1
|
Xu Y, Tong X, Lu Y, Lu Y, Wang X, Han J, Liu Z, Ding J, Diao C, Mumby W, Peng Y, Sun Q. Microalgal proteins: Unveiling sustainable alternatives to address the protein challenge. Int J Biol Macromol 2024; 276:133747. [PMID: 38986987 DOI: 10.1016/j.ijbiomac.2024.133747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Recent breakthroughs emphasized the considerable potential of microalgae as a sustainable protein source. Microalgae are regarded as a substitute for protein-rich foods because of their high protein and amino acid content. However, despite their nutritional value, microalgae cannot be easily digested by humans due to the presence of cell walls. In the subsequent sections, protein extraction technology, the overview of the inherent challenges of the process, and the summary of the factors affecting protein extraction and utilization have been deliberated. Moreover, the review inspected the formation of proteolytic products, highlighting their diverse bioactivities, including antioxidant, antihypertensive, and immunomodulatory activities. Finally, the discussion extended to the emerging microalgal protein sourced foods, such as baked goods and nutritional supplements, as well as the sensory and marketing challenges encountered in the production of microalgal protein foods. The lack of consumer awareness about the health benefits of microalgae complicates its acceptance in the market. Long-standing challenges, such as high production costs, persist. Currently, multi-product utilization strategies are being developed to improve the economic viability of microalgae. By integrating economic, environmental, and social factors, microalgae protein can be sustainably developed to provide a reliable source of raw materials for the future food industry.
Collapse
Affiliation(s)
- Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yuting Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Xiangyi Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Jiaheng Han
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Ziyu Liu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Juntong Ding
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Can Diao
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - William Mumby
- Department of Health, Nutrition, and Food Sciences, Florida State University, USA
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, USA.
| |
Collapse
|
2
|
Abdullah M, Ali Z, Yasin MT, Amanat K, Sarwar F, Khan J, Ahmad K. Advancements in sustainable production of biofuel by microalgae: Recent insights and future directions. ENVIRONMENTAL RESEARCH 2024; 262:119902. [PMID: 39222730 DOI: 10.1016/j.envres.2024.119902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae is considered as sustainable and viable feedstock for biofuel production due to its significant advantages over terrestrial plants. Algal biofuels have received significant attention among researchers and energy experts owing to an upsurge in global energy issues emanating from depletion in fossil fuel reserves increasing greenhouse gases emission conflict among agricultural crops, traditional biomass feedstock, and potential futuristic energy security. Further, the exploration of value-added microalgae as sustainable and viable feedstock for the production of variety of biofuels such as biogas, bio-hydrogen, bioethanol, and biodiesel are addressed. Moreover, the assessment of life-cycle, energy balance, and environmental impacts of biofuel production from microalgae are briefly discussed. The present study focused on recent advancements in synthetic biology, metabolic engineering tools, algal bio refinery, and the optimization of algae growth conditions. This paper also elucidates the function of microalgae as bio refineries, the conditions of algae-based cultures, and other operational factors that must be adjusted to produce biofuels that are price-competitive with fossil fuels.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Industrial Biotechnology Division, National Institute for Biotechnology & Genetic Engineering, P.O. Box 577-Jhang Road, Faisalabad, Pakistan; Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266404, PR China
| |
Collapse
|
3
|
Nemani N, Dehnavi SM, Pazuki G. Extraction and separation of astaxanthin with the help of pre-treatment of Haematococcus pluvialis microalgae biomass using aqueous two-phase systems based on deep eutectic solvents. Sci Rep 2024; 14:5420. [PMID: 38443435 PMCID: PMC10914728 DOI: 10.1038/s41598-024-55630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
The microalgae Haematococcus pluvialis are the main source of the natural antioxidant astaxanthin. However, the effective extraction of astaxanthin from these microalgae remains a significant challenge due to the rigid, non-hydrolyzable cell walls. Energy savings and high-efficiency cell disruption are essential steps in the recovery of the antioxidant astaxanthin from the cysts of H. pluvialis. In the present study, H. pluvialis microalgae were first cultured in Bold's Basal medium under certain conditions to reach the maximum biomass concentration, and then light shock was applied for astaxanthin accumulation. The cells were initially green and oval, with two flagella. As the induction time increases, the motile cells lose their flagellum and become red cysts with thick cell walls. Pre-treatment of aqueous two-phase systems based on deep eutectic solvents was used to decompose the cell wall. These systems included dipotassium hydrogen phosphate salt, water, and two types of deep eutectic solvents (choline chloride-urea and choline chloride-glucose). The results of pre-treatment of Haematococcus cells by the studied systems showed that intact, healthy cysts were significantly ruptured, disrupted, and facilitated the release of cytoplasmic components, thus facilitating the subsequent separation of astaxanthin by liquid-liquid extraction. The system containing the deep eutectic solvent of choline chloride-urea was the most effective system for cell wall degradation, which resulted in the highest ability to extract astaxanthin. More than 99% of astaxanthin was extracted from Haematococcus under mild conditions (35% deep eutectic solvent, 30% dipotassium hydrogen phosphate at 50 °C, pH = 7.5, followed by liquid-liquid extraction at 25 °C). The present study shows that the pre-treatment of two-phase systems based on deep eutectic solvent and, thus, liquid-liquid extraction is an efficient and environmentally friendly process to improve astaxanthin from the microalgae H. pluvialis.
Collapse
Affiliation(s)
- Neda Nemani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 1983969411, Tehran, Iran.
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
4
|
Silvanir, Lai SY, Asmawi AA, Chew KW, Ngan CL. Application of high shear-assisted liquid biphasic system for protein extraction from Chlorella sp. BIORESOURCE TECHNOLOGY 2024; 393:130094. [PMID: 38000640 DOI: 10.1016/j.biortech.2023.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Microalgae is a sustainable alternative source to traditional proteins. Existing pretreatment methods for protein extraction from microalgae still lack scalability, are uneconomical and inefficient. Herein, high shear mixing (HSM) was applied to disrupt the rigid cell walls and was found to assist in protein release from microalgae. This study integrates HSM in liquid biphasic system with seven parameters being investigated on extraction efficiency (EE) and protein yield (Y). The highest EE and Y obtained are 96.83 ± 0.47 % and 40.98 ± 1.27 %, respectively, using 30% w/v K3PO4 salt, 60 % v/v alcohol, volume ratio of 1:1 and 0.5 % w/v biomass loading under shearing rate of 16,000 rpm for 1 min.
Collapse
Affiliation(s)
- Silvanir
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan 43900, Malaysia
| | - Sin Yuan Lai
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Azren Aida Asmawi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang Darul Makmur, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| | - Cheng Loong Ngan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
5
|
Wang J, Qin S, Lin J, Wang Q, Li W, Gao Y. Phycobiliproteins from microalgae: research progress in sustainable production and extraction processes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:170. [PMID: 37941077 PMCID: PMC10634026 DOI: 10.1186/s13068-023-02387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/27/2023] [Indexed: 11/10/2023]
Abstract
Phycobiliproteins (PBPs), one of the functional proteins from algae, are natural pigment-protein complex containing various amino acids and phycobilins. It has various activities, such as anti-inflammatory and antioxidant properties. And are potential for applications in food, cosmetics, and biomedicine. Improving their metabolic yield is of great interest. Microalgaes are one of the important sources of PBPs, with high growth rate and have the potential for large-scale production. The key to large-scale PBPs production depends on accumulation and recovery of massive productive alga in the upstream stage and the efficiency of microalgae cells breakup and extract PBPs in the downstream stage. Therefore, we reviewed the status quo in the research and development of PBPs production, summarized the advances in each stage and the feasibility of scaled-up production, and demonstrated challenges and future directions in this field.
Collapse
Affiliation(s)
- Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qi Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
6
|
Izanlou Z, Akhavan Mahdavi M, Gheshlaghi R, Karimian A. Sequential extraction of value-added bioproducts from three Chlorella strains using a drying-based combined disruption technique. BIORESOUR BIOPROCESS 2023; 10:44. [PMID: 38647907 PMCID: PMC10991599 DOI: 10.1186/s40643-023-00664-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2023] [Indexed: 04/25/2024] Open
Abstract
In this study, the sequential extraction of the three types of biochemicals from microalgae is employed, which is a more realistic and practical solution for large-scale extraction of bioproducts. The drying, grinding, organic solvent treatment, and ultra-sonication were combined to disrupt cells and sequentially extract bioproducts from three microalgae strains, Chlorella sorokiniana IG-W-96, Chlorella sp. PG-96, and Chlorella vulgaris IG-R-96. As the drying is the most energy-intensive step in cell disruption and sequential extraction, the effect of this step on sequential extraction deeply explored. The results show that total ash-plus contents of biochemicals in freeze-dried samples (95.4 ± 2.8%, 89.3 ± 3.9%, and 77.5 ± 4.2 respectively) are higher than those in oven-dried samples (91.0 ± 2.8%, 89.5 ± 3.0%, 71.4 ± 4.8%, respectively) showing the superiority of freeze drying over oven drying merely for Chlorella vulgaris IG-R-96 (p-value = 0.003) and non-significant variation for Chlorella sorokiniana IG-W-96 (p-value = 0.085) and Chlorella sp. PG-96 (p-value = 0.466). Variation among biochemical contents of strains is due to the difference in cell wall strength confirmed by TEM imaging. The freeze-dried samples achieved higher lipid yields than oven-dried samples. The total carbohydrate yields followed the same pattern. The extraction yields of total protein were higher in freeze-dried samples than in oven-dried. Total mass balance revealed that drying-based sequential extraction of value-added bioproducts could better demonstrate the economic potential of sustainable and renewable algal feedstock than independent assays for each biochemical.
Collapse
Affiliation(s)
- Zahra Izanlou
- Department of Chemical Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, 91779-48944, Mashhad, Iran
| | - Mahmood Akhavan Mahdavi
- Department of Chemical Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, 91779-48944, Mashhad, Iran.
| | - Reza Gheshlaghi
- Department of Chemical Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, 91779-48944, Mashhad, Iran
| | - Arash Karimian
- Department of Chemical Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, 91779-48944, Mashhad, Iran
| |
Collapse
|
7
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Lipid Recovery from Microalgae Biomass Using Sugaring-Out Extraction in Liquid Biphasic Flotation System. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The increase in global temperature calls for ambitious action to reduce the release of greenhouse gases into the atmosphere. The transportation sector contributes up to 25% of the total emissions released, mainly from the burning of vehicle fuel. Therefore, scientists from all around the world are focusing on finding a sustainable alternative to conventional vehicle fuel. Biofuel has attracted much attention, as it shows great potential for the replacement of traditional fossil fuels. However, the main bottlenecks of biofuel are the ongoing controversial conflict between food security with biofuel production. Therefore, this study focuses on a sustainable extraction of lipids from microalgae for the production of biofuel using a liquid biphasic flotation system coupled with sugaring-out method. This is the first study to combine the methods of liquid biphasic flotation system with the sugaring-out technique. It represents a holistic study of optimum and effective conditions needed to extract lipids from the system and to understand the reliability of sugar solution as the agent of cell disruption. At the 15-min flotation time, 150 g/L of fructose solution with a 1:2 mass separating agent-acetonitrile ratio successfully extracted up to 74% of lipid from Chlorella sorokiniana CY-1. Two types of fatty acid methyl esters were recovered from the study, with C5:0 being the main component extracted.
Collapse
|
9
|
Zhao E, Xiao T, Tan Y, Zhou X, Li Y, Wang X, Zhang K, Ou C, Zhang J, Li Z, Liu H. Separable Microneedles with Photosynthesis-Driven Oxygen Manufactory for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7725-7734. [PMID: 36731033 DOI: 10.1021/acsami.2c18809] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oxygen plays an important role in diabetic chronic wound healing by regulating various life activities such as cell proliferation, migration, and angiogenesis. Therefore, oxygen-delivering systems have drawn much attention and evolved continuously. Here, we propose that an active Chlorella vulgaris (Cv)-loaded separable microneedle (MN) can be used to control oxygen delivery, which then promotes wound healing. The Cv-loaded microneedles (CvMN) consist of a polyvinyl acetate (PVA) substrate and gelatin methacryloyl (GelMA) tips with encapsulated Cv. Once CvMN is applied to diabetic wound, the PVA basal layer is rapidly dissolved in a short time, while the noncytotoxic and biocompatible GelMA tips remain in the skin. By taking advantage of the photosynthesis of Cv, oxygen would be continuously produced in a green way and released from CvMN in a controlled manner. Both in vitro and in vivo results showed that CvMN could promote cell proliferation, migration, and angiogenesis and enhance wound healing in diabetic mice effectively. The remarkable therapeutic effect is mainly attributed to the continuous generation of dissolved oxygen in CvMN and the presence of antioxidant vitamins, γ-linolenic acid, and linoleic acid in Cv. Thus, CvMN provides a promising strategy for diabetic wound healing with more possibility of clinical transformations.
Collapse
Affiliation(s)
- Erman Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding071002, P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding071002, P. R. China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding071002, P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding071002, P. R. China
| | - Yanli Tan
- Affiliated Hospital of Hebei University, Baoding071002, P. R. China
| | - Xiaohan Zhou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan523059, P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong510515, China
| | - Yaqin Li
- Affiliated Hospital of Hebei University, Baoding071002, P. R. China
| | - Xueyi Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan523059, P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong510515, China
| | - Kaihan Zhang
- Department of Chemistry, The University of Manchester, ManchesterM13 9PL, U.K
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan523059, P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong510515, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding071002, P. R. China
- College of Chemistry & Environmental Science, Hebei University, Baoding071002, P. R. China
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan523059, P. R. China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, Guangdong510515, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding071002, P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding071002, P. R. China
| |
Collapse
|
10
|
Investigation and Screening of Mixed Microalgae Species for Lipase Production and Recovery using Liquid Biphasic Flotation Approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res Int 2022; 157:111338. [DOI: 10.1016/j.foodres.2022.111338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
|
12
|
Pocha CKR, Chia WY, Chew KW, Munawaroh HSH, Show PL. Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Goh BHH, Chong CT, Ong HC, Milano J, Shamsuddin AH, Lee XJ, Ng JH. Strategies for fuel property enhancement for second-generation multi-feedstock biodiesel. FUEL 2022; 315:123178. [DOI: 10.1016/j.fuel.2022.123178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The world will face a significant protein demand in the next few decades, and due to the environmental concerns linked to animal protein, new sustainable protein sources must be found. In this regard, microalgae stand as an outstanding high-quality protein source. However, different steps are needed to separate the proteins from the microalgae biomass and other biocompounds. The protein recovery from the disrupted biomass is usually the bottleneck of the process, and it typically employs organic solvents or harsh conditions, which are both detrimental to protein stability and planet health. Different techniques and methods are applied for protein recovery from various matrices, such as precipitation, filtration, chromatography, electrophoresis, and solvent extraction. Those methods will be reviewed in this work, discussing their advantages, drawbacks, and applicability to the microalgae biorefinery process. Special attention will be paid to solvent extraction performed with ionic liquids (ILs) and deep eutectic solvents (DESs), which stand as promising solvents to perform efficient protein separations with reduced environmental costs compared to classical alternatives. Finally, several solvent recovery options will be analyzed to reuse the solvent employed and isolate the proteins from the solvent phase.
Collapse
|
16
|
Kee PE, Yim HS, Kondo A, Wong SYW, Lan JCW, Ng HS. Evaluation of ionic liquids/salt aqueous biphasic flotation system on recovery of Kytococcus sedentarius TWHKC01 keratinase from crude feedstock. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Development of a continuous aqueous two-phase flotation process for the downstream processing of biotechnological products. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Koyande AK, Chew KW, Show PL, Munawaroh HSH, Chang JS. Liquid triphasic systems as sustainable downstream processing of Chlorella sp. biorefinery for potential biofuels and feed production. BIORESOURCE TECHNOLOGY 2021; 333:125075. [PMID: 33872996 DOI: 10.1016/j.biortech.2021.125075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Microalgae are potential sustainable renewable sources of energy but are highly underutilized due to the expensive and time-consuming downstream processing. This study aims at curbing these obstacles by extracting multiple components with a single processing unit. In this work, an ultrasound-assisted liquid triphasic flotation system was incorporated to extract proteins, lipids, and carbohydrates by phase separation. The parameters involved were optimized and the final recovery efficiency of proteins, lipids, and carbohydrates was determined. A control run involving conventional three-phase partitioning and a 15-fold scale-up system with the recycling of phase components were also performed. Gas Chromatograph and Fourier Transform Infrared spectroscopy were used to examine the potential of extracted products as a source of biofuel. This biorefinery approach is crucial in commercializing microalgae for biodiesel and bioethanol generation with a side product of purified proteins as feed.
Collapse
Affiliation(s)
- Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Centre for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
19
|
Ananthi V, Balaji P, Sindhu R, Kim SH, Pugazhendhi A, Arun A. A critical review on different harvesting techniques for algal based biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146467. [PMID: 33774295 DOI: 10.1016/j.scitotenv.2021.146467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The fuels retrieved from renewable sources which are usually employed as both carbon and energy sources are termed as neutral based biofuels. The most promising feedstock from renewable sources with great potentiality in contributing to the inclining energy demand is microalgae. These microalgae can be harnessed readily in terms of obtaining qualitative biodiesel with greater energy consumption under limited operational cost. The process of harvesting or dewatering microalgae could be carried under single or sequential combinations of operations. The major drawback of harvesting such as huge operational cost could be lowered by increasing the level of automation than cost of investments. The present review concentrates and explores on the techno-economic analysis of the microalgal harvesting and dewatering processes on a large scale. Along with these advanced techniques enclosing the utilization of nanoparticles for harvesting has also been explored. And it also adds with the impacts of concerning facts on energy consumption, processing cost and recovery of resources during harvesting.
Collapse
Affiliation(s)
- V Ananthi
- Department of Microbiology, PRIST University, Madurai Campus, Tamil Nadu, India; Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamil Nadu, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - A Arun
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
20
|
Abstract
Several microalgae species have been exploited due to their great biotechnological potential for the production of a range of biomolecules that can be applied in a large variety of industrial sectors. However, the major challenge of biotechnological processes is to make them economically viable, through the production of commercially valuable compounds. Most of these compounds are accumulated inside the cells, requiring efficient technologies for their extraction, recovery and purification. Recent improvements approaching physicochemical treatments (e.g., supercritical fluid extraction, ultrasound-assisted extraction, pulsed electric fields, among others) and processes without solvents are seeking to establish sustainable and scalable technologies to obtain target products from microalgae with high efficiency and purity. This article reviews the currently available approaches reported in literature, highlighting some examples covering recent granted patents for the microalgae’s components extraction, recovery and purification, at small and large scales, in accordance with the worldwide trend of transition to bio-based products.
Collapse
|
21
|
Xie F, Zhang F, Zhou K, Zhao Q, Sun H, Wang S, Zhao Y, Fu J. Breeding of high protein Chlorella sorokiniana using protoplast fusion. BIORESOURCE TECHNOLOGY 2020; 313:123624. [PMID: 32593146 DOI: 10.1016/j.biortech.2020.123624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
To improve Chlorella's economic viability as a natural bait in aquaculture, protoplast fusion technology was used for two Chlorella mutants, H10 and Z13, selected by UV and chemical mutagenesis. Chlorella sorokiniana protoplast was prepared using the enzyme method, and then the optimal enzyme combination of 4% cellulase and 2% driselase was screened out. Z13 and H10 protoplast preparation rates reached 34.72% and 31.11%, respectively. Nine fusions with higher growth rates were selected to assess their biomass, total and soluble proteins contents. Dry cell weight, total protein, and soluble protein of fusion R7 were 0.92 g.L-1, 67.16%, and 0.59 mg.g-1, respectively. The biomass was 1.59, 1.43 times that of H10 and Z13; total and soluble proteins increased by 8.89%, 10.25% and 50.12%, 74.62% respectively, compared with the original algae. These results have implications for breeding excellent strains, and for large-scale and optimal application of Chlorella in aquaculture.
Collapse
Affiliation(s)
- Fengxing Xie
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China.
| | - Fengfeng Zhang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Ke Zhou
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Qiong Zhao
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Haibo Sun
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Shu Wang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Yujie Zhao
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| | - Jinran Fu
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300384, China
| |
Collapse
|
22
|
Koyande AK, Chew KW, Lim JW, Lam MK, Ho YC, Show PL. Biorefinery of Chlorella sorokiniana using ultra sonication assisted liquid triphasic flotation system. BIORESOURCE TECHNOLOGY 2020; 303:122931. [PMID: 32044648 DOI: 10.1016/j.biortech.2020.122931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The aim of this work was to study the ultrasonication-assisted Liquid Tri-phasic Flotation (LTF) System to obtain lipid and protein from microalgae Chlorella sorokiniana in a single step as a novel process. In the current study, biorefinery of Chlorella sorokiniana was performed using LTF system in a single step. The highest protein recovery of 97.43 ± 1.67% and lipid recovery of 69.50 ± 0.54% were obtained. The corresponding parameters were microalgae biomass loading of 0.5 w/v%, ammonium sulphate concentration of 40 w/v%, volume ratio of 1:1.5 (salt:alcohol), ultrasonication pulse mode of 20 s ON/20 s OFF at 20% amplitude for 5 mins, flotation air flowrate of 100 mL/min. Additionally, recycling of alcohol phase to study the circular nature of proposed biorefinery was investigated. The proposed LTF system for extraction of proteins and lipid reduces the number of operation units required in this biorefinery approach.
Collapse
Affiliation(s)
- Apurav Krishna Koyande
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man-Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek-Chia Ho
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Pau-Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
23
|
Kee PE, Ng TC, Lan JCW, Ng HS. Recent development of unconventional aqueous biphasic system: characteristics, mechanisms and applications. Crit Rev Biotechnol 2020; 40:555-569. [DOI: 10.1080/07388551.2020.1747388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Tze-Cheng Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
| |
Collapse
|
24
|
Azmi AAB, Sankaran R, Show PL, Ling TC, Tao Y, Munawaroh HSH, Kong PS, Lee DJ, Chang JS. Current application of electrical pre-treatment for enhanced microalgal biomolecules extraction. BIORESOURCE TECHNOLOGY 2020; 302:122874. [PMID: 32007308 DOI: 10.1016/j.biortech.2020.122874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Pretreatment of microalgal biomass possessing rigid cell wall is a critical step for enhancing the efficiency of microalgal biorefinery. However, the conventional pretreatment processes suffer the drawbacks of complex processing steps, long processing time, low conversion efficiency and high processing costs. This significantly hinders the industrial applicability of microalgal biorefinery. The innovative electricity-aid pretreatment techniques serve as a promising processing tool to extensively enhance the release of intracellular substances from microalgae. In this review, application of electric field-based techniques and recent advances of using electrical pretreatments on microalgae cell focusing on pulsed electric field, electrolysis, high voltage electrical discharges and moderate electric field are reviewed. In addition, the emerging techniques integrating electrolysis with liquid biphasic flotation process as promising downstream approach is discussed. This review delivers broad knowledge of the present significance of the application of these methods focusing on the development of electric assisted biomolecules extraction from microalgae.
Collapse
Affiliation(s)
- Abdul Azim Bin Azmi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Revathy Sankaran
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | - Pei San Kong
- Sime Darby Plantation Research Sdn. Bhd. (formerly known as Sime Darby Research Sdn. Bhd.) (Company No. 560590-X), R&D Centre, Lot 2664, Jalan Pulau Carey, 42960 Pulau Carey, Selangor Darul Ehsan, Malaysia
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
25
|
Krishna Koyande A, Tanzil V, Murraly Dharan H, Subramaniam M, Robert RN, Lau PL, Khoiroh I, Show PL. Integration of osmotic shock assisted liquid biphasic system for protein extraction from microalgae Chlorella vulgaris. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Application of a Liquid Biphasic Flotation (LBF) System for Protein Extraction from Persiscaria Tenulla Leaf. Processes (Basel) 2020. [DOI: 10.3390/pr8020247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Persiscaria tenulla, commonly known as Polygonum, is a plant belonging to the family Polygonaceae, which originated from and is widely found in Southeast Asia countries, such as Indonesia, Malaysia, Thailand, and Vietnam. The leaf of the plant is believed to have active ingredients that are responsible for therapeutic effects. In order to take full advantage of a natural medicinal plant for the application in the pharmaceutical and food industries, extraction and separation techniques are essential. In this study, an emerging and rapid extraction approach known as liquid biphasic flotation (LBF) is proposed for the extraction of protein from Persiscaria tenulla leaves. The scope of this study is to establish an efficient, environmentally friendly, and cost-effective technology for the extraction of protein from therapeutic leaves. Based on the ideal conditions of the small LBF system, a 98.36% protein recovery yield and a 79.12% separation efficiency were achieved. The upscaling study of this system exhibited the reliability of this technology for large-scale applications with a protein recovery yield of 99.44% and a separation efficiency of 93.28%. This technology demonstrated a simple approach with an effective protein recovery yield and separation that can be applied for the extraction of bioactive compounds from various medicinal-value plants.
Collapse
|
27
|
Partition efficiency of cytochrome c with alcohol/salt aqueous biphasic flotation system. J Biosci Bioeng 2020; 129:237-241. [DOI: 10.1016/j.jbiosc.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
|
28
|
Abstract
A well-known bioseparation technique namely liquid biphasic system (LBS) has attracted many researchers’ interest for being an alternative bioseparation technology for various kinds of biomolecules. The present review begins with an in-depth discussion on the fundamental principle of LBS and this is followed by the discussion on further development of various phase-forming components in LBS. Additionally, the implementation of various advance technologies to the LBS that is beneficial towards the efficiency of LBS for the extraction, separation, and purification of biomolecules was discussed. The key parameters affecting the LBS were presented and evaluated. Moreover, future prospect and challenges were highlighted to be a useful guide for future development of LBS. The efforts presented in this review will provide an insight for future researches in liquid-liquid separation techniques.
Collapse
|
29
|
Recovery of Protein from Dairy Milk Waste Product Using Alcohol-Salt Liquid Biphasic Flotation. Processes (Basel) 2019. [DOI: 10.3390/pr7120875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expired dairy products are often disposed of due to the potential health hazard they pose to living organisms. Lack of methods to recover valuable components from them are also a reason for manufactures to dispose of the expired dairy products. Milk encompasses several different components with their own functional properties that can be applied in production of food and non-food technical products. This study aims to investigate the novel approach of using liquid biphasic flotation (LBF) method for protein extraction from expired milk products and obtaining the optimal operating conditions for protein extraction. The optimized conditions were found at 80% concentration ethanol as top phase, 150 g/L dipotassium hydrogen phosphate along with 10% (w/v) milk as bottom phase, and a flotation time of 7.5 min. The protein recovery yield and separation efficiency after optimization were 94.97% and 86.289%, respectively. The experiment has been scaled up by 40 times to ensure it can be commercialized, and the protein recovery yield and separation efficiency were found to be 78.92% and 85.62%, respectively. This novel approach gives a chance for expired milk products to be changed from waste to raw materials which is beneficial for the environment and the economy.
Collapse
|
30
|
Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL. Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system. BIORESOURCE TECHNOLOGY 2019; 290:121794. [PMID: 31319214 DOI: 10.1016/j.biortech.2019.121794] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time.
Collapse
Affiliation(s)
- Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Hwai Chyuan Ong
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
31
|
Abstract
Oleaginous algae are nowadays of significance for industrial biotechnology applications and for the welfare of society. Tremendous efforts have been put into the development of economically feasible and effective downstream processing techniques in algae research. Currently, Liquid Biphasic Systems (LBSs) are receiving much attention from academia and industry for their potential as green and effective downstream processing methods. This article serves to review the applications of LBSs (LBS and Liquid Biphasic Flotation System (LBFS)) in the separation, recovery and purification of algae products, as well as their basic working principles. Moreover, cell disruptive technologies incorporated into LBSs in algae research are reported. This review provides insights into the downstream processing in algae industrial biotechnology which could be beneficial for algae biorefinement.
Collapse
|
32
|
Koyande AK, Chew KW, Lim JW, Lee SY, Lam MK, Show PL. Optimization of protein extraction from Chlorella Vulgaris via novel sugaring-out assisted liquid biphasic electric flotation system. Eng Life Sci 2019; 19:968-977. [PMID: 32624986 DOI: 10.1002/elsc.201900068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 11/07/2022] Open
Abstract
Microalgae biomass has been consumed as animal feed, fish feed and in human diet due to its high nutritional value. In this experiment, microalgae specie of Chlorella Vulgaris FSP-E was utilized for protein extraction via simple sugaring-out assisted liquid biphasic electric flotation system. The external electric force provided to the two-phase system assists in disruption of rigid microalgae cell wall and releases the contents of microalgae cell. This experiment manipulates various parameters to optimize the set-up. The liquid biphasic electric flotation set-up is compared with a control liquid biphasic flotation experiment without the electric field supply. The optimized separation efficiency of the liquid biphasic electric flotation system was 73.999 ± 0.739% and protein recovery of 69.665 ± 0.862% compared with liquid biphasic flotation, the separation efficiency was 61.584 ± 0.360% and protein recovery was 48.779 ± 0.480%. The separation efficiency and protein recovery for 5 × time scaled-up system was observed at 52.871 ± 1.236% and 73.294 ± 0.701%. The integration of simultaneous cell-disruption and protein extraction ensures high yield of protein from microalgae. This integrated method for protein extraction from microalgae demonstrated its potential and further research can lead this technology to commercialization.
Collapse
Affiliation(s)
- Apurav Krishna Koyande
- Department of Chemical Engineering University of Nottingham Malaysia Selangor Darul Ehsan Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences University of Nottingham Malaysia Selangor Darul Ehsan Malaysia
| | - Jun-Wei Lim
- Department of Fundamental & Applied Sciences Universiti Teknologi PETRONAS Perak Malaysia
| | - Sze Ying Lee
- Department of Chemical Engineering Universiti Tunku Abdul Rahman Selangor Darul Ehsan Malaysia
| | - Man Kee Lam
- Department of Chemical Engineering Universiti Teknologi PETRONAS Perak Malaysia
| | - Pau-Loke Show
- Department of Chemical Engineering University of Nottingham Malaysia Selangor Darul Ehsan Malaysia
| |
Collapse
|
33
|
Leong HY, Su CA, Lee BS, Lan JCW, Law CL, Chang JS, Show PL. Development of Aurantiochytrium limacinum SR21 cultivation using salt-rich waste feedstock for docosahexaenoic acid production and application of natural colourant in food product. BIORESOURCE TECHNOLOGY 2019; 271:30-36. [PMID: 30261334 DOI: 10.1016/j.biortech.2018.09.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 05/11/2023]
Abstract
Microalgae biorefinery is presently receiving a lot of attention as driven by its production of high value-added products. In this study, an oleaginous microalga Aurantiochytrium limacinum SR21 was cultured for docosahexaenoic acid (DHA) production using 20% (w/v) of K2HPO4-waste feedstock to replace 0.005% (w/v) of KH2PO4 in the flask culture. DHA is an essential nutrient for human's brain functionalities. Collectively, the K2HPO4-waste feedstock with working concentration of 0.005% (w/v) in the cultivation prompted a higher lipid content (8.29%) and DHA production (128.81 mg.L-1). Moreover, natural plant pigment products containing stabilised betacyanins were utilised as natural red colourants for hard candy production. This study develops microalgal cultivation using salt-rich waste feedstock for a higher lipid and DHA content as well as application of natural colouring agents in food products.
Collapse
Affiliation(s)
- Hui Yi Leong
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Chien-An Su
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Bo-Sheng Lee
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
34
|
Chang YK, Show PL, Lan JCW, Tsai JC, Huang CR. Isolation of C-phycocyanin from Spirulina platensis microalga using Ionic liquid based aqueous two-phase system. BIORESOURCE TECHNOLOGY 2018; 270:320-327. [PMID: 30241065 DOI: 10.1016/j.biortech.2018.07.138] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
An aqueous two-phase system (ATPS) with ionic liquids (ILs) was used for the isolate of C-phycocyanin (CPC) from Spirulina platensis microalga. Various imidazolium ILs and potassium salts were studied. The effect of ILs-ATPS on the extraction efficiency of CPC was also studied. The experimental parameters like pH, loading volume, algae concentration, temperature, and alkyl chain length of IL were well-covered in this report. The experimental results showed that the extraction efficiency, the partition coefficient, and the separation factor for CPC were 99%, 36.6, and 5.8, respectively, for an optimal pH value of 7 and a temperature of 308 K. The order of extraction efficiency for CPC using IL-ATPS was: 1-octyl-3-methylimidazolium bromide (C8MIM-Br) > 1-hexyl-3-methylimidazolium bromide (C6MIM-Br) > 1-butyl-3-methylimidazolium bromide (C4MIM-Br). The isolation process followed the pseudo second-order kinetic model and the thermodynamic results were obviously spontaneous.
Collapse
Affiliation(s)
- Yu-Kaung Chang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| | - Pau-Loke Show
- Bioseparation Research Group, Department of Chemical Engineering and Environmental Engineering, University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia
| | - John Chi-Wei Lan
- Department of Chemical Engineering and Materials Science, College of Engineering, Yuan Ze University, Taiwan
| | - Jung-Chin Tsai
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chi-Rong Huang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
35
|
Sankaran R, Manickam S, Yap YJ, Ling TC, Chang JS, Show PL. Extraction of proteins from microalgae using integrated method of sugaring-out assisted liquid biphasic flotation (LBF) and ultrasound. ULTRASONICS SONOCHEMISTRY 2018; 48:231-239. [PMID: 30080546 DOI: 10.1016/j.ultsonch.2018.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, a simple sugaring-out supported by liquid biphasic flotation technique combined with ultrasonication was introduced for the extraction of proteins from microalgae. Sugaring-out as a phase separation method is novel and has been used in the extraction of metal ions, biomolecules and drugs. But, its functioning in protein separation from microalgae is still unknown. In this work, the feasibility of sugaring-out coupled with ultrasound for the extraction of protein was investigated. Primary studies were carried out to examine the effect of sonication on the microalgae cell as well as the separation efficiency of the integrated method. Effect of various operating parameters such as the concentration of microalgae biomass, the location of sonication probe, sonication time, ultrasonic pulse mode (includes varying ON and OFF duration of sonication), concentration of glucose, types of sugar, concentration of acetonitrile and the flow rate in the flotation system for achieving a higher separation efficiency and yield of protein were assessed. Besides, a large-scale study of the integration method was conducted to verify the consistency of the followed technique. A maximum efficiency (86.38%) and yield (93.33%) were attained at the following optimized conditions: 0.6% biomass concentration, 200 g/L of glucose concentration, 100% acetonitrile concentration with 5 min of 5 s ON/10 s OFF pulse mode and at a flow rate of 100 cc/min. The results obtained for large scale were 85.25% and 92.24% for efficiency and yield respectively. The proposed liquid biphasic flotation assisted with ultrasound for protein separation employing sugaring-out demonstrates a high production and separation efficiency and is a cost-effective solution. More importantly, this method provides the possibility of extending its application for the extraction of other important biomolecules.
Collapse
Affiliation(s)
- Revathy Sankaran
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yee Jiun Yap
- Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jo-Shu Chang
- National Cheng Kung University, Tainan, Taiwan; Taiwan and China Medical University, Taichung, Taiwan
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
36
|
Phong WN, Show PL, Chow YH, Ling TC. Recovery of biotechnological products using aqueous two phase systems. J Biosci Bioeng 2018; 126:273-281. [DOI: 10.1016/j.jbiosc.2018.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
37
|
Sankaran R, Show PL, Cheng YS, Tao Y, Ao X, Nguyen TDP, Van Quyen D. Integration Process for Protein Extraction from Microalgae Using Liquid Biphasic Electric Flotation (LBEF) System. Mol Biotechnol 2018; 60:749-761. [DOI: 10.1007/s12033-018-0111-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Leong HY, Ooi CW, Law CL, Julkifle AL, Ling TC, Show PL. Application of liquid biphasic flotation for betacyanins extraction from peel and flesh of Hylocereus polyrhizus and antioxidant activity evaluation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Sankaran R, Show PL, Lee SY, Yap YJ, Ling TC. Integration process of fermentation and liquid biphasic flotation for lipase separation from Burkholderia cepacia. BIORESOURCE TECHNOLOGY 2018; 250:306-316. [PMID: 29174909 DOI: 10.1016/j.biortech.2017.11.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production.
Collapse
Affiliation(s)
- Revathy Sankaran
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Sze Ying Lee
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yee Jiun Yap
- Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Gorry PL, Sánchez L, Morales M. Microalgae Biorefineries for Energy and Coproduct Production. ENERGY FROM MICROALGAE 2018. [DOI: 10.1007/978-3-319-69093-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|