1
|
Li Y, Xu G, Wang J, Yu Y. Freeze-thaw aging increases the toxicity of microplastics to earthworms and enriches pollutant-degrading microbial genera. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135651. [PMID: 39208630 DOI: 10.1016/j.jhazmat.2024.135651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Freeze-thaw (FT) aging can change the physicochemical characteristics of microplastics (MPs). The toxic impacts of FT-aged-MPs to soil invertebrates are poorly understood. Here the toxic mechanisms of FT-aged-MPs were investigated in earthworms after 28 d exposure. Results showed that FT 50 µm PE-MPs significantly increased reactive oxygen species (ROS) by 5.78-9.04 % compared to pristine 50 µm PE-MPs (41.80-45.05 ng/mgprot), whereas FT 500 µm PE-MPs reduced ROS by 7.52-7.87 % compared to pristine 500 µm PE-MPs (51.44-54.46 ng/mgprot). FT-PP-MPs significantly increased ROS and malondialdehyde (MDA) content in earthworms by 14.82-44.06 % and 46.75-110.21 %, respectively, compared to pristine PP-MPs (40.56-44.66 ng/mgprot, 0.41-2.53 nmol/mgprot). FT-aged PE- and PP-MPs caused more severe tissue damage to earthworms. FT-aged PE-MPs increased the alpha diversity of the gut flora of earthworms compared to pristine MPs. Earthworm guts exposed to FT-aged-MPs were enriched with differential microbial genera of contaminant degradation capacity. FT-PE-MPs affected membrane translocation by up-regulating lipids and lipid-like molecules, whereas FT-PP-MPs changed xenobiotic biodegradation and metabolism by down-regulating organoheterocyclic compounds compared to the pristine PE- and PP-MPs. This study concludes that FT-aged MPs cause greater toxicity to earthworms compared to pristine MPs.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Hu S, Xu C, Lu P, Wu M, Chen A, Zhang M, Xie Y, Han G. Widespread distribution of the DyP-carrying bacteria involved in the aflatoxin B1 biotransformation in Proteobacteria and Actinobacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135493. [PMID: 39173381 DOI: 10.1016/j.jhazmat.2024.135493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/21/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Aflatoxin is one of the most notorious mycotoxins, of which aflatoxin B1 (AFB1) is the most harmful and prevalent. Microbes play a crucial role in the environment for the biotransformation of AFB1. In this study, a bacterial consortium, HS-1, capable of degrading and detoxifying AFB1 was obtained. Here, we combined multi-omics and cultivation-based techniques to elucidate AFB1 biotransformation by consortium HS-1. Co-occurrence network analysis revealed that the key taxa responsible for AFB1 biotransformation in consortium HS-1 mainly belonged to the phyla Proteobacteria and Actinobacteria. Moreover, metagenomic analysis showed that diverse microorganisms, mainly belonging to the phyla Proteobacteria and Actinobacteria, carry key functional enzymes involved in the initial step of AFB1 biotransformation. Metatranscriptomic analysis indicated that Paracoccus-related bacteria were the most active in consortium HS-1. A novel bacterium, Paracoccus sp. strain XF-30, isolated from consortium HS-1, contains a novel dye-decolorization peroxidase (DyP) enzyme capable of effectively degrading AFB1. Taxonomic profiling by bioinformatics revealed that DyP, which is involved in the initial biotransformation of AFB1, is widely distributed in metagenomes from various environments, primarily taxonomically affiliated with Proteobacteria and Actinobacteria. The in-depth examination of AFB1 biotransformation in consortium HS-1 will help us to explore these crucial bioresources more sensibly and efficiently.
Collapse
Affiliation(s)
- Shunli Hu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Chuangchuang Xu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Peicheng Lu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Minghui Wu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Anqi Chen
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yanghe Xie
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China.
| |
Collapse
|
3
|
Zhang P, Wang X, Zhang Z, Wang Y, Zhu T, Liu Y. Hydrocyclone combines with alkali-thermal pretreatment to enhance short-chain fatty acids production from anaerobic fermentation of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122409. [PMID: 39236612 DOI: 10.1016/j.jenvman.2024.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The production of short-chain fatty acids (SCFAs) through anaerobic fermentation of waste activated sludge (WAS) is commonly constrained by limited substrate availability, particularly for WAS with low organic content. Combining the hydrocyclone (HC) selection with alkali-thermal (AT) pretreatment is a promising solution to address this limitation. The results indicated that HC selection modified the sludge properties by enhancing the ratio of mixed liquid volatile suspended solids (MLVSS)/mixed liquid suspended solids (MLSS) by 19.0% and decreasing the mean particle size by 17.4%, which were beneficial for the subsequent anaerobic fermentation process. Under the optimal HC + AT condition, the peak value of SCFAs production reached 4951.9 mg COD/L, representing a 23.2% increase compared to the raw sludge with only AT pretreatment. Mechanism investigations revealed such enhancement beyond mechanical separation. It involved an increase in bound extracellular polymeric substances (EPS) through HC selection and the disruption of sludge spatial structure by AT pretreatment. Consequently, this combination pretreatment accelerated the transfer of particulate organics (i.e., bound EPS and intracellular components) to the supernatant, thus increasing the accessibility of WAS substrate to hydrolytic and acidifying bacteria. Furthermore, the microbial structure was altered with the enrichment of key functional microorganisms, probably due to the facilitation of substrate biotransformation and product output. Meanwhile, the activity of hydrolases and SCFAs-forming enzymes increased, while that of methanogenic enzymes decreased. Overall, this strategy successfully enhanced SCFAs production from WAS while reducing the environmental risks of WAS disposal.
Collapse
Affiliation(s)
- Peiyao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Beijing Enterprises Water Group Limited, Beijing, 100102, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Limaye A, Liu JR. Screening and Characterization of a Chryseobacterium timonianum Strain with Aflatoxin B1 Removal Ability. Microb Physiol 2024; 34:182-196. [PMID: 39137739 DOI: 10.1159/000540803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Aflatoxin B1 (AFB1) is a potent hepatocarcinogenic mycotoxin found in animal feed and human food components. AFB1 contamination poses severe food safety and economic consequences. METHODS In this study, we used a coumarin-selective medium to isolate bacterial strains that can remove AFB1. Among the isolated bacterial strains, strain c4a exhibited the highest AFB1 removal activity. This strain was subjected to biochemical and phylogenetic characterization. The AFB1 removal activity of the extracellular supernatant of this strain was optimized for growth medium, reaction temperature, pH, and metal ions. The degradation products were analyzed using UPLC-ESI MS/MS. RESULTS Strain c4a was found to be most closely related to Chryseobacterium timonianum. The extracellular supernatant of C. timonianum c4a grown in a modified nutrient broth (with gelatin peptone and beef extract in a 4:1 ratio) demonstrated the highest AFB1 removal activity when incubated with 1 ppm AFB1 at 60°C, pH 8, and Mn2+ or Mg2+ supplementation for 72 h. Surprisingly, the autoclaved extracellular supernatant also retained AFB1 removal activity. UPLC-ESI MS/MS analysis suggested that AFB1 was transformed into a metabolite (m/z value 285.08) by water molecule addition on furan ring double bond. CONCLUSION The AFB1 removal activity of C. timonianum c4a was extracellular, constitutive, and highly thermostable, structurally transforming AFB1 into a much less toxic product. Herein, we present the first evidence of thermostable AFB1 removal activity of a strain belonging to C. timonianum.
Collapse
Affiliation(s)
- Aniket Limaye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Zhang W, Sun C, Wang W, Zhang Z. Bioremediation of Aflatoxin B 1 by Meyerozyma guilliermondii AF01 in Peanut Meal via Solid-State Fermentation. Toxins (Basel) 2024; 16:305. [PMID: 39057945 PMCID: PMC11280932 DOI: 10.3390/toxins16070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The use of microorganisms to manage aflatoxin contamination is a gentle and effective approach. The aim of this study was to test the removal of AFB1 from AFB1-contaminated peanut meal by a strain of Meyerozyma guilliermondii AF01 screened by the authors and to optimize the conditions of the biocontrol. A regression model with the removal ratio of AFB1 as the response value was established by means of single-factor and response surface experiments. It was determined that the optimal conditions for the removal of AFB1 from peanut meal by AF01 were 75 h at 29 °C under the natural pH, with an inoculum of 5.5%; the removal ratio of AFB1 reached 69.31%. The results of simulating solid-state fermentation in production using shallow pans and fermentation bags showed that the removal ratio of AFB1 was 68.85% and 70.31% in the scaled-up experiments, respectively. This indicated that AF01 had strong adaptability to the environment with facultative anaerobic fermentation detoxification ability. The removal ratio of AFB1 showed a positive correlation with the growth of AF01, and there were no significant changes in the appearance and quality of the peanut meal after fermentation. This indicated that AF01 had the potential to be used in practical production.
Collapse
Affiliation(s)
- Wan Zhang
- College of Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China;
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| | - Wei Wang
- College of Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China;
| | - Zhongjie Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China;
| |
Collapse
|
6
|
Peng L, Hou J, Zhang Y, Wang B, Zhang Y, Zhao K, Wang Q, Christie P, Liu W, Luo Y. Metagenomic analysis of a thermophilic bacterial consortium and its use in the bioremediation of a petroleum-contaminated soil. CHEMOSPHERE 2024; 360:142379. [PMID: 38777200 DOI: 10.1016/j.chemosphere.2024.142379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Biodegradation is difficult at high temperatures due to the limited capacity of microorganisms to survive and function outside their optimum temperature range. Here, a thermophilic petroleum-degrading consortium was enriched from compost at a temperature of 55 °C. 16S rDNA and metagenomic techniques were used to analyze the composition of the consortium and the mechanisms of degradation. The consortium degraded 17000 mg total petroleum hydrocarbons (TPHs) L-1 with a degradation efficiency of 81.5% in 14 days. The consortium utilized a range of substrates such as n-hexadecane, n-docosane, naphthalene and pyrene and grew well over a wide range of pH (4-10) and salinity (0-90 g L-1). The hydrocarbon-degrading extremophilic consortium contained, inter alia, (relative abundance >1%) Caldibacillus, Geobacillus, Mycolicibacterium, Bacillus, Chelatococcus, and Aeribacillus spp. Metagenomic analysis was conducted to discover the degradation and environmental tolerance functional genes of the consortium. Two alkane hydroxylase genes, alkB and ladA, were found. A microcosm study shows that the consortium promoted the bioremediation of soil TPHs. The results indicate that the consortium may be a good candidate for the high-temperature bioremediation of petroleum-contaminated soils.
Collapse
Affiliation(s)
- Li Peng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210008, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jinyu Hou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yufeng Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 210008, China
| | - Beibei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingling Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Christie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wuxing Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
7
|
Guo C, Fan L, Yang Q, Ning M, Zhang B, Ren X. Characterization and mechanism of simultaneous degradation of aflatoxin B 1 and zearalenone by an edible fungus of Agrocybe cylindracea GC-Ac2. Front Microbiol 2024; 15:1292824. [PMID: 38414775 PMCID: PMC10897045 DOI: 10.3389/fmicb.2024.1292824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Contamination with multiple mycotoxins is a major issue for global food safety and trade. This study focused on the degradation of aflatoxin B1 (AFB1) and zearalenone (ZEN) by 8 types of edible fungi belonging to 6 species, inclulding Agaricus bisporus, Agrocybe cylindracea, Cyclocybe cylindracea, Cyclocybe aegerita, Hypsizygus marmoreus and Lentinula edodes. Among these fungi, Agrocybe cylindracea strain GC-Ac2 was shown to be the most efficient in the degradation of AFB1 and ZEN. Under optimal degradation conditions (pH 6.0 and 37.4°C for 37.9 h), the degradation rate of both AFB1 and ZEN reached over 96%. Through the analysis of functional detoxification components, it was found that the removal of AFB1 and ZEN was primarily degraded by the culture supernatant of the fungus. The culture supernatant exhibited a maximum manganese peroxidase (MnP) activity of 2.37 U/mL. Interestingly, Agrocybe cylindracea strain GC-Ac2 also showed the capability to degrade other mycotoxins in laboratory-scale mushroom substrates, including 15A-deoxynivalenol, fumonisin B1, B2, B3, T-2 toxin, ochratoxin A, and sterigmatocystin. The mechanism of degradation of these mycotoxins was speculated to be catalyzed by a complex enzyme system, which include MnP and other ligninolytic enzymes. It is worth noting that Agrocybe cylindracea can degrade multiple mycotoxins and produce MnP, which is a novel and significant discovery. These results suggest that this candidate strain and its enzyme system are expected to become valuable biomaterials for the simultaneous degradation of multiple mycotoxins.
Collapse
Affiliation(s)
- Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
8
|
Wang J, Chen Q, Yan P, Dong C, Shao Z. Isolation and Optimization of Aflatoxin B 1 Degradation by Uniform Design and Complete Genome Sequencing of Novel Deep-Sea Kocuria rosea Strain 13. Toxins (Basel) 2023; 15:520. [PMID: 37755946 PMCID: PMC10534749 DOI: 10.3390/toxins15090520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxin B1 is a natural carcinogenic mycotoxin. The biological detoxification of aflatoxin could result in less environmental pollution, more moderate conditions, and less impact on food and feed, and be more convenient than physical and chemical methods. In this study, strain 13 with aflatoxin B1 degradation activity (67.47 ± 1.44%) was isolated and identified as Kocuria rosea. A uniform design was applied to optimize the degradation activity using a software Data Processing System, and a quadratic polynomial stepwise regression model was selected to investigate the relationships between the degradation rate and five independent variables. Furthermore, the optimal degradation conditions (culture temperature of 30 °C, culture time of 4.2 days, seawater ratio of 100%, pH of 7.11, and inoculation dosage of 0.09%) were verified with a degradation rate of 88 ± 0.03%, which was well matched with the predicted value (92.97%) of the model. Complete genome sequencing of Kocuria rosea, conducted with a combination of Illumina and single-molecule real-time sequencing, was used to analyze the genomic features and functions of the strain, which were predicted by the annotation based on seven databases, and may provide insights into the potential of Kocuria rosea, as well as providing a reference for degradation gene and protein mining. These results indicate that Kocuria rosea strain 13 has the ability to degrade aflatoxin B1 efficiently, and it also has the potential to provide aflatoxin-degrading enzymes.
Collapse
Affiliation(s)
- Jingying Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (J.W.)
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Qiqi Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (J.W.)
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Peisheng Yan
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (J.W.)
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 350002, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
9
|
Kościelecka K, Kuć A, Kubik-Machura D, Męcik-Kronenberg T, Włodarek J, Radko L. Endocrine Effect of Some Mycotoxins on Humans: A Clinical Review of the Ways to Mitigate the Action of Mycotoxins. Toxins (Basel) 2023; 15:515. [PMID: 37755941 PMCID: PMC10535190 DOI: 10.3390/toxins15090515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Fungi such as Aspergillus spp. and Fusarium spp., which are commonly found in the environment, pose a serious global health problem. This study aims to present the results of epidemiological studies, including clinical cases, on the relationship between human exposure to some mycotoxins, especially zearalenone and aflatoxin, and the occurrence of reproductive disorders. In addition, examples of methods to reduce human exposure to mycotoxins are presented. In March 2023, various databases (PubMed, Google Scholar, EMBASE and Web of Science) were systematically searched using Google Chrome to identify studies evaluating the association between exposure to mycotoxins and the occurrence of complications related to impaired fertility or cancer incidence. The analysed data indicate that exposure to the evaluated mycotoxins is widespread and correlates strongly with precocious puberty, reduced fertility and increased cancer incidence in women and men worldwide. There is evidence to suggest that exposure to the Aspergillus mycotoxin aflatoxin (AF) during pregnancy can impair intrauterine foetal growth, promote neonatal jaundice and cause perinatal death and preterm birth. In contrast, exposure to the Fusarium mycotoxin zearalenone (ZEA) leads to precocious sexual development, infertility, the development of malformations and the development of breast cancer. Unfortunately, the development of methods (biological, chemical or physical) to completely eliminate exposure to mycotoxins has limited practical application. The threat to human health from mycotoxins is real and further research is needed to improve our knowledge and specific public health interventions.
Collapse
Affiliation(s)
- Klaudia Kościelecka
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Aleksandra Kuć
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Daria Kubik-Machura
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Jan Włodarek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland;
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland;
| |
Collapse
|
10
|
Yang P, Wu W, Zhang D, Cao L, Cheng J. AFB 1 Microbial Degradation by Bacillus subtilis WJ6 and Its Degradation Mechanism Exploration Based on the Comparative Transcriptomics Approach. Metabolites 2023; 13:785. [PMID: 37512492 PMCID: PMC10385142 DOI: 10.3390/metabo13070785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin pollution poses great harm to human and animal health and causes huge economic losses. The biological detoxification method that utilizes microorganisms and their secreted enzymes to degrade aflatoxin has the advantages of strong specificity, high efficiency, and no pollution inflicted onto the environment. In this study, Bacillus subtilis WJ6 with a high efficiency in aflatoxin B1 degradation was screened and identified through molecular identification, physiological, and biochemical methods. The fermentation broth, cell-free supernatant, and cell suspension degraded 81.57%, 73.27%, and 8.39% of AFB1, respectively. The comparative transcriptomics analysis indicated that AFB1 led to 60 up-regulated genes and 31 down-regulated genes in B. subtilis WJ6. A gene ontology (GO) analysis showed that the function classifications of cell aggregation, the organizational aspect, and the structural molecule activity were all of large proportions among the up-regulated genes. The down-regulated gene expression was mainly related to the multi-organism process function under the fermentation condition. Therefore, B. subtilis WJ6 degraded AFB1 through secreted extracellular enzymes with the up-regulated genes of structural molecule activity and down-regulated genes of multi-organism process function.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wenjing Wu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Danfeng Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lili Cao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jieshun Cheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
11
|
Wang SY, Herrera-Balandrano DD, Shi XC, Chen X, Liu FQ, Laborda P. Occurrence of aflatoxins in water and decontamination strategies: A review. WATER RESEARCH 2023; 232:119703. [PMID: 36758357 DOI: 10.1016/j.watres.2023.119703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxins are highly carcinogenic metabolites produced by some Aspergillus species and are the most prevalent mycotoxins. Although aflatoxins are commonly synthesized during fungal colonization in preharvest maize, cereals, and nuts, they can be transported by rainfall to surface water and are a common toxin found in wastewater from some food industries. Here, the occurrence of aflatoxins in bodies of water is reviewed for the first time, along with the decontamination methods. Aflatoxins have been detected in surface, wastewater and drinking water, including tap and bottled water. The specific sources of water contamination remain unclear, which is an important gap that must be addressed in future research. Two main kinds of decontamination methods have been reported, including degradation and adsorption. The best degradation rates were observed using gamma and UV irradiations, oxidoreductases and ozone, while the best adsorption abilities were observed with minerals, polyvinyl alcohol, durian peel and activated carbon. Synthetic polymers could be used as membranes in pipes to remove aflatoxins in water flows. Although most decontamination methods were screened using AFB1, the other commonly found aflatoxins were not used in the screenings. Overall, the occurrence of aflatoxins in water could be a significant emerging public health concern largely ignored by local and international legislation. Numerous advances have been reported for the decontamination of aflatoxins in water; however, there is still a long way to go to put them into practice.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | | | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
12
|
Li Y, Gao H, Wang R, Xu Q. Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front Microbiol 2023; 14:1141378. [PMID: 36998392 PMCID: PMC10043330 DOI: 10.3389/fmicb.2023.1141378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin that contaminates animal feed and crops around the world. DON not only causes significant economic losses, but can also lead diarrhea, vomiting, and gastroenteritis in humans and farm animals. Thus, there is an urgent need to find efficient approaches for DON decontamination in feed and food. However, physical and chemical treatment of DON may affect the nutrients, safety, and palatability of food. By contrast, biological detoxification methods based on microbial strains or enzymes have the advantages of high specificity, efficiency, and no secondary pollution. In this review, we comprehensively summarize the recently developed strategies for DON detoxification and classify their mechanisms. In addition, we identify remaining challenges in DON biodegradation and suggest research directions to address them. In the future, an in-depth understanding of the specific mechanisms through which DON is detoxified will provide an efficient, safe, and economical means for the removal of toxins from food and feed.
Collapse
|
13
|
Xue G, Qu Y, Wu D, Huang S, Che Y, Yu J, Song P. Biodegradation of Aflatoxin B 1 in the Baijiu Brewing Process by Bacillus cereus. Toxins (Basel) 2023; 15:65. [PMID: 36668884 PMCID: PMC9860622 DOI: 10.3390/toxins15010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Aflatoxin is a potent mycotoxin and a common source of grain contamination that leads to great economic losses and health problems. Although distilled baijiu cannot be contaminated by aflatoxin, its presence in the brewing process affects the physiological activities of micro-organisms and reduces product quality. Bacillus cereus XSWW9 capable of degrading aflatoxin B1 (AFB1) was isolated from daqu using coumarin as the sole carbon source. XSWW9 degraded 86.7% of 1 mg/L AFB1 after incubation at 37 °C for 72 h and tolerated up to 1 mg/L AFB1 with no inhibitory effects. Enzymes in the cell-free supernatant of XSSW9 played a significant role in AFB1 degradation. The AFB1-degradation activity was sensitive to protease K and SDS treatment, which indicated that extracellular proteins were responsible for the degradation of AFB1. In order to investigate the AFB1-degradation ability of XSSW9 during the baijiu brewing process, AFB1 and XSWW9 were added to grain fermentation (FG-T) and normal grain fermentation without AFB1, while normal grain fermentation without AFB1 and XSWW9 was used as a control (FG-C). At the end of the fermentation, 99% AFB1 was degraded in the residue of fermented grains. The differences of microbial communities in the fermented grains showed that there were no significant differences between FG-T and FG-C in the relative abundance of dominant genera. The analysis of volatile compounds of their distillation showed that the contents of skeleton flavor components was similar between FG-T and FG-C. These results offer a basis for the development of effective strategies to reduce the effect of AFB1 on the brewing process and ensure that the production of baijiu is stable.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing 210023, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
14
|
Ndiaye S, Zhang M, Fall M, Ayessou NM, Zhang Q, Li P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins (Basel) 2022; 14:729. [PMID: 36355979 PMCID: PMC9694041 DOI: 10.3390/toxins14110729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi. Food/feed contamination by mycotoxins is a great threat to food safety. The contamination can occur along the food chain and can cause many diseases in humans and animals, and it also can cause economic losses. Many detoxification methods, including physical, chemical, and biological techniques, have been established to eliminate mycotoxins in food/feed. The biological method, with mycotoxin detoxification by microorganisms, is reliable, efficient, less costly, and easy to use compared with physical and chemical ones. However, it is important to discover the metabolite's toxicity resulting from mycotoxin biodegradation. These compounds can be less or more toxic than the parent. On the other hand, mechanisms involved in a mycotoxin's biological control remain still unclear. Mostly, there is little information about the method used by microorganisms to control mycotoxins. Therefore, this article presents an overview of the most toxic mycotoxins and the different microorganisms that have a mycotoxin detoxification ability. At the same time, different screening methods for degradation compound elucidation are given. In addition, the review summarizes mechanisms of mycotoxin biodegradation and gives some applications.
Collapse
Affiliation(s)
- Seyni Ndiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Minhui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Mouhamed Fall
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Nicolas M. Ayessou
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
15
|
Yue X, Ren X, Fu J, Wei N, Altomare C, Haidukowski M, Logrieco AF, Zhang Q, Li P. Characterization and mechanism of aflatoxin degradation by a novel strain of Trichoderma reesei CGMCC3.5218. Front Microbiol 2022; 13:1003039. [PMID: 36312918 PMCID: PMC9611206 DOI: 10.3389/fmicb.2022.1003039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
Aflatoxins, which are produced mainly by Aspergillus flavus and A. parasiticus, are recognized as the most toxic mycotoxins, which are strongly carcinogenic and pose a serious threat to human and animal health. Therefore, strategies to degrade or eliminate aflatoxins in agro-products are urgently needed. We investigated 65 Trichoderma isolates belonging to 23 species for their aflatoxin B1 (AFB1)-degrading capabilities. Trichoderma reesei CGMCC3.5218 had the best performance, and degraded 100% of 50 ng/kg AFB1 within 3 days and 87.6% of 10 μg/kg AFB1 within 5 days in a liquid-medium system. CGMCC3.5218 degraded more than 85.0% of total aflatoxins (aflatoxin B1, B2, G1, and G2) at 108.2–2323.5 ng/kg in artificially and naturally contaminated peanut, maize, and feed within 7 days. Box–Behnken design and response surface methodology showed that the optimal degradation conditions for CGMCC3.5218 were pH 6.7 and 31.3°C for 5.1 days in liquid medium. Possible functional detoxification components were analyzed, indicating that the culture supernatant of CGMCC3.5218 could efficiently degrade AFB1 (500 ng/kg) with a ratio of 91.8%, compared with 19.5 and 8.9% by intracellular components and mycelial adsorption, respectively. The aflatoxin-degrading activity of the fermentation supernatant was sensitive to proteinase K and proteinase K plus sodium dodecyl sulfonate, but was stable at high temperatures, suggesting that thermostable enzymes or proteins in the fermentation supernatant played a major role in AFB1 degradation. Furthermore, toxicological experiments by a micronucleus assay in mouse bone marrow erythrocytes and by intraperitoneal injection and skin irritation tests in mice proved that the degradation products by CGMCC3.5218 were nontoxic. To the best of our knowledge, this is the first comprehensive study on Trichoderma aflatoxin detoxification, and the candidate strain T. reesei CGMCC3.5218 has high efficient and environment-friendly characteristics, and qualifies as a potential biological detoxifier for application in aflatoxin removal from contaminated feeds.
Collapse
Affiliation(s)
- Xiaofeng Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiayun Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Wei
- Institutions of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
- *Correspondence: Claudio Altomare,
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Lab, Wuhan, China
- Qi Zhang,
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Peiwu Li,
| |
Collapse
|
16
|
Imade FN, Humza M, Dada OA, Ullah S, Jahan I, Eseigbe D, Geng H, Zheng Y, Xing F, Liu Y. Isolation and characterization of novel soil bacterium, Klebsiella pneumoniae strain GS7-1 for the degradation of zearalenone in major cereals. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Functional Characterization and Whole-Genome Analysis of an Aflatoxin-Degrading Rhodococcus pyridinivorans Strain. BIOLOGY 2022; 11:biology11050774. [PMID: 35625502 PMCID: PMC9138218 DOI: 10.3390/biology11050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary The microbiological degradation of AFB1 has been a promising approach to control AFB1 contamination. Here, we characterize a Rhodococcus pyridinivorans strain that can efficiently degrade AFB1. The AFB1-degrading capacity of this bacterial strain was characterized, and the completed genome was sequenced and analyzed. Further proteomic analyses of this strain identified a total of 723 proteins in an extracellular component that showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). Multiple potential AFB1-degrading enzymes, and enzymes that are reported to respond to AFB1 treatment, have been identified accordingly. These findings provide a genomic, proteomic, and experimental approach for characterizing an efficient AFB1-degrading bacterial strain with great potential for use in the remediation of AFB1 contamination. Abstract Aflatoxin B1 (AFB1) is one of the most toxic, naturally occurring carcinogen compounds and is produced by specific strains of fungi. Crop contamination with AFB1 can cause huge economic losses and serious health problems. Many studies have examined the microbiological degradation of AFB1, especially the use of efficient AFB1-degrading microorganisms, to control AFB1 contamination. Here, we reported the identification of a new Rhodococcus pyridinivorans strain (4-4) that can efficiently degrade AFB1 (degradation rate 84.9%). The extracellular component of this strain showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). The effects of proteinase K, SDS, temperature, pH, incubation time, and AFB1 concentration on the AFB1 degradation ability of the extracellular component were investigated. We sequenced the complete genome of this strain, encoding 5246 protein-coding genes and 169 RNA genes on a circular chromosome and two plasmids. Comparative genomic analysis revealed high homology with other Rhodococcus strains with high AFB1-degradation ability. Further proteomic analyses of this strain identified a total of 723 proteins in the extracellular component, including multiple potential AFB1-degrading enzymes, along with enzymes that are reported to response to AFB1 treatment. Overall, the results demonstrate that R. pyridinivorans 4-4 would be an excellent candidate for the biodegradation and detoxification of AFB1 contamination.
Collapse
|
18
|
Liu L, Xie M, Wei D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int J Mol Sci 2022; 23:ijms23031064. [PMID: 35162993 PMCID: PMC8835436 DOI: 10.3390/ijms23031064] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.
Collapse
Affiliation(s)
- Lu Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Mei Xie
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Dong Wei
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Correspondence: ; Tel.: +86-20-8711-3849
| |
Collapse
|
19
|
Kumar V, Bahuguna A, Ramalingam S, Dhakal G, Shim JJ, Kim M. Recent technological advances in mechanism, toxicity, and food perspectives of enzyme-mediated aflatoxin degradation. Crit Rev Food Sci Nutr 2021; 62:5395-5412. [PMID: 34955062 DOI: 10.1080/10408398.2021.2010647] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aflatoxins are carcinogenic secondary metabolites produced by Aspergillus section Flavi that contaminates a wide variety of food and feed products and is responsible for serious health and economic consequences. Fermented foods are prepared with a wide variety of substrates over a long fermentation time and are thus vulnerable to contamination by aflatoxin-producing fungi, leading to the production of aflatoxin B1. The mitigation and control of aflatoxin is currently a prime focus for developing safe aflatoxin-free food. This review summarizes the role of major aflatoxin-degrading enzymes such as laccase, peroxidase, and lactonase, and microorganisms in the context of their application in food. A putative mechanism of enzyme-mediated aflatoxin degradation and toxicity evaluation of the degraded products are also extensively discussed to evaluate the safety of degradation processes for food applications. The review also describes aflatoxin-degrading microorganisms isolated from fermented products and investigates their applicability in food as aflatoxin preventing agents. Furthermore, a summary of recent technological advancements in protein engineering, nanozymes, in silico and statistical optimization approaches are explored to improve the industrial applicability of aflatoxin-degrading enzymes.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ganesh Dhakal
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
20
|
Liu H, Zhang L, Sun Y, Xu G, Wang W, Piao R, Cui Z, Zhao H. Degradation of lignocelluloses in straw using AC-1, a thermophilic composite microbial system. PeerJ 2021; 9:e12364. [PMID: 34760379 PMCID: PMC8567851 DOI: 10.7717/peerj.12364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
In composting, the degradation of lignocellulose in straw is problematic due to its complex structures such as lignin. A common solution to this problem is the addition of exogenous inoculants. AC-1, a stable thermophilic microbial composite, was isolated from high temperature compost samples that can decompose lignocellulose at 50–70 °C. AC-1 had a best degradation efficiency of rice straw at 60 °C (78.92%), of hemicellulose, cellulose and lignin were 82.49%, 97.20% and 20.12%, respectively. It showed degrad-ability on both simple (filter paper, absorbent cotton) and complex (rice straw) cellulose materials. It produced acetic and formic acid during decomposition process and the pH had a trend of first downward then upward. High throughput sequencing revealed the main bacterial components of AC-1 were Tepidimicrobium, Haloplasma, norank-f-Limnochordaceae, Ruminiclostridium and Rhodothermus which provides major theoretical basis for further application of AC-1.
Collapse
Affiliation(s)
- Hongdou Liu
- Yanbian University, Yanji, China.,College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Liqiang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Sun
- Yanbian University, Yanji, China
| | | | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | | | - Zongjun Cui
- China Agricultural University, Beijing, China
| | | |
Collapse
|
21
|
Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YAG, Badr A, Osman MEH, Elsamahy T, Jiao H, Sun J. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148359. [PMID: 34147795 DOI: 10.1016/j.scitotenv.2021.148359] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 05/12/2023]
Abstract
The high demand for sufficient and safe food, and continuous damage of environment by conventional agriculture are major challenges facing the globe. The necessity of smart alternatives and more sustainable practices in food production is crucial to confront the steady increase in human population and careless depletion of global resources. Nanotechnology implementation in agriculture offers smart delivery systems of nutrients, pesticides, and genetic materials for enhanced soil fertility and protection, along with improved traits for better stress tolerance. Additionally, nano-based sensors are the ideal approach towards precision farming for monitoring all factors that impact on agricultural productivity. Furthermore, nanotechnology can play a significant role in post-harvest food processing and packaging to reduce food contamination and wastage. In this review, nanotechnology applications in the agriculture and food sector are reviewed. Implementations of nanotechnology in agriculture have included nano- remediation of wastewater for land irrigation, nanofertilizers, nanopesticides, and nanosensors, while the beneficial effects of nanomaterials (NMs) in promoting genetic traits, germination, and stress tolerance of plants are discussed. Furthermore, the article highlights the efficiency of nanoparticles (NPs) and nanozymes in food processing and packaging. To this end, the potential risks and impacts of NMs on soil, plants, and human tissues and organs are emphasized in order to unravel the complex bio-nano interactions. Finally, the strengths, weaknesses, opportunities, and threats of nanotechnology are evaluated and discussed to provide a broad and clear view of the nanotechnology potentials, as well as future directions for nano-based agri-food applications towards sustainability.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Nanoscience Program, Zewail City of Science and Technology, 6th of October, Giza 12588, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Mohamed E H Osman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Microbial Reduction of Fumonisin B1 by the New Isolate Serratia marcescens 329-2. Toxins (Basel) 2021; 13:toxins13090638. [PMID: 34564642 PMCID: PMC8473028 DOI: 10.3390/toxins13090638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin fumonisin (FB) has become a major problem in maize products in southeastern Asia. Fumonisin can affect the health of humans and many animals. Fumonisin contamination can be reduced by detoxifying microbial enzyme. Screening of 95 potent natural sources resulted in 5.3% of samples yielding a total of five bacterial isolates that were a promising solution, reducing approximately 10.0-30.0% of fumonisin B1 (FB1). Serratia marcescens, one of the dominant degrading bacteria, was identified with Gram staining, 16S rRNA gene, and MALDI-TOF/TOF MS. Cell-free extract showed the highest fumonisin reduction rates, 30.3% in solution and 37.0% in maize. Crude proteins from bacterial cells were analyzed with a label-free quantification technique. The results showed that hydrolase enzymes and transferase enzymes that can cooperate in the fumonisin degradation process were highly expressed in comparison to their levels in a control. These studies have shown that S. marcescens 329-2 is a new potential bacterium for FB1 reduction, and the production of FB1-reducing enzymes should be further explored.
Collapse
|
23
|
Aflatoxin contamination in food crops: causes, detection, and management: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00064-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractMycotoxins are secondary metabolites produced by several fungal species and molds. Under favorable conditions like high temperature and moisture, they contaminate a large number of food commodities and regional crops during pre and post-harvesting. Aflatoxin is the main mycotoxin that harm animal and human health due to its carcinogenic nature. Aflatoxins are mainly released by Aspergillus flavus and Aspergillus parasiticus. AFB1 constitutes the most harmful type of aflatoxins and is a potent hepato-carcinogenic, mutagenic, teratogenic and it suppresses the immune system. To maintain food safety and to prevent aflatoxin contamination in food crops, combined approaches of using resistant varieties along with recommended farming practices should be followed. This review concentrates on various aspects of mycotoxin contamination in crops and recent methods to prevent or minimize the contamination.
Collapse
|
24
|
Wang L, Huang W, Sha Y, Yin H, Liang Y, Wang X, Shen Y, Wu X, Wu D, Wang J. Co-Cultivation of Two Bacillus Strains for Improved Cell Growth and Enzyme Production to Enhance the Degradation of Aflatoxin B 1. Toxins (Basel) 2021; 13:toxins13070435. [PMID: 34206659 PMCID: PMC8309871 DOI: 10.3390/toxins13070435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus sp. H16v8 and Bacillus sp. HGD9229 were identified as Aflatoxin B1 (AFB1) degrader in nutrient broth after a 12 h incubation at 37 °C. The degradation efficiency of the two-strain supernatant on 100 μg/L AFB1 was higher than the bacterial cells and cell lysate. Moreover, degradations of AFB1 were strongly affected by the metal ions in which Cu2+ stimulated the degradation and Zn2+ inhibited the degradation. The extracellular detoxifying enzymes produced by co-cultivation of two strains were isolated and purified by ultrafiltration. The molecular weight range of the detoxifying enzymes was 20-25 kDa by SDS-PAGE. The co-culture of two strains improved the total cell growth with the enhancement of the total protein content and detoxifying enzyme production. The degradation efficiency of the supernatant from mixed cultures increased by 87.7% and 55.3% compared to Bacillus sp. H16v8 and HGD9229, individually. Moreover, after the degradation of AFB1, the four products of the lower toxicity were identified by LC-Triple TOF-MS with the two proposed hypothetical degradation pathways.
Collapse
Affiliation(s)
- Le Wang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Wei Huang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Yu Sha
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Haicheng Yin
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
- Correspondence: (H.Y.); (J.W.)
| | - Ying Liang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Xin Wang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Yan Shen
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Xingquan Wu
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang 453001, China;
| | - Jinshui Wang
- College of Biological Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (L.W.); (W.H.); (Y.S.); (Y.L.); (X.W.); (Y.S.); (X.W.)
- Correspondence: (H.Y.); (J.W.)
| |
Collapse
|
25
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
26
|
Zhou Z, Li R, Ng TB, Lai Y, Yang J, Ye X. A New Laccase of Lac 2 from the White Rot Fungus Cerrena unicolor 6884 and Lac 2-Mediated Degradation of Aflatoxin B 1. Toxins (Basel) 2020; 12:toxins12080476. [PMID: 32727016 PMCID: PMC7472184 DOI: 10.3390/toxins12080476] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a known toxic human carcinogen and can be detoxified by laccases, which are multicopper oxidases that convert several environmental pollutants and toxins. In this study, a new laccase that could catalyze AFB1 degradation was purified and identified from the white-rot fungus Cerrena unicolor 6884. The laccase was purified using (NH4)2SO4 precipitation and anion exchange chromatography, and then identified as Lac 2 through zymogram and UHPLC-MS/MS based on the Illumina transcriptome analysis of C. unicolor 6884. Six putative laccase protein sequences were obtained via functional annotation. The lac 2 cDNA encoding a full-length protein of 512 amino acids was cloned and sequenced to expand the fungus laccase gene library for AFB1 detoxification. AFB1 degradation by Lac 2 was conducted in vitro at pH 7.0 and 45 °C for 24 h. The half-life of AFB1 degradation catalyzed by Lac 2 was 5.16 h. Acetosyringone (AS), Syrinagaldehyde (SA) and [2,2' -azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] (ABTS) at 1 mM concentration seemed to be similar mediators for strongly enhancing AFB1 degradation by Lac 2. The product of AFB1 degradation catalyzed by Lac 2 was traced and identified to be Aflatoxin Q1 (AFQ1) based on mass spectrometry data. These findings are promising for a possible application of Lac 2 as a new aflatoxin oxidase in degrading AFB1 present in food and feeds.
Collapse
Affiliation(s)
- Zhimin Zhou
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China;
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Renkuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China;
| | - Yunyun Lai
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Jie Yang
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Xiuyun Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China;
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; (R.L.); (Y.L.); (J.Y.)
- National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
- Correspondence: ; Tel.: +86-591-2286-6376
| |
Collapse
|
27
|
Cai M, Qian Y, Chen N, Ling T, Wang J, Jiang H, Wang X, Qi K, Zhou Y. Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114178. [PMID: 32097790 DOI: 10.1016/j.envpol.2020.114178] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Mycotoxins are high toxic, widely distributed contaminants in foodstuff. In this study, a aflatoxin B1 (AFB1) degrading strain S. acidoaminiphila CW117 was screened, and its detoxification characteristics were investigated. Substrate AFB1 at 45 μg/L was degraded by CW117 within 24 h; meanwhile, 4.1 mg/L AFB1 was almost degraded within 48 h. After 24 h degradation, the biotoxicity of the detoxified culture was eliminated. Strain CW117 efficient degradation to AFB1 (especially to low AFB1 concentrations) suggested its potential significance to detoxification development on food and feedstuff. The active degradation components present in the cell-free supernatant. The degradation ratio increased constantly with increasing incubation temperature raised (0-90 °C) and was even stable at 90 °C. Degradation was optimal at pH 6-7, and was only partially inhibited by metal-chelators (EDTA and EGTA), proteinase K, and a protein denaturant (sodium dodecyl sulfate, SDS). The recombinant laccase rLC1 (0.5 mg/mL) from CW117 degraded 29.3% of AFB1 within 24 h; however, the cell-free supernatant degraded 76.7% of the toxin in same time, with much lower protein content. The results indicated the CW117 degrades AFB1 via a combination of enzymes and micro-molecule oxides.
Collapse
Affiliation(s)
- Mengyu Cai
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Yingying Qian
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Nan Chen
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Tiejun Ling
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Jingjing Wang
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Hong Jiang
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Xu Wang
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Heifei, 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China; Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
28
|
Aflatoxin B 1 degradation by microorganisms isolated from Kombucha culture. Toxicon 2020; 179:76-83. [PMID: 32345454 DOI: 10.1016/j.toxicon.2020.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Aflatoxin B1 (AFB1) is the most harmful mycotoxin. Aflatoxin occurrence in tea makes this beverage unsuitable for consumption and presented risks to human health. Therefore, researches in aflatoxin microbial degradation are necessary to overcome this problem. Kombucha beverage is associated with health promoting effects. Thus, novel strains (Lactic acid bacteria and yeasts) were isolated from a Kombucha culture and assessed for AFB1 degradation in the liquid medium (Man Rogosa and Sharpe broth, yeast extract peptone dextrose broth and black tea). The main strains involved in AFB1 decontamination were identified based on DNA sequencing and the toxicity of the new products was evaluated on Hep2 cells and on Brine shrimp (Artemia salina). Our results showed that after 7 days of fermentation, kombucha was able to degrade 97% of AFB1 in black tea. Moreover, the effective yeasts present in Kombucha were identified as Pichia occidentalis, Candida sorboxylosa and Hanseniaspora opuntiae and the highest AFB1 degradation capacity was accorded to P. occidentalis (59%) when cultivated in black tea. Data on cytotoxicity tests on Hep2 cells and Brine shrimp (Artemia salina) showed that the biodegraded products were less toxic than pure AFB1. These findings suggest that, kombucha isolated strains could be potential candidates for application in the food and feed industry with a potential aflatoxin B1 detoxification properties.
Collapse
|
29
|
Wang Y, Zhao C, Zhang D, Zhao M, Peng M, Guo P, Cui Z. Microbial Degradation of Zearalenone by a Novel Microbial Consortium, NZDC-6, and Its Application on Contaminated Corncob by Semisolid Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1634-1644. [PMID: 31961687 DOI: 10.1021/acs.jafc.9b05343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel microbial consortium (NZDC-6) was screened and characterized to detoxify the estrogenic mycotoxin zearalenone (ZEA), which commonly contaminates maize and is a major threat to food and health security. We found NZDC-6 to be thermophilic and highly effective, with a 90.3% ZEA degradation ratio at an optimum temperature of 60 °C. NZDC-6 was also effective at degrading the more estrogenic ZEA cognates, α-zearalenol (α-ZAL) and β-zearalenol (β-ZAL), with >90% degradation ratios. To evaluate a practical application, ZEA-contaminated corncobs were treated with NZDC-6 via semisolid fermentation. Measurements of physicochemical parameters and 16S microbial diversity and redundancy analysis (RDA) indicated that ZEA removal was most efficient at a low corncob solid content (< 5%), as a high solid content overwhelmed the microbial metabolic load, leading to increased dissolved oxygen and lowered pH. Our results demonstrate that the control of environmental variables is crucial for effective ZEA microbial removal in practical applications.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Chunxia Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Dongdong Zhang
- Institute of Marine Biology, Ocean College , Zhejiang University , Zhoushan , Zhejiang 316021, China
| | - Mingming Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Maomin Peng
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Zongjun Cui
- College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
30
|
Zhao Z, Zhang Y, Gong A, Liu N, Chen S, Zhao X, Li X, Chen L, Zhou C, Wang J. Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79. Appl Microbiol Biotechnol 2019; 103:7129-7140. [DOI: 10.1007/s00253-019-09979-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
|
31
|
Mwakinyali SE, Ming Z, Xie H, Zhang Q, Li P. Investigation and Characterization of Myroides odoratimimus Strain 3J2MO Aflatoxin B 1 Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4595-4602. [PMID: 30907589 DOI: 10.1021/acs.jafc.8b06810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 (AFB1), is a type I carcinogen that is one of the strongest naturally occurring aflatoxins and can be injurious to humans and livestock upon ingestion, inhalation, or skin contact, with carcinogenic and mutagenic effects. It causes significant hazardous effects to the food- and animal-production industries. We found a bacterial strain, 3J2MO, that degraded AFB1 well, and here we tested and characterized its AFB1-degradation ability. The strain degraded about 93.82% of the AFB1 after incubation for 48 h in Luria-Bertani (LB) medium at 37 °C with a final concentration of 100 ppb and an inoculation quantity of 1 × 107 cfu/mL. High-performance liquid chromatography-fluorescence detection (HPLC-FLD) was used to determine AFB1 amounts. The maximum degradation rates were 89.23% at pH 8.5; 55.78% at an inoculation quantity of 1 × 108 cfu/mL; and 71.50 and 71.21% at 34 and 37 °C, respectively. Treatment with sucrose and soluble starch as carbon sources and beef extract and ammonium acetate as nitrogen sources stimulated the degradation rate. Mg2+ and Ca2+ ions were activators for AFB1 degradation; however, Mn2+, Fe3+, Zn2+, and Cu2+ were strong inhibitors. This bacterial strain has potential in bioremediation and the detoxification of aflatoxin contamination for biocontrol strategies in both agricultural products and food-industry matrices.
Collapse
Affiliation(s)
- Silivano E Mwakinyali
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
- National Food Reserve Agency (NFRA) , Ministry of Agriculture , P.O Box 1050, Dodoma 41000 , United Republic of Tanzania
| | - Zhang Ming
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
| | - Huali Xie
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
| | - Qi Zhang
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
| | - Peiwu Li
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
- Quality Inspection and Test Center for Oilseeds Products , Ministry of Agriculture , Wuhan 430062 , PR China
| |
Collapse
|
32
|
Wang Y, Zhang H, Yan H, Yin C, Liu Y, Xu Q, Liu X, Zhang Z. Effective Biodegradation of Aflatoxin B1 Using the Bacillus licheniformis (BL010) Strain. Toxins (Basel) 2018; 10:E497. [PMID: 30486278 PMCID: PMC6315853 DOI: 10.3390/toxins10120497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin B1 (AFB1), a pollutant of agricultural products, has attracted considerable attention in recent years, due to its potential impact on health. In the present study, Bacillus licheniformis (BL010) was demonstrated to efficiently degrade AFB1, reducing over 89.1% of the toxin content within 120 h. A crude enzyme solution of BL010 exhibited the highest degradation level (97.3%) after three induction periods. However, uninduced BL010 bacteria was not capable of reducing AFB1. Furthermore, high performance liquid chromatography (HPLC) analysis showed that while a cell-free extract caused a significant decrease in AFB1 content (93.6%, p < 0.05), cell culture fluid treatment did not significantly degrade AFB1. The biotransformation products of AFB1 were detected and further identified by quadrupole time-of-flight liquid chromatography⁻mass spectrometry (LC-Q-TOF/MS); these corresponded to a molecular formula of C12H14O₄. A sequence analysis of whole BL010 genes with a bioinformatics approach identified the secondary structures of two degrading enzymes (Chia010 and Lac010), providing an important basis for subsequent homology modeling and functional predictions.
Collapse
Affiliation(s)
- Ye Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haiyang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chunhua Yin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Zhongbao Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
33
|
Simultaneous degradation of aflatoxin B 1 and zearalenone by a microbial consortium. Toxicon 2018; 146:69-76. [PMID: 29621525 DOI: 10.1016/j.toxicon.2018.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/01/2018] [Accepted: 04/01/2018] [Indexed: 11/21/2022]
Abstract
Mycotoxins are toxic secondary metabolites mainly produced by filamentous fungal species that commonly contaminate staple foods and feeds. They cause significant economic losses and greatly harm food security. Simultaneous contamination of multiple mycotoxins and the accompanying additive and synergistic effects may cause even more serious harm. To develop a microbial consortium with the ability to degrade multiple mycotoxins, a previously identified consortium with aflatoxin B1 (AFB1) degradation ability, TADC7, was domesticated by co-culturing with 500 μg l-1 AFB1 and 500 μg l-1 zearalenone (ZEA), yielding the derived microbial consortium TMDC. After 168 h of co-culture with TMDC, 2000 μg l-1AFB1 and 2000 μg l-1 ZEA were degraded by 98.9% and 88.5%, respectively. The proteins or enzymes in the TADC7 cell-free supernatant played a major role in mycotoxins degradation. The degradation ratios of 5000 μg l-1 AFB1 and 5000 μg l-1 ZEA by 48 h TMDC cell-free supernatant were 93.8% and 90.3% at 72 h, respectively. Based on 16S rRNA sequencing, Geobacillus and Tepidimicrobium might play important roles in mycotoxin degradation by TMDC, and the TMDC community composition was stable, irrespective of mycotoxin. This study established the biodegradation of different categories of mycotoxins, and will facilitate the practical application of microbial consortia in mycotoxin degradation.
Collapse
|