed in positive directions, leading to the improvement of hydrolysis efficiency.
Collapse
Affiliation(s)
- Wei Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
27
|
He L, Huang Y, Shi L, Zhou Z, Wu H. Steam explosion processing intensifies the nutritional values of most crop byproducts: Morphological structure, carbohydrate-protein fractions, and rumen fermentation profile. Front Nutr 2022; 9:979609. [DOI: 10.3389/fnut.2022.979609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the feasibility of steam explosion on the exploitation of ruminant feedstuff, the morphological structure, carbohydrate-protein fractions, and rumen fermentation profile of five typical crop byproducts (corn cob, rice straw, peanut shell, millet stalk, and sugarcane tip) were analyzed before and after steam explosion processing. The results showed that these crop byproducts had different physicochemical properties and rumen fermentation profiles, most of which could be improved by steam explosion processing, i.e., more rough morphological surface, much-broken structure, more digestible carbohydrate fraction (non-NDF +49.92–452.24%), faster gas production rate (c +9.72–68.75%), higher dry matter digestibility (DMD48 +11.38–47.36%), more available energy (ME −3.69–+42.13%, except for peanut shell), along with more unavailable protein fraction (ADICP +27.16–102.70%). It is suggested that steam explosion processing could intensify the feeding value of most crop byproducts for ruminants, but with a caution of heat damage to proteins.
Collapse
|
28
|
Parchami M, Agnihotri S, Taherzadeh MJ. Aqueous ethanol organosolv process for the valorization of Brewer's spent grain (BSG). BIORESOURCE TECHNOLOGY 2022; 362:127764. [PMID: 35985459 DOI: 10.1016/j.biortech.2022.127764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Brewers spent grain (BSG), the main solid byproduct of brewing, is annually generated by ca 37 million tons worldwide, which due to limited application, mostly ends up in landfills. This study aims to separate BSG's fractions (lignin, cellulose, and hemicellulose) by ethanol organosolv pretreatment. Lignin-rich fractions were recovered using a two-step separation technique. The effects of temperature, retention time, and ethanol concentration on the quantity and quality of fractions were studied. The temperature considerably impacted the quality and quantity of obtained fractions, while other parameter effects greatly depended on the temperature. Substantial hemicellulose removal (90 %) along with lignin removal (56 %) and recovery (57 %) were obtained at 180 °C. The highest lignin purity (95 %) was obtained at the pretreatment conditions of 180 °C, 120 min, and 50 % ethanol concentration. This work provides an alternative route for BSG utilization, mitigating its environmental impact while enhancing the economy of a brewery.
Collapse
Affiliation(s)
- Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Swarnima Agnihotri
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | |
Collapse
|
29
|
Pal P, Li H, Saravanamurugan S. Removal of lignin and silica from rice straw for enhanced accessibility of holocellulose for the production of high-value chemicals. BIORESOURCE TECHNOLOGY 2022; 361:127661. [PMID: 35872278 DOI: 10.1016/j.biortech.2022.127661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The intricate nature and rigidity of rice straw, particularly the presence of lignin and silica, hinders the catalytic valorization, consequently decreasing the yield of target products. This study reports the concurrent removal of lignin and silica from rice straw to obtain enriched holocellulose, then transforming it to furfural (FUR) and levulinic acid (LA). Interestingly, rice straw in the form of powder displays an improved removal of lignin (51.0%) and silica (92.0%) during ammonia treatment. Encouragingly, adding organic solvents, such as THF, to the aqueous system during the pretreatment of rice straw improves the lignin removal to 60.0%. Upon improving lignin removal to 60%, the obtained holocellulose enriched solid residue yields 71.0% FUR along with 52.0% LA, which is 8 and 4-fold higher than what is obtained with parent rice straw, signifying the importance and the prerequisite of lignin and silica removal from rice straw.
Collapse
Affiliation(s)
- Priyanka Pal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), Mohali 140306, Punjab, India
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), Mohali 140306, Punjab, India.
| |
Collapse
|
30
|
Lu X, Li F, Zhou X, Hu J, Liu P. Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chem 2022; 384:132622. [DOI: 10.1016/j.foodchem.2022.132622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
31
|
Nazar M, Xu L, Ullah MW, Moradian JM, Wang Y, Sethupathy S, Iqbal B, Nawaz MZ, Zhu D. Biological delignification of rice straw using laccase from Bacillus ligniniphilus L1 for bioethanol production: A clean approach for agro-biomass utilization. JOURNAL OF CLEANER PRODUCTION 2022; 360:132171. [DOI: 10.1016/j.jclepro.2022.132171] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
32
|
Ma L, Wang X, Zhou J, Lü X. Degradation of switchgrass by Bacillus subtilis 1AJ3 and expression of a beta-glycoside hydrolase. Front Microbiol 2022; 13:922371. [PMID: 35966659 PMCID: PMC9374367 DOI: 10.3389/fmicb.2022.922371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing demand for carbon neutrality has led to the development of new techniques and modes of low carbon production. The utilization of microbiology to convert low-cost renewable resources into more valuable chemicals is particularly important. Here, we investigated the ability of a cellulolytic bacterium, Bacillus subtilis 1AJ3, in switchgrass lignocellulose degradation. After 5 days of culture with the strain under 37°C, cellulose, xylan, and acid-insoluble lignin degradation rates were 16.13, 14.24, and 13.91%, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis and field emission scanning electron microscopy (FE-SEM) indicated that the lignin and surface of switchgrass were degraded after incubation with the bacterial strain. Strain 1AJ3 can grow well below 60°C, which satisfies the optimum temperature (50°C) condition of most cellulases; subsequent results emphasize that acid-heat incubation conditions increase the reducing sugar content in a wide range of cellulosic biomass degraded by B. subtilis 1AJ3. To obtain more reducing sugars, we focused on β-glycoside hydrolase, which plays an important role in last steps of cellulose degradation to oligosaccharides. A β-glycoside hydrolase (Bgl-16A) was characterized by cloning and expression in Escherichia coli BL21 and further determined to belong to glycoside hydrolase (GH) 16 family. The Bgl-16A had an enzymatic activity of 365.29 ± 10.43 U/mg, and the enzyme's mode of action was explained by molecular docking. Moreover, the critical influence on temperature (50°C) of Bgl-16A also explained the high-efficiency degradation of biomass by strain under acid-heat conditions. In terms of potential applications, both the strain and the recombinant enzyme showed that coffee grounds would be a suitable and valuable substrate. This study provides a new understanding of cellulose degradation by B. subtilis 1AJ3 that both the enzyme action mode and optimum temperature limitation by cellulases could impact the degradation. It also gave new sight to unique advantage utilization in the industrial production of green manufacturing.
Collapse
Affiliation(s)
- Lingling Ma
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xin Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xin Lü
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
33
|
Ma Y, Chen X, Khan MZ, Xiao J, Alugongo GM, Liu S, Wang J, Cao Z. Effect of the Combining Corn Steep Liquor and Urea Pre-treatment on Biodegradation and Hydrolysis of Rice Straw. Front Microbiol 2022; 13:916195. [PMID: 35910632 PMCID: PMC9326473 DOI: 10.3389/fmicb.2022.916195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
A novel pre-treatment using corn steep liquor (CSL) and urea was developed to enhance the enzymatic saccharification and degradability of rice straw (RS). We used RS (1) without (Con) or with additives of (2) 5% urea (U), (3) 9% CSL and 2.5% urea (CU), and (4) 9% CSL and 5% urea (C5U). The result showed that the water-soluble carbohydrate (WSC) conversion of RS reached 69.32% after C5U pre-treatment. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction analysis (XRD) confirmed that the surface of pre-treated RS exposed more cellulose and hemicellulose due to the disruption of the resistant structure of lignocellulose. Pre-treated RS significantly decreased neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents and increased crude protein (CP) content, microbial colonization, and induction of Carnobacterium and Staphylococcus attachment. Altogether, we concluded that pre-treatment of a combination of CSL and urea has the potential to improve the nutritive value of RS.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhijun Cao
| |
Collapse
|
34
|
Mondal S, Santra S, Uddin H, Pal K, Halder SK, Chattopadhyay S, Mondal KC. Application of Phytochemicals To Combat Fungal Pathogens of Pulses: An Approach toward Inhibition of Fungal Propagation and Invasin Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7662-7673. [PMID: 35699309 DOI: 10.1021/acs.jafc.1c07729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study represented an innovative strategy for inactivating the secreted invasins (lignocellulolytic enzymes) of fungal phytopathogens using natural phytochemicals to combat fungal infection to the pulses. A fungal pathogen (Aspergillus niger SKP1) was isolated from the white lentil (Vigna mungo), which has the ability to synthesize different lignocellulolytic enzymes. An in silico docking study elucidated that quercetin, naringin, epigallocatechin gallate, curcumin, and cinnamic acid were the prime efficient phytochemicals to inhibit the activity of fungal invasive enzymes like endoglucanase, endo-1,4-β-xylanase, and glucoamylase. Considering this observation, extracted phytochemicals in different mixtures were applied to prevent growth of the isolated pathogen under in situ experimental studies. The minimal inhibitory concentrations (MIC50) and minimal fungicidal concentration (MFC50) values of the first mixture (naringenin, epicatechin gallate, and cinnamic acid) and second mixture (quercetin and curcumin) were 170 and 220 mg/L and 320 and 380 mg/L, respectively. The studied phytochemicals were established to be cytosafe when compared to the commercial fungicides. The seeds of the white lentil were subjected to 1 year of long-term storage with the two aforementioned combinatorial phytochemicals. Subsequent morphological and physiological analyses revealed the complete protection of the stored seeds from the fungal infection. The present work has enough potentiality for the storage of pulses using natural preservatives that circumvent the adverse effect of the chemical preservatives on the ecosystem.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sourav Santra
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Hilal Uddin
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| |
Collapse
|
35
|
Chen X, Ma Y, Khan MZ, Xiao J, Alugongo GM, Li S, Wang Y, Cao Z. A Combination of Lactic Acid Bacteria and Molasses Improves Fermentation Quality, Chemical Composition, Physicochemical Structure, in vitro Degradability and Rumen Microbiota Colonization of Rice Straw. Front Vet Sci 2022; 9:900764. [PMID: 35754539 PMCID: PMC9213808 DOI: 10.3389/fvets.2022.900764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aims This study aims to evaluate the effect of lactic acid bacteria (LAB) and LAB-molasses (LAB + M) combination on the fermentation quality, chemical composition, physicochemical properties, in vitro degradability of rice straw and the characteristics of rumen microbial colonization on rice straw surface. Methods and Results There were three pretreatments, including control (not treated, Con), treated with LAB, or LAB + M. The results showed that both LAB and LAB + M treatments altered the physical and chemical structures of rice straw and were revealed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) spectroscopy, respectively. Moreover, both LAB and LAB + M pretreated rice straw increased the crude protein (CP) content, dry matter (DM) recovery, and in vitro digestibility and decreased the pH value, neutral detergent fiber (NDF), and acid detergent fiber (ADF) contents. The LAB + M pretreated rice straw increased the gas production (GP72) and rumen microbial colonization on the rice straw surface. Conclusions It is observed that LAB + M treatment could increase digestibility and the rumen microbial colonization on the rice straw surface. Therefore, LAB + M treatment can provide an alternative strategy to improve the quality of rice straw. Significance and impact of the study: This study provides an optimal pretreatment to improve the rice straw digestibility and rumen microbial colonization.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Deshmukh M, Pande A, Marathe A. Different particle size study of castor deoiled cake for biofuel production with an environmental sustainability perspective. Heliyon 2022; 8:e09710. [PMID: 35756129 PMCID: PMC9213708 DOI: 10.1016/j.heliyon.2022.e09710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Agro-industrial waste material such as non-edible deoiled Castor bean cake (CBC) is one of the most abundant sources for bioethanol demonstrating the feasibility of utilizing bioethanol as commercial biofuel. This is an alternative to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. The CBC was pretreated with the help of thionyl chloride at a temperature of 35 °C for residence time 25 min. Subsequently, CBC substrate obtained from pretreatment was subjected to enzymatic hydrolysis with T. viride concentration varying from 0.5 to 5 g L−1 at 35 °C, pH 6 for 48 h. Under optimized conditions the process integrating pretreatment followed by enzymatic hydrolysis for 48 h at 35 °C with pH 7 resulted in 76 g L−1 of reducing sugars from 100 g CBC. The obtained sugar was further fermented at 30 °C for 72 h with saccharomyces cerevisiae as a fermenting media which yields 37.5 g L−1 of bioethanol. A study of different particle sizes of CBC with BSS-5, BSS-10, BSS-20 was done for efficient enzymatic hydrolysis and fermentation into bioethanol. On a pilot-scale 375 g L−1 of bioethanol was obtained from 1 kg of CBC with the same reaction conditions. The present study demonstrates optimized solid: liquid ratio 1:2 for hydrolysis, fermentation process, and the production cost for bioethanol per L. Figure S1 represents graphical abstract for the production of bioethanol from CBC in supplementary information.
Collapse
Affiliation(s)
- Minal Deshmukh
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Ashwini Pande
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Anant Marathe
- Shree Hanuman Vyayam Prasarak Mandal, Near Shri Ekvira Devi Temple Shree H. V. P. Mandal, Amravati, 444605, India
| |
Collapse
|
37
|
Cellulose Nanocrystals (CNC)-Based Functional Materials for Supercapacitor Applications. NANOMATERIALS 2022; 12:nano12111828. [PMID: 35683684 PMCID: PMC9182373 DOI: 10.3390/nano12111828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
The growth of industrialization and the population has increased the usage of fossil fuels, resulting in the emission of large amounts of CO2. This serious environmental issue can be abated by using sustainable and environmentally friendly materials with promising novel and superior performance as an alternative to petroleum-based plastics. Emerging nanomaterials derived from abundant natural resources have received considerable attention as candidates to replace petroleum-based synthetic polymers. As renewable materials from biomass, cellulose nanocrystals (CNCs) nanomaterials exhibit unique physicochemical properties, low cost, biocompatibility and biodegradability. Among a plethora of applications, CNCs have become proven nanomaterials for energy applications encompassing energy storage devices and supercapacitors. This review highlights the recent research contribution on novel CNC-conductive materials and CNCs-based nanocomposites, focusing on their synthesis, surface functionalization and potential applications as supercapacitors (SCs). The synthesis of CNCs encompasses various pretreatment steps including acid hydrolysis, mechanical exfoliation and enzymatic and combination processes from renewable carbon sources. For the widespread applications of CNCs, their derivatives such as carboxylated CNCs, aldehyde-CNCs, hydride-CNCs and sulfonated CNC-based materials are more pertinent. The potential applications of CNCs-conductive hybrid composites as SCs, critical technical issues and the future feasibility of this endeavor are highlighted. Discussion is also extended to the transformation of renewable and low-attractive CNCs to conductive nanocomposites using green approaches. This review also addresses the key scientific achievements and industrial uses of nanoscale materials and composites for energy conversion and storage applications.
Collapse
|
38
|
Vázquez-Durán A, Nava-Ramírez MDJ, Téllez-Isaías G, Méndez-Albores A. Removal of Aflatoxins Using Agro-Waste-Based Materials and Current Characterization Techniques Used for Biosorption Assessment. Front Vet Sci 2022; 9:897302. [PMID: 35651966 PMCID: PMC9149420 DOI: 10.3389/fvets.2022.897302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Aflatoxins are the most hazardous fungal-generated secondary metabolites produced by toxigenic Aspergillus species. These toxins are frequently detected in food and feed and impose either acute or chronic effects in humans and animals, causing great public concern. Because of the adverse effects of aflatoxins, many physical, chemical, and biological decontamination approaches have been developed. However, the most commonly used procedure is the addition of adsorbent materials into aflatoxin-contaminated diets to reduce toxin absorption and distribution to blood and target organs. In recent times, sorption technology with agro-waste-based materials has appeared as a promising alternative over conventional binding agents with the benefits of low cost, higher rentability, feasibility, and exceptional efficiencies. This review is mainly focused on discussing the most important agro-waste-based materials able to adsorb aflatoxins such as pomaces, seeds, stems, hulls, peels, leaves, berries, lignins, fibers, weeds, and various horticultural byproducts. Further data of the in vitro, in vivo, and in silico efficacy of these biomaterials to adsorb and then desorb aflatoxins are given. Besides, an overview of the main characterization techniques used to elucidate the most important physical and chemical mechanisms involved in the biosorption is presented. Finally, conclusions and future research necessities are also outlined.
Collapse
Affiliation(s)
- Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Abraham Méndez-Albores
| |
Collapse
|
39
|
Yang L, Huang S, Liu Y, Zheng S, Liu H, Rensing C, Fan Z, Feng R. Selenate regulates the activity of cell wall enzymes to influence cell wall component concentration and thereby affects the uptake and translocation of Cd in the roots of Brassica rapa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153156. [PMID: 35041952 DOI: 10.1016/j.scitotenv.2022.153156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) can be used to counteract cadmium (Cd) toxicity in plants. However, mechanisms underlying the alleviation of Cd toxicity by Se have not been completely elucidated, especially those by which Se reduces Cd translocation. A hydroponic experiment was performed to illustrate the regulatory mechanisms of Cd transport by selenate (Se (VI)) in pakchoi (Brassica rapa L., LvYou 102). The results showed that this plant had a high accumulation capacity for Cd, and Se(VI) addition restricted Cd translocation from roots to shoots. Se(VI) exposure stimulated the concentrations of pectins and hemicellulose II but reduced the concentration of hemicellulose I in the roots. In many cases, the enzymes pectin methylesterase, polygalacturonase, and β-galactosidase were dose-dependently triggered by Se(VI) under Cd exposure, but root calcium concentration was significantly lowered (p < 0.05). Xyloglucan endoglycosidase (hydrolase) was triggered by Se(VI) under 2 mg L-1 Cd exposure and cellulase was generally activated by Se(VI) under Cd stress. The above results suggest that Se(VI) up-regulates pectin methylesterase activity, stimulates synthesis of pectins, and down-regulates root Ca concentration to release free carboxyl groups to combine Cd. In this study, the relationships between enzyme activity (e.g., peroxidase, superoxidase and β-galactosidase), hydrogen peroxide, cell wall structure strengthening/loosening, and Cd toxicity affected by Se(VI) were also discussed.
Collapse
Affiliation(s)
- Li Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ShuangQin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yang Liu
- Agricultural College, Guangxi University, Nanning, China
| | - ShunAn Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZhiLian Fan
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
40
|
Analysis of Intestinal Microbial Diversity of Four Species of Grasshoppers and Determination of Cellulose Digestibility. INSECTS 2022; 13:insects13050432. [PMID: 35621768 PMCID: PMC9147371 DOI: 10.3390/insects13050432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Grasshoppers are typical phytophagous pests, which prefer eating monocotyledons with more cellulose and hemicellulose. Due to its large appetite and high utilization rate, the intestinal contents of grasshoppers have the potential to be developed into a bioreactor, which can be applied to improve straw utilization efficiency in the future. The digestive tract of grasshoppers is a complex ecosystem, inhabited by a large number of microorganisms. The existence of these microorganisms enables grasshoppers to have high decomposition and utilization of plant fibers. However, there are few reports on the microflora structure and diversity of the digestive tract of grasshoppers. In this study, the diversity of symbiotic bacteria in the intestinal tract of four species of grasshoppers, namely Acrida cinerea, Trilophidia annulata, Atractomorpha sinensis and Sphingonotus mongolicus, was studied by using the method of constructing a 16S rRNA gene library and Illumina Miseq sequencing technology. At the same time, the digestibility of cellulose and hemicellulose of the four species of grasshoppers were determined and the relationship between digestibility and intestinal microbial diversity was analyzed. This study provided basic data for the development of the digestible bioreactor of cellulose and hemicellulose, which may provide a new idea for degrading straw. Abstract Grasshoppers (Insecta, Orthoptera, Acridoidea) are a large group of agricultural and animal husbandry pests. They have a large food intake with high utilization of plants fibers. However, the composition of the grasshopper gut microbial community, especially the relationship between gut microbial community and cellulose digestibility, remains unclear. In this research, 16S rRNA gene sequences were used to determine the intestinal microbial diversity of Acrida cinerea, Trilophidia annulata, Atractomorpha sinensis and Sphingonotus mongolicus, and Spearman correlation analysis was performed between the intestinal microbes of grasshoppers and the digestibility of cellulose and hemicellulose. The results showed that Proteobacteria was the dominant phylum and Klebsiella was the dominant genus in the guts of the four species of grasshoppers; there was no significant difference in the species composition of the gut microbes of the four species of grasshoppers. Spearman correlation analysis showed that Brevibacterium and Stenotrophomonas were significantly correlated with cellulose digestibility. Brevibacterium, Clavibacter, Microbacterium and Stenotrophomonas were significantly associated with hemicellulose digestibility. Our results confirmed that the gut microbes of grasshoppers were correlated with the digestibility of cellulose and hemicellulose, and indicated that grasshoppers may have the potential to develop into bioreactors, which can be applied to improve straw utilization efficiency in the future.
Collapse
|
41
|
Palà M, Woods SE, Hatton FL, Lligadas G. RDRP (Meth)acrylic Homo and Block Polymers from Lignocellulosic Sugar Derivatives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marc Palà
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| | - Sarah E. Woods
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Fiona L. Hatton
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| |
Collapse
|
42
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
43
|
Zhou M, Tian X. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. Int J Biol Macromol 2022; 202:256-268. [PMID: 35032493 DOI: 10.1016/j.ijbiomac.2022.01.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
Lignocellulose, a kind of biological resource widely existing in nature, which can be transformed into value-added biochemical products through saccharification, fermentation or chemical catalysis. Pretreatments are the necessary step to increase the accessibility and digestibility of lignocellulose. This paper comprehensively reviewed different pretreatment progress of lignocellulose in recent year, including mechanical/thermal, biological, inorganic solvent, organic solvent and unconventional physical-chemical pretreatments, focusing on quantifying the influence of pretreatments on subsequent biomass conversion. In addition, related pretreatment techniques such as genetic engineering, reactor configurations, downstream process and visualization technology of pretreatment were discussed. Finally, this review presented the challenge of lignocellulose pretreatment in the future.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
44
|
Bilal M, Qamar SA, Qamar M, Yadav V, Taherzadeh MJ, Lam SS, Iqbal HMN. Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy. BIOMASS CONVERSION AND BIOREFINERY 2022. [DOI: 10.1007/s13399-022-02600-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Morsy A, Mahmoud AS, Soliman A, Ibrahim H, Fadl E. Improved anti-biofouling resistances using novel nanocelluloses/cellulose acetate extracted from rice straw based membranes for water desalination. Sci Rep 2022; 12:4386. [PMID: 35288623 PMCID: PMC8921283 DOI: 10.1038/s41598-022-08324-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cellulose and Nanocellulose acetate (NCA) have attractive novel properties like excellent mechanical properties, rich hydroxyl groups for modification, and natural properties with environmental friendliness. Cellulose was extracted from rice straw wastes as an extra value, then it had been further transformed into NCA using the acidic hydrolysis technique. The structural, crystalline, morphological, were characterized by Fourier transform infrared spectroscopy (FTIR), Proton nuclear magnetic resonance (1HNMR), X-ray diffraction (XRD), Scanning microscopy, respectively. The particle size of the Nanocellulose extracted from rice straw was about 22 nm with a spherical shape. Development membranes were prepared with different concentrations of NCA to improve the performance and the anti-biofouling properties of cellulose acetate reverse osmosis (RO) membranes using a phase inversion technique. The structural of membranes were characterized by FTIR, water contact angle measurements, while the anti-biofouling properties were studied by static protein adsorption. The results indicated the development membrane features a lower contact angle accomplished with exhibits pore-forming ability and enhanced hydrophilicity of prepared membrane, furthermore the development cellulose acetate reverse osmosis (CA-RO) membranes with 40:60% RNCA:CA produced a salt rejection of 97.4% and a water flux of 2.2 L/m2 h. the development membrane have resists effectively protein adsorption and microbial growth showed from the results of Static protein adsorption.
Collapse
Affiliation(s)
- Ashraf Morsy
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt. .,Petrochemicals Department, Faculty of Engineering, Pharos University, Alexandria, Egypt.
| | - Amira S Mahmoud
- Petrochemicals Department, Faculty of Engineering, Pharos University, Alexandria, Egypt
| | - Aya Soliman
- Petrochemicals Department, Faculty of Engineering, Pharos University, Alexandria, Egypt
| | - Hesham Ibrahim
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Eman Fadl
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
de Oliveira Júnior SD, Dos Santos Gouvêa PR, de Aguiar LVB, Pessoa VA, Dos Santos Cruz Costa CL, Chevreuil LR, Dedo BritoNascimento LB, Dos Santos ES, Sales-Campos C. Production of Lignocellulolytic Enzymes and Phenolic Compounds by Lentinus strigosus from the Amazon Using Solid-State Fermentation (SSF) of Guarana (Paullinia cupana) Residue. Appl Biochem Biotechnol 2022; 194:2882-2900. [PMID: 35286593 DOI: 10.1007/s12010-022-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
The Amazon rainforest has a rich biodiversity, and studies of Basidiomycete fungi that have biomolecules of biotechnological interest are relevant. The use of lignocellulosic biomass in biotechnological processes proposes an alternative use, and also adds value to the material when employed in the bioconversion of agro-industrial waste. In this context, this study evaluate the production of lignocellulolytic enzymes (carboxymethylcellulases (CMCase), xylanase, pectinase, laccase) as well as phenolic compounds and proteases by solid-state fermentation (SSF) using the fungus Lentinus strigosus isolated from Amazon. The guarana (Paullinia cupana) residue was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). SSF was carried out with 60% humidification of the residue, at 30 °C, for 10 days. The lignocellulosic biomass presented fragmented structures with irregular shapes and porosities, and was mainly constituted by cellulose (19.16%), hemicellulose (32.83%), and lignin (6.06%). During the SSF, significant values of CMCase (0.84 U/g) on the 8th day, xylanase (1.00 U/g) on the 7th day, pectinase (2.19 U/g) on the 6th day, laccase (176.23 U/mL) on the 5th day, phenolic compounds (10.27 μg/mL) on the 1st day, soluble proteins (0.08 mg/mL) on the 5th day, and protease (8.30 U/mL) on the 6th day were observed. In general, the agro-industrial residue used provided promising results as a viable alternative for use as a substrate in biotechnological processes.
Collapse
Affiliation(s)
| | - Paula Romenya Dos Santos Gouvêa
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biotechnology, Federal University of Amazonas (UFAM), Manaus, Amazonas, 69067-005, Brazil
| | - Lorena Vieira Bentolila de Aguiar
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE, Amazonas State University (UEA), Manaus, Amazonas, 69065-001, Brazil
| | - Vitor Alves Pessoa
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biotechnology and Natural Resources, Amazonas State University (UEA), Manaus, Amazonas, 69065-001, Brazil
| | | | - Larissa Ramos Chevreuil
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil
| | - Larissa Batista Dedo BritoNascimento
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil.,Post-Graduate Program in Biotechnology, Federal University of Amazonas (UFAM), Manaus, Amazonas, 69067-005, Brazil
| | - Everaldo Silvino Dos Santos
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, 59064-741, Brazil.
| | - Ceci Sales-Campos
- Edible Mushroom Cultivation Laboratory, National Institute for Amazonian Research (INPA), Manaus, Amazonas, 69067-375, Brazil
| |
Collapse
|
47
|
Chen F, Xiong S, Latha Gandla M, Stagge S, Martín C. Spent mushroom substrates for ethanol production - Effect of chemical and structural factors on enzymatic saccharification and ethanolic fermentation of Lentinula edodes-pretreated hardwood. BIORESOURCE TECHNOLOGY 2022; 347:126381. [PMID: 34813922 DOI: 10.1016/j.biortech.2021.126381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Spent mushroom substrates (SMS) from cultivation of shiitake (Lentinula edodes) on three hardwood species were investigated regarding their potential for cellulose saccharification and for ethanolic fermentation of the produced hydrolysates. High glucan digestibility was achieved during enzymatic saccharification of the SMSs, which was related to the low mass fractions of lignin and xylan, and it was neither affected by the relative content of lignin guaiacyl units nor the substrate crystallinity. The high nitrogen content in SMS hydrolysates, which was a consequence of the fungal pretreatment, was positive for the fermentation, and it ensured ethanol yields corresponding to 84-87% of the theoretical value in fermentations without nutrient supplementation. Phenolic compounds and acetic acid were detected in the SMS hydrolysates, but due to their low concentrations, the inhibitory effect was limited. The solid leftovers resulting from SMS hydrolysis and the fermentation residues were quantified and characterized for further valorisation.
Collapse
Affiliation(s)
- Feng Chen
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden.
| | - Shaojun Xiong
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden
| | | | - Stefan Stagge
- Umeå University, Department of Chemistry, SE-901 87 Umeå, Sweden
| | - Carlos Martín
- Umeå University, Department of Chemistry, SE-901 87 Umeå, Sweden; Inland Norway University of Applied Sciences, Department of Biotechnology, N-2317 Hamar, Norway
| |
Collapse
|
48
|
Rodrigues RCLB, Green Rodrigues B, Vieira Canettieri E, Acosta Martinez E, Palladino F, Wisniewski A, Rodrigues D. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment - A review. BIORESOURCE TECHNOLOGY 2022; 348:126627. [PMID: 34958907 DOI: 10.1016/j.biortech.2021.126627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The trend in the modern world is to replace fossil fuels with green energy sources in order to reduce their environmental impact. The biorefinery industry, within this premise, needs to establish quantitative and qualitative analytical methods to better understand lignocellulosic biomass composition and structure. This paper presents chemical techniques (chromatography, thermal analysis, HRMS, FTIR, NIR, and NMR) and physicochemical techniques (XRD, optical and electron microscopy techniques - Confocal fluorescence, Raman, SPM, AFM, SEM, and TEM) for the microstructural characterization of lignocellulosic biomass and its derivatives. Each of these tools provides different and complementary information regarding molecular and microstructural composition of lignocellulosic biomass. Understanding these properties is essential for the design and operation of associated biomass conversion processing facilities. PAT, monitored in real-time, ensures an economical and balanced mass-energy process. This review aimed to help researchers select the most suitable analytical technique with which to investigate biomass feedstocks with recalcitrant natures.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil.
| | - Bruna Green Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil
| | - Eliana Vieira Canettieri
- Chemistry and Energy Department, Guaratinguetá Engineering Faculty, São Paulo State University (UNESP), 12516-410, Guaratinguetá, SP, Brazil
| | - Ernesto Acosta Martinez
- Department of Technology, State University of Feira de Santana (UEFS), 44036-900 Feira de Santana, BA, Brazil
| | - Fernanda Palladino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Alberto Wisniewski
- Department of Chemistry, Federal University of Sergipe (UFS), 49100-000 São Cristovão, SE, Brazil
| | - Durval Rodrigues
- Department of Materials Engineering, Lorena Engineering School, University of São Paulo (USP), Lorena, SP, Brazil
| |
Collapse
|
49
|
Show BK, Banerjee S, Banerjee A, GhoshThakur R, Hazra AK, Mandal NC, Ross AB, Balachandran S, Chaudhury S. Insect gut bacteria: a promising tool for enhanced biogas production. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:1-25. [DOI: 10.1007/s11157-021-09607-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 07/19/2023]
|
50
|
Martín C, Dixit P, Momayez F, Jönsson LJ. Hydrothermal Pretreatment of Lignocellulosic Feedstocks to Facilitate Biochemical Conversion. Front Bioeng Biotechnol 2022; 10:846592. [PMID: 35252154 PMCID: PMC8888528 DOI: 10.3389/fbioe.2022.846592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 11/27/2022] Open
Abstract
Biochemical conversion of lignocellulosic feedstocks to advanced biofuels and other bio-based commodities typically includes physical diminution, hydrothermal pretreatment, enzymatic saccharification, and valorization of sugars and hydrolysis lignin. This approach is also known as a sugar-platform process. The goal of the pretreatment is to facilitate the ensuing enzymatic saccharification of cellulose, which is otherwise impractical due to the recalcitrance of lignocellulosic feedstocks. This review focuses on hydrothermal pretreatment in comparison to alternative pretreatment methods, biomass properties and recalcitrance, reaction conditions and chemistry of hydrothermal pretreatment, methodology for characterization of pretreatment processes and pretreated materials, and how pretreatment affects subsequent process steps, such as enzymatic saccharification and microbial fermentation. Biochemical conversion based on hydrothermal pretreatment of lignocellulosic feedstocks has emerged as a technology of high industrial relevance and as an area where advances in modern industrial biotechnology become useful for reducing environmental problems and the dependence on fossil resources.
Collapse
Affiliation(s)
- Carlos Martín
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Pooja Dixit
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Leif J. Jönsson
- Department of Chemistry, Umeå University, Umeå, Sweden
- *Correspondence: Leif J. Jönsson,
| |
Collapse
|