1
|
Tang J, Hu Z, Pu Y, Wang XC, Abomohra A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122372. [PMID: 39241596 DOI: 10.1016/j.jenvman.2024.122372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid (LA) is a crucial chemical which has been widely used for industrial application. Microbial fermentation is the dominant pathway for LA production and has been regarded as the promising technology. In recent years, many studies on LA production from various organic wastes have been published, which provided alternative ways to reduce the LA production cost, and further recycle organic wastes. However, few researchers focused on industrial application of this technology due to the knowledge gap and some uncertainties. In this review, the recent advances, basic knowledge and limitations of LA fermentation from organic wastes are discussed, the challenges and suitable envisaged solutions for enhancing LA yield and productivity are provided to realize industrial application of this technology, and also some perspectives are given to further valorize the LA fermentation processes from organic wastes. This review can be a useful guidance for industrial LA production from organic wastes on a sustainable view.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| | - Zongkun Hu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
2
|
Khunnonkwao P, Thitiprasert S, Jaiaue P, Khumrangsee K, Cheirsilp B, Thongchul N. The outlooks and key challenges in renewable biomass feedstock utilization for value-added platform chemical via bioprocesses. Heliyon 2024; 10:e30830. [PMID: 38770303 PMCID: PMC11103475 DOI: 10.1016/j.heliyon.2024.e30830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The conversion of renewable biomass feedstock into value-added products via bioprocessing platforms has become attractive because of environmental and health concerns. Process performance and cost competitiveness are major factors in the bioprocess design to produce desirable products from biomass feedstock. Proper pretreatment allows delignification and hemicellulose removal from the liquid fraction, allowing cellulose to be readily hydrolyzed to monomeric sugars. Several industrial products are produced via sugar fermentation using either naturally isolated or genetically modified microbes. Microbial platforms play an important role in the synthesis of several products, including drop-in chemicals, as-in products, and novel compounds. The key elements in developing a fermentation platform are medium formulation, sterilization, and active cells for inoculation. Downstream bioproduct recovery may seem like a straightforward chemical process, but is more complex, wherein cost competitiveness versus recovery performance becomes a challenge. This review summarizes the prospects for utilizing renewable biomass for bioprocessing.
Collapse
Affiliation(s)
- Panwana Khunnonkwao
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Phetcharat Jaiaue
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Katsaya Khumrangsee
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Maresca E, Aulitto M, Contursi P. Harnessing the dual nature of Bacillus (Weizmannia) coagulans for sustainable production of biomaterials and development of functional food. Microb Biotechnol 2024; 17:e14449. [PMID: 38593329 PMCID: PMC11003712 DOI: 10.1111/1751-7915.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.
Collapse
Affiliation(s)
- Emanuela Maresca
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | - Martina Aulitto
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR)PozzuoliItaly
| | - Patrizia Contursi
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Naples “Federico II”PorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
4
|
Aulitto M, Alfano A, Maresca E, Avolio R, Errico ME, Gentile G, Cozzolino F, Monti M, Pirozzi A, Donsì F, Cimini D, Schiraldi C, Contursi P. Thermophilic biocatalysts for one-step conversion of citrus waste into lactic acid. Appl Microbiol Biotechnol 2024; 108:155. [PMID: 38244047 PMCID: PMC10799777 DOI: 10.1007/s00253-023-12904-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/22/2024]
Abstract
Agri-food residues offer significant potential as a raw material for the production of L-lactic acid through microbial fermentation. Weizmannia coagulans, previously known as Bacillus coagulans, is a spore-forming, lactic acid-producing, gram-positive, with known probiotic and prebiotic properties. This study aimed to evaluate the feasibility of utilizing untreated citrus waste as a sustainable feedstock for the production of L-lactic acid in a one-step process, by using the strain W. coagulans MA-13. By employing a thermophilic enzymatic cocktail (Cellic CTec2) in conjunction with the hydrolytic capabilities of MA-13, biomass degradation was enhanced by up to 62%. Moreover, batch and fed-batch fermentation experiments demonstrated the complete fermentation of glucose into L-lactic acid, achieving a concentration of up to 44.8 g/L. These results point to MA-13 as a microbial cell factory for one-step production of L-lactic acid, by combining cost-effective saccharification with MA-13 fermentative performance, on agri-food wastes. Moreover, the potential of this approach for sustainable valorization of agricultural waste streams is successfully proven. KEY POINTS: • Valorization of citrus waste, an abundant residue in Mediterranean countries. • Sustainable production of the L-( +)-lactic acid in one-step process. • Enzymatic pretreatment is a valuable alternative to the use of chemical.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples "Federico II,", Naples, Italy
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy
| | - Emanuela Maresca
- Department of Biology, University of Naples "Federico II,", Naples, Italy
| | - Roberto Avolio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Emanuela Errico
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples "Federico II,", Naples, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
5
|
Marzo-Gago C, Unger P, Schneider R, Venus J, López-Gómez JP. Valorising pasta industry wastes by the scale up and integration of solid-state and liquid-submerged fermentations. BIORESOURCE TECHNOLOGY 2024; 391:129909. [PMID: 37918491 DOI: 10.1016/j.biortech.2023.129909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Pasta waste has previously been studied in a process to obtain lactic acid through a sequential hydrolysis and fermentation. The process was improved by using enzymes produced via solid-state fermentation of wheat bran in shake flasks. However, the scale-up of the solid-state fermentation is a complex task. In this study, amylase was produced in a home-designed tray bioreactor which allowed to carry out the hydrolysis and fermentation steps at the pilot scale. Due to the efficiency of the solid-state fermentation and the activity of the enzyme, only a small amount (100 g) of wheat bran was required to achieve high yields in a hydrolysis in a 72 L bioreactor (50 L working volume). Overall, the lactic acid yield was 0.68 gLA/gdS, and after the purification, the lactic acid recovered was 55 %, with a total ion concentration of 500 mg/L and an enantiomeric purity of 98.1 % L-LA.
Collapse
Affiliation(s)
- Cristina Marzo-Gago
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany; Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Peter Unger
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany
| | - José Pablo López-Gómez
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, Potsdam, Germany.
| |
Collapse
|
6
|
Buhaș MC, Candrea R, Gavrilaș LI, Miere D, Tătaru A, Boca A, Cătinean A. Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int J Mol Sci 2023; 24:11225. [PMID: 37446403 DOI: 10.3390/ijms241311225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with autoimmune pathological characteristics. Recent research has found a link between psoriasis, inflammation, and gut microbiota dysbiosis, and that probiotics and prebiotics provide benefits to patients. This 12-week open-label, single-center clinical trial evaluated the efficacy of probiotics (Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans (SC208), Bacillus licheniformis (SL307), and Bacillus clausii (SC109)) and precision prebiotics (fructooligosaccharides, xylooligosaccharides, and galactooligosaccharides) in patients with psoriasis receiving topical therapy, with an emphasis on potential metabolic, immunological, and gut microbiota changes. In total, 63 patients were evaluated, with the first 42 enrolled patients assigned to the intervention group and the next 21 assigned to the control group (2:1 ratio; non-randomized). There were between-group differences in several patient characteristics at baseline, including age, psoriasis severity (the incidence of severe psoriasis was greater in the intervention group than in the control group), the presence of nail psoriasis, and psoriatic arthritis, though it is not clear whether or how these differences may have affected the study findings. Patients with psoriasis receiving anti-psoriatic local therapy and probiotic and prebiotic supplementation performed better in measures of disease activity, including Psoriasis Area and Severity Index, Dermatology Life Quality Index, inflammatory markers, and skin thickness compared with those not receiving supplementation. Furthermore, in the 15/42 patients in the intervention group who received gut microbiota analysis, the gut microbiota changed favorably following 12 weeks of probiotic and prebiotic supplementation, with a shift towards an anti-inflammatory profile.
Collapse
Affiliation(s)
- Mihaela Cristina Buhaș
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Rareș Candrea
- Master Program in Nutrition and Quality of Life, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alexandru Tătaru
- Department of Dermatology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400423 Cluj-Napoca, Romania
| | - Andreea Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Adrian Cătinean
- Department of Internal Medicine, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Phamacy, 400423 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Papadopoulou E, Vance C, Rozene Vallespin PS, Tsapekos P, Angelidaki I. Saccharina latissima, candy-factory waste, and digestate from full-scale biogas plant as alternative carbohydrate and nutrient sources for lactic acid production. BIORESOURCE TECHNOLOGY 2023; 380:129078. [PMID: 37100293 DOI: 10.1016/j.biortech.2023.129078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/14/2023]
Abstract
To substitute petroleum-based materials with bio-based alternatives, microbial fermentation combined with inexpensive biomass is suggested. In this study Saccharina latissima hydrolysate, candy-factory waste, and digestate from full-scale biogas plant were explored as substrates for lactic acid production. The lactic acid bacteria Enterococcus faecium, Lactobacillus plantarum, and Pediococcus pentosaceus were tested as starter cultures. Sugars released from seaweed hydrolysate and candy-waste were successfully utilized by the studied bacterial strains. Additionally, seaweed hydrolysate and digestate served as nutrient supplements supporting microbial fermentation. According to the highest achieved relative lactic acid production, a scaled-up co-fermentation of candy-waste and digestate was performed. Lactic acid reached a concentration of 65.65 g/L, with 61.69% relative lactic acid production, and 1.37 g/L/hour productivity. The findings indicate that lactic acid can be successfully produced from low-cost industrial residues.
Collapse
Affiliation(s)
- Eleftheria Papadopoulou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Charlene Vance
- School of Biosystems & Food Engineering, University College Dublin, Agriculture Building, UCD Belfield, Dublin 4, Ireland
| | - Paloma S Rozene Vallespin
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
8
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
9
|
Pilot Scale for Production and Purification of Lactic Acid from Ceratonia siliqua L. (Carob) Bagasse. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bioconversion of lignocellulose and organic waste bagasse to lactic acid (LA) is an important alternative process requiring valorization as a potentially viable method in the production of pure LA, to be utilized for various purposes. Carob (Ceratonia siliqua L.) biomass was used for the production of LA, using a thermophilic Bacillus coagulans isolate, cultivated in a batch pilot scale of 35 L fermenters without yeast extract supplementation, and operated for 50 h. During the fermentation process, most of the degradable sugar was consumed within 35 h and resulted in the production of 46.9 g/L LA, with a calculated LA yield of 0.72 g/g sugars and productivity at the log phase of 1.69 g/L/h. The use of LA for different industrial applications requires high purity; therefore, a downstream process (DSP) consisting of different purification stages was used, enabling us to reach up to 99.9% (w/w) product purity, which indicates that the process was very effective. The overall almost pure L-LA yield of the DSP was 56%, which indicates that a considerable amount of LA (46%) was lost during the different DSP stages. This is the first study in which carob biomass bagasse has been tested on a pilot scale for LA production, showing the industrial feasibility of the fermentation process.
Collapse
|
10
|
Precup G, Venus J, Heiermann M, Schneider R, Pop ID, Vodnar DC. Chemical and Enzymatic Synthesis of Biobased Xylo-Oligosaccharides and Fermentable Sugars from Wheat Straw for Food Applications. Polymers (Basel) 2022; 14:1336. [PMID: 35406211 PMCID: PMC9003230 DOI: 10.3390/polym14071336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Xylo-oligosaccharides are sugar oligomers with 2~7 xylose units considered non-digestible fibers that can be produced from biodegradable and low-cost biomass like wheat straw. An integrated approach consisting of hydrothermal pretreatment, alkaline treatment, enzymatic treatment and the combinations thereof was applied to overcome the recalcitrance structure of the wheat straw and allow selective fractioning into fermentable sugars and xylo-oligosaccharides. The hydrolysates and processed solids were chemically characterized by High-performance liquid chromatography and Ion chromatography, and the results were expressed as function of the severity factor and statistically interpreted. The concentration of fermentable sugars (glucose, xylose, arabinose) was the highest after the combination of alkaline and enzymatic treatment with xylanase (18 g/L sugars), while xylo-oligosaccharides (xylotriose and xylotetraose) were released in lower amounts (1.33 g/L) after the same treatment. Refining experiments were carried out to obtain a purified fraction by using anion and cation exchange chromatography. The polymer adsorber resin MN-502 showed efficient removal of salts, phenols and furan derivatives. However, the xylo-oligosaccharides yields were also slightly reduced. Although still requiring further optimization of the treatments to obtain higher purified oligomer yields, the results provide information on the production of xylo-oligosaccharides and fermentable sugars from wheat straw for potential use in food applications.
Collapse
Affiliation(s)
- Gabriela Precup
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering & Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.V.); (M.H.); (R.S.)
| | - Monika Heiermann
- Leibniz Institute for Agricultural Engineering & Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.V.); (M.H.); (R.S.)
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering & Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.V.); (M.H.); (R.S.)
| | - Ioana Delia Pop
- Department of Exact Sciences, Horticulture Faculty, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
11
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
12
|
Abstract
The aim of the present study is the isolation and characterization of the lactic acid bacteria from idly batter, a traditional Indian fermented product. To achieve the aim, 10 idly batter samples were selected from different regions of Kadapa district. In the primary isolation and screening process, 50 lactic-acid-producing bacteria were isolated, and from them, six strains were selected based on their lactic acid yielding capacity for further evaluation. The selected cultures were studied for their phenotypic characters, and all cultures were Gram positive, cocci, and catalase negative. All the six strains were tested for their growth and lactic acid production at above 35 °C, and finally, one strain that showed good growth at 50 °C was selected for further characterization. Molecular characterization by 16S rRNA gene analysis and BLAST analysis revealed 99% similarity with Pediococcus pentosaceus Ni1142. The isolated culture was named as Pediococcus sp. HLV1, and the sequence was submitted to the NCBI databank as accession number MH921241. The isolated strain is able to utilize a wide range of carbohydrate substrates including glucose, fructose, sucrose, lactose, maltose, and xylose. The major fermentation product from glucose is lactic acid. Pediococcus sp. HLV1 showed optimum growth and production of lactic acid with glucose as carbon source (10%) and yeast extract as nitrogen source (0.3%) at pH 7.0 and 40 °C. As well-known probiotic bacteria, the isolated Pediococcus spp. also showed antimicrobial activity against both Gram-positive and Gram-negative bacteria and more specifically inhibited Gram-positive Bacillus. Using the above optimal conditions, lactic acid from a fresh mango peel extract was studied, and at the end of the fermentation, 5.2% (v/v) of lactic acid was produced. In conclusion, the isolated LAB Pediococcus sp. strain HLV1 is able to grow and produce lactic acid at a high temperature (45 °C) and to survive at 50 °C. Mango peel, a by-product of mango pulp industries, can be utilized as one of the economically cheap feedstocks for industrial production of lactic acid by the Pediococcus sp. strain HLV1.
Collapse
|
13
|
Tong KTX, Tan IS, Foo HCY, Tiong ACY, Lam MK, Lee KT. Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. BIORESOURCE TECHNOLOGY 2021; 342:125880. [PMID: 34592620 DOI: 10.1016/j.biortech.2021.125880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The development of an efficient third-generation L-lactic acid (L-LA) production process from Eucheuma denticulatum extract (EDE) was achieved in this study. Microwave-assisted dilute acid hydrolysis (MADAH) and microwave-assisted hydrothermal hydrolysis (MAHTH) were chosen as the hydrolysis of EDE for the objective of increasing galactose yield. Single-factor optimization of hydrolysis of the EDE was studied, MADAH had high performance in galactose production relative to MAHTH, in which the yield and optimal conditions for both processes were 50.7% (0.1 M H2SO4, 120 °C for 25 min) and 47.8% (0 M H2SO4,160 °C for 35 min), respectively. For fermentation, the optimal L-LA yield was achieved at the inoculum cell density of 4% (w/w) Bacillus coagulans ATCC 7050 with 89.4% and 6% (w/w) Lactobacillus acidophilus LA-14 with 87.6%. In addition, lipid-extracted Chlorella vulgaris residues (CVRs) as co-nutrient supplementation increased the relative abundance of B. coagulans ATCC 7050, thus benefiting L-LA production.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Adrian Chiong Yuh Tiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
14
|
Lü F, Wang Z, Zhang H, Shao L, He P. Anaerobic digestion of organic waste: Recovery of value-added and inhibitory compounds from liquid fraction of digestate. BIORESOURCE TECHNOLOGY 2021; 333:125196. [PMID: 33901909 DOI: 10.1016/j.biortech.2021.125196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion, as an eco-friendly waste treatment technology, is facing the problem of low stability and low product value. Harvesting value-added products beyond methane and removing the inhibitory compounds will unleash new vitality of anaerobic digestion, which need to be achieved by selective separation of certain compounds. Various methods are reviewed in this study for separating valuable products (volatile fatty acids, medium-chain carboxylic acids, lactic acid) and inhibitory substance (ammonia) from the liquid fraction of digestate, including their performance, applicability, corresponding limitations and roadmaps for improvement. In-situ extraction that allows simultaneous production and extraction is seen as promising approach which carries good potential to overcome the barriers for continuous production. The prospects and challenges of the future development are further analyzed based on in-situ extraction and economics.
Collapse
Affiliation(s)
- Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Zhijie Wang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Abstract
In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.
Collapse
|
16
|
Li J, Shi S, Wang Y, Jiang Z. Integrated production of optically pure l-lactic acid from paper mill sludge by simultaneous saccharification and co-fermentation (SSCF). WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 129:35-46. [PMID: 34023801 DOI: 10.1016/j.wasman.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Paper mill sludge (PMS) raises critical environmental issues due to its disposal problem, but its high sugar content and well-dispersed structure make it a great feedstock for biochemical production. The technical feasibility of integrating cellulase enzyme production into lactic acid (LA) fermentation from PMS was investigated in this study. The low ash content of PMS suggests a great potential for cellulase production. The enzyme produced using PMS without any treatment gave an activity of 7.8 FPU/ml, a performance comparable to the commercial enzyme, Cellic CTec 2. The LA yield from PMS with in-house enzyme was 64.7% and 73.7% at the enzyme loading of 10 and 15 FPU/g-glucan, respectively. The LA obtained was optically pure L- isomer with over 99% purity. The optimal condition of LA production by Bacillus coagulans was found to be 50 °C and pH 5.3 (with 50 g/L CaCO3). The nutrient effect of yeast extract (YE) and corn steep liquor (CSL) was substrate dependent, and CSL could substitute YE as an inexpensive nutrient when using PMS as a substrate.
Collapse
Affiliation(s)
- Jing Li
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States
| | - Suan Shi
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
17
|
Din NAS, Lim SJ, Maskat MY, Mutalib SA, Zaini NAM. Lactic acid separation and recovery from fermentation broth by ion-exchange resin: A review. BIORESOUR BIOPROCESS 2021; 8:31. [PMID: 38650212 PMCID: PMC10991309 DOI: 10.1186/s40643-021-00384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Lactic acid has become one of the most important chemical substances used in various sectors. Its global market demand has significantly increased in recent years, with a CAGR of 18.7% from 2019 to 2025. Fermentation has been considered the preferred method for producing high-purity lactic acid in the industry over chemical synthesis. However, the recovery and separation of lactic acid from microbial fermentation media are relatively complicated and expensive, especially in the process relating to second-generation (2G) lactic acid recovery. This article reviews the development and progress related to lactic acid separation and recovery from fermentation broth. Various aspects are discussed thoroughly, such as the mechanism of lactic acid production through fermentation, the crucial factors that influence the fermentation process, and the separation and recovery process of conventional and advanced lactic acid separation methods. This review's highlight is the recovery of lactic acid by adsorption technique using ion-exchange resins with a brief focus on the potential of in-site separation strategies alongside the important factors that influenced the lactic acid recovery process by ion exchange. Apart from that, other lactic acid separation techniques, such as chemical neutralization, liquid-liquid extraction, membrane separation, and distillation, are also thoroughly reviewed.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Sahilah Abd Mutalib
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Mohd Zaini
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
18
|
Colantoni A, Paris E, Bianchini L, Ferri S, Marcantonio V, Carnevale M, Palma A, Civitarese V, Gallucci F. Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process. Sci Rep 2021; 11:5119. [PMID: 33664428 PMCID: PMC7933292 DOI: 10.1038/s41598-021-84772-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Industrial development and increased energy requirements have led to high consumption of fossil fuels. Thus, environmental pollution has become a profound problem. Every year, a large amount of agro-industrial, municipal and forest residues are treated as waste, but they can be recovered and used to produce thermal and electrical energy through biological or thermochemical conversion processes. Among the main types of agro-industrial waste, soluble coffee residues represent a significant quantity all over the world. Silver skin and spent coffee grounds (SCG) are the main residues of the coffee industry. The many organic compounds contained in coffee residues suggest that their recovery and use could be very beneficial. Indeed, thanks to their composition, they can be used in the production of biodiesel, as a source of sugar, as a precursor for the creation of active carbon or as a sorbent for the removal of metals. After a careful evaluation of the possible uses of coffee grounds, the aim of this research was to show a broad characterization of coffee waste for energy purposes through physical and chemical analyses that highlight the most significant quality indexes, the interactions between them and the quantification of their importance. Results identify important tools for the qualification and quantification of the effects of coffee waste properties on energy production processes. They show that (SCG) are an excellent raw material as biomass, with excellent values in terms of calorific value and low ash content, allowing the production of 98% coffee pellets that are highly suitable for use in thermal conversion systems. Combustion tests were also carried out in an 80kWth boiler and the resulting emissions without any type of abatement filter were characterized.
Collapse
Affiliation(s)
- A. Colantoni
- grid.12597.380000 0001 2298 9743Department of Agriculture and Forestry Science (UNITUS-DAFNE), Tuscia University, Viterbo, Italy
| | - E. Paris
- grid.423616.40000 0001 2293 6756Centro Di Ricerca Ingegneria E Trasformazioni Agroalimentari (CREA-IT), Consiglio Per La Ricerca in Agricoltura E L’analisi Dell’economia Agraria (CREA), Rome, Italy
| | - L. Bianchini
- grid.12597.380000 0001 2298 9743Department of Agriculture and Forestry Science (UNITUS-DAFNE), Tuscia University, Viterbo, Italy
| | - S. Ferri
- grid.12597.380000 0001 2298 9743Department of Agriculture and Forestry Science (UNITUS-DAFNE), Tuscia University, Viterbo, Italy
| | - V. Marcantonio
- grid.12597.380000 0001 2298 9743Department of Agriculture and Forestry Science (UNITUS-DAFNE), Tuscia University, Viterbo, Italy
| | - M. Carnevale
- grid.423616.40000 0001 2293 6756Centro Di Ricerca Ingegneria E Trasformazioni Agroalimentari (CREA-IT), Consiglio Per La Ricerca in Agricoltura E L’analisi Dell’economia Agraria (CREA), Rome, Italy
| | - A. Palma
- grid.423616.40000 0001 2293 6756Centro Di Ricerca Ingegneria E Trasformazioni Agroalimentari (CREA-IT), Consiglio Per La Ricerca in Agricoltura E L’analisi Dell’economia Agraria (CREA), Rome, Italy
| | - V. Civitarese
- grid.423616.40000 0001 2293 6756Centro Di Ricerca Ingegneria E Trasformazioni Agroalimentari (CREA-IT), Consiglio Per La Ricerca in Agricoltura E L’analisi Dell’economia Agraria (CREA), Rome, Italy
| | - F. Gallucci
- grid.423616.40000 0001 2293 6756Centro Di Ricerca Ingegneria E Trasformazioni Agroalimentari (CREA-IT), Consiglio Per La Ricerca in Agricoltura E L’analisi Dell’economia Agraria (CREA), Rome, Italy
| |
Collapse
|
19
|
|
20
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
21
|
Downstream separation and purification of bio-based alpha-ketoglutaric acid from post-fermentation broth using a multi-stage membrane process. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Meng K, Zhang G, Ding C, Zhang T, Yan H, Zhang D, Fang T, Liu M, You Z, Yang C, Shen J, Jin X. Recent Advances on Purification of Lactic Acid. CHEM REC 2020; 20:1236-1256. [PMID: 32767665 DOI: 10.1002/tcr.202000055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Indexed: 01/16/2023]
Abstract
With increasing interest in developing biodegradable polymers to replace fossil-based products globally, lactic acid (LA) has been paid extensive attention due to the high environment-compatibility of its downstream products. The mainstream efforts have been put in developing energy-efficient conversion technologies through biological and chemical routes to synthesize LA. However, to our best knowledge, there is a lack of sufficient attention in developing effective separation technologies with high atom economics for purifying LA and derivatives. In this review, the most recent advances in purifying LA using precipitation, reactive extraction, emulsion liquid membrane, reactive distillation, molecular distillation, and membrane techniques will be discussed critically with respect to the fundamentals, flow scheme, energy efficiency, and equipment. The outcome of this article is to offer insights into implementing more atomic and energy-efficient technologies for upgrading LA.
Collapse
Affiliation(s)
- Kexin Meng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Chuanqin Ding
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Tongyang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Hui Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Dongpei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Zhenchao You
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China
| |
Collapse
|
23
|
Chen Y, Sun Y, Liu Z, Dong F, Li Y, Wang Y. Genome-scale modeling for Bacillus coagulans to understand the metabolic characteristics. Biotechnol Bioeng 2020; 117:3545-3558. [PMID: 32648961 DOI: 10.1002/bit.27488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Lactic acid is widely used in many industries, especially in the production of poly-lactic acid. Bacillus coagulans is a promising lactic acid producer in industrial fermentation due to its thermophilic property. In this study, we developed the first genome-scale metabolic model (GEM) of B. coagulans iBag597, together with an enzyme-constrained model ec-iBag597. We measured strain-specific biomass composition and integrated the data into a biomass equation. Then, we validated iBag597 against experimental data generated in this study, including amino acid requirements and carbon source utilization, showing that simulations were generally consistent with the experimental results. Subsequently, we carried out chemostats to investigate the effects of specific growth rate and culture pH on metabolism of B. coagulans. Meanwhile, we used iBag597 to estimate the intracellular metabolic fluxes for those conditions. The results showed that B. coagulans was capable of generating ATP via multiple pathways, and switched among them in response to various conditions. With ec-iBag597, we estimated the protein cost and protein efficiency for each ATP-producing pathway to investigate the switches. Our models pave the way for systems biology of B. coagulans, and our findings suggest that maintaining a proper growth rate and selecting an optimal pH are beneficial for lactate fermentation.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhihao Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fengqing Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanyuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
24
|
Coelho LF, Sass DC, Avila Neto PM, Contiero J. Evaluation of a new method for (L+) lactic acid purification, using ethyl ether. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass. Molecules 2020; 25:molecules25132956. [PMID: 32605022 PMCID: PMC7412479 DOI: 10.3390/molecules25132956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Lignocellulosic biomass from agricultural residues is a promising feedstock for lactic acid (LA) production. The aim of the current study was to investigate the production of LA from different lignocellulosic biomass. The LA production from banana peduncles using strain Bacillus coagulans with yeast extract resulted in 26.6 g LA·L−1, and yield of 0.90 g LA·g−1 sugars. The sugarcane fermentation with yeast extract resulted in 46.5 g LA·L−1, and yield of 0.88 g LA·g−1 sugars. Carob showed that addition of yeast extract resulted in higher productivity of 3.2 g LA·L−1·h−1 compared to without yeast extract where1.95 g LA·L−1·h−1 was obtained. Interestingly, similar LA production was obtained by the end where 54.8 and 51.4 g·L−1 were obtained with and without yeast extract, respectively. A pilot scale of 35 L using carob biomass fermentation without yeast extract resulted in yield of 0.84 g LA·g−1 sugars, and productivity of 2.30 g LA·L−1·h−1 which indicate a very promising process for future industrial production of LA.
Collapse
|
26
|
Alves de Oliveira R, Schneider R, Hoss Lunelli B, Vaz Rossell CE, Maciel Filho R, Venus J. A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream. Molecules 2020; 25:E2113. [PMID: 32365990 PMCID: PMC7248869 DOI: 10.3390/molecules25092113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Lactic acid is a high-value molecule with a vast number of applications. Its production in the biorefineries model is a possibility for this sector to aggregate value to its production chain. Thus, this investigation presents a biorefinery model based on the traditional sugar beet industry proposing an approach to produce lactic acid from a waste stream. Sugar beet is used to produce sugar and ethanol, and the remaining pulp is sent to animal feed. Using Bacillus coagulans in a continuous fermentation, 2781.01 g of lactic acid was produced from 3916.91 g of sugars from hydrolyzed sugar beet pulp, with a maximum productivity of 18.06 g L-1h-1. Without interfering in the sugar production, ethanol, or lactic acid, it is also possible to produce pectin and phenolic compounds in the biorefinery. The lactic acid produced was purified by a bipolar membrane electrodialysis and the recovery reached 788.80 g/L with 98% w/w purity.
Collapse
Affiliation(s)
- Regiane Alves de Oliveira
- Laboratory of Optimization, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (Unicamp), Avenida Albert Einstein 500, Campinas 13083-852, Brazil;
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Roland Schneider
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Betânia Hoss Lunelli
- Pontifícia Universidade Católica de Campinas (PUC-Campinas), Centro de Ciências Exatas, Ambientais e de Tecnologias, Faculdade de Química, Rua Professor Doutor Euryclides de Jesus Zerbini 1516, Campinas 13087-571, Brazil;
| | - Carlos Eduardo Vaz Rossell
- Interdisciplinary Center of Energy Planning (NIPE), University of Campinas (Unicamp), Rua Cora Coralina 330, Campinas 13083-896, Brazil;
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (Unicamp), Avenida Albert Einstein 500, Campinas 13083-852, Brazil;
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| |
Collapse
|
27
|
Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: the Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The numerous environmental problems caused by the extensive use of fossil resources have led to the formation of the circular bioeconomy concept. Renewable resources will constitute the cornerstone of this new, sustainable model, with biomass presenting a huge potential for the production of fuels and chemicals. In this context, waste and by-product streams from the food industry will be treated not as “wastes” but as resources. Rice production generates various by-product streams which currently are highly unexploited, leading to environmental problems especially in the countries that are the main producers. The main by-product streams include the straw, the husks, and the rice bran. Among these streams, rice bran finds applications in the food industry and cosmetics, mainly due to its high oil content. The high demand for rice bran oil generates huge amounts of defatted rice bran (DRB), the main by-product of the oil extraction process. The sustainable utilisation of this by-product has been a topic of research, either as a food additive or via its bioconversion into value-added products and chemicals. This review describes all the processes involved in the efficient bioconversion of DRB into biotechnological products. The detailed description of the production process, yields and productivities, as well as strains used for the production of bioethanol, lactic acid and biobutanol, among others, are discussed.
Collapse
|
28
|
Lazarova Z, Beschkov V, Velizarov S. Electro-membrane separations in biotechnology. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Membrane processes are of crucial importance for downstream processing in biotechnology. This is due to their selectivity and the mild operating conditions, enabling to extract target products without damages caused by overheating and chemical agents. Besides the most spread membrane processes like ultrafiltration and reverse osmosis, electrodialysis is very important for removal and extraction of electrically charged products, i. e. anions of organic acids, some antibiotics, etc. The electrodialysis process can be organized in batch or continuous mode. On the other hand, in the electro-crossflow filtration, the transport of target solutes across the membrane is guided by two main driving forces, the transmembrane pressure and the electric potential. This combination enables various possibilities for more selective and efficient downstream processing in biotechnology. This chapter provides a brief overview of recent achievements of electrodialysis in selected bioproducts separations and recovery. A special focus, including original experimental data, is then given to electro-filtration, which is a powerful tool creating new opportunities for performing separations on the basis of both electric charge and particle size differences.
Collapse
Affiliation(s)
- Zdravka Lazarova
- AIT Austrian Institute of Technology , Konrad-Lorenz-Straße 24 , Tulln 3430 , Austria
| | - Venko Beschkov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences , Sofia 1113 , Bulgaria
| | - Svetlozar Velizarov
- LAQV, Chemistry Dept./FCT/Universidade Nova de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
29
|
Duuren JBJH, Wild PJ, Starck S, Bradtmöller C, Selzer M, Mehlmann K, Schneider R, Kohlstedt M, Poblete‐Castro I, Stolzenberger J, Barton N, Fritz M, Scholl S, Venus J, Wittmann C. Limited life cycle and cost assessment for the bioconversion of lignin‐derived aromatics into adipic acid. Biotechnol Bioeng 2020; 117:1381-1393. [DOI: 10.1002/bit.27299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023]
Affiliation(s)
| | - Paul J. Wild
- Biomass & Energy Efficiency, TNOPetten The Netherlands
| | - Sören Starck
- Institute of Systems BiotechnologySaarland UniversitySaarbrücken Germany
| | - Christian Bradtmöller
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigBraunschweig Germany
| | - Mirjam Selzer
- Institute of Systems BiotechnologySaarland UniversitySaarbrücken Germany
| | - Kerstin Mehlmann
- Department of BioengineeringLeibniz Institute for Agricultural Engineering and Bioeconomy (ATB)Potsdam Germany
| | - Roland Schneider
- Department of BioengineeringLeibniz Institute for Agricultural Engineering and Bioeconomy (ATB)Potsdam Germany
| | - Michael Kohlstedt
- Institute of Systems BiotechnologySaarland UniversitySaarbrücken Germany
| | - Ignacio Poblete‐Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Natural SciencesUniversidad Andres BelloSantiago de Chile Chile
| | | | - Nadja Barton
- Institute of Systems BiotechnologySaarland UniversitySaarbrücken Germany
| | - Michel Fritz
- Institute of Systems BiotechnologySaarland UniversitySaarbrücken Germany
| | - Stephan Scholl
- Institute for Chemical and Thermal Process EngineeringTechnische Universität BraunschweigBraunschweig Germany
| | - Joachim Venus
- Department of BioengineeringLeibniz Institute for Agricultural Engineering and Bioeconomy (ATB)Potsdam Germany
| | - Christoph Wittmann
- Institute of Systems BiotechnologySaarland UniversitySaarbrücken Germany
| |
Collapse
|
30
|
Zhang SJ, De Bruyn F, Pothakos V, Contreras GF, Cai Z, Moccand C, Weckx S, De Vuyst L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front Microbiol 2019; 10:2621. [PMID: 31798557 PMCID: PMC6863779 DOI: 10.3389/fmicb.2019.02621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Post-harvest wet coffee processing is a commonly applied method to transform coffee cherries into green coffee beans through depulping or demucilaging, fermentation, washing, soaking, drying, and dehulling. Multiple processing parameters can be modified and thus influence the coffee quality (green coffee beans and cup quality). The present study aimed to explore the impacts of these parameters, including processing type (depulping or demucilaging), fermentation duration, and application of soaking, on the microbial community dynamics, metabolite compositions of processing waters (fermentation and soaking) and coffee beans, and resulting cup quality through a multiphasic approach. A large-scale wet coffee processing experiment was conducted with Coffea arabica var. Catimor in Yunnan (China) in duplicate. The fermentation steps presented a dynamic interaction between constant nutrient release (mainly from the cherry mucilage) into the surrounding water and active microbial activities led by lactic acid bacteria, especially Leuconostoc and Lactococcus. The microbial communities were affected by both the processing type and fermentation duration. At the same time, the endogenous coffee bean metabolism remained active at different stages along the processing, as could be seen through changes in the concentrations of carbohydrates, organic acids, and free amino acids. Among all the processing variants tested, the fermentation duration had the greatest impact on the green coffee bean compositions and the cup quality. A long fermentation duration resulted in a fruitier and more acidic cup. As an ecological alternative for the depulped processing, the demucilaged processing produced a beverage quality comparable to the depulped one. The application of soaking, however, tempered the positive fermentation effects and standardized the green coffee bean quality, regardless of the preceding processing practices applied. Lastly, the impact strength of each processing parameter would also depend on the coffee variety used and the local geographical conditions. All these findings provide a considerable margin of opportunities for future coffee research.
Collapse
Affiliation(s)
- Sophia Jiyuan Zhang
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florac De Bruyn
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vasileios Pothakos
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Zhiying Cai
- Yunnan Institute of Tropical Crops, Kunming, China
| | | | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
31
|
Production and Purification of l-lactic Acid in Lab and Pilot Scales Using Sweet Sorghum Juice. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sweet sorghum juice (SSJ) was evaluated as fermentation substrate for the production of l-lactic acid. A thermophilic Bacillus coagulans isolate was selected for batch fermentations without the use of additional nutrients. The first batch of SSJ (Batch A) resulted on higher lactic acid concentration, yield and productivity with values of 78.75 g∙L−1, 0.78 g∙g−1 and 1.77 g∙L−1 h−1, respectively. Similar results were obtained when the process was transferred into the pilot scale (50 L), with corresponding values of 73 g∙L−1, 0.70 g∙g−1 and 1.47 g∙L−1 h−1. A complete downstream process scheme was developed in order to separate lactic acid from the fermentation components. Coarse and ultra-filtration were employed as preliminary separation steps. Mono- and bipolar electrodialysis, followed by chromatography and vacuum evaporation were subsequently carried out leading to a solution containing 905.8 g∙L−1 lactic acid, with an optical purity of 98.9%. The results of this study highlight the importance of the downstream process with respect to using SSJ for lactic acid production. The proposed downstream process constitutes a more environmentally benign approach to conventional precipitation methods.
Collapse
|
32
|
A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Alves De Oliveira R, Alexandri M, Komesu A, Venus J, Vaz Rossell CE, Maciel Filho R. Current Advances in Separation and Purification of Second-Generation Lactic Acid. SEPARATION AND PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1590412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Regiane Alves De Oliveira
- Laboratory of Optimization, Department of Process and Product Development, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Alexandri
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | - Andrea Komesu
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Potsdam, Germany
| | | | - Rubens Maciel Filho
- Laboratory of Optimization, Department of Process and Product Development, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
34
|
Peinemann JC, Krenz LMM, Pleissner D. Is seashell powder suitable for phosphate recovery from fermentation broth? N Biotechnol 2019; 49:43-47. [DOI: 10.1016/j.nbt.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
|
35
|
Alexandri M, Schneider R, Mehlmann K, Venus J. Recent Advances in d-Lactic Acid Production from Renewable Resources: Case Studies on Agro-Industrial Waste Streams. Food Technol Biotechnol 2019; 57:293-304. [PMID: 31866743 PMCID: PMC6902291 DOI: 10.17113/ftb.57.03.19.6023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The production of biodegradable polymers as alternatives to petroleum-based plastics has gained significant attention in the past years. To this end, polylactic acid (PLA) constitutes a promising alternative, finding various applications from food packaging to pharmaceuticals. Recent studies have shown that d-lactic acid plays a vital role in the production of heat-resistant PLA. At the same time, the utilization of renewable resources is imperative in order to decrease the production cost. This review aims to provide a synopsis of the current state of the art regarding d-lactic acid production via fermentation, focusing on the exploitation of waste and byproduct streams. An overview of potential downstream separation schemes is also given. Additionally, three case studies are presented and discussed, reporting the obtained results utilizing acid whey, coffee mucilage and hydrolysate from rice husks as alternative feedstocks for d-lactic acid production.
Collapse
Affiliation(s)
- Maria Alexandri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Department of Bioengineering, Max-Eyth Allee 100, 14469 Potsdam, Germany
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Department of Bioengineering, Max-Eyth Allee 100, 14469 Potsdam, Germany
| | - Kerstin Mehlmann
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Department of Bioengineering, Max-Eyth Allee 100, 14469 Potsdam, Germany
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Department of Bioengineering, Max-Eyth Allee 100, 14469 Potsdam, Germany
| |
Collapse
|
36
|
Alexandri M, Neu A, Schneider R, López‐Gómez JP, Venus J. Evaluation of various
Bacillus coagulans
isolates for the production of high purity L‐lactic acid using defatted rice bran hydrolysates. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Maria Alexandri
- Department of Bioengineering Leibniz Institute for Agricultural Engineering and Bioeconomy Max‐Eyth‐Allee 100 Potsdam 14469 Germany
| | - Anna‐Katrin Neu
- Department of Bioengineering Leibniz Institute for Agricultural Engineering and Bioeconomy Max‐Eyth‐Allee 100 Potsdam 14469 Germany
| | - Roland Schneider
- Department of Bioengineering Leibniz Institute for Agricultural Engineering and Bioeconomy Max‐Eyth‐Allee 100 Potsdam 14469 Germany
| | - José Pablo López‐Gómez
- Department of Bioengineering Leibniz Institute for Agricultural Engineering and Bioeconomy Max‐Eyth‐Allee 100 Potsdam 14469 Germany
| | - Joachim Venus
- Department of Bioengineering Leibniz Institute for Agricultural Engineering and Bioeconomy Max‐Eyth‐Allee 100 Potsdam 14469 Germany
| |
Collapse
|
37
|
Serna-Loaiza S, Martínez A, Pisarenko Y, Cardona-Alzate CA. Integral use of plants and their residues: the case of cocoyam (Xanthosoma sagittifolium) conversion through biorefineries at small scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35949-35959. [PMID: 29796887 DOI: 10.1007/s11356-018-2313-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
During last decades, there has been a growing interest of decreasing the environmental impact generated by humans. This situation has been approached from different perspectives being the integral use of raw materials as one of the best alternatives. It was estimated that 3.7 × 109 tonnes of agricultural residues are produced annually worldwide. Then, the integral use of feedstocks has been studied through the biorefinery concept. A biorefinery can be a promissory option for processing feedstocks in rural zones aiming to boost the techno-economic and social growth. However, many plants produced at small scale in rural zones without high industrial use contribute with residues usually not studied as raw materials for other processes. Cocoyam (Xanthosoma sagittifolium) is a plant grown extensively in tropical regions. Nigeria, China, and Ghana are the main producers with 1.3, 1.18, and 0.9 million tonnes/year, respectively. In Colombia, there are no technified crops, but it is used where it is grown mainly as animal feed. This plant consists of leaves, stem, and a tuber but the use is generally limited to the leaves, discarding the other parts. These discarded parts have great potential (lignocellulose and starch). This work proposes different processing schemes using the parts of the plant to obtain value-added products, and their techno-economic and environmental assessment. The simulation was performed with Aspen Plus and the economic package was used for the economic assessment. For the environmental assessment, Waste Algorithm Reduction of the U.S. EPA was implemented. The obtained results showed that the integral use of plants under a biorefinery scheme allows obtaining better techno-economic and environmental performance and that small-scale biorefineries can be a promissory option for boosting rural zones.
Collapse
Affiliation(s)
- Sebastián Serna-Loaiza
- Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas, Colombia
| | - Alfredo Martínez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yuri Pisarenko
- Moscow State Academy of Fine Chemical Technology, Moscow, Russia
| | - Carlos Ariel Cardona-Alzate
- Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas, Colombia.
| |
Collapse
|
38
|
Membrane Technologies for Lactic Acid Separation from Fermentation Broths Derived from Renewable Resources. MEMBRANES 2018; 8:membranes8040094. [PMID: 30322044 PMCID: PMC6315696 DOI: 10.3390/membranes8040094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022]
Abstract
Lactic acid (LA) was produced on a pilot scale using a defined medium with glucose, acid whey, sugar bread and crust bread. The fermentation broths were then subjected to micro- and nanofiltration. Microfiltration efficiently separated the microbial cells. The highest average permeate flow flux was achieved for the defined medium (263.3 L/m2/h) and the lowest for the crust bread-based medium (103.8 L/m2/h). No LA losses were observed during microfiltration of the acid whey, whilst the highest retention of LA was 21.5% for crust bread. Nanofiltration led to high rejections of residual sugars, proteins and ions (sulphate, magnesium, calcium), with a low retention of LA. Unconverted sugar rejections were 100% and 63% for crust bread and sugar bread media respectively, with corresponding LA losses of 22.4% and 2.5%. The membrane retained more than 50% of the ions and proteins present in all media and more than 60% of phosphorus. The average flux was highly affected by the nature of the medium as well as by the final concentration of LA and sugars. The results of this study indicate that micro- and nanofiltration could be industrially employed as primary separation steps for the biotechnologically produced LA.
Collapse
|
39
|
Orrego D, Zapata-Zapata AD, Kim D. Ethanol production from coffee mucilage fermentation by S. cerevisiae immobilized in calcium-alginate beads. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Konuray G, Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018; 7:foods7060092. [PMID: 29899254 PMCID: PMC6025323 DOI: 10.3390/foods7060092] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023] Open
Abstract
Probiotic microorganisms are generally considered to beneficially affect host health when used in adequate amounts. Although generally used in dairy products, they are also widely used in various commercial food products such as fermented meats, cereals, baby foods, fruit juices, and ice creams. Among lactic acid bacteria, Lactobacillus and Bifidobacterium are the most commonly used bacteria in probiotic foods, but they are not resistant to heat treatment. Probiotic food diversity is expected to be greater with the use of probiotics, which are resistant to heat treatment and gastrointestinal system conditions. Bacillus coagulans (B. coagulans) has recently attracted the attention of researchers and food manufacturers, as it exhibits characteristics of both the Bacillus and Lactobacillus genera. B. coagulans is a spore-forming bacterium which is resistant to high temperatures with its probiotic activity. In addition, a large number of studies have been carried out on the low-cost microbial production of industrially valuable products such as lactic acid and various enzymes of B. coagulans which have been used in food production. In this review, the importance of B. coagulans in food industry is discussed. Moreover, some studies on B. coagulans products and the use of B. coagulans as a probiotic in food products are summarized.
Collapse
Affiliation(s)
- Gözde Konuray
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| | - Zerrin Erginkaya
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| |
Collapse
|
41
|
Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, B.J.H. van Duuren J, Wittmann C. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 2018; 47:279-293. [DOI: 10.1016/j.ymben.2018.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/31/2022]
|
42
|
Phanthumchinda N, Thitiprasert S, Tanasupawat S, Assabumrungrat S, Thongchul N. Process and cost modeling of lactic acid recovery from fermentation broths by membrane-based process. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain. 3 Biotech 2018; 8:213. [PMID: 29651378 DOI: 10.1007/s13205-018-1232-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/03/2017] [Indexed: 10/17/2022] Open
Abstract
Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH)2. The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.
Collapse
|
45
|
Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production. ENERGIES 2018. [DOI: 10.3390/en11040786] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Hudeckova H, Neureiter M, Obruca S, Frühauf S, Marova I. Biotechnological conversion of spent coffee grounds into lactic acid. Lett Appl Microbiol 2018; 66:306-312. [PMID: 29330879 DOI: 10.1111/lam.12849] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/25/2017] [Accepted: 01/06/2018] [Indexed: 11/28/2022]
Abstract
This work investigates the potential bioconversion of spent coffee grounds (SCG) into lactic acid (LA). SCG were hydrolysed by a combination of dilute acid treatment and subsequent application of cellulase. The SCG hydrolysate contained a considerable amount of reducing sugars (9·02 ± 0·03 g l-1 , glucose; 26·49 ± 0·10 g l-1 galactose and 2·81 ± 0·07 g l-1 arabinose) and it was used as a substrate for culturing several lactic acid bacteria (LAB) and LA-producing Bacillus coagulans. Among the screened micro-organisms, Lactobacillus rhamnosus CCM 1825 was identified as the most promising producer of LA on a SCG hydrolysate. Despite the inhibitory effect exerted by furfural and phenolic compounds in the medium, reasonably high LA concentrations (25·69 ± 1·45 g l-1 ) and yields (98%) were gained. Therefore, it could be demonstrated that SCG is a promising raw material for the production of LA and could serve as a feedstock for the sustainable large-scale production of LA. SIGNIFICANCE AND IMPACT OF THE STUDY Spent coffee grounds (SCG) represent solid waste generated in millions of tonnes by coffee-processing industries. Their disposal represents a serious environmental problem; however, SCG could be valorized within a biorefinery concept yielding various valuable products. Herein, we suggest that SCG can be used as a complex carbon source for the lactic acid production.
Collapse
Affiliation(s)
- H Hudeckova
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.,Materials Research Centre, Brno University of Technology, Brno, Czech Republic
| | - M Neureiter
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - S Obruca
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.,Materials Research Centre, Brno University of Technology, Brno, Czech Republic
| | - S Frühauf
- Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | - I Marova
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.,Materials Research Centre, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
47
|
Kwan TH, Vlysidis A, Wu Z, Hu Y, Koutinas A, Lin CSK. Lactic acid fermentation modelling of Streptococcus thermophilus YI-B1 and Lactobacillus casei Shirota using food waste derived media. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Peinemann JC, Pleissner D. Material Utilization of Organic Residues. Appl Biochem Biotechnol 2017; 184:733-745. [DOI: 10.1007/s12010-017-2586-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
|
49
|
Thapa LP, Lee SJ, Park C, Kim SW. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007. Enzyme Microb Technol 2017; 102:1-8. [DOI: 10.1016/j.enzmictec.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
|
50
|
Han SH, Ko BS, Ahn SH, Noh DO, Suh HJ. Comparison of the antioxidant activities of roasted and explosive puffed coffees. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sung Hee Han
- BK21Plus; College of Health Science; Korea University; Seoul 02841 Korea
| | - Bong Soo Ko
- Research and Development Center; Namyang Dairy Products Corporation; Sejong 30055 Korea
| | - So Hyun Ahn
- Department of Integrated Biomedical and Life Science; Graduate School; Korea University; Seoul 02841 Korea
| | - Dong Ouk Noh
- Department of Hotel Culinary Arts and Nutrition; Kaya University; Gyeongnam 40193 Korea
| | - Hyung Joo Suh
- Department of Public Health Sciences; Graduate School; Korea University; Seoul 02841 Korea
| |
Collapse
|