1
|
Thamizharasan A, Aishwarya M, Mohan V, Krishnamoorthi S, Gajalakshmi S. Assessment of microbial flora and pesticidal effect of vermicast generated from Azadirachta indica (neem) for developing a biofertilizer-cum-pesticide as a single package. Microb Pathog 2024; 192:106690. [PMID: 38759935 DOI: 10.1016/j.micpath.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.
Collapse
Affiliation(s)
- A Thamizharasan
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - M Aishwarya
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - V Mohan
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Krishnamoorthi
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Gajalakshmi
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
2
|
Bhat SA, Han ZM, Dewi SK, Wei Y, Li F. Effect of conventional and biodegradable microplastics on earthworms during vermicomposting process. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:189. [PMID: 38695970 DOI: 10.1007/s10653-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 06/17/2024]
Abstract
The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.
Collapse
Affiliation(s)
- Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Zaw Min Han
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shiamita Kusuma Dewi
- United Graduated School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
3
|
Floriano da Silva LC, Vinhas Ítavo LC, Martins Santos R, Brandão Ferreira Ítavo CC, Zirondi Longhini V, Menezes Dias A, dos Santos Difante G, Moreira Arcanjo AH, Santos Santana JC, Gurgel ALC, de Oliveira Scarpino van Cleef F. Urban sewage sludge stabilization by alkalization-composting-vermicomposting process: Crop-livestock residue use. PLoS One 2023; 18:e0289362. [PMID: 37676872 PMCID: PMC10484420 DOI: 10.1371/journal.pone.0289362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
Waste management practices are vital for human health and the environment in a world where natural resources stress is expected to increase with the growth of population. Our study aimed to evaluate the potential use of crop-livestock residue as a bulking agent associated with the ideal level of hydrated lime for the stabilization and sanitization of urban sewage sludge through the alkalization-composting process. Therefore, we determined the alkalization efficiency on the heavy metal concentration in urban sewage sludge, quantified the viable eggs of helminths in pure and alkalized sludge, and measured the rate of earthworms (Eisenia fetida) surviving in the vermicomposting process using different levels of alkalized urban sewage sludge associated with crop-livestock residue. Four sequential trials were carried out in a completely randomized design with three replicates. The lime alkalization reduced the levels of Ba, As, Pb, Cu, Cr, Mo, Ni, and Zn compared to the pure urban sewage sludge. Using 30% w/w of lime in the urban sewage sludge (SS-30) for composting process reduced the viable helminth eggs by 71, 72, and 69% for sugarcane bagasse (Saccharum officinarum; SB), fresh chopped Napier-grass (Pennisetum purpureum; NG), and bovine ruminal content (BR), respectively. The ideal level of hydrated lime for stabilization and sanitization of urban sewage sludge was found to be 30%, which was able to reduce the heavy metals. The residues have the potential as a bulking agent for the composting of urban sewage sludge when associated with alkalization. The lime alkalization decreases the total number of helminth eggs and the number of viable eggs. The possibility of starting a vermicomposting using the mixtures is promising, evidenced by the earthworm survival in composting urban sewage sludge mixed with crop-livestock residues after 45 days of composting. The earthworm survival is maintained by an association of at least 80% of the crop-livestock residues.
Collapse
Affiliation(s)
| | - Luís Carlos Vinhas Ítavo
- College of Veterinary Medicine and Animal Science (FAMEZ), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | | | | | - Vanessa Zirondi Longhini
- College of Veterinary Medicine and Animal Science (FAMEZ), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Alexandre Menezes Dias
- College of Veterinary Medicine and Animal Science (FAMEZ), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Gelson dos Santos Difante
- College of Veterinary Medicine and Animal Science (FAMEZ), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Angelo Herbet Moreira Arcanjo
- College of Veterinary Medicine and Animal Science (FAMEZ), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Juliana Caroline Santos Santana
- College of Veterinary Medicine and Animal Science (FAMEZ), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | | | | |
Collapse
|
4
|
Ashok Kumar K, Subalakshmi R, Jayanthi M, Abirami G, Vijayan DS, Venkatesa Prabhu S, Baskaran L. Production and characterization of enriched vermicompost from banana leaf biomass waste activated by biochar integration. ENVIRONMENTAL RESEARCH 2023; 219:115090. [PMID: 36529329 DOI: 10.1016/j.envres.2022.115090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Vermicomposting uses less energy and requires fewer infrastructures, and it is capable of restoring soil nutrition and carbon. Banana cultivation produces lots of trash in a single crop season, with 30 tonnes of waste generated per acre. The biodegradable fraction of banana leaf waste is thrown out in large quantities from temples, markets place wedding halls, hotels, and residential areas. Vermicomposting can be used for recovering lignin, cellulose, pectin, and hemicellulose from banana leaves. Earthworm digests organic materials with the enzymes produced in gut microflora. Biochar adds bulk to vermicomposting, increases its value as fertilizer. The goal of this study was to amend biochar (0, 2, 4 and 6%) with banana leaf waste (BLW) + cow dung (CD) in three different combinations (1:1, 2:1 and 3:1) using Eisenia fetida to produce enriched vermicompost. In the vermicompost with biochar groups, there were higher levels of physicochemical parameters, as well as macro- and micronutrient contents. The growth and reproduction of earthworms were higher in groups with biochar. A maximum of 1.82, 1.18 and 1.67% of total nitrogen, total phosphorus and total potassium was found in the final vermicompost recovered from BLW + CD (1:1) amended with 4% biochar; while the other treatments showed lower levels of nutrients. A lower C/N ratio of 18.14 was observed in BLW + CD (1:1) + 4% biochar followed by BLW + CD (1:1) + 2% biochar amendment (19.92). The FTIR and humification index studies show that degradation of organic matter has occurred in the final vermicompost and the substrates with 4% biochar in 1:1 combination showed better degradation and this combination can be used for nutrient rich vermicompost production.
Collapse
Affiliation(s)
- K Ashok Kumar
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India.
| | - R Subalakshmi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - M Jayanthi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - G Abirami
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - D S Vijayan
- Department of Civil Engineering, Aarupadai Veedu Institute of Technology, VMRF, Paiyanur, Chennai, 603104, Tamil Nadu, India
| | - S Venkatesa Prabhu
- Center of Excellence for Bioprocess and Biotechnology, Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - L Baskaran
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram, 608 002, Tamil Nadu, India; PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
5
|
IndraKumar Singh S, Singh WR, Bhat SA, Sohal B, Khanna N, Vig AP, Ameen F, Jones S. Vermiremediation of allopathic pharmaceutical industry sludge amended with cattle dung employing Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 214:113766. [PMID: 35780853 DOI: 10.1016/j.envres.2022.113766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study aims to vermiremediate allopathic pharmaceutical industry sludge (AS) amended with cattle dung (CD), in different feed mixtures (AS:CD) i.e (AS0) 0:100 [Positive control], (AS25) 25:75, (AS50) 50:50, (AS75) 75:25 and (AS100) 100:0 [Negative Control] for 180 days using earthworm Eisenia fetida. The earthworms could thrive and grow well up to the AS75 feed mixture. In the final vermicompost, there were significant decreases in electrical conductivity (29.18-18.70%), total organic carbon (47.48-22.39%), total organic matter (47.47-22.36%), and C: N ratio (78.15-54.59%). While, significant increases in pH (9.06-16.47%), total Kjeldahl nitrogen (69.57-139.58%), total available phosphorus (30.30-81.56%), total potassium (8.92-22.22%), and total sodium (50.56-62.12%). The heavy metals like Cr (50-18.60%), Cd (100-75%), Pb (57.14-40%), and Ni (100-50%) were decreased, whereas Zn (8.37-53.77%), Fe (199.03-254.27%), and Cu (12.90-100%) increased significantly. The toxicity of the final vermicompost was shown to be lower in the Genotoxicity analysis, with values ranging between (76-42.33%). The germination index (GI) of Mung bean (Vigna radiata) showed a value ranging between 155.02 and 175.90%. Scanning electron microscopy (SEM) analysis showed irregularities with high porosity of texture in the final vermicompost than in initial mixtures. Fourier Transform-Infrared Spectroscopy (FT-IR) spectra of final vermicompost had low peak intensities than the initial samples. The AS50 feed mixture was the most favorable for the growth and fecundity of Eisenia fetida, emphasizing the role of cattle dung in the vermicomposting process. Thus, it can be inferred that a cost-effective and eco-friendly method (vermicomposting) with the proper amendment of cattle dung and employing Eisenia fetida could transform allopathic sludge into a nutrient-rich, detoxified, stable, and mature vermicompost for agricultural purposes and further could serve as a stepping stone in the allopathic pharmaceutical industry sludge management strategies in the future.
Collapse
Affiliation(s)
- Soubam IndraKumar Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Waikhom Roshan Singh
- Manipur Pollution Control Board (MPCB), Imphal West, DC Office Complex, Imphal, 795001, Manipur, India
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Bhawana Sohal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Namita Khanna
- Department of Physiology, Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, 151203, Punjab, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India; Punjab Pollution Control Board (PPCB), Vatavaran Bhawan, Nabha Road, Patiala, 147001, Punjab, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumathi Jones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai, 600100, India
| |
Collapse
|
6
|
Cui G, Lü F, Hu T, Zhang H, Shao L, He P. Vermicomposting leads to more abundant microplastics in the municipal excess sludge. CHEMOSPHERE 2022; 307:136042. [PMID: 35981618 DOI: 10.1016/j.chemosphere.2022.136042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/12/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Municipal excess activated sludge is not only an important reservoir of microplastics particles, but is also a vehicle of entry of microplastics into the environments as soil amendments or organic fertilizer. Vermicomposting is a cost-effective technology for sludge valorization. However, it is not clear whether vermicomposting affects the occurrence of microplastics in residual sludge. Here, the variation of microplastics (0.05-5 mm) in sludge, including the abundance, type, size, and morphology, before and after vermicomposting by epigeic earthworms under different temperature conditions (15 °C, 20 °C and 25 °C) were investigated by micro Fourier Transform Infrared Spectroscopy (μ-FTIR) and Scanning Electronic Microscopy (SEM). More abundant (over 104 particles ∙kg-1 (dry weight)), and smaller microplastics (over 60% in total with 0.05-0.5 mm) in the treated sludge via earthworms were observed compared to the raw sludge. The increment of vermicomposting temperature was more obvious (p < 0.05) for the enrichment of the microplastics, especially for polyethylene particle. Gizzard grinding and microbial digestion in the gut of earthworms may contribute to the fragment of microplastics. The present study suggests that the sludge-sourced vermicompost is still an important hotspot of microplastics, posing a potential threat to the receiving environments.
Collapse
Affiliation(s)
- Guangyu Cui
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China.
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Tian Hu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, 200092, China.
| |
Collapse
|
7
|
Cui G, Fu X, Bhat SA, Tian W, Lei X, Wei Y, Li F. Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. ENVIRONMENTAL RESEARCH 2022; 207:112654. [PMID: 34990606 DOI: 10.1016/j.envres.2021.112654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Effect of temperature on antibiotic resistance genes (ARGs) during vermicomposting of domestic excess sludge remains poorly understood. Vermicomposting experiment with excess sludge was conducted at three different temperatures (15 °C, 20 °C, and 25 °C) to investigate the fate of ARGs, bacterial community and their relationship in the process. The vermicomposting at 25 °C did not significantly attenuate the targeted ARGs relative to that at 15 °C and 20 °C. The dynamics of qnrA, qnrS, and tetM genes during vermicomposting at 15 °C and 20 °C followed the first-order kinetic model. Temperature remarkably impacted bacterial diversity of the final products with the lowest Shannon index at 25 °C. The presence of the genus (Aeromonas and Chitinophagaceae) at 25 °C may contribute to the rebound of the genes (qnrA, qnrS and tetM). The study indicates that 20 °C is a suitable vermicomposting temperature to simultaneously reach the highest removal efficiency of the ARGs and the good biostability of the final product.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai, 200092, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Xiaoyong Fu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, Maharashtra 440020, India
| | - Weiping Tian
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xuyang Lei
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Xingtai, 054000, China
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
8
|
Aerobic Composting of Sugar Pressmud with Stabilized Spentwash and selected Microbial Consortium. EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
India is the world’s largest producer of sugar, with an annual production capacity of 29 million tonnes. Each crushing season, this intern produces over 10 million tonnes of pressmud, which is difficult to dispose of due to its inherent properties. The present study is part of larger investigation for treatment and disposal of pressmud and spentwash. Further, scope of this research article is confined to utilization of pressmud for aerobic composting of pressmud along with selected microbial consortium and stabilized spentwash. Composting was carried out in an open area with 50 kg of pressmud and 1% (w/w) dosage of microbial consortium. Stabilized spentwash was used at concentrations of 25, 50, 100, 150 and 200% (v/w) and applied at predetermined time intervals. The entire study lasted for 50 days and the results were compared to those recommended by the Fertilizer Control Order (FCO), Ministry of Agriculture, Government of India (1). In an organic compost, the FCO recommends a minimum concentration of 12%, 0.80%, 0.40%, and 0.40% in TOC, TKN, phosphorous and potassium, with a maximum C/N ratio of 20. During composting, the addition of 150% (CH5) stabilized spentwash resulted in a maximum nutrient concentration in the majority of the parameters analysed. CH5 showed that the concentration of TOC, TKN, C/N, phosphorous and potassium were 25.92±2.19%, 2.16±0.29%, 12.28±0.66, 6.55±0.11% and 15.90±1.37% respectively. Hence, it can be concluded that selected microbial consortium is capable of decomposing the organic matter found in pressmud. Additionally, the application of stabilized spentwash enhanced the nutritional content of end product.
Collapse
|
9
|
Gita S, Shukla SP, Deshmukhe G, Singh AR, Choudhury TG, Singh AK. Adsorption-biodegradation coupled remediation process for the efficient removal of a textile dye through chemically functionalized sugarcane bagasse. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2223-2236. [PMID: 34076310 DOI: 10.1002/wer.1595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Textile dye effluents have many deleterious effects; therefore, it is essential to remove before releasing into waterbodies. This study developed a two-step process for decolorization of textile dye using sugarcane bagasse (SCB). The first step of the process involved functionalization of SCB with alginic acid and applying as packing material in column and assessing its performance for adsorptive removal of Drimarene red. The designed column showed 90% removal of the dye in dye-aqueous solution whereas 80% removal in dye-house wastewater. Adsorption capacity was increased at first 10 min and then gradually decreased with time. Breakthrough point was not achieved during the 60 min of experiment. Three non-equilibrium models were applied to understand the column bed properties. In the second step, the adsorbed dye molecules in SCB were degraded using an edible fungus Pleurotus sp. to obtain a dye-free nitrogen-rich bagasse. The fungus-treated SCB showed no residual toxicity and a considerable improvement in nitrogen content (from 0.14% to 0.62%) was noticed after the study of elemental profile. New design of the column bed, the processes of the chemical functionalization of the SCB, and bioremediation of dye treated bagasse through Pleurotus sp. offer a novel solution for efficient and safe disposal of textile dyes. PRACTITIONER POINTS: Two-step process for remediation of a textile dye using an agrowaste and Pleurotus sp. Chemical functionalization of an agrowaste for enhanced dye removal. New process of adsorption-fungal degradation for safe disposal of the dyes. Novel technology for a sustainable use of the agrowaste for environmental safety.
Collapse
Affiliation(s)
- Samchetshabam Gita
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
- College of Fisheries, CAU (I), Agartala, India
| | - Satya Prakash Shukla
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Geetanjali Deshmukhe
- Fisheries Resource & Post-harvest Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | | | - Ashutosh Kumar Singh
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
10
|
Abdollahinejad B, Pasalari H, Jafari AJ, Esrafili A, Farzadkia M. Bioremediation of diesel and gasoline-contaminated soil by co-vermicomposting amended with activated sludge: Diesel and gasoline degradation and kinetics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114584. [PMID: 32320891 DOI: 10.1016/j.envpol.2020.114584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 05/06/2023]
Abstract
Present study aims to examine the efficiency of co-vermicomposting amended with activated sludge and E. fetida earthworm for bioremediation of diesel and gasoline from contaminated soil. The diesel and gasoline removal efficiency and degradation rates coefficients were estimated with gas chromatography (GC) analysis and first-order kinetics. The removal of gasoline and diesel in different co-vermicomposting processes with and without E. fetida ranged between 65-100% and 24.94-63.93%, respectively within 90- day experiment. Removal of gasoline and diesel increased in soil with addition of earthworm (E. fetida); higher degradation rate coefficients (k) were observed for co-vermicomposting with earthworm compared with co-vermicomposting processes. The highest k (0.014) for diesel degradation was estimated for microcosm reactor 4 (R4), where high numbers of E. fetida accelerate the less biodegradable organic contaminant from the soil matrices. The reasonable survival rates of earthworms in exposure to high concentration of petroleum-derivatives contaminated soils indicated increased activity of ligninolytic diesel-degrading earthworms and microorganisms. Therefore, co-vermicomposting amended with activated sludge is suggested as feasible and promising technologies for bioremediation of high content of organic contaminants from the soil matrices.
Collapse
Affiliation(s)
- Behnaz Abdollahinejad
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
11
|
Balachandar R, Baskaran L, Yuvaraj A, Thangaraj R, Subbaiya R, Ravindran B, Chang SW, Karmegam N. Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae. BIORESOURCE TECHNOLOGY 2020; 299:122578. [PMID: 31865155 DOI: 10.1016/j.biortech.2019.122578] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Vermicomposting of pressmud with cow dung and nitrogenous green manures (Gliricidia sepium and Leucaena leucocephala) was carried out using Eudrilus eugeniae (50 days). The reduction in pH, total organic carbon, C/N ratio, water-soluble organic carbon (Cws)/Norg and C/P ratios, and a pronounced increase in NPK contents and microbial population in vermicompost were observed. An enhanced TKN of 3.80% and 3.45% was recorded in vermicomposts of pressmud + cow dung + L. leucocephala (2:1:1) and pressmud + cow dung + G. sepium (2:1:1) respectively. The C/N and Cws/Norg ratios in vermicompost ranged from 11.86 to 16.66 and 0.53 to 1.33, respectively. The activity of dehydrogenase, urease, acid and alkaline phosphatase declined towards the end, indicating the progression of vermicompost maturity. The pressmud and green manure substrates promoted more biomass of E. eugeniae, while cow dung with green manure combination favored reproduction. The amendment of cow dung and green manure plants to pressmud (2:1:1 ratio) results in nutrient-enriched vermicompost production.
Collapse
Affiliation(s)
- Ramalingam Balachandar
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Missions Research Foundation (Deemed to be University), Paiyanoor, Chennai 603 104, Tamil Nadu, India
| | | | - Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Gyeonggi-Do 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Gyeonggi-Do 16227, South Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India.
| |
Collapse
|
12
|
Bhat SA, Singh S, Singh J, Kumar S, Vig AP. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. BIORESOURCE TECHNOLOGY 2018; 252:172-179. [PMID: 29321101 DOI: 10.1016/j.biortech.2018.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Vermicompost is the final product of the vermicomposting process involving the collective action of earthworms and microbes. During this process, the waste is converted into useful manure by reducing the harmful effects of waste. Toxicity of industrial wastes is evaluated by plant bioassays viz. Allium cepa and Vicia faba test. These bioassays are sensitive and cost-effective for the monitoring of environmental contamination. The valorization potential of earthworms and their ability to detoxify heavy metals in industrial wastes is because of their strong metabolic system and involvement of earthworm gut microbes and chloragocyte cells. Most of the studies reported that the vermicompost produced from organic wastes contains higher amounts of humic substances, which plays a major role in growth of plants. The present article discusses the detoxification of industrial wastes by earthworms and the role of final vermicompost in plant growth and development.
Collapse
Affiliation(s)
- Sartaj Ahmad Bhat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jaswinder Singh
- P.G. Department of Zoology, Khalsa College, Amritsar 143001, India
| | - Sunil Kumar
- Solid and Hazardous Waste Management Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|