1
|
Zhao W, Zhu J, Yang S, Liu J, Sun Z, Sun H. Microalgal metabolic engineering facilitates precision nutrition and dietary regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175460. [PMID: 39137841 DOI: 10.1016/j.scitotenv.2024.175460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids. This work begins by providing an overview of the metabolic diversity of microalgae and their ability to thrive in diverse environmental conditions. It then delves into the principles and strategies of metabolic engineering, emphasizing the genetic modifications employed to optimize microalgal strains for enhanced nutritional content. Enhancing PSY, BKT, and CHYB benefits carotenoid synthesis, whereas boosting ACCase, fatty acid desaturases, and elongases promotes polyunsaturated fatty acid production. Here, advancements in synthetic biology, evolutionary biology and machine learning are discussed, offering insights into the precision and efficiency of metabolic pathway manipulation. Also, this review highlights the potential impact of microalgal precision nutrition on human health and aquaculture. The optimized microalgal strains could serve as sustainable and cost-effective sources of nutrition for both human consumption and aquaculture feed, addressing the growing demand for functional foods and environmentally friendly feed alternatives. The tailored microalgal strains are anticipated to play a crucial role in meeting the nutritional needs of diverse populations and contributing to sustainable food production systems.
Collapse
Affiliation(s)
- Weiyang Zhao
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jiale Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Dewan A, Sridhar K, Yadav M, Bishnoi S, Ambawat S, Nagaraja SK, Sharma M. Recent trends in edible algae functional proteins: Production, bio-functional properties, and sustainable food packaging applications. Food Chem 2024; 463:141483. [PMID: 39369604 DOI: 10.1016/j.foodchem.2024.141483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.
Collapse
Affiliation(s)
- Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Monika Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sonam Bishnoi
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Shobhit Ambawat
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
3
|
Lu Q, Li H, Liu H, Xu Z, Saikaly PE, Zhang W. A fast microbial nitrogen-assimilation technology enhances nitrogen migration and single-cell-protein production in high-ammonia piggery wastewater. ENVIRONMENTAL RESEARCH 2024; 257:119329. [PMID: 38851372 DOI: 10.1016/j.envres.2024.119329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Conventional methods, such as freshwater dilution and ammonia stripping, have been widely employed for microalgae-based piggery wastewater (PW) treatment, but they cause high freshwater consumption and intensive ammonia loss, respectively. This present work developed a novel fast microbial nitrogen-assimilation technology by integrating nitrogen starvation, zeolite-based adsorption, pH control, and co-culture of microalgae-yeast for the PW treatment. Among them, the nitrogen starvation accelerated the nitrogen removal and shortened the treatment period, but it could not improve the tolerance level of microalgal cells to ammonia toxicity based on oxidative stress. Therefore, zeolite was added to reduce the initial total ammonia-nitrogen concentration to around 300 mg/L by ammonia adsorption. Slowly releasing ammonia at the later phase maintained the total ammonia-nitrogen concentration in the PW. However, the pH increase could cause lots of ammonia loss air and pollution and inhibit the desorption of ammonia from zeolite and the growth and metabolism of microalgae during the microalgae cultivation. Thus, the highest biomass yield (3.25 g/L) and nitrogen recovery ratio (40.31%) were achieved when the pH of PW was controlled at 6.0. After combining the co-cultivation of microalgae-yeast, the carbon-nitrogen co-assimilation and the alleviation of pH fluctuation further enhanced the nutrient removal and nitrogen migration to high-protein biomass. Consequently, the fast microbial nitrogen-assimilation technology can help update the industrial system for high-ammonia wastewater treatment by improving the treatment and nitrogen recovery rates.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Huankai Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenxiang Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
4
|
Trovão M, Schüler L, Pedroso H, Reis A, Santo GE, Barros A, Correia N, Ribeiro J, Bombo G, Gama F, Viana C, Costa MM, Ferreira S, Cardoso H, Varela J, Silva J, Freitas F, Pereira H. Isolation and Selection of Protein-Rich Mutants of Chlorella vulgaris by Fluorescence-Activated Cell Sorting with Enhanced Biostimulant Activity to Germinate Garden Cress Seeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2441. [PMID: 39273926 PMCID: PMC11396921 DOI: 10.3390/plants13172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Microalgae are a promising feedstock with proven biostimulant activity that is enhanced by their biochemical components (e.g., amino acids and phytohormones), which turns them into an appealing feedstock to reduce the use of fertilisers in agriculture and improve crop productivity and resilience. Thus, this work aimed to isolate protein-rich microalgal mutants with increased biostimulant activity. Random mutagenesis was performed with Chlorella vulgaris, and a selection of protein-rich mutants were sorted through fluorescence-activated cell sorting (FACS), resulting in the isolation of 17 protein-rich mutant strains with protein contents 19-34% higher than that of the wildtype (WT). Furthermore, mutant F4 displayed a 38%, 22% and 62% higher biomass productivity, growth rate and chlorophyll content, respectively. This mutant was then scaled up to a 7 L benchtop reactor to produce biomass and evaluate the biostimulant potential of this novel strain towards garden cress seeds. Compared to water (control), the germination index and the relative total growth increased by 7% and 19%, respectively, after the application of 0.1 g L-1 of this bioproduct, which highlights its biostimulant potential.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Lisa Schüler
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Humberto Pedroso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Ana Reis
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | | | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Nádia Correia
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Joana Ribeiro
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - Gabriel Bombo
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Florinda Gama
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Catarina Viana
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Monya M Costa
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Sara Ferreira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, 2445-413 Pataias, Portugal
| | - João Varela
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
- CCMAR, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joana Silva
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hugo Pereira
- GreenCoLab, Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Gao S, Chen W, Cao S, Sun P, Gao X. Microalgae as fishmeal alternatives in aquaculture: current status, existing problems, and possible solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16113-16130. [PMID: 38315337 DOI: 10.1007/s11356-024-32143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Fishmeal is an indispensable ingredient for most aquatic animals. However, the finite supply and escalating price of fishmeal seriously limit its use in aquaculture. Thus the development of new, sustainable protein ingredients has been a research focus. Microalgae are potential fishmeal alternatives owing to their high protein content and balanced amino acid profile. Studies suggest that suitable replacement of fishmeal with microalgae is beneficial for fish growth performance, but excessive replacement would induce poor growth and feed utilization. Therefore, this paper aims to review research on the maximum substitutional level of fishmeal by microalgae and propose the main issues and possible solutions for fishmeal replacement by microalgae. The maximum replacement level is affected by microalgal species, fish feeding habits, quality of fishmeal and microalgal meals, and supplemental levels of fishmeal in the control group. Microalgae could generally replace 100%, 95%, 95%, 64.1%, 25.6%, and 18.6% fishmeal protein in diets of carp, shrimp, catfish, tilapia, marine fish, and salmon and trout, respectively. The main issues with fishmeal replacement using microalgae include low production and high production cost, poor digestibility, and anti-nutritional factors. Possible solutions to these problems are recommended in this paper. Overall, microalgae are promising fishmeal alternatives in aquaculture.
Collapse
Affiliation(s)
- Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Weijun Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiaochan Gao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Qiu X, Wang J, Xin F, Wang Y, Liu Z, Wei J, Sun X, Li P, Cao X, Zheng X. Compensatory growth of Microcystis aeruginosa after copper stress and the characteristics of algal extracellular organic matter (EOM). CHEMOSPHERE 2024; 352:141422. [PMID: 38341000 DOI: 10.1016/j.chemosphere.2024.141422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Cyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress. This study investigated the changes in growth conditions, photosynthetic capacity, and EOM characteristics of M. aeruginosa under copper stress. In all copper treatments, M. aeruginosa experienced a growth inhibition stage followed by a growth compensation stage. Notably, although chlorophyll-a fluorescence parameters dropped to zero immediately following high-intensity copper stress (0.2 and 0.5 mg/L), they later recovered to levels exceeding those of the control, indicating that photosystem II was not destroyed by copper stress. Copper stress influenced the dissolved organic carbon (DOC) content, polysaccharides, proteins, excitation-emission matrix spectra, hydrophobicity, and molecular weight (MW) distribution of EOM, with the effects varying based on stress intensity and growth stage. Principal component analysis revealed a correlation between the chlorophyll-a fluorescence parameters and EOM characteristics. These results imply that copper may not be an ideal algicide. Further research is needed to explore the dynamic response of EOM characteristics to environmental stress.
Collapse
Affiliation(s)
- Xiaopeng Qiu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Jiaqi Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Fengdan Xin
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yangtao Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Zijun Liu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jinli Wei
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xin Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Pengfei Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xin Cao
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xing Zheng
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| |
Collapse
|
7
|
Grubišić M, Šantek B, Kuzmić M, Čož-Rakovac R, Ivančić Šantek M. Enhancement of Biomass Production of Diatom Nitzschia sp. S5 through Optimisation of Growth Medium Composition and Fed-Batch Cultivation. Mar Drugs 2024; 22:46. [PMID: 38248671 PMCID: PMC11154399 DOI: 10.3390/md22010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The growing commercial application of microalgae in different industry sectors, including the production of bioenergy, pharmaceuticals, nutraceuticals, chemicals, feed, and food, demands large quantities of microalgal biomass with specific compositions produced at reasonable prices. Extensive studies have been carried out on the design of new and improvement of current cultivation systems and the optimisation of growth medium composition for high productivity of microalgal biomass. In this study, the concentrations of the main macronutrients, silicon, nitrogen and phosphorus, essential for the growth of diatom Nitzschia sp. S5 were optimised to obtain a high biomass concentration. The effect of main macronutrients on growth kinetics and cell composition was also studied. Silicon had the most significant effect on diatom growth during batch cultivation. The concentration of biomass increased 5.45-fold (0.49 g L-1) at 1 mM silicon concentration in modified growth medium compared to the original Guillard f/2 medium. Optimisation of silicon, nitrogen, and phosphorus quantities and ratios further increased biomass concentration. The molar ratio of Si:N:P = 7:23:1 mol:mol:mol yielded the highest biomass concentration of 0.73 g L-1. Finally, the fed-batch diatom cultivation of diatom using an optimised Guillard f/2 growth medium with four additions of concentrated macronutrient solution resulted in 1.63 g L-1 of microalgal biomass. The proteins were the most abundant macromolecules in microalgal biomass, with a lower content of carbohydrates and lipids under all studied conditions.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Marija Kuzmić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| |
Collapse
|
8
|
Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, Lim S, Pang YL, Kiew PL. Abiotic stress as a dynamic strategy for enhancing high value phytochemicals in microalgae: Critical insights, challenges and future prospects. Biotechnol Adv 2024; 70:108280. [PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
Collapse
Affiliation(s)
- Uganeeswary Suparmaniam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Peck Loo Kiew
- Department of Chemical and Environmental Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Wu JY, Tso R, Teo HS, Haldar S. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr 2023; 10:1277343. [PMID: 37904788 PMCID: PMC10613476 DOI: 10.3389/fnut.2023.1277343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
As the global population continues to grow, the demand for dietary protein is rapidly increasing, necessitating the exploration of sustainable and nutritious protein sources. Algae has emerged as a promising food source due to their high value ingredients such as proteins, as well as for their environmental sustainability and abundance. However, knowledge gaps surrounding dietary recommendations and food applications restrict algae's utilization as a viable protein source. This review aims to address these gaps by assessing the suitability of both microalgae and macroalgae as alternative/complementary protein sources and exploring their potential applications in food products. The first section examines the potential suitability of algae as a major food source by analyzing the composition and bioavailability of key components in algal biomass, including proteins, lipids, dietary fiber, and micronutrients. Secondly, the biological effects of algae, particularly their impact on metabolic health are investigated with an emphasis on available clinical evidence. While evidence reveals protective effects of algae on glucose and lipid homeostasis as well as anti-inflammatory properties, further research is required to understand the longer-term impact of consuming algal protein, protein isolates, and concentrates on metabolic health, including protein metabolism. The review then explores the potential of algal proteins in food applications, including ways to overcome their sensory limitations, such as their dark pigmentation, taste, and odor, in order to improve consumer acceptance. To maximize algae's potential as a valuable protein source in the food sector, future research should prioritize the production of more acceptable algal biomass and explore new advances in food sciences and technology for improved consumer acceptance. Overall, this paper supports the potential utility of algae as a sustainable and healthy ingredient source for widespread use in future food production.
Collapse
Affiliation(s)
- Jia Yee Wu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
10
|
Wang K, Wang Z, Ding Y, Yu Y, Wang Y, Geng Y, Li Y, Wen X. Optimization of Heterotrophic Culture Conditions for the Algae Graesiella emersonii WBG-1 to Produce Proteins. PLANTS (BASEL, SWITZERLAND) 2023; 12:2255. [PMID: 37375881 DOI: 10.3390/plants12122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The aim of this study was to improve the protein content and yield of heterotrophic microalgal cultivation and establish a simple, economical, and efficient method for microalgal protein production using the novel green alga, Graesiella emersonii WBG-1, which has not been previously reported for heterotrophic cultivation. Through batch heterotrophic cultivation of this alga, we observed that glucose was the optimal carbon source, while it could not use sucrose as a carbon source. Biomass production and protein content were significantly reduced when sodium acetate was used as the carbon source. Compared with nitrate, protein content increased by 93% when urea was used as the nitrogen source. Cultivation temperature had a significant impact on biomass production and protein content. The optimal conditions were glucose as the carbon source at an initial concentration of 10 g/L, urea as the nitrogen source at an initial concentration of 1.62 g/L, and a culture temperature of 35 °C. On the second day of batch cultivation, the highest protein content (66.14%) was achieved, which was significantly higher than that reported in heterotrophic cultures of Chlorella and much higher than that reported for specially established technologies aimed at increasing the protein content, such as two-stage heterotrophic, heterotrophy-dilution-photoinduction, and mixotrophic processes. These results demonstrate the great potential of the heterotrophic cultivation of G. emersonii WBG-1 for protein production.
Collapse
Affiliation(s)
- Kaixuan Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongjie Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yi Ding
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Youzhi Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yali Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahong Geng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yeguang Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaobin Wen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
11
|
Bhandari M, Kumar P, Bhatt P, Simsek H, Kumar R, Chaudhary A, Malik A, Prajapati SK. An integration of algae-mediated wastewater treatment and resource recovery through anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118159. [PMID: 37207460 DOI: 10.1016/j.jenvman.2023.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Eutrophication is one of the major emerging challenges in aquatic environment. Industrial facilities, including food, textile, leather, and paper, generate a significant amount of wastewater during their manufacturing process. Discharge of nutrient-rich industrial effluent into aquatic systems causes eutrophication, eventually disturbs the aquatic system. On the other hand, algae provide a sustainable approach to treat wastewater, while the resultant biomass may be used to produce biofuel and other valuable products such as biofertilizers. This review aims to provide new insight into the application of algal bloom biomass for biogas and biofertilizer production. The literature review suggests that algae can treat all types of wastewater (high strength, low strength, and industrial). However, algal growth and remediation potential mainly depend on growth media composition and operation conditions such as light intensity, wavelength, light/dark cycle, temperature, pH, and mixing. Further, the open pond raceways are cost-effective compared to closed photobioreactors, thus commercially applied for biomass generation. Additionally, converting wastewater-grown algal biomass into methane-rich biogas through anaerobic digestion seems appealing. Environmental factors such as substrate, inoculum-to-substrate ratio, pH, temperature, organic loading rate, hydraulic retention time, and carbon/nitrogen ratio significantly impact the anaerobic digestion process and biogas production. Overall, further pilot-scale studies are required to warrant the real-world applicability of the closed-loop phycoremediation coupled biofuel production technology.
Collapse
Affiliation(s)
- Mamta Bhandari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pushpendar Kumar
- Applied Microbiology Lab (AML), Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Ravindra Kumar
- Department of Physics, Janta Vedic Mahavidyalaya, Baraut (Baghpat), UP, 250611, India
| | - Aman Chaudhary
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anushree Malik
- Applied Microbiology Lab (AML), Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
12
|
Yang R, Wang Q, Luo X, Wei D. High-efficient nitrate conversion to protein and chlorophylls from synthetic wastewater by mixotrophic Chlorella pyrenoidosa. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
13
|
Guo Y, Fan Z, Li M, Xie H, Peng L, Yang C. Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes. Microorganisms 2023; 11:675. [PMID: 36985248 PMCID: PMC10057408 DOI: 10.3390/microorganisms11030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino acid composition, and rumen microbial communities in lactating buffaloes. Forty mid-lactation multiparous Murrah buffaloes within the initial days in milk (DIM) = 180.83 ± 56.78 d, milk yield = 7.63 ± 0.19 kg, body weight = 645 ± 25 kg were selected and randomly allocated into four groups (N = 10). All of animals received the same total mixed ratio (TMR) diet. Furthermore, the groups were divided into the control group (CON), 70 g/d sodium nitrate group (SN), 15 g/d palmitate coated L-methionine group (MET), and 70 g/d sodium nitrate +15 g/d palmitate coated L-methionine group (SN+MET). The experiment lasted for six weeks, including two weeks of adaption. The results showed that most rumen-free amino acids, total essential amino acids, and total amino acids in Group SN increased (p < 0.05), while the dry matter intake (DMI) and rumen acetate, propionate, valerate, and total volatile fatty acids (TVFA) in Group MET decreased (p < 0.05). However, there was no significant difference in milk yield, milk protein, milk fat, lactose, total solid content, and sodium nitrate residue in milk among groups (p > 0.05). Group SN+MET had a decreased rumen propionate and valerate (p < 0.05), while increasing the Ace, Chao, and Simpson indices of alpha diversity of rumen bacteria. Proteobacteria and Actinobacteriota were significantly increased (p < 0.05) in Group SN+MET, but Bacteroidota, and Spirochaetota were decreased (p < 0.05). In addition, Group SN+MET also increased the relative abundance of Acinetobacter, Lactococcus, Microbacterium, Chryseobacterium, and Klebsiella, which were positively correlated with cysteine and negatively correlated with rumen acetate, propionate, valerate, and TVFA. Rikenellaceae_RC9_gut_group was identified as a biomarker in Group SN. Norank_f__UCG-011 was identified as a biomarker in Group MET. Acinetobacter, Kurthia, Bacillus, and Corynebacterium were identified as biomarkers in Group SN+MET. In conclusion, sodium nitrate increased rumen free amino acids, while methionine decreased dry matter intake (DMI) and rumen volatile fatty acids. The combined use of sodium nitrate and methionine enriched the species abundance of microorganisms in the rumen and affected the composition of microorganisms in the rumen. However, sodium nitrate, methionine, and their combination had no significant effect on the milk yield and milk composition. It was suggested that the combined use of sodium nitrate and methionine in buffalo production was more beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| |
Collapse
|
14
|
Yao X, Sun J, Bai X, Yuan Y, Zhang Y, Xu Y, Huang G. A high-efficiency mixotrophic photoelectroactive biofilm reactor (MPBR) for enhanced simultaneous removal of nutrients and antibiotics by integrating light intensity regulation and microbial extracellular electron extraction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116520. [PMID: 36306650 DOI: 10.1016/j.jenvman.2022.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The performance of a mixotrophic photoelectroactive biofilm reactor (MPBR) was improved in order to achieve enhanced simultaneous removal of multiple aqueous pollutants and the production of valuable biomass. The MPBR was optimized by integrating the regulation of light intensity (3000, 8000 and 23000 lux) and microbial extracellular electron extraction (using an electrode at -0.3, 0 and 0.3 V). Results showed that the MPBR operated at a high light intensity (23000 lux) with a potential of -0.3 V (Coulomb efficiency (CE) of 9.65%) achieved maximum pollutant removal efficiencies, effectively removing 65% NH4+-N, 95% PO43--P and 52% sulfadiazine (SDZ) within 72 h, exhibiting an increase by 30%, 56% and 26% compared to an MPBR operated at the same light intensity but without an externally applied potential. The use of an electrode with an applied potential of -0.3V was most suitable for the extraction of photosynthetic electrons from the photoelectroactive biofilm, in which Rhodocyclaceae was highly enriched, effectively alleviating photoinhibition and thereby enhancing N, P assimilation and SDZ degradation under high light conditions. A maximum lipid content of 409.28 mg/g was obtained under low light intensity (3000 lux) conditions with an applied potential of 0.3 V (CE 9.08%), while a maximum protein content of 362.29 mg/g was obtained at a low light intensity (3000 lux) and 0 V (CE 10.71%). The selective enrichment of Chlorobium and the subsequent enhanced conversion of excess available carbon under low light and positive potential stimulation conditions, were responsible for the enhanced accumulation of proteins and lipids in biomass.
Collapse
Affiliation(s)
- Xinyuan Yao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang, 262700, China
| |
Collapse
|
15
|
Geada P, Francisco D, Pereira F, Maciel F, Madureira L, Barros A, Silva JL, Vicente AA, Teixeira JA. Multivariable optimization process of heterotrophic growth of Chlorella vulgaris. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Mohammadi FS, Arabian D. Optimization of
Chlorella vulgaris
cultivation grown in waste molasses syrup using mixture design. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Fahimeh Sadat Mohammadi
- Department of Bioscience and Biotechnology Malek Ashtar University of Technology Tehran Iran
| | - Daryush Arabian
- Faculty of Applied Science Malek Ashtar University of Technology Tehran Iran
| |
Collapse
|
17
|
Cai Y, Zhai L, Fang X, Wu K, Liu Y, Cui X, Wang Y, Yu Z, Ruan R, Liu T, Zhang Q. Effects of C/N ratio on the growth and protein accumulation of heterotrophic Chlorella in broken rice hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:102. [PMID: 36209252 PMCID: PMC9547431 DOI: 10.1186/s13068-022-02204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Microalgae protein is considered as a sustainable alternative to animal protein in the future. Using waste for microalgal culture can upgrade low-value raw materials into high-value products, helping to offset the cost of microalgal protein production. In this study we explored the feasibility of using microalgae heterotrophic fermentation to convert broken rice hydrolysate (BRH) into protein. RESULTS The results showed that the increase of BRH supplemental ratio was beneficial to the increase of biomass production but not beneficial to the increase of intracellular protein content. To further improve protein production, the effect of C/N ratio on intracellular protein accumulation was studied. It was found that low C/N ratio was beneficial to the synthesis of glutamate in microalgae cells, which in turn promoted the anabolism of other amino acids and further the protein. When the C/N ratio was 12:1, the biomass productivity and protein content could reach a higher level, which were 0.90 g/L/day and 61.56%, respectively. The obtained Chlorella vulgaris biomass was rich in essential amino acids (41.80%), the essential amino acid index was as high as 89.07, and the lysine content could reach up to 4.05 g/100 g. CONCLUSIONS This study provides a theoretical basis and guidance for using Chlorella vulgaris as an industrial fermentation platform to convert broken rice into products with high nutritional value.
Collapse
Affiliation(s)
- Yihui Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
- College of Food Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Ligong Zhai
- College of Food Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Xiaoman Fang
- China Coal Zhejiang Testing Technology Co, Ltd., Hangzhou, 310000, China
| | - Kangping Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, St. Lucia, Brisbane, QLD4072, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul MN, 55108, USA
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
18
|
Barreto Filho MM, Vieira HH, Morris JJ, Bagatini IL. Species-specific effects and the ecological role of programmed cell death in the microalgae Ankistrodesmus (Sphaeropleales, Selenastraceae). Biol Lett 2022; 18:20220259. [PMID: 36259168 PMCID: PMC9579752 DOI: 10.1098/rsbl.2022.0259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022] Open
Abstract
Reports of programmed cell death (PCD) in phytoplankton raise questions about the ecological evolutionary role of cell death in these organisms. We induced PCD by nitrogen deprivation and unregulated cell death (non-PCD) in one strain of the green microalga Ankistrodesmus densus and investigated the effects of the cell death supernatants on phylogenetically related co-occurring organisms using growth rates and maximum biomass as proxies of fitness. PCD-released materials from A. densus CCMA-UFSCar-3 significantly increased growth rates of two conspecific strains compared to healthy culture (HC) supernatants and improved the maximum biomass of all A. densus strains compared to related species. Although growth rates of non-A. densus with PCD supernatants were not statistically different from HC treatment, biomass gain was significantly reduced. Thus, the organic substances released by PCD, possibly nitrogenous compounds, could promote conspecific growth. These results support the argument that PCD may differentiate species or subtypes and increases inclusive fitness in this model unicellular chlorophyte. Further research, however, is needed to identify the responsible molecules and how they interact with cells to provide the PCD benefits.
Collapse
Affiliation(s)
- Marcelo M. Barreto Filho
- Laboratory of Phycology, Department of Botany, Federal University of São Carlos (UFSCar), Brazil
- Programa de Pós-Graduação em Ecologia e Recursos Naturais (PPGERN), UFSCar, São Carlos, São Paulo, Brazil
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Helena H. Vieira
- Laboratory of Phycology, Department of Botany, Federal University of São Carlos (UFSCar), Brazil
- Hydrobiologický Ústav, Biologické centre AV ČR, v.v.i, České Budějovice, Czechia
| | - J. Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Inessa L. Bagatini
- Laboratory of Phycology, Department of Botany, Federal University of São Carlos (UFSCar), Brazil
| |
Collapse
|
19
|
Dolganyuk V, Andreeva A, Sukhikh S, Kashirskikh E, Prosekov A, Ivanova S, Michaud P, Babich O. Study of the Physicochemical and Biological Properties of the Lipid Complex of Marine Microalgae Isolated from the Coastal Areas of the Eastern Water Area of the Baltic Sea. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185871. [PMID: 36144605 PMCID: PMC9506268 DOI: 10.3390/molecules27185871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
The Baltic Sea algae species composition includes marine euryhaline, freshwater euryhaline, and true brackish water forms. This study aimed to isolate a lipid–pigment complex from microalgae of the Baltic Sea (Kaliningrad region) and investigate its antimicrobial activity against Gram-positive and Gram-negative bacteria. Microalgae were sampled using a box-shaped bottom sampler. Sequencing was used for identification. Spectroscopy and chromatography with mass spectroscopy were used to study the properties of microalgae. Antibiotic activity was determined by the disc diffusion test. Lipids were extracted using the Folch method. Analysis of the results demonstrated the presence of antimicrobial activity of the lipid–pigment complex of microalgae against E. coli (the zone diameter was 17.0 ± 0.47 mm and 17.0 ± 0.21 mm in Chlorella vulgaris and Arthrospira platensis, respectively) and Bacillus pumilus (maximum inhibition diameter 16.0 ± 0.27 mm in C. vulgaris and 16.0 ± 0.22 mm in A. platensis). The cytotoxic and antioxidant activities of the lipid complexes of microalgae C. vulgaris and A. platensis were established and their physicochemical properties and fatty acid composition were studied. The results demonstrated that the lipid–pigment complex under experimental conditions was the most effective against P. pentosaceus among Gram-positive bacteria. Antimicrobial activity is directly related to the concentration of the lipid–pigment complex. The presence of antibacterial activity in microalgae lipid–pigment complexes opens the door to the development of alternative natural preparations for the prevention of microbial contamination of feed. Because of their biological activity, Baltic Sea microalgae can be used as an alternative to banned antibiotics in a variety of fields, including agriculture, medicine, cosmetology, and food preservation.
Collapse
Affiliation(s)
- Vyacheslav Dolganyuk
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Anna Andreeva
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Stanislav Sukhikh
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Egor Kashirskikh
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-473407425 (P.M.)
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-473407425 (P.M.)
| | - Olga Babich
- SEC “Applied Biotechnologies”,, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| |
Collapse
|
20
|
McCarthy B, O’Neill G, Abu-Ghannam N. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Mar Drugs 2022; 20:493. [PMID: 36005495 PMCID: PMC9410000 DOI: 10.3390/md20080493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and well-being. A major drawback of conventional treatments is the wide range of undesirable side-effects typically associated with benzodiazepines and antidepressants, which can be more debilitating than the initial disorder. It is therefore valuable to explore the efficiency of other remedies for complementarity and synergism with existing conventional treatments, leading to possible reduction in undesirable side-effects. This review explores the relevance of microalgae bioactives as a sustainable source of valuable phytochemicals that can contribute positively to mood and sleep disorders. Microalgae species producing these compounds are also catalogued, thus creating a useful reference of the state of the art for further exploration of this proposed approach. While we highlight possibilities awaiting investigation, we also identify the associated issues, including minimum dose for therapeutic effect, bioavailability, possible interactions with conventional treatments and the ability to cross the blood brain barrier. We conclude that physical and biological functionalization of microalgae bioactives can have potential in overcoming some of these challenges.
Collapse
Affiliation(s)
- Bozena McCarthy
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
| | - Graham O’Neill
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| | - Nissreen Abu-Ghannam
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| |
Collapse
|
21
|
Molfetta M, Morais EG, Barreira L, Bruno GL, Porcelli F, Dugat-Bony E, Bonnarme P, Minervini F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022; 11:2065. [PMID: 35885308 PMCID: PMC9319875 DOI: 10.3390/foods11142065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022] Open
Abstract
Meat represents an important protein source, even in developing countries, but its production is scarcely sustainable, and its excessive consumption poses health issues. An increasing number of Western consumers would replace, at least partially, meat with alternative protein sources. This review aims at: (i) depicting nutritional, functional, sensory traits, and critical issues of single-cell proteins (SCP), filamentous fungi, microalgae, vegetables (alone or mixed with milk), and insects and (ii) displaying how fermentation could improve their quality, to facilitate their use as food items/ingredients/supplements. Production of SCP (yeasts, filamentous fungi, microalgae) does not need arable land and potable water and can run continuously, also using wastes and byproducts. Some filamentous fungi are also consumed as edible mushrooms, and others are involved in the fermentation of traditional vegetable-based foods. Cereals, pseudocereals, and legumes may be combined to offer an almost complete amino acid profile. Fermentation of such vegetables, even in combination with milk-based products (e.g., tarhana), could increase nutrient concentrations, including essential amino acids, and improve sensory traits. Different insects could be used, as such or, to increase their acceptability, as ingredient of foods (e.g., pasta). However, insects as a protein source face with safety concerns, cultural constraints, and a lack of international regulatory framework.
Collapse
Affiliation(s)
- Mariagrazia Molfetta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Etiele G. Morais
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Luisa Barreira
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (E.G.M.); (L.B.)
| | - Giovanni Luigi Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| | - Eric Dugat-Bony
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Pascal Bonnarme
- UMR SayFood, INRAE, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France; (E.D.-B.); (P.B.)
| | - Fabio Minervini
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.M.); (G.L.B.); (F.P.)
| |
Collapse
|
22
|
Sushytskyi L, Synytsya A, Mirzayeva T, Kalouskova T, Bleha R, Čopíková J, Kubač D, Grivalský T, Ulbrich P, Kaštánek P. Fractionation of the water insoluble part of the heterotrophic mutant green microalga Parachlorella kessleri HY1 (Chlorellaceae) biomass: Identification and structure of polysaccharides. Int J Biol Macromol 2022; 213:27-42. [PMID: 35623455 DOI: 10.1016/j.ijbiomac.2022.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
The water-insoluble part of Parachlorella kessleri HY1 biomass was subjected to the extraction of cell-wall polysaccharides using polar aprotic solvents (DMSO, LiCl/DMSO) and aqueous alkaline solutions (0.1, 1 and 4 mol·l-1 of NaOH). Proteins predominated in all the crude extracts and in the insoluble residues were partially removed by treatment with proteolytic enzymes (pepsin and pronase), and in some cases with the HCl/H2O2 reagent, yielding purified polysaccharide-enriched fractions. These treatments led to the solubilisation of some products in water. The composition and structure of isolated polysaccharides were characterised based on monosaccharide composition, glycosidic linkage and spectroscopic analyses. The DMSO extract contained mainly proteins, and polysaccharides were not detected. The water-soluble parts isolated from the LiCl/DMSO extract contained α-l-rhamnan, α-d-glucan and β-d-glucogalactan; the water-insoluble part contained (1 → 4)-β-d-xylan, first isolated from the biomass of green microalgae. The alkali extracts contained polysaccharides of similar structure, and also water-insoluble (1 → 4)-β-d-mannan. The insoluble part after all extractions contained α-chitin as the main polysaccharide, which was confirmed by spectroscopic methods. All these polysaccharides can play a certain role in the cell wall structure of this microalga.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic.
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Tamilla Mirzayeva
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Tereza Kalouskova
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - David Kubač
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237 - Opatovický mlýn, 379 81 Třebon, Czech Republic
| | - Tomáš Grivalský
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237 - Opatovický mlýn, 379 81 Třebon, Czech Republic
| | - Pavel Ulbrich
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic
| | - Petr Kaštánek
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic; EcoFuel Laboratories s.r.o, Ocelářská 9, Prague 9 Libeň 190 00, Czech Republic
| |
Collapse
|
23
|
López-Sánchez A, Silva-Gálvez AL, Aguilar-Juárez Ó, Senés-Guerrero C, Orozco-Nunnelly DA, Carrillo-Nieves D, Gradilla-Hernández MS. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114612. [PMID: 35149401 DOI: 10.1016/j.jenvman.2022.114612] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.
Collapse
Affiliation(s)
- Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Óscar Aguilar-Juárez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | | |
Collapse
|
24
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Cole N, Naidu R, Megharaj M. Extracellular Polymeric Substances Drive Symbiotic Interactions in Bacterial‒Microalgal Consortia. MICROBIAL ECOLOGY 2022; 83:596-607. [PMID: 34132846 DOI: 10.1007/s00248-021-01772-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The importance of several factors that drive the symbiotic interactions between bacteria and microalgae in consortia has been well realised. However, the implication of extracellular polymeric substances (EPS) released by the partners remains unclear. Therefore, the present study focused on the influence of EPS in developing consortia of a bacterium, Variovorax paradoxus IS1, with a microalga, Tetradesmus obliquus IS2 or Coelastrella sp. IS3, all isolated from poultry slaughterhouse wastewater. The bacterium increased the specific growth rates of microalgal species significantly in the consortia by enhancing the uptake of nitrate (88‒99%) and phosphate (92‒95%) besides accumulating higher amounts of carbohydrates and proteins. The EPS obtained from exudates, collected from the bacterial or microalgal cultures, contained numerous phytohormones, vitamins, polysaccharides and amino acids that are likely involved in interspecies interactions. The addition of EPS obtained from V. paradoxus IS1 to the culture medium doubled the growth of both the microalgal strains. The EPS collected from T. obliquus IS2 significantly increased the growth of V. paradoxus IS1, but there was no apparent change in bacterial growth when it was cultured in the presence of EPS from Coelastrella sp. IS3. These observations indicate that the interaction between V. paradoxus IS1 and T. obliquus IS2 was mutualism, while commensalism was the interaction between the bacterial strain and Coelastrella sp. IS3. Our present findings thus, for the first time, unveil the EPS-induced symbiotic interactions among the partners involved in bacterial‒microalgal consortia.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Nicole Cole
- Analytical and Biomolecular Research Facility (ABRF), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
25
|
Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of Spray Drying for
Chlorella vulgaris
by Using
RSM
Methodology and Maltodextrin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nevzat Konar
- Eskisehir Osmangazi University Agriculture Faculty Food Engineering Department, Eskisehir Turkey
| | - Yaşar Durmaz
- Ege University Faculty of Fisheries, Aquaculture Department Izmir Turkey
| | | | - Behic Mert
- Middle East Technical University Engineering Faculty, Food Engineering Department Ankara Turkey
| |
Collapse
|
26
|
Feng Q, Sun Y, Li A, Lin X, Lu T, Ding D, Shi M, Sun Y, Yuan Y. Revealing dual roles of g-C 3N 4 in Chlorella vulgaris cultivation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127639. [PMID: 34750001 DOI: 10.1016/j.jhazmat.2021.127639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Booming graphitic carbon nitride (g-C3N4) photocatalyzed water splitting increases crisis of aquatic contamination. However, a controversial understanding regarding effect of g-C3N4 on growth of microalgae still exists. Accordingly, Chlorella vulgaris were cultured in 0-250 mg/L of g-C3N4 with biomass named as C-0, C-50, C-100, C-150, C-200, and C-250, respectively. g-C3N4 below 200 mg/L was beneficial to short-term cultivation of microalgae, while it was harmful to long-time cultivation. Protein factions of C-0, C-100, and C-250 were 41.4, 42.3, and 36.4 wt%, while their lipid factions varied from 21.5, 16.9, to 17.8 wt%, respectively. In short-term cultivation, superoxide dismutase's activity of C-0, C-150, and C-250 increased dramatically, while accumulated H2O2 led to increased activity of catalase. However, it started to decrease once antioxidant enzymes were per-oxidized, leading to increase of malondialdehyde content. In long-term cultivation, activities of superoxide dismutase, catalase and malondialdehyde content decreased dramatically owning to peroxidation of algae. Scavenger tests with tertiary butanol and triethanolamine implied that·OH was dominate parameter affecting growth of microalgae. This work indicates that g-C3N4 below 200 mg/L is propitious to short-term cultivation of microalgae, while it is bad to long-time cultivation of microalgae, revealing dual rules of g-C3N4 in Chlorella vulgaris cultivation.
Collapse
Affiliation(s)
- Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yabo Sun
- School of Chemistry & Chemical Engineering, School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, China
| | - An Li
- School of Chemistry & Chemical Engineering, School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, China
| | - Xiangang Lin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Tao Lu
- School of Chemistry & Chemical Engineering, School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, China
| | - Dan Ding
- School of Chemistry & Chemical Engineering, School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, China
| | - Menghan Shi
- School of Chemistry & Chemical Engineering, School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, China
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, China.
| | - Yupeng Yuan
- School of Chemistry & Chemical Engineering, School of Resources and Environmental Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, China.
| |
Collapse
|
27
|
Xiao X, Zhou Y, Liang Z, Lin R, Zheng M, Chen B, He Y. A novel two-stage heterotrophic cultivation for starch-to-protein switch to efficiently enhance protein content of Chlorella sp. MBFJNU-17. BIORESOURCE TECHNOLOGY 2022; 344:126187. [PMID: 34710603 DOI: 10.1016/j.biortech.2021.126187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to firstly establish an efficient and novel two-stage cultivation process to produce microalgal biomass rich in protein using a heterotrophic Chlorella sp. MBFJNU-17 strain. In the first-stage cultivation, to reduce the glucose and urea utilization, microalga achieved a high biomass at 40 g/L glucose and 1 g/L urea; meantime, the expression from starch biosynthesis genes of microalga was up-regulated under nitrogen-starvation conditions for starch accumulation (55.01%). In the second-stage cultivation, based on the over-compensation effect, Chlorella cells after the first-stage cultivation were further treated at 5 g/L glucose and 3 g/L urea to up-regulate starch degradation, central carbon metabolism and urea absorption genes expression to drive intracellular starch-to-protein switch for biosynthetic protein (59.75%). Moreover, microalga performed similar characteristics in a 10-L fermenter by the established process. Taken together, Chlorella sp. MBFJNU-17 was the promising candidate to produce high-value biomass enriched in protein by the established two-stage cultivation.
Collapse
Affiliation(s)
- Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhibo Liang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Rongzhao Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
28
|
Regueiras A, Huguet Á, Conde T, Couto D, Domingues P, Domingues MR, Costa AM, da Silva JL, Vasconcelos V, Urbatzka R. Potential Anti-Obesity, Anti-Steatosis, and Anti-Inflammatory Properties of Extracts from the Microalgae Chlorella vulgaris and Chlorococcum amblystomatis under Different Growth Conditions. Mar Drugs 2021; 20:md20010009. [PMID: 35049863 PMCID: PMC8781425 DOI: 10.3390/md20010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known as a producer of proteins and lipids, but also of valuable compounds for human health benefits (e.g., polyunsaturated fatty acids (PUFAs); minerals, vitamins, or other compounds). The overall objective of this research was to prospect novel products, such as nutraceuticals from microalgae, for application in human health, particularly for metabolic diseases. Chlorella vulgaris and Chlorococcum amblystomatis were grown autotrophically, and C. vulgaris was additionally grown heterotrophically. Microalgae biomass was extracted using organic solvents (dichloromethane, ethanol, ethanol with ultrasound-assisted extraction). Those extracts were evaluated for their bioactivities, toxicity, and metabolite profile. Some of the extracts reduced the neutral lipid content using the zebrafish larvae fat metabolism assay, reduced lipid accumulation in fatty-acid-overloaded HepG2 liver cells, or decreased the LPS-induced inflammation reaction in RAW264.7 macrophages. Toxicity was not observed in the MTT assay in vitro or by the appearance of lethality or malformations in zebrafish larvae in vivo. Differences in metabolite profiles of microalgae extracts obtained by UPLC-LC-MS/MS and GNPS analyses revealed unique compounds in the active extracts, whose majority did not have a match in mass spectrometry databases and could be potentially novel compounds. In conclusion, microalgae extracts demonstrated anti-obesity, anti-steatosis, and anti-inflammatory activities and could be valuable resources for developing future nutraceuticals. In particular, the ultrasound-assisted ethanolic extract of the heterotrophic C. vulgaris significantly enhanced the anti-obesity activity and demonstrated that the alteration of culture conditions is a valuable approach to increase the production of high-value compounds.
Collapse
Affiliation(s)
- Ana Regueiras
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Álvaro Huguet
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (D.C.); (P.D.); (M.R.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Ana Margarida Costa
- Allmicroalgae, R&D Department, Rua 25 de Abril, 2445-287 Pataias, Portugal; (A.M.C.); (J.L.d.S.)
| | | | - Vitor Vasconcelos
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Ralph Urbatzka
- Blue Biotechnology and Ecotoxicology Group, CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (Á.H.); (V.V.)
- Correspondence:
| |
Collapse
|
29
|
Xu Q, Hou G, Chen J, Wang H, Yuan L, Han D, Hu Q, Jin H. Heterotrophically Ultrahigh-Cell-Density Cultivation of a High Protein-Yielding Unicellular Alga Chlorella With a Novel Nitrogen-Supply Strategy. Front Bioeng Biotechnol 2021; 9:774854. [PMID: 34881237 PMCID: PMC8646024 DOI: 10.3389/fbioe.2021.774854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
The unicellular green alga Chlorella is an ideal protein source. However, the high production cost and low production capability of the current main photoautotrophic culture mode limit its application especially as an alternative protein source for food and feed, which might be overcome through high-cell-density cultivation in fermenters. In this study, a Chlorella sorokiniana strain CMBB276 with high protein content was selected from five Chlorella strains by comprehensive evaluation of their growth rates, protein contents, and yields. The optimal cultural temperature, pH, and mole ratio of carbon and nitrogen (C/N) for C. sorokiniana CMBB276 growth were found to be 30°C, 6.5, and 18, respectively. Ammonium chloride was proved to be the best nitrogen (N) source for C. sorokiniana CMBB276 growth, whereas growth inhibition caused by the accumulation of salts was observed under fed-batch cultivation when maintaining a constant C/N ratio of 18 by controlling pH with sodium hydroxide solution. By simultaneously reducing the concentration of ammonium chloride in the feeding medium and controlling pH with ammonium hydroxide, we finally achieved the ultrahigh-cell-density cultivation of C. sorokiniana CMBB276. The highest biomass concentration and protein yield reached 232 and 86.55 g l−1, respectively, showing the great potential of culturing C. sorokiniana CMBB276 in fermenters for economic and large-scale protein source production.
Collapse
Affiliation(s)
- Quan Xu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guoli Hou
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianping Chen
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hongxia Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Yuan
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
30
|
Dry route process and wet route process for algal biodiesel production: A review of techno-economical aspects. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Shafiq M, Zeb L, Jawad M, Chi Z. Treatment of Saline Organic-Rich Fermentation Wastewater by Marine Chlorella sp. for Value-Added Biomass Production. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Shafiq
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| | - Muhammad Jawad
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, No. 2. Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
32
|
Rani V, Maróti G. Assessment of Nitrate Removal Capacity of Two Selected Eukaryotic Green Microalgae. Cells 2021; 10:cells10092490. [PMID: 34572139 PMCID: PMC8469671 DOI: 10.3390/cells10092490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Eutrophication is a leading problem in water bodies all around the world in which nitrate is one of the major contributors. The present study was conducted to study the effects of various concentrations of nitrate on two eukaryotic green microalgae, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360. For this purpose, both microalgae were grown in a modified tris-acetate-phosphate medium (TAP-M) with three different concentrations of sodium nitrate, i.e., 5 mM (TAP-M5), 10 mM (TAP-M10) and 15 mM (TAP-M15), for 6 days and it was observed that both microalgae were able to remove nitrate completely from the TAP-M5 medium. Total amount of pigments decreased with the increasing concentration of nitrate, whereas protein and carbohydrate contents remained unaffected. High nitrate concentration (15 mM) led to an increase in lipids in Chlamydomonas sp. MACC-216, but not in Chlorella sp. MACC-360. Furthermore, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360 were cultivated for 6 days in synthetic wastewater (SWW) with varying concentrations of nitrate where both microalgae grew well and showed an adequate nitrate removal capacity.
Collapse
Affiliation(s)
- Vaishali Rani
- Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary;
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
| | - Gergely Maróti
- Biological Research Centre, Institute of Plant Biology, 6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
33
|
Influence of Nutrient Manipulation on Growth and Biochemical Constituent in Anabaena variabilis and Nostoc muscorum to Enhance Biodiesel Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13169081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study aims to improve biomass and biochemical constituents, especially lipid production of Anabaena variabilis and Nostoc muscorum by formulating an optimal growth condition using various concentrations of nutrients (NO3−, PO43− and CO32−) for biodiesel production. The supplementation of the three nutrients by +50% showed the maximum dry weight and biomass productivity, while the macromolecule contents were varied. The depletion of N-NO3− by 50% N-NO3− showed the maximum lipid yield (146.67 mg L−1) in A. variabilis and the maximum carbohydrate contents (285.33 mg L−1) in N. muscorum with an increase of 35% and 30% over control of the synthetic medium, respectively. However, variation in P-PO43− and C-CO32− showed insignificant improving results for all biochemical compositions in both cyanobacteria. A. variabilis was the superior species for lipid and protein accumulation; however, N. muscorum showed the maximum carbohydrate content. Accordingly, A. variabilis was selected for biodiesel production. In A. variabilis, −50% N-NO3− resulted in 35% higher lipid productivity compared to the control. Furthermore, the fatty acid profile and biodiesel quality-related parameters have improved under this condition. This study has revealed the strategies to improve A. variabilis lipid productivity for biodiesel production for small-scale in vitro application in terms of fuel quality under low nitrate levels.
Collapse
|
34
|
Eze CN, Ogbonna IO, Aoyagi H, Ogbonna JC. Comparison of growth, protein and carotenoid contents of some freshwater microalgae and the effects of urea and cultivation in a photobioreactor with reflective broth circulation guide on Desmodesmus subspicatus LC172266. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [PMCID: PMC8211972 DOI: 10.1007/s43153-021-00120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chijioke Nwoye Eze
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Present Address: Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | | | - Hideki Aoyagi
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
35
|
Borella L, Sforza E, Bertucco A. Effect of residence time in continuous photobioreactor on mass and energy balance of microalgal protein production. N Biotechnol 2021; 64:46-53. [PMID: 34087470 DOI: 10.1016/j.nbt.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
There is increasing interest in new protein sources for the food and feed industry and for the agricultural sector, and microalgae are considered a good alternative, having a high protein content and a well-balanced amino acid profile. However, protein production from microalgae presents several unsolved issues, as the biomass composition changes markedly as a function of cultivation operating conditions. Continuous systems, however, may be properly set to boost the accumulation of protein in the biomass, ensuring stable production. Here, two microalgae and two cyanobacterial species were cultivated in continuous operating photobioreactors (PBR) under nonlimiting nutrient conditions, to study the effects of light intensity and residence time on both biomass and protein productivity at steady state. Although light strongly affected biomass growth inside the PBR, the overall protein pool did not vary in response to irradiance. On the other hand, shorter residence times resulted in protein accumulation of up to 68 % in cyanobacteria, in contrast with green algae, where a minor influence of residence time on biomass composition was observed. Energy balance showed that light conversion to protein decreased with light intensity. Protein content was also related to energy costs for cell maintenance. In conclusion, it is shown that residence time is the key variable to increase protein content and yield of protein production, but its effect depends on the specific species.
Collapse
Affiliation(s)
- Lisa Borella
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Eleonora Sforza
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
| | - Alberto Bertucco
- Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| |
Collapse
|
36
|
Ran C, Zhou X, Yao C, Zhang Y, Kang W, Liu X, Herbert C, Xie T. Swine digestate treatment by prior nitrogen-starved Chlorella vulgaris: The effect of over-compensation strategy on microalgal biomass production and nutrient removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144462. [PMID: 33454469 DOI: 10.1016/j.scitotenv.2020.144462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digester effluent containing high levels of ammonia poses a threat to the environment. To hinder this issue, a modern and promising treatment method incorporates both microalgae and their bioconversion potential. When culturing Chlorella vulgaris at a 1:7 digestate supernatant dilution ratio, biomass concentration was 1.33 g L-1 and 66% of ammonia nitrogen was removed. Furthermore, a prior nitrogen-starved seed method, namely over-compensation strategy, was applied to improve both biomass production and nutrient removal. By using nitrogen-starved seeds after a 48 h nitrogen-free stimulation, biomass yield increased by 1.7-times to 2.56 g L-1. Simultaneously, ammonia nitrogen and total phosphorus removal efficiencies reached 99% and 97% respectively. The enhanced production corresponds to higher chlorophyll fluorescence in the middle and late stages of the culture. In addition, the bioproduct contained 39% carbohydrates, and the proportion of polyunsaturated fatty acids in lipids was 66%. These findings demonstrated that the over-compensation strategy contributed to greater nitrogen removal and high-value bioproduct production in the microalgae-digestate treatment system.
Collapse
Affiliation(s)
- Chaogang Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Zhou
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wu Kang
- Science and Technology on Reactor Fuel and Materials Laboratory, Chengdu 610213, China
| | - Xiaolong Liu
- Science and Technology on Reactor Fuel and Materials Laboratory, Chengdu 610213, China
| | - Colton Herbert
- Department of Civil, Construction, and Environmental Engineering, Opus College of Engineering, Marquette University, Milwaukee 53233, United States of America
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
37
|
Gómez C, Guzmán-Carrasco A, Lafarga T, Acién-Fernández FG. OPTIMIZATION OF A NEW CULTURE MEDIUM FOR THE LARGE-SCALE PRODUCTION OF PROTEIN-RICH ARTHROSPIRA PLATENSIS (OSCILLATORIALES, CYANOPHYCEAE). JOURNAL OF PHYCOLOGY 2021; 57:636-644. [PMID: 33249596 DOI: 10.1111/jpy.13111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Our aim was to develop a novel medium for the large-scale production of protein-rich Arthrospira with potential applications as a biofertilizer. The novel culture medium, termed as FM-II, was formulated using low-cost commercial chemicals and specifically designed to improve protein production. Both Arthrospira platensis and Arthrospira maxima were produced using FM-II and Arnon medium, which was used as a control. Photosynthetic status of the cells, which was checked by measuring chlorophyll fluorescence, biomass dry weight and protein content, was assessed daily. Arthrospira platensis had higher biomass and protein productivities than A. maxima when cultured in both control and FM-II media. Incorporation of varied micronutrients into FM-II formulation did not improve biomass productivity. Maximum biomass dry weight in FM-II and control medium was 2.9 and 2.5 g · L-1 , respectively. Total protein content of the biomass ranged between 55% and 65%, suggesting potential for being used in the development of high-value agricultural products. As some nutrients were discarded unused, the initial content of phosphates and bicarbonates was reduced by 75% and 50%, respectively, without affecting the process productivity. Results reported herein could promote the production and utilization of Arthrospira platensis by significantly reducing productions costs and therefore increasing the feasibility of the process.
Collapse
Affiliation(s)
- Cintia Gómez
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - Ana Guzmán-Carrasco
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | | |
Collapse
|
38
|
Haske-Cornelius O, Gierlinger S, Vielnascher R, Gabauer W, Prall K, Pellis A, Guebitz GM. Cultivation of heterotrophic algae on paper waste material and digestate. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Chemoplasticity of the polar lipid profile of the microalgae Chlorella vulgaris grown under heterotrophic and autotrophic conditions. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Pugazhendhi A, Nagappan S, Bhosale RR, Tsai PC, Natarajan S, Devendran S, Al-Haj L, Ponnusamy VK, Kumar G. Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142218. [PMID: 33370912 DOI: 10.1016/j.scitotenv.2020.142218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Due to their rapid growth rates, high lipid productivity, and ability to synthesize value-added products, microalgae are considered as the potential biofuel feedstocks. However, among the several bottlenecks that are hindering the commercialization of microalgal biofuel synthesis, the issue of high water consumption is the least explored. This analysis, therefore, examines the factors that decide water use for the production of microalgae biofuel. Microalgae biodiesel water footprint varies from 3.5 to 3726 kg of water per kg of biodiesel. The study further investigates the cause for large variability in the estimation of the water footprint for microalgae fuel. Various strategies, including the reuse of harvested water, the use of high density cultivation that could be adopted for low water consumption in microalgal biofuel production are discussed. Specifically, the review identified a reciprocal relationship between biomass productivity and water footprint. On the basis of which the review emphasizes the significance of high density cultivation, which can be inexpensive and feasible relative to other water-saving techniques. With the setback of water scarcity due to the rapid industrialization in developing countries, the implementation of the cultivation system with a focus on minimizing the water consumption is inevitable for a successful large scale microalgal biofuel production.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Senthil Nagappan
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous- Affiliated to Anna University), Sriperumbudur 602 117, Tamil Nadu, India
| | - Rahul R Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Shakunthala Natarajan
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous- Affiliated to Anna University), Sriperumbudur 602 117, Tamil Nadu, India
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lamya Al-Haj
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
41
|
Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100584] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Haske-Cornelius O, Vu T, Schmiedhofer C, Vielnascher R, Dielacher M, Sachs V, Grasmug M, Kromus S, Guebitz G. Cultivation of heterotrophic algae on enzymatically hydrolyzed municipal food waste. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Dolganyuk V, Belova D, Babich O, Prosekov A, Ivanova S, Katserov D, Patyukov N, Sukhikh S. Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules 2020; 10:E1153. [PMID: 32781745 PMCID: PMC7465300 DOI: 10.3390/biom10081153] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Microalgae are a group of autotrophic microorganisms that live in marine, freshwater and soil ecosystems and produce organic substances in the process of photosynthesis. Due to their high metabolic flexibility, adaptation to various cultivation conditions as well as the possibility of rapid growth, the number of studies on their use as a source of biologically valuable products is growing rapidly. Currently, integrated technologies for the cultivation of microalgae aiming to isolate various biologically active substances from biomass to increase the profitability of algae production are being sought. To implement this kind of development, the high productivity of industrial cultivation systems must be accompanied by the ability to control the biosynthesis of biologically valuable compounds in conditions of intensive culture growth. The review considers the main factors (temperature, pH, component composition, etc.) that affect the biomass growth process and the biologically active substance synthesis in microalgae. The advantages and disadvantages of existing cultivation methods are outlined. An analysis of various methods for the isolation and overproduction of the main biologically active substances of microalgae (proteins, lipids, polysaccharides, pigments and vitamins) is presented and new technologies and approaches aimed at using microalgae as promising ingredients in value-added products are considered.
Collapse
Affiliation(s)
- Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Daria Belova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Dmitry Katserov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Nikolai Patyukov
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (V.D.); (D.B.); (O.B.); (D.K.); (N.P.); (S.S.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| |
Collapse
|
44
|
Chin ZW, Arumugam K, Ashari SE, Faizal Wong FW, Tan JS, Ariff AB, Mohamed MS. Enhancement of Biomass and Calcium Carbonate Biomineralization of Chlorella vulgaris through Plackett-Burman Screening and Box-Behnken Optimization Approach. Molecules 2020; 25:molecules25153416. [PMID: 32731437 PMCID: PMC7435838 DOI: 10.3390/molecules25153416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022] Open
Abstract
The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett–Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box–Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.
Collapse
Affiliation(s)
- Zheng Wei Chin
- Department of Bioprocess Technology, Faculty of Biotechnology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (Z.W.C.); (K.A.); (F.W.F.W.); (A.B.A.)
| | - Kavithraashree Arumugam
- Department of Bioprocess Technology, Faculty of Biotechnology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (Z.W.C.); (K.A.); (F.W.F.W.); (A.B.A.)
| | - Siti Efliza Ashari
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Bioprocessing and Biomanufacturing Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (Z.W.C.); (K.A.); (F.W.F.W.); (A.B.A.)
- Bioprocessing and Biomanufacturing Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Joo Shun Tan
- Bioprocessing and Biomanufacturing Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
| | - Arbakariya Bin Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (Z.W.C.); (K.A.); (F.W.F.W.); (A.B.A.)
- Bioprocessing and Biomanufacturing Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (Z.W.C.); (K.A.); (F.W.F.W.); (A.B.A.)
- Bioprocessing and Biomanufacturing Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
45
|
Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris. Mar Drugs 2020; 18:md18070367. [PMID: 32709006 PMCID: PMC7404257 DOI: 10.3390/md18070367] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
The commercial cultivation of microalgae began in the 1960s and Chlorella was one of the first target organisms. The species has long been considered a potential source of renewable energy, an alternative for phytoremediation, and more recently, as a growth and immune stimulant. However, Chlorella vulgaris, which is one of the most studied microalga, has never been comprehensively profiled chemically. In the present study, comprehensive profiling of the Chlorella vulgaris metabolome grown under normal culture conditions was carried out, employing tandem LC-MS/MS to profile the ethanolic extract and GC-MS for fatty acid analysis. The fatty acid profile of C. vulgaris was shown to be rich in omega-6, -7, -9, and -13 fatty acids, with omega-6 being the highest, representing more than sixty percent (>60%) of the total fatty acids. This is a clear indication that this species of Chlorella could serve as a good source of nutrition when incorporated in diets. The profile also showed that the main fatty acid composition was that of C16-C18 (>92%), suggesting that it might be a potential candidate for biodiesel production. LC-MS/MS analysis revealed carotenoid constituents comprising violaxanthin, neoxanthin, lutein, β-carotene, vulgaxanthin I, astaxanthin, and antheraxanthin, along with other pigments such as the chlorophylls. In addition to these, amino acids, vitamins, and simple sugars were also profiled, and through mass spectrometry-based molecular networking, 48 phospholipids were putatively identified.
Collapse
|
46
|
Hu W, Tong W, Li Y, Xie Y, Chen Y, Wen Z, Feng S, Wang X, Li P, Wang Y, Zhang Y. Hydrothermal route-enabled synthesis of sludge-derived carbon with oxygen functional groups for bisphenol A degradation through activation of peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121801. [PMID: 31818653 DOI: 10.1016/j.jhazmat.2019.121801] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
A considerable amount of sewage sludge (SS) is generated from wastewater treatment process, which is hazardous to the environment and in urge to be disposed. In this study, for the first time, we prepared carbocatalyst with abundant surface oxygen functional groups using the hazardous waste of SS as precursor via a facile hydrothermal coupled pyrolysis process. The hydrothermal treatment was found to be crucial for enhancing the oxygen content of sludge carbon (SC), most of which existed as ketonic groups. Catalytic performances of the developed SCs were examined by activating peroxymonosulfate (PMS) to degrade bisphenol A (BPA). Sample with more ketonic group performed better for BPA degradation. Under optimal reaction conditions, 100 % of BPA and 69.53 % of TOC could be removed in 20 min. Singlet oxygen (1O2) was suggested to be the main reactive oxygen species for degrading BPA and a BPA degradation pathway was proposed. The BPA solution showed decreased bio-toxicity after the oxidation process according to the acute ecotoxicity test. This study demonstrated the importance of surface functional groups on carbocatalyst for advanced oxidation process, which could be induced by a facile hydrothermal treatment. The feasibility of utilizing hazardous SS for advanced carbocatalyst fabrication was also revealed.
Collapse
Affiliation(s)
- Wanrong Hu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenhua Tong
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yulin Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yundi Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqing Wen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shangfa Feng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuqian Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
47
|
Tan CH, Show PL, Lam MK, Fu X, Ling TC, Chen CY, Chang JS. Examination of indigenous microalgal species for maximal protein synthesis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Lai YC, Chang CH, Chen CY, Chang JS, Ng IS. Towards protein production and application by using Chlorella species as circular economy. BIORESOURCE TECHNOLOGY 2019; 289:121625. [PMID: 31203183 DOI: 10.1016/j.biortech.2019.121625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, productions of microalgal proteins were explored via a circular economy concept. First, production of proteins from Chlorella vulgaris FSP-E (CV) and Chlorella sorokiniana (CS) was optimized by using favorable cultivation conditions and strategies. The optimal CO2 concentration for the growth of both microalgae was 5% (v/v), while the optimal nitrogen source for CV and CS were 12 mM of NaNO3 and NH4Cl, respectively. Addition of 12 mg/L ammonium iron (III) citrate enhanced protein production. Next, semi-batch cultivation strategy was employed to achieve a protein production of 793.3 and 812.8 mg/L for CV and C S, representing a 4.86 and 2.77 fold increase, respectively, in protein productivity. The obtained microalgal proteins consist of 40% essential amino acids. The CV and CS proteins possess prebiotic activities as they enhanced the growth of Lactobacillus rhamnosus ZY by 48 and 74%, respectively, with a good antibacterial activity against predominant pathogens.
Collapse
Affiliation(s)
- Yu-Cheng Lai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; College of Engineering, Tunghai University, Taichung 407, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
49
|
Xie Y, Li J, Ma R, Ho SH, Shi X, Liu L, Chen J. Bioprocess operation strategies with mixotrophy/photoinduction to enhance lutein production of microalga Chlorella sorokiniana FZU60. BIORESOURCE TECHNOLOGY 2019; 290:121798. [PMID: 31325840 DOI: 10.1016/j.biortech.2019.121798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
This study isolated and identified the lutein-enriching microalga Chlorella sorokiniana FZU60. Different types of media and concentrations of sodium acetate and nitrate were evaluated to improve mixotrophic growth and lutein production. Highest lutein content, production, and productivity were obtained in BG11 medium with 1 g/L acetate and 0.75 g/L nitrate. Additionally, pulse feeding with 1 g/L acetate every 48 h led to the alternation between mixotrophy and photoinduction, resulting in a lutein production of 33.6 mg/L. Most notably, excellent lutein content (9.57 mg/g) and productivity (11.57 mg/L/d) were obtained using a new multi-operation integrated strategy, and the achieved levels exceed those reported in most related studies. This work demonstrates the synergistic integration of simple and effective strategies for the enhancement of lutein production in the indigenous microalga C. sorokiniana FZU60 and provides new insight into the highly efficient microalgae-based lutein production.
Collapse
Affiliation(s)
- Youping Xie
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Jun Li
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Ruijuan Ma
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Shih-Hsin Ho
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
50
|
Sui Y, Muys M, Van de Waal DB, D'Adamo S, Vermeir P, Fernandes TV, Vlaeminck SE. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. BIORESOURCE TECHNOLOGY 2019; 287:121398. [PMID: 31078812 DOI: 10.1016/j.biortech.2019.121398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 05/06/2023]
Abstract
Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.
Collapse
Affiliation(s)
- Yixing Sui
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Maarten Muys
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Sarah D'Adamo
- Bioprocess Engineering, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Pieter Vermeir
- Laboratory of Chemical Analysis, Department of Green Chemistry and Technology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|