1
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Huang HY, Hsu HY, Kuo CY, Wu ML, Lai CC, Chang GRL, Lin YJ. Heterologous expressing melittin in a probiotic yeast to evaluate its function for promoting NSC-34 regeneration. Appl Microbiol Biotechnol 2024; 108:496. [PMID: 39466458 PMCID: PMC11519230 DOI: 10.1007/s00253-024-13336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/21/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Melittin is a bioactive peptide and the predominant component in bee venom (BV), studied for its many medical properties, such as antibacterial, anti-inflammatory, anti-arthritis, nerve damage reduction, and muscle cell regeneration. Melittin is primarily obtained through natural extraction and chemical synthesis; however, both methods have limitations and cannot be used for mass production. This study established a heterologous melittin expression system in the probiotic yeast Kluyveromyces marxianus. This yeast was selected for its advantages in stress tolerance and high secreted protein yields, simplifying purification. A > 95% high-purity melittin (MET) and its precursor promelittin (ProMET) were successfully produced and purified at 1.68 μg/mL and 3.33 μg/mL concentrations and verified through HPLC and mass spectrum. The functional test of the NSC-34 cell regeneration revealed that MET achieved the best activity compared to ProMET and the natural-extracted BV groups. Growth-related gene expressions were evaluated, including microtubule-associated protein 2 (MAP2), microtubule-associated protein Tau (MAPT), growth-associated protein 43 (GAP-43), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), and acetylcholine esterase (AChE). The results indicated that treating MET increased MAP2, GAP-43, and VAChT expressions, in which cholinergic signaling is related to neurological functions. A heterologously expressed melittin in a probiotic yeast and its potential for promoting NSC-34 regeneration described here facilitate commercial and therapeutic use. KEY POINTS: • MET and its precursor ProMET were successfully hetero-expressed in K. marxianus • > 95% high-purity MET and ProMET were purified at 1.68 μg/mL and 3.33 μg/mL • MET has no cytotoxicity toward NSC-34 and significantly promotes NSC-34 growth.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Hung-Yi Hsu
- Section of Neurology, Department of Internal Medicine, Tungs' Taichung Metro-Harbor Hospital, No. 699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan, ROC
- Department of Post Baccalaureate Medicine, National Chung Hsing University, No.699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan, ROC
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Mao-Lun Wu
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Gary Ro-Lin Chang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC.
| |
Collapse
|
3
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
4
|
Zhou D, Fei Z, Liu G, Jiang Y, Jiang W, Lin CSK, Zhang W, Xin F, Jiang M. The bioproduction of astaxanthin: A comprehensive review on the microbial synthesis and downstream extraction. Biotechnol Adv 2024; 74:108392. [PMID: 38825214 DOI: 10.1016/j.biotechadv.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.
Collapse
Affiliation(s)
- Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengyue Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guannan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
5
|
Acheampong A, Li L, Elsherbiny SM, Wu Y, Swallah MS, Bondzie-Quaye P, Huang Q. A crosswalk on the genetic and conventional strategies for enhancing astaxanthin production in Haematococcus pluvialis. Crit Rev Biotechnol 2024; 44:1018-1039. [PMID: 37778751 DOI: 10.1080/07388551.2023.2240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023]
Abstract
Astaxanthin is a naturally occurring xanthophyll with powerful: antioxidant, antitumor, and antibacterial properties that are widely employed in food, feed, medicinal and nutraceutical industries. Currently, chemical synthesis dominates the world's astaxanthin market, but the increasing demand for natural products is shifting the market for natural astaxanthin. Haematococcus pluvialis (H. pluvialis) is the factory source of natural astaxanthin when grown in optimal conditions. Currently, various strategies for the production of astaxanthin have been proposed or are being developed in order to meet its market demand. This up-to-date review scrutinized the current approaches or strategies that aim to increase astaxanthin yield from H. pluvialis. We have emphasized the genetic and environmental parameters that increase astaxanthin yield. We also looked at the transcriptomic dynamics caused by environmental factors (phytohormones induction, light, salt, temperature, and nutrient starvation) on astaxanthin synthesizing genes and other metabolic changes. Genetic engineering and culture optimization (environmental factors) are effective approaches to producing more astaxanthin for commercial purposes. Genetic engineering, in particular, is accurate, specific, potent, and safer than conventional random mutagenesis approaches. New technologies, such as CRISPR-Cas9 coupled with omics and emerging computational tools, may be the principal strategies in the future to attain strains that can produce more astaxanthin. This review provides accessible data on the strategies to increase astaxanthin accumulation natively. Also, this review can be a starting point for new scholars interested in H. pluvialis research.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lamei Li
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Shi Y, Lu S, Zhou X, Wang X, Zhang C, Wu N, Dong T, Xing S, Wang Y, Xiao W, Yao M. Systematic metabolic engineering enables highly efficient production of vitamin A in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 10:58-67. [PMID: 39247801 PMCID: PMC11380465 DOI: 10.1016/j.synbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Vitamin A is a micronutrient critical for versatile biological functions and has been widely used in the food, cosmetics, pharmaceutical, and nutraceutical industries. Synthetic biology and metabolic engineering enable microbes, especially the model organism Saccharomyces cerevisiae (generally recognised as safe) to possess great potential for the production of vitamin A. Herein, we first generated a vitamin A-producing strain by mining β-carotene 15,15'-mono(di)oxygenase from different sources and identified two isoenzymes Mbblh and Ssbco with comparable catalytic properties but different catalytic mechanisms. Combinational expression of isoenzymes increased the flux from β-carotene to vitamin A metabolism. To modulate the vitamin A components, retinol dehydrogenase 12 from Homo sapiens was introduced to achieve more than 90 % retinol purity using shake flask fermentation. Overexpressing POS5Δ17 enhanced the reduced nicotinamide adenine dinucleotide phosphate pool, and the titer of vitamin A was elevated by almost 46 %. Multi-copy integration of the key rate-limiting step gene Mbblh further improved the synthesis of vitamin A. Consequently, the titer of vitamin A in the strain harbouring the Ura3 marker was increased to 588 mg/L at the shake-flask level. Eventually, the highest reported titer of 5.21 g/L vitamin A in S. cerevisiae was achieved in a 1-L bioreactor. This study unlocked the potential of S. cerevisiae for synthesising vitamin A in a sustainable and economical way, laying the foundation for the commercial-scale production of bio-based vitamin A.
Collapse
Affiliation(s)
- Yi Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shuhuan Lu
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, 430075, China
| | - Xiao Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Xinhui Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Chenglong Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Nan Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shilong Xing
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
7
|
Li Z, You L, Du X, Yang H, Yang L, Zhu Y, Li L, Jiang Z, Li Q, He N, Lin R, Chen Z, Ni H. New strategies to study in depth the metabolic mechanism of astaxanthin biosynthesis in Phaffia rhodozyma. Crit Rev Biotechnol 2024:1-19. [PMID: 38797672 DOI: 10.1080/07388551.2024.2344578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Astaxanthin, a ketone carotenoid known for its high antioxidant activity, holds significant potential for application in nutraceuticals, aquaculture, and cosmetics. The increasing market demand necessitates a higher production of astaxanthin using Phaffia rhodozyma. Despite extensive research efforts focused on optimizing fermentation conditions, employing mutagenesis treatments, and utilizing genetic engineering technologies to enhance astaxanthin yield in P. rhodozyma, progress in this area remains limited. This review provides a comprehensive summary of the current understanding of rough metabolic pathways, regulatory mechanisms, and preliminary strategies for enhancing astaxanthin yield. However, further investigation is required to fully comprehend the intricate and essential metabolic regulation mechanism underlying astaxanthin synthesis. Specifically, the specific functions of key genes, such as crtYB, crtS, and crtI, need to be explored in detail. Additionally, a thorough understanding of the action mechanism of bifunctional enzymes and alternative splicing products is imperative. Lastly, the regulation of metabolic flux must be thoroughly investigated to reveal the complete pathway of astaxanthin synthesis. To obtain an in-depth mechanism and improve the yield of astaxanthin, this review proposes some frontier methods, including: omics, genome editing, protein structure-activity analysis, and synthetic biology. Moreover, it further elucidates the feasibility of new strategies using these advanced methods in various effectively combined ways to resolve these problems mentioned above. This review provides theory and method for studying the metabolic pathway of astaxanthin in P. rhodozyma and the industrial improvement of astaxanthin, and provides new insights into the flexible combined use of multiple modern advanced biotechnologies.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Li You
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Haoyi Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Liang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Rui Lin
- College of Ocean and Earth Sciences, and Research and Development Center for Ocean Observation Technologies, Xiamen University, Xiamen, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian Province, People's Republic of China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, Fujian Province, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province, People's Republic of China
- Food Microbial and Enzyme Engineering Research Center of Fujian University, People's Republic of China
| |
Collapse
|
8
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Yuan WC, Wu TY, Chu PY, Chang FR, Wu YC. High-Purity Bioactive Ingredient—3S,3′S-Astaxanthin: A New Preparation from Genetically Modified Kluyveromyces marxianus without Column Chromatography and Gel Filtration. Antioxidants (Basel) 2023; 12:antiox12040875. [PMID: 37107250 PMCID: PMC10135142 DOI: 10.3390/antiox12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
A highly efficient methodology for bioactive ingredient 3S,3′S-astaxanthin (3S,3′S-AST) preparation from genetically modified yeast (Kluyveromyces marxianus) with a combination of enzyme-assisted extraction and salt-assisted liquid-liquid extraction (SALLE) was achieved. The highest yield of 3S,3′S-AST indicated that FoodPro® CBL for yeast cell walls hydrolysis could significantly enhance extraction and obtain, with the help of SALLE procedure, quantified 3S,3′S-AST over 99% in purity through cation chelation. In the oxygen radical antioxidant capacity (ORAC) assay, the antioxidant capacity of high-purity 3S,3′S-AST products were 18.3 times higher than that of the original raw material extract. This new combination preparation may replace previous methods and has the potential to be scaled up in the manufacture of high-purity 3S,3′S-AST from low-value bioresources of raw materials to high-value products in the food and/or drug industries with lower cost and simple equipment.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tung-Ying Wu
- Department of Biological Science & Technology, Meiho University, Pingtung 912, Taiwan
- Department of Food Science and Nutrition, Meiho University, Pingtung 912, Taiwan
| | - Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
10
|
Lin YJ, Chang JJ, Huang HT, Lee CP, Hu YF, Wu ML, Huang CY, Nan FH. Improving red-color performance, immune response and resistance to Vibrio parahaemolyticus on white shrimp Penaeus vannamei by an engineered astaxanthin yeast. Sci Rep 2023; 13:2248. [PMID: 36755087 PMCID: PMC9908916 DOI: 10.1038/s41598-023-29225-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Astaxanthin (AST), a super antioxidant with coloring and medical properties, renders it a beneficial feed additive for shrimp. This study conducted a white shrimp feeding trial of 3S, 3'S isoform AST, which was derived from metabolic-engineered Kluyveromyces marxianus fermented broth (TB) and its extract (TE) compared to sources from two chemically synthetic ASTs (Carophyll Pink [CP] and Lucantin Pink [LP]), which contain 3S, 3'S, 3R, 3'S (3S, 3'R) and 3R, 3'R isoforms ratio of 1:2:1. The effects on red coloration, immune parameters and resistance to Vibrio infection were evaluated. Four AST sources were incorporated into the diets at concentrations of 0 (control), 100 mg kg-1 (TB100, TE100, CP100, and LP100), and 200 mg kg-1 (TB200, TE200, CP200, and LP200). Results revealed that in week 4, shrimps that received AST-supplemented feeds, especially TB100, TB200, and TE200, significantly increased redness (a*) values. Immune responses including phagocytosis activity, superoxide-anion production, phenoloxidase activity, and immune-related genes were examined on days 0, 1, 2, 4, 7, 14, 21, and 28. Generally, shrimps that received AST-supplemented feeds exhibited higher immune responses on days 7 and 14 than the control feed. Gene expression levels of superoxide dismutase and glutathione peroxidase were significantly upregulated on days 7 and 14 in shrimps that received AST-supplemented feeds, while genes of penaeidins, antilipopolysaccharide factor, and lysozyme were upregulated on days 4, 7, and 14, especially received TB200 and TE200. Furthermore, shrimps that received TB100, TE100, CP100, and LP100 7 days were then challenged with Vibrio parahaemolyticus and the result demonstrated higher survival rates especially TB100 at 168 h than the control feed. In conclusion, incorporating AST into the diets enhanced shrimp red coloration, immune parameters, and resistance against V. parahaemolyticus infection. The K. marxianus-derived AST exhibited higher performance than did chemical AST to be a potential feed additive in shrimp aquaculture.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40227, Taiwan, ROC
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Chih-Ping Lee
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Mao-Lun Wu
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Chih-Yang Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
11
|
Wang DN, Feng J, Yu CX, Zhang XK, Chen J, Wei LJ, Liu Z, Ouyang L, Zhang L, Hua Q, Liu F. Integrated pathway engineering and transcriptome analysis for improved astaxanthin biosynthesis in Yarrowia lipolytica. Synth Syst Biotechnol 2022; 7:1133-1141. [PMID: 36092272 PMCID: PMC9428815 DOI: 10.1016/j.synbio.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Astaxanthin is a high value carotenoid with a broad range of commercial applications due to its superior antioxidant properties. In this study, β-carotene-producing Yarrowia lipolytica XK17 constructed in the lab was employed for astaxanthin biosynthesis. The catalytic effects of β-carotene ketolase CrtW and β-carotene hydroxylase CrtZ from various species were investigated. The PspCrtW from Paracoccus sp. and HpCrtZ# from Haematococcus pluvialis were confirmed to be the best combination in converting β-carotene. Several key bottlenecks in biomass and astaxanthin biosynthesis were effectively eliminated by optimizing the expression of the above enzymes and restoring uracil/leucine biosynthesis. In addition, the effects of astaxanthin biosynthesis on cell metabolism were investigated by integrated analysis of pathway modification and transcriptome information. After further optimization, strain DN30 was able to synthesize up to 730.3 mg/L astaxanthin in laboratory 5-L fermenter. This study provides a good metabolic strategy and a sustainable development platform for high-value carotenoid production.
Collapse
Affiliation(s)
- Dan-Ni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Chen-Xi Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Xin-Kai Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Jun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China
| |
Collapse
|
12
|
Samuel SY, Wang HMD, Huang MY, Cheng YS, Chen JR, Li WH, Chang JJ. Safety Assessment of 3S, 3'S Astaxanthin Derived from Metabolically Engineered K. marxianus. Antioxidants (Basel) 2022; 11:2288. [PMID: 36421474 PMCID: PMC9687027 DOI: 10.3390/antiox11112288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/06/2023] Open
Abstract
Previous reviews have already explored the safety and bioavailability of astaxanthin, as well as its beneficial effects on human body. The great commercial potential in a variety of industries, such as the pharmaceutical and health supplement industries, has led to a skyrocketing demand for natural astaxanthin. In this study, we have successfully optimized the astaxanthin yield up to 12.8 mg/g DCW in a probiotic yeast and purity to 97%. We also verified that it is the desired free-form 3S, 3'S configurational stereoisomer by NMR and FITR that can significantly increase the bioavailability of astaxanthin. In addition, we have proven that our extracted astaxanthin crystals have higher antioxidant capabilities compared with natural esterified astaxanthin from H. pluvialis. We also screened for potential adverse effects of the pure astaxanthin crystals extracted from the engineered probiotic yeast by dosing SD rats with 6, 12, and 24 mg/kg/day of astaxanthin crystals via oral gavages for a 13-week period and have found no significant biological differences between the control and treatment groups in rats of both genders, further confirming the safety of astaxanthin crystals. This study demonstrates that developing metabolically engineered microorganisms provides a safe and feasible approach for the bio-based production of many beneficial compounds, including astaxanthin.
Collapse
Affiliation(s)
- Sabrina Yeo Samuel
- Trade Wind Biotech Co., Ltd., Taipei 11574, Taiwan
- Institute of Molecular Medicine, National Taiwan University, Taipei 10051, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40447, Taiwan
| | - Meng-Yuan Huang
- Department of Life Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
- College of Future, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | | | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Jui-Jen Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
13
|
Yang X, Wang D, Hong J. Carotenoid production from nondetoxified xylose mother liquid or corncob hydrolysate with engineered Kluyveromyces marxianus. BIORESOURCE TECHNOLOGY 2022; 364:128080. [PMID: 36216283 DOI: 10.1016/j.biortech.2022.128080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are widely utilized in the food, pharmaceutical and nutraceutical industries. Here, Kluyveromyces marxianus was engineered to overproduce carotenoids from corncob hydrolysate or xylose mother liquid (XML, a byproduct of commercial xylose purification). First, the toxicity of fat-soluble carotenoids to cells was reduced by employing xylose inducible promoters using with a two-temperature strategy to separate cell growth and product accumulation. Then, through further engineering and optimization of the carotenoid biosynthesis pathway, 1506.7 mg/L lycopene, 988.5 mg/L β-carotene or 142.9 mg/L astaxanthin were produced with glucose and xylose by K. marxianus. Finally, 397.7 mg/L and 279.7 mg/L lycopene, 297.3 mg/L and 108.8 mg/L β-carotene, and 86.4 mg/L and 56.8 mg/L astaxanthin were produced with nonsterilized andnondetoxified XML or corncob hydrolysate after nitrogen source optimization. To our knowledge, the produced amounts of lycopene, β-carotene and astaxanthin from lignocellulose biomass by yeast in this study were higher than those in previous reports.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, Anhui, China; Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230027, Anhui, China.
| |
Collapse
|
14
|
Jing Y, Wang Y, Zhou D, Wang J, Li J, Sun J, Feng Y, Xin F, Zhang W. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnol Adv 2022; 61:108033. [PMID: 36096404 DOI: 10.1016/j.biotechadv.2022.108033] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Carotenoids are natural pigments that widely exist in nature. Due to their excellent antioxidant, anticancer and anti-inflammatory properties, carotenoids are commonly used in food, medicine, cosmetic and other fields. At present, natural carotenoids are mainly extracted from plants, algae and microorganisms. With the rapid development of metabolic engineering and molecular biology as well as the continuous in-depth study of carotenoids synthesis pathways, industrial microorganisms have showed promising applications in the synthesis of carotenoids. In this review, we introduced the properties of several carotenoids and their biosynthetic metabolism process. Then, the microorganisms synthesizing carotenoids through the natural and non-natural pathways and the extraction methods of carotenoids were summarized and compared. Meanwhile, the influence of substrates on the carotenoids production was also listed. The methods and strategies for achieving high carotenoid production are categorized to help with future research.
Collapse
Affiliation(s)
- Yiwen Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
15
|
Bever D, Wheeldon I, Da Silva N. RNA polymerase II-driven CRISPR-Cas9 system for efficient non-growth-biased metabolic engineering of Kluyveromyces marxianus. Metab Eng Commun 2022; 15:e00208. [PMID: 36249306 PMCID: PMC9558044 DOI: 10.1016/j.mec.2022.e00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The thermotolerant yeast Kluyveromyces marxianus has gained significant attention in recent years as a promising microbial candidate for industrial biomanufacturing. Despite several contributions to the expanding molecular toolbox for gene expression and metabolic engineering of K. marxianus, there remains a need for a more efficient and versatile genome editing platform. To address this, we developed a CRISPR-based editing system that enables high efficiency marker-less gene disruptions and integrations using only 40 bp homology arms in NHEJ functional and non-functional K. marxianus strains. The use of a strong RNA polymerase II promoter allows efficient expression of gRNAs flanked by the self-cleaving RNA structures, tRNA and HDV ribozyme, from a single plasmid co-expressing a codon optimized Cas9. Implementing this system resulted in nearly 100% efficiency of gene disruptions in both NHEJ-functional and NHEJ-deficient K. marxianus strains, with donor integration efficiencies reaching 50% and 100% in the two strains, respectively. The high gRNA targeting performance also proved instrumental for selection of engineered strains with lower growth rate but improved polyketide biosynthesis by avoiding an extended outgrowth period, a common method used to enrich for edited cells but that fails to recover advantageous mutants with even slightly impaired fitness. Finally, we provide the first demonstration of simultaneous, markerless integrations at multiple loci in K. marxianus using a 2.6 kb and a 7.6 kb donor, achieving a dual integration efficiency of 25.5% in a NHEJ-deficient strain. These results highlight both the ease of use and general robustness of this system for rapid and flexible metabolic engineering in this non-conventional yeast. RNAP II-driven tRNA-gRNA-HDV ribozyme cassette built for K. marxianus genome editing. Gene integrations up to 7.6 kb were achieved with only 40 bp homology sequences. Recovery of growth-biased modifications achievable as extended outgrowth not required. Application (ZWF1 and GPD1 knockouts) increased polyketide specific titers. Expressing two unique gRNAs from one cassette enabled integrations at separate loci.
Collapse
|
16
|
Li M, Zhou P, Chen M, Yu H, Ye L. Spatiotemporal Regulation of Astaxanthin Synthesis in S. cerevisiae. ACS Synth Biol 2022; 11:2636-2649. [PMID: 35914247 DOI: 10.1021/acssynbio.2c00044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a high-valued antioxidant, astaxanthin biosynthesis using microbial cell factories has attracted increasing attention. However, its lipophilic nature conflicts with the limited storage capacity for lipophilic substances of model microorganisms such as Saccharomyces cerevisiae. Expansion of lipid droplets by enhancing lipid synthesis provides more storage room while diverting the metabolic flux from the target pathway. Therefore, proper spatial regulation is required. In this study, a library of genes related to lipid metabolism were screened using the trifunctional CRISPR system, identifying opi3 and hrd1 as new engineering targets to promote astaxanthin synthesis by moderately rather than excessively upregulating lipid synthesis. The astaxanthin yield reached 9.79 mg/g DCW after lipid engineering and was further improved to 10.21 mg/g DCW by balancing the expression of β-carotene hydroxylase and ketolase. Finally, by combining spatial regulation through lipid droplet engineering and temporal regulation via temperature-responsive pathway expression, 446.4 mg/L astaxanthin was produced in fed-batch fermentation.
Collapse
Affiliation(s)
- Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Mingkai Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| |
Collapse
|
17
|
Zhu X, Meng C, Sun F, Wei Z, Chen L, Chen W, Tong S, Du H, Gao J, Ren J, Li D, Gao Z. Sustainable production of astaxanthin in microorganisms: the past, present, and future. Crit Rev Food Sci Nutr 2022; 63:10239-10255. [PMID: 35694786 DOI: 10.1080/10408398.2022.2080176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astaxanthin (3,3'-dihydroxy-4,4'-diketo-β-carotene) is a type of C40 carotenoid with remarkable antioxidant characteristics, showing significant application prospects in many fields. Traditionally, the astaxanthin is mainly obtained from chemical synthesis and natural acquisition, with both approaches having many limitations and not capable of meeting the growing market demand. In order to cope with these challenges, novel techniques, e.g., the innovative cell engineering strategies, have been developed to increase the astaxanthin production. In this review, we first elaborated the biosynthetic pathway of astaxanthin, with the key enzymes and their functions discussed in the metabolic process. Then, we summarized the conventional, non-genetic strategies to promote the production of astaxanthin, including the methods of exogenous additives, mutagenesis, and adaptive evolution. Lastly, we reviewed comprehensively the latest studies on the synthesis of astaxanthin in various recombinant microorganisms based on the concept of microbial cell factory. Furthermore, we have proposed several novel technologies for improving the astaxanthin accumulation in several model species of microorganisms.
Collapse
Affiliation(s)
- Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Zuoxi Wei
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Huanmin Du
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jinshan Gao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jiali Ren
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
18
|
Basiony M, Ouyang L, Wang D, Yu J, Zhou L, Zhu M, Wang X, Feng J, Dai J, Shen Y, Zhang C, Hua Q, Yang X, Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth Syst Biotechnol 2022; 7:689-704. [PMID: 35261927 PMCID: PMC8866108 DOI: 10.1016/j.synbio.2022.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.
Collapse
Affiliation(s)
- Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mohan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengguo Zhang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuliang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
19
|
Jin J, Jia B, Yuan YJ. Combining nucleotide variations and structure variations for improving astaxanthin biosynthesis. Microb Cell Fact 2022; 21:79. [PMID: 35527251 PMCID: PMC9082887 DOI: 10.1186/s12934-022-01793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mutational technology has been used to achieve genome-wide variations in laboratory and industrial microorganisms. Genetic polymorphisms of natural genome evolution include nucleotide variations and structural variations, which inspired us to suggest that both types of genotypic variations are potentially useful in improving the performance of chassis cells for industrial applications. However, highly efficient approaches that simultaneously generate structural and nucleotide variations are still lacking. Results The aim of this study was to develop a method of increasing biosynthesis of astaxanthin in yeast by Combining Nucleotide variations And Structure variations (CNAS), which were generated by combinations of Atmospheric and room temperature plasma (ARTP) and Synthetic Chromosome Recombination and Modification by LoxP-Mediated Evolution (SCRaMbLE) system. CNAS was applied to increase the biosynthesis of astaxanthin in yeast and resulted in improvements of 2.2- and 7.0-fold in the yield of astaxanthin. Furthermore, this method was shown to be able to generate structures (deletion, duplication, and inversion) as well as nucleotide variations (SNPs and InDels) simultaneously. Additionally, genetic analysis of the genotypic variations of an astaxanthin improved strain revealed that the deletion of YJR116W and the C2481G mutation of YOL084W enhanced yield of astaxanthin, suggesting a genotype-to-phenotype relationship. Conclusions This study demonstrated that the CNAS strategy could generate both structure variations and nucleotide variations, allowing the enhancement of astaxanthin yield by different genotypes in yeast. Overall, this study provided a valuable tool for generating genomic variation diversity that has desirable phenotypes as well as for knowing the relationship between genotypes and phenotypes in evolutionary processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01793-6.
Collapse
|
20
|
Srivastava A, Kalwani M, Chakdar H, Pabbi S, Shukla P. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review. BIORESOURCE TECHNOLOGY 2022; 352:127071. [PMID: 35351568 DOI: 10.1016/j.biortech.2022.127071] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are photosynthetic eukaryotes that serve as microbial cell factories for the production of useful biochemicals, including pigments. These pigments are eco-friendly alternatives to synthetic dyes and reduce environmental and health risks. They also exhibit excellent anti-oxidative properties, making them a useful commodity in the nutrition and pharmaceutical industries. Light-harvesting pigments such as chlorophylls and phycobilins, and photoprotective carotenoids are some of the most common microalgal pigments. The increasing demand for these pigments in industrial applications has prompted a need to improve their metabolic yield in microalgal cells. So far, expensive cultivation methods and sensitivity to microbial contamination remain the main obstacles to the large-scale production of these pigments. This review highlights current issues and future prospects related to the production of microalgal pigments. The review also emphasizes the use of engineering approaches such as genetic engineering, and optimization of media components and physical parameters to increase their commercial-scale production.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohneesh Kalwani
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh 275103, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pratyoosh Shukla
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
21
|
Zhou J, Wang M, Carrillo C, Hassoun A, Collado MC, Barba FJ. Application of omics in food color. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Lu Q, Zhou XL, Liu JZ. Adaptive laboratory evolution and shuffling of Escherichia coli to enhance its tolerance and production of astaxanthin. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:17. [PMID: 35418156 PMCID: PMC8851715 DOI: 10.1186/s13068-022-02118-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/10/2022] [Indexed: 01/01/2023]
Abstract
Background Astaxanthin is one of the strongest antioxidants in nature and has been widely used in aquaculture, food, cosmetic and pharmaceutical industries. Numerous stresses caused in the process of a large scale-culture, such as high acetate concentration, high osmolarity, high level of reactive oxygen species, high glucose concentration and acid environment, etc., limit cell growth to reach the real high cell density, thereby affecting astaxanthin production. Results We developed an adaptive laboratory evolution (ALE) strategy to enhance the production of chemicals by improving strain tolerance against industrial fermentation conditions. This ALE strategy resulted in 18.5% and 53.7% increases in cell growth and astaxanthin production in fed-batch fermentation, respectively. Whole-genome resequencing showed that 65 mutations with amino acid substitution were identified in 61 genes of the shuffled strain Escherichia coli AST-4AS. CRISPR interference (CRISPRi) and activation (CRISPRa) revealed that the shuffled strain with higher astaxanthin production may be associated with the mutations of some stress response protein genes, some fatty acid biosynthetic genes and rppH. Repression of yadC, ygfI and rcsC, activation of rnb, envZ and recC further improved the production of astaxanthin in the shuffled strain E. coli AST-4AS. Simultaneous deletion of yadC and overexpression of rnb increased the production of astaxanthin by 32% in the shuffled strain E. coli AST-4AS. Conclusion This ALE strategy will be powerful in engineering microorganisms for the high-level production of chemicals. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02118-w.
Collapse
Affiliation(s)
- Qian Lu
- Institute of Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao-Ling Zhou
- Institute of Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
23
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
24
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
25
|
Enhanced recovery of astaxanthin from recombinant Kluyveromyces marxianus with ultrasonication-assisted alcohol/salt aqueous biphasic system. J Biosci Bioeng 2021; 132:513-518. [PMID: 34479804 DOI: 10.1016/j.jbiosc.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
Microbial astaxanthin with strong antioxidant activity is greatly demanded for diverse applications. Extractive disruption in aqueous biphasic system (ABS) integrates the cells disruption and biomolecules recovery processes in one-step operation, allowing the direct recovery of intracellular biomolecules with biphasic system upon released from cells. In this study, astaxanthin was recovered from recombinant Kluyveromyces marxianus yeast cells via extractive disruption using alcohol/salt ABS. Recombinant K. marxianus yeast is engineered to produce high concentration of free form astaxanthin. Highest partition coefficient (K = 90.02 ± 2.25) and yield (Y = 96.80% ± 0.05) of astaxanthin were obtained with ABS composed of 20% (w/w) 1-propanol and 20% (w/w) sodium citrate of pH 5, 0.5% (w/w) yeast cells loading and additional of 1% (w/w) 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4 to improve the migration of astaxanthin to alcohol-rich top phase. The incorporation of 2.5 h of ultrasonication to the biphasic system further enhanced the astaxanthin recovery in ABS. The direct recovery of astaxanthin from recombinant K. marxianus cells was demonstrated with the ultrasonication-assisted alcohol/salt ABS which integrates the extraction and concentration of astaxanthin in a single-step operation.
Collapse
|
26
|
Mussagy CU, Khan S, Kot AM. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit Rev Food Sci Nutr 2021; 62:6932-6946. [PMID: 33798005 DOI: 10.1080/10408398.2021.1908222] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbial carotenoids have attracted rising interest from several industries as a sustainable alternative to substitute the synthetic ones. Traditionally, carotenoids available in the market are obtained by the chemical route using nonrenewable sources (petrochemicals), revealing the negative impact on the environment and consumers. The most promising developments in the upstream and downstream processes of microbial carotenoids are reviewed in this work. The use of agro-based raw materials for bioproduction, and alternative solvents such as biosolvents, deep eutectic solvents, and ionic liquids for the recovery/polishing of microbial carotenoids were also reviewed. The principal advances in the field, regarding the biorefinery and circular economy concepts, were also discussed for a better understanding of the current developments. This review provides comprehensive overview of the hot topics in the field besides an exhaustive analysis of the main advantages/drawbacks and opportunities regarding the implementation of microbial carotenoids in the market.
Collapse
Affiliation(s)
- Cassamo Ussemane Mussagy
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Sabir Khan
- Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Anna Maria Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|
28
|
Rajkumar AS, Morrissey JP. Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products. Microb Cell Fact 2020; 19:207. [PMID: 33176787 PMCID: PMC7659061 DOI: 10.1186/s12934-020-01461-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The yeast Kluyveromyces marxianus offers unique potential for industrial biotechnology because of useful features like rapid growth, thermotolerance and a wide substrate range. As an emerging alternative platform, K. marxianus requires the development and validation of metabolic engineering strategies to best utilise its metabolism as a basis for bio-based production. RESULTS To illustrate the synthetic biology strategies to be followed and showcase its potential, we describe a comprehensive approach to rationally engineer a metabolic pathway in K. marxianus. We use the phenylalanine biosynthetic pathway both as a prototype and because phenylalanine is a precursor for commercially valuable secondary metabolites. First, we modify and overexpress the pathway to be resistant to feedback inhibition so as to overproduce phenylalanine de novo from synthetic minimal medium. Second, we assess native and heterologous means to increase precursor supply to the biosynthetic pathway. Finally, we eliminate branch points and competing reactions in the pathway and rebalance precursors to redirect metabolic flux to a specific product, 2-phenylethanol (2-PE). As a result, we are able to construct robust strains capable of producing over 800 mg L-1 2-PE from minimal medium. CONCLUSIONS The strains we constructed are a promising platform for the production of aromatic amino acid-based biochemicals, and our results illustrate challenges with attempting to combine individually beneficial modifications in an integrated platform.
Collapse
Affiliation(s)
- Arun S Rajkumar
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland.
| |
Collapse
|
29
|
Diao J, Song X, Zhang L, Cui J, Chen L, Zhang W. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metab Eng 2020; 61:275-287. [DOI: 10.1016/j.ymben.2020.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023]
|
30
|
Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol 2020; 104:5725-5737. [DOI: 10.1007/s00253-020-10648-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
|
31
|
Zhuang Y, Jiang GL, Zhu MJ. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Jiang G, Yang Z, Wang Y, Yao M, Chen Y, Xiao W, Yuan Y. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107519] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Ye Y, Huang JC. Defining the biosynthesis of ketocarotenoids in Chromochloris zofingiensis. PLANT DIVERSITY 2020; 42:61-66. [PMID: 32140638 PMCID: PMC7046508 DOI: 10.1016/j.pld.2019.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 05/03/2023]
Abstract
Carotenoids are important pigments in photosynthetic organisms where they play essential roles in photoreception and photoprotection. Chromochloris zofingiensis is a unicellular green alga that is able to accumulate high amounts of ketocarotenoids including astaxanthin, canthaxanthin and ketolutein when growing heterotrophically or mixotrophically with glucose as a carbon source. Here we elucidate the ketocarotenoid biosynthesis pathway in C. zofingiensis by analyzing five algal mutants. The mutants were shown to have a single nucleotide insertion or substitution in β-carotene ketolase (BKT) gene 1, which resulted in a lack of ketocarotenoid production in Cz-bkt1-1, and decreased ketocarotenoid content in the other four mutants. These mutants accumulated much higher amounts of non-ketocarotenoids (β-carotene, zeaxanthin and lutein). Interestingly, the Cz-bkt1-5 mutant synthesized 2-fold the ketolutein and only 1/30 of the canthaxanthin and astaxanthin as its parent strain, suggesting that the mutated BKT1 exhibits much higher activity in catalyzing lutein to ketolutein but lower activity in ketolating β-carotene and zeaxanthin. Mutant and WT BKT2 gene sequences did not differ. Taken together, we conclude that BKT1 is the key gene involved in ketocarotenoid biosynthesis in C. zofingiensis. Our study provides insight into the biosynthesis of ketocarotenoids in green algae. Furthermore, Cz-bkt1 mutants may serve as a natural source for the production of zeaxanthin, lutein, and β-carotene.
Collapse
Affiliation(s)
- Ying Ye
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun-Chao Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| |
Collapse
|
34
|
Metabolic engineering probiotic yeast produces 3S, 3′S-astaxanthin to inhibit B16F10 metastasis. Food Chem Toxicol 2020; 135:110993. [DOI: 10.1016/j.fct.2019.110993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022]
|
35
|
Lu Q, Liu JZ. Enhanced Astaxanthin Production in Escherichia coli via Morphology and Oxidative Stress Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11703-11709. [PMID: 31578056 DOI: 10.1021/acs.jafc.9b05404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astaxanthin is a carotenoid of high commercial value because of its excellent antioxidative, anti-inflammatory, and anticancer properties. Here, we developed a novel strategy for improving the production of astaxanthin via morphology and oxidative stress engineering. First, we identified the morphology-/membrane- and oxidative stress-related genes, which should be knocked down, using the CRISPRi system. Deleting the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) generated longer and larger cells with higher reactive oxygen species (ROS) levels, thus enhancing the production of astaxanthin and decreasing cell growth. To not only improve cell growth but also obtain longer and larger cells with higher ROS levels, a complementary expression system using a temperature-sensitive plasmid was established. Complementarily expressing the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) further improved the production of astaxanthin to 11.92 mg/g dry cell weight in shake flask cultures.
Collapse
Affiliation(s)
- Qian Lu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
36
|
Fang N, Wang C, Liu X, Zhao X, Liu Y, Liu X, Du Y, Zhang Z, Zhang H. De novo synthesis of astaxanthin: From organisms to genes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Rajkumar AS, Varela JA, Juergens H, Daran JMG, Morrissey JP. Biological Parts for Kluyveromyces marxianus Synthetic Biology. Front Bioeng Biotechnol 2019; 7:97. [PMID: 31134195 PMCID: PMC6515861 DOI: 10.3389/fbioe.2019.00097] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Kluyveromyces marxianus is a non-conventional yeast whose physiology and metabolism lends itself to diverse biotechnological applications. While the wild-type yeast is already in use for producing fragrances and fermented products, the lack of standardised tools for its genetic and metabolic engineering prevent it from being used as a next-generation cell factory for bio-based chemicals. In this paper, we bring together and characterise a set of native K. marxianus parts for the expression of multiple genes for metabolic engineering and synthetic biology. All parts are cloned and stored according to the MoClo/Yeast Tool Kit standard for quick sharing and rapid construction. Using available genomic and transcriptomic data, we have selected promoters and terminators to fine-tune constitutive and inducible gene expression. The collection includes a number of known centromeres and autonomously replication sequences (ARS). We also provide a number of chromosomal integration sites selected for efficiency or visible phenotypes for rapid screening. Finally, we provide a single-plasmid CRISPR/Cas9 platform for genome engineering and facilitated gene targeting, and rationally create auxotrophic strains to expand the common range of selection markers available to K. marxianus. The curated and characterised tools we have provided in this kit will serve as a base to efficiently build next-generation cell factories from this alternative yeast. Plasmids containing all parts are available at Addgene for public distribution.
Collapse
Affiliation(s)
- Arun S Rajkumar
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Hannes Juergens
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Saini DK, Chakdar H, Pabbi S, Shukla P. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 2019; 60:391-405. [PMID: 30706720 DOI: 10.1080/10408398.2018.1533518] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The versatile use of biopigments in food, feed, cosmetic, pharmaceutical and analytical industries emphasized to find different and renewable sources of biopigments. Microalgae, including cyanobacteria, are becoming a potential candidate for pigment production as these have fast-growing ability, high pigment content, highly variable and also have "Generally recognized as safe" status. These algal groups are known to produce different metabolites that include hormones, vitamins, biopolythene and biochemicals. We discuss here the potential use of microalgal biopigments in our daily life as well as in food and cosmetic industries. Pigment like carotenoids has many health benefits such as antioxidant, anti-inflammatory properties and also provide photo-protection against UV radiation. This review details the effect of various abiotic and biotic factors such as temperature, light, nutrition on maximizing the pigment content in the microalgal cell. This review also highlights the potential of microalgae, whether in present native or engineered strain including the many metabolic strategies which are used or can be used to produce a higher amount of these valuable biopigments. Additionally, future challenges in the context of pigment production have also been discussed.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA) Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
39
|
Zhou P, Li M, Shen B, Yao Z, Bian Q, Ye L, Yu H. Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1072-1080. [PMID: 30606005 DOI: 10.1021/acs.jafc.8b05003] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Because it is an outstanding antioxidant with wide applications, biotechnological production of astaxanthin has attracted increasing research interest. However, the astaxanthin titer achieved to date is still rather low, attributed to the poor efficiency of β-carotene ketolation and hydroxylation, as well as the adverse effect of astaxanthin accumulation on cell growth. To address these problems, we constructed an efficient astaxanthin-producing Saccharomyces cerevisiae strain by combining protein engineering and dynamic metabolic regulation. First, superior mutants of β-carotene ketolase and β-carotene hydroxylase were obtained by directed coevolution to accelerate the conversion of β-carotene to astaxanthin. Subsequently, the Gal4M9-based temperature-responsive regulation system was introduced to separate astaxanthin production from cell growth. Finally, 235 mg/L of (3 S,3' S)-astaxanthin was produced by two-stage, high-density fermentation. This study demonstrates the power of combining directed coevolution and temperature-responsive regulation in astaxanthin biosynthesis and may provide methodological reference for biotechnological production of other value-added chemicals.
Collapse
Affiliation(s)
- Pingping Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China , Yangzhou University , Yangzhou 225009 , P.R. China
| | - Min Li
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Bin Shen
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Zhen Yao
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Qi Bian
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education , Zhejiang University , Hangzhou 310027 , P.R. China
| |
Collapse
|
40
|
Pi HW, Anandharaj M, Kao YY, Lin YJ, Chang JJ, Li WH. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci Rep 2018; 8:10850. [PMID: 30022171 PMCID: PMC6052021 DOI: 10.1038/s41598-018-29194-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023] Open
Abstract
Rhodotorula glutinis, an oleaginous red yeast, intrinsically produces several bio-products (i.e., lipids, carotenoids and enzymes) and is regarded as a potential host for biorefinery. In view of the limited available genetic engineering tools for this yeast, we have developed a useful genetic transformation method and transformed the β-carotene biosynthesis genes (crtI, crtE, crtYB and tHMG1) and cellulase genes (CBHI, CBHII, EgI, EgIII, EglA and BGS) into R. glutinis genome. The transformant P4-10-9-63Y-14B produced significantly higher β-carotene (27.13 ± 0.66 mg/g) than the wild type and also exhibited cellulase activity. Furthermore, the lipid production and salt tolerance ability of the transformants were unaffected. This is the first study to engineer the R. glutinis for simultaneous β-carotene and cellulase production. As R. glutinis can grow in sea water and can be engineered to utilize the cheaper substrates (i.e. biomass) for the production of biofuels or valuable compounds, it is a promising host for biorefinery.
Collapse
Affiliation(s)
- Hong-Wei Pi
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ying Kao
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 402, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan. .,Biotechnology center, National Chung Hsing University, Taichung, 40227, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, 60637, USA.
| |
Collapse
|
41
|
Walker RSK, Pretorius IS. Applications of Yeast Synthetic Biology Geared towards the Production of Biopharmaceuticals. Genes (Basel) 2018; 9:E340. [PMID: 29986380 PMCID: PMC6070867 DOI: 10.3390/genes9070340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Engineered yeast are an important production platform for the biosynthesis of high-value compounds with medical applications. Recent years have witnessed several new developments in this area, largely spurred by advances in the field of synthetic biology and the elucidation of natural metabolic pathways. This minireview presents an overview of synthetic biology applications for the heterologous biosynthesis of biopharmaceuticals in yeast and demonstrates the power and potential of yeast cell factories by highlighting several recent examples. In addition, an outline of emerging trends in this rapidly-developing area is discussed, hinting upon the potential state-of-the-art in the years ahead.
Collapse
Affiliation(s)
- Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney 2109, Australia.
| | | |
Collapse
|
42
|
Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuijpers NGA, Geertman JM, Wolfe KH, Morrissey JP. Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates. Front Genet 2018; 9:94. [PMID: 29619042 PMCID: PMC5871668 DOI: 10.3389/fgene.2018.00094] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype.
Collapse
Affiliation(s)
- Raúl A Ortiz-Merino
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Aisling Y Coughlan
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | - Kenneth H Wolfe
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
Wiemann P, Soukup AA, Folz JS, Wang PM, Noack A, Keller NP. CoIN: co-inducible nitrate expression system for secondary metabolites in Aspergillus nidulans. Fungal Biol Biotechnol 2018; 5:6. [PMID: 29564145 PMCID: PMC5851313 DOI: 10.1186/s40694-018-0049-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequencing of fungal species has demonstrated the existence of thousands of putative secondary metabolite gene clusters, the majority of them harboring a unique set of genes thought to participate in production of distinct small molecules. Despite the ready identification of key enzymes and potential cluster genes by bioinformatics techniques in sequenced genomes, the expression and identification of fungal secondary metabolites in the native host is often hampered as the genes might not be expressed under laboratory conditions and the species might not be amenable to genetic manipulation. To overcome these restrictions, we developed an inducible expression system in the genetic model Aspergillus nidulans. RESULTS We genetically engineered a strain of A. nidulans devoid of producing eight of the most abundant endogenous secondary metabolites to express the sterigmatocystin Zn(II)2Cys6 transcription factor-encoding gene aflR and its cofactor aflS under control of the nitrate inducible niiA/niaD promoter. Furthermore, we identified a subset of promoters from the sterigmatocystin gene cluster that are under nitrate-inducible AflR/S control in our production strain in order to yield coordinated expression without the risks from reusing a single inducible promoter. As proof of concept, we used this system to produce β-carotene from the carotenoid gene cluster of Fusarium fujikuroi. CONCLUSION Utilizing one-step yeast recombinational cloning, we developed an inducible expression system in the genetic model A. nidulans and show that it can be successfully used to produce commercially valuable metabolites.
Collapse
Affiliation(s)
- Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Hexagon Bio, Menlo Park, CA 94025 USA
| | - Alexandra A. Soukup
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705 USA
| | - Jacob S. Folz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Davis Genome Center – Metabolomics, University of California, 451 Health Science Drive, Davis, CA 95616 USA
| | - Pin-Mei Wang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Present Address: Ocean College, Zhejiang University, Hangzhou, 310058 Zhejiang Province People’s Republic of China
| | - Andreas Noack
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706 USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|
44
|
Jin J, Wang Y, Yao M, Gu X, Li B, Liu H, Ding M, Xiao W, Yuan Y. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:230. [PMID: 30159030 PMCID: PMC6106823 DOI: 10.1186/s13068-018-1227-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/14/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Astaxanthin is a natural carotenoid pigment with tremendous antioxidant activity and great commercial value. Microbial production of astaxanthin via metabolic engineering has become a promising alternative. Although great efforts have been conducted by tuning the heterologous modules and precursor pools, the astaxanthin yields in these non-carotenogenic microorganisms were still unsatisfactory for commercialization, indicating that in addition to targeted tailoring limited targets guided by rationally metabolic design, combining more globe disturbances in astaxanthin biosynthesis system and uncovering new molecular mechanisms seem to be much more crucial for further development. Since combined metabolic engineering with mutagenesis by screening is a powerful tool to achieve more global variations and even uncover more molecular targets, this study would apply a comprehensive approach integrating heterologous module engineering and mutagenesis by atmospheric and room temperature plasma (ARTP) to promote astaxanthin production in Saccharomyces cerevisiae. RESULTS Here, compared to the strain with β-carotene hydroxylase (CrtZ) from Alcaligenes sp. strain PC-1, involving new CrtZ from Agrobacterium aurantiacum enhanced astaxanthin yield to 1.78-fold and increased astaxanthin ratio to 88.7% (from 66.6%). Astaxanthin yield was further increased by 0.83-fold (to 10.1 mg/g DCW) via ARTP mutagenesis, which is the highest reported yield at shake-flask level in yeast so far. Three underlying molecular targets (CSS1, YBR012W-B and DAN4) associated with astaxanthin biosynthesis were first uncovered by comparative genomics analysis. To be noted, individual deletion of CSS1 can recover 75.6% improvement on astaxanthin yield achieved by ARTP mutagenesis, indicating CSS1 was a very promising molecular target for further development. Eventually, 217.9 mg/L astaxanthin (astaxanthin ratio was 89.4% and astaxanthin yield was up to 13.8 mg/g DCW) was obtained in 5-L fermenter without any addition of inducers. CONCLUSIONS Through integrating rational engineering of pathway modules and random mutagenesis of hosts efficiently, our report stepwise promoted astaxanthin yield to achieve the highest reported one in yeast so far. This work not only breaks the upper ceiling of astaxanthin production in yeast, but also fulfills the underlying molecular targets pools with regard to isoprenoid microbial overproductions.
Collapse
Affiliation(s)
- Jin Jin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xiaoli Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bo Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|