1
|
Mateescu C, Lungulescu EM, Nicula NO. Effectiveness of Biological Approaches for Removing Persistent Organic Pollutants from Wastewater: A Mini-Review. Microorganisms 2024; 12:1632. [PMID: 39203474 PMCID: PMC11356657 DOI: 10.3390/microorganisms12081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Persistent organic pollutants (POPs), including organochlorine pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzo-p-furans, pose significant hazards to the environment and living organisms. This concise review aims to consolidate knowledge on the biological processes involved in removing POPs from wastewater, an area less explored compared to conventional physico-chemical methods. The focus is on the potential of various aerobic and anaerobic microorganisms, fungi, and bacteria for efficient bioremediation, mitigating or eradicating the deleterious effects of these chemicals. The review scrutinizes individual bacterial strains and mixed cultures engaged in breaking down persistent organic pollutants in water, highlighting promising results from laboratory investigations that could be scaled for practical applications. The review concludes by underscoring the opportunities for exploring and advancing more sophisticated bioremediation techniques and optimized bioreactors. The ultimate goal is to enhance the efficiency of microbial-based strategies, implicitly reducing the environmental impact of persistent chemicals.
Collapse
Affiliation(s)
| | - Eduard-Marius Lungulescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (C.M.); (N.-O.N.)
| | | |
Collapse
|
2
|
Wei Y, Shen D, Nicholaus R, Wang Y, Lukwambe B, Zhu J, Yang W, Zheng Z. Exogenous compound bacteria enhance the nutrient removal efficiency of integrated bioremediation systems: Functional genes and microorganisms play key roles. ENVIRONMENTAL RESEARCH 2024; 252:118864. [PMID: 38574987 DOI: 10.1016/j.envres.2024.118864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
With the continuous development of intensive mariculture, the application of the integrated bioremediation system of aquaculture wastewater (IBSAW) is increasingly promoted. However, the process and nutrients removal performance of the IBSAW need to be further optimized due to its immature technologies. In this study, exogenous compound bacteria (ECB) were added to IBSAW to investigate its pollutants removal efficiency and the relevant mechanisms. High-throughput sequencing and Geochip gene array were used to analyze the correlation between nutrients and bacteria, and the abundance of N and P cycling genes were quantified. Multivariable statistics, dimensionality reduction analysis, and network analysis were applied to explore the mechanisms of IBSAW operation. The results showed that the nutrients decreased significantly after adding ECB, with the brush treatment group significantly outperforming the ceramsite in removing NO3- and PO43-. Ceramsite has an advantage in removing NO2--N. The addition of ECB and different substrates significantly affected the composition of bacterial communities. The contents of nosZ and nirKS related to denitrification in the treatment groups were significantly higher than those in the control group, and the contents in the brush treatment group were significantly higher than that of ceramsite. The biomarkers Psychroserpens and Ruegeria on the biofilm of the brush treatment group were positively correlated with nirKS, while Mycobacterium, Erythrobacter and Paracoccus, Pseudohaliea in the ceramsite group were positively correlated with nirS and nirK, respectively. Therefore, it is speculated that the ECB significantly promoted the increase of denitrification bacteria by affecting the composition of bacterial communities, and the ECB combined with functional genera improved the efficiency of nutrients removal in the system. This study provided a reference for understanding the process and mechanism of nutrients removal, optimizing the wastewater purification technology of the IBSAW and improving the performance of the system.
Collapse
Affiliation(s)
- Yingzhen Wei
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ding Shen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Regan Nicholaus
- Department of Natural Sciences, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Yangcai Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315048, China
| | - Betina Lukwambe
- School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
4
|
Haq I, Kalamdhad AS, Malik A. Bioremediation of petroleum refinery wastewater using Bacillus subtilis IH-1 and assessment of its toxicity. Arch Microbiol 2024; 206:296. [PMID: 38856816 DOI: 10.1007/s00203-024-04027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.
Collapse
Affiliation(s)
- Izharul Haq
- Department of Biotechnology, Dr. B. Lal Institute of Biotechnology, Jaipur, Rajasthan, 302017, India.
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Imam A, Suman SK, Vasavdutta S, Chatterjee S, Vempatapu BP, Ray A, Kanaujia PK. Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment. Biodegradation 2024; 35:299-313. [PMID: 37792261 DOI: 10.1007/s10532-023-10055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-lifet 1 / 2 of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sonpal Vasavdutta
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Shruti Chatterjee
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhanu Prasad Vempatapu
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
7
|
Li J, Hong M, Tang R, Cui T, Yang Y, Lv J, Liu N, Lei Y. Isolation of Diaphorobacter sp. LW2 capable of degrading Phenanthrene and its migration mediated by Pythium ultimum. ENVIRONMENTAL TECHNOLOGY 2024; 45:1497-1507. [PMID: 36384417 DOI: 10.1080/09593330.2022.2145914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Phenanthrene, one of the polycyclic aromatic hydrocarbons, is stubborn and persistent and exists widely in petroleum-contaminated soil. Filamentous fungi are good assistants to bacterial transport, by hyphae passing through soil pores and reaching further positions. An isolated bacterial strain, from the contaminated soil of the coking plant, was identified as Diaphorobacter and named LW2, which could use phenanthrene as the only carbon source and energy for its growth. LW2 could degrade phenanthrene in a wide range of pH, temperature and initial concentration. When pH was 6 and 10, the removal rate of phenanthrene was 38.59% and 76.44%, respectively, and the removal rate of phenanthrene was 68.25% at 15 ℃. And LW2 could degrade 86.64% phenanthrene when the initial concentration was 100 mg L-1. The detection of DI-N-octyl phthalate, phthalic acid and p-hydroxybenzoic acid revealed that the strain LW2 metabolised phenanthrene through the phthalic acid pathway. Meanwhile, swimming and swarming test results suggested that LW2 was motile. The auxiliary effect of Pythium ultimum on LW2 migration was assessed. In the presence of Pythium ultimum, LW2 could migrate within the range of centimters by its mycelium, which was also observed by fluorescence microscopy. Meanwhile, the degradation ability of LW2 after the migration was also explored. The results proved that the migration process had no significant effect on its degradation ability, and LW2 still showed good phenanthrene metabolism ability. This study provides more possibilities for the bioremediation of phenanthrene-contaminated soil by screening the degradation bacteria and testing the effect of fungi on its migration.
Collapse
Affiliation(s)
- Jialu Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Rui Tang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Tingchen Cui
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Yadong Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Jing Lv
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, People's Republic of China
| | - Na Liu
- Institute of Groundwater and Earth Science, Jinan University, Guangzhou City, People's Republic of China
| | - Yutao Lei
- South China Institute of Environmental Sciences, MEP, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Mou B, Gong G, Wu S. Biodegradation mechanisms of polycyclic aromatic hydrocarbons: Combination of instrumental analysis and theoretical calculation. CHEMOSPHERE 2023; 341:140017. [PMID: 37657699 DOI: 10.1016/j.chemosphere.2023.140017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a common class of petroleum hydrocarbons, widely encountered in both environment and industrial pollution sources. Owing to their toxicity, environmental persistence, and potential bioaccumulation properties, a mounting interest has been kindled in addressing the remediation of PAHs. Biodegradation is widely employed for the removal and remediation of PAHs due to its low cost, lack of second-contamination and ease of operation. This paper reviews the degradation efficiency of degradation and the underlying mechanisms exhibited by algae, bacteria, and fungi in remediation. Additionally, it delved into the application of modern instrumental analysis techniques and theoretical investigations in the realm of PAH degradation. Advanced instrumental analysis methods such as mass spectrometry provide a powerful tool for identifying intermediates and metabolites throughout the degradation process. Meanwhile, theoretical calculations could guide the optimization of degradation processes by revealing the reaction mechanisms and energy changes in PAH degradation. The combined use of instrumental analysis and theoretical calculations allows for a comprehensive understanding of the degradation mechanisms of PAHs and provides new insights and approaches for the development of environmental remediation technologies.
Collapse
Affiliation(s)
- Bolin Mou
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guangyi Gong
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
9
|
Ahmad M, Ling J, Yin J, Chen L, Yang Q, Zhou W, Zhang Y, Huang X, Khan I, Dong J. Evaluation of the Different Nutritional and Environmental Parameters on Microbial Pyrene Degradation by Mangrove Culturable Bacteria. Int J Mol Sci 2023; 24:ijms24098282. [PMID: 37175988 PMCID: PMC10179275 DOI: 10.3390/ijms24098282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mangrove ecosystems play curial roles in providing many ecological services and alleviating global climate change. However, they are in decline globally, mainly threatened by human activities and global warming, and organic pollutants, especially PAHs, are among the crucial reasons. Microbial remediation is a cost-effective and environmentally friendly way of alleviating PAH contamination. Therefore, understanding the effects of environmental and nutritional parameters on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) is significant for the bioremediation of PAH contamination. In the present study, five bacterial strains, designated as Bp1 (Genus Rhodococcus), Sp8 (Genus Nitratireductor), Sp13 (Genus Marinobacter), Sp23 (Genus Pseudonocardia), and Sp24 (Genus Mycolicibacterium), have been isolated from mangrove sediment and their ring hydroxylating dioxygenase (RHD) genes have been successfully amplified. Afterward, their degradation abilities were comprehensively evaluated under normal cultural (monoculture and co-culture) and different nutritional (tryptone, yeast extract, peptone, glucose, sucrose, and NPK fertilizer) and environmental (cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS)) parameters, as well with different co-contaminants (phenanthrene and naphthalene) and heavy metals (Cd2+, Cu2+, Fe3+, Ni2+, Mg2+, Mn2+, and Co2+). The results showed that strain Sp24 had the highest pyrene degradation rate (85%) in the monoculture experiment after being cultured for 15 days. Adding nitrogen- and carbon-rich sources, including tryptone, peptone, and yeast extract, generally endorsed pyrene degradation. In contrast, the effects of carbon sources (glucose and sucrose) on pyrene degradation were distinct for different bacterial strains. Furthermore, the addition of NPK fertilizer, SDS, Tween-80, phenanthrene, and naphthalene enhanced the bacterial abilities of pyrene removal significantly (p < 0.05). Heavy metals significantly reduced all bacterial isolates' degradation potentials (p < 0.05). The bacterial consortia containing high bio-surfactant-producing strains showed substantially higher pyrene degradation. Moreover, the consortia of three and five bacterial strains showed more degradation efficiency than those of two bacterial strains. These results provide helpful microbial resources for mangrove ecological remediation and insight into optimized culture strategies for the microbial degradation of PAHs.
Collapse
Affiliation(s)
- Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Luxiang Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Yuhang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
| | - Imran Khan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou 515041, China
| |
Collapse
|
10
|
Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, Lam SS, Naushad M, Li C, Sonne C. Autochthonous bioaugmentation accelerates phenanthrene degradation in acclimated soil. ENVIRONMENTAL RESEARCH 2023; 224:115543. [PMID: 36822540 DOI: 10.1016/j.envres.2023.115543] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
Collapse
Affiliation(s)
- Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Yan
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Xuewei Yu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Feng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuanyi Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Cheng Li
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark.
| |
Collapse
|
11
|
Qin S, Liu X, Lv W, Hu J, Huang X, Zhao L. The mechanism of degradation polycyclic aromatic hydrocarbons by magnetic biogenic manganese oxides. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Gou Y, Song Y, Yang S, Yang Y, Cheng Y, Li J, Zhang T, Cheng Y, Wang H. Polycyclic aromatic hydrocarbon removal from subsurface soil mediated by bacteria and archaea under methanogenic conditions: Performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120023. [PMID: 36030953 DOI: 10.1016/j.envpol.2022.120023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In situ anoxic bioremediation is an easy-to-use technology to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Degradation of PAHs mediated by soil bacteria and archaea using CO2 as the electron acceptor is an important process for eliminating PAHs under methanogenic conditions; however, knowledge of the performance and mechanisms involved is poorly unveiled. In this study, the effectiveness and efficiency of NaHCO3 (CO2) as an electron acceptor to stimulate the degradation of PAHs by bacteria and archaea in highly contaminated soil were investigated. The results showed that CO2 addition (EC2000) promoted PAH degradation compared to soil without added CO2 (EC0), with 4.18%, 9.01%-8.05%, and 6.19%-12.45% increases for 2-, 3- and 4-ring PAHs after 250 days of incubation, respectively. Soil bacterial abundances increased with increasing incubation time, especially for EC2000 (2.90 × 108 g-1 soil higher than EC0, p < 0.05). Different succession patterns of the soil bacterial and archaeal communities during PAH degradation were observed. According to the PCoA and ANOSIM results, the soil bacterial communities were greatly (ANOSIM: R = 0.7232, P = 0.001) impacted by electron acceptors, whereas significant differences in the archaeal communities were not observed (ANOSIM: R = 0.553, P = 0.001). Soil bacterial and archaeal co-occurrence network analyses showed that positive correlations outnumbered the negative correlations throughout the incubation period for both treatments (e.g., EC0 and EC2000), suggesting the prevalence of coexistence/cooperation within and between these two domains rather than competition. The higher complexity, connectance, edge, and node numbers in EC2000 revealed stronger linkage and a more stable co-occurrence network compared to EC0. The results of this study could improve the knowledge on the removal of PAHs and the responses of soil bacteria and archaea to CO2 application, as well as a scientific basis for the in situ anoxic bioremediation of PAH-contaminated industrial sites.
Collapse
Affiliation(s)
- Yaling Gou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yun Song
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Sucai Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yan Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yanan Cheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jiabin Li
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Tengfei Zhang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yanjun Cheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
13
|
Lu Q, Sun X, Jiang Z, Cui Y, Li X, Cui J. Effects of Comamonas testosteroni on dissipation of polycyclic aromatic hydrocarbons and the response of endogenous bacteria for soil bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82351-82364. [PMID: 35750914 DOI: 10.1007/s11356-022-21497-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Bioremediation is a promising method of treating polycyclic aromatic hydrocarbons (PAHs) in contaminated soil; however, the understanding of the efficiency and the way of microbial inoculants work in complex soil environments is limited. Comamonas testosteroni (Ct) strains could efficiently degrade PAHs, especially naphthalene (Nap) and phenanthrene (Phe). This study aimed to explore the functional role of Ct in soil indigenous microorganisms and analyze the effect of Ct addition on PAHs concentration in PAH-contaminated soil. The results showed that inoculation with Ct degraded naphthalene (Nap), phenanthrene (Phe), and benzo [α] pyrene (BaP) significantly; the degradation rates were 63.38%, 81.18%, and 37.98% on day 25, respectively, suggesting that the low molecular weights of Nap and Phe were more easily degraded by microorganisms than those of BaP. We speculated that BaP and Phe might be converted into Nap for further degradation, which is the main reason for the low degradation rate of Nap detected after 10-25 days. Network analysis showed that inoculation with Ct significantly increased bacteria community abundance closely related to PAHs. Structural equation models confirmed that Steroidobacter, as functional bacteria, could affect the degradation of Nap and BaP. Inoculated Ct effectively enhanced the synergy among indigenous bacteria to degrade PAHs. This finding will help understand the function of inoculated Ct strains in PAH-contaminated soil at the laboratory level.
Collapse
Affiliation(s)
- Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Xueting Sun
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yue Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Xin Li
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jizhe Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
14
|
Qian Z, Peng T, Huang T, Hu Z. Oxidization of benzo[a]pyrene by CYP102 in a novel PAHs-degrader Pontibacillus sp. HN14 with potential application in high salinity environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115922. [PMID: 36027730 DOI: 10.1016/j.jenvman.2022.115922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Benzo [a]pyrene (BaP) is a type of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) with potent carcinogenicity; however, there are limited studies on its degradation mechanism. Here, a strain of Pontibacillus sp. HN14 with BaP degradation ability was isolated from mangrove sediments in Dongzhai Port, Hainan Province. Our study showed that biodegradation efficiencies reached 42.15% after Pontibacillus sp. HN14 was cultured with 20 mg L-1 BaP as the sole carbon source for 25 days and still had degradability of BaP at a 25% high salinity level. Moreover, 9,10-dihydrobenzo [a]pyrene-7(8H)-one, an intermediate metabolite, was detected during BaP degradation in the HN14 strain. Genome analysis identified a gene encoding the CYP102(HN14) enzyme. The results showed that the E. coli strain with CYP102(HN14) overexpression could transfer BaP to 9,10-dihydrobenzo [a]pyrene-7(8H)-one with a conversion rate of 43.5%, indicating that CYP102(HN14) played an essential role in BaP degradation in Pontibacillus sp. HN14. Thus, our results provide a novel BaP biodegradation molecule, which could be used in BaP bioremediation in high salinity conditions. This study is the first to show that CYP102(HN14) had the BaP oxidization ability in bacteria. CYP102(HN14) could be essential in removing PAHs in saline-alkali soil and other high salt environments through enzyme immobilization.
Collapse
Affiliation(s)
- Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, PR China.
| |
Collapse
|
15
|
Wu P, Li N. Small molecule carbon source promoting dairy wastewater treatment of Rhodospirillum rubrum by co-metabolism and the establishment of multivariate nonlinear equation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:457-466. [PMID: 35960830 DOI: 10.2166/wst.2022.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rhodospirillum rubrum water treatment technology could recycle bio-resource. However, the inability to degrade macromolecular organics limited its wide application. This paper discussed the feasibility of small molecular carbon source promoting R. rubrum directly treating dairy machining wastewater (DMW) and accumulations for single cell protein and pigment, and establishment of a mathematical model. Six small molecules promoted the degradation of macromolecules (proteins) in DMW. They promoted protease secretion and non-growth matrix (protein) decomposition in DMW through co-metabolism. Among the molecules, 550 mg/L potassium sodium tartrate was the best, protease activity and protein removal rate were increased by 100% compared with control. Then chemical oxygen demand (COD) and protein removal rates reached 80%, the single cell protein, carotenoid and bacterial chlorophyll yields were increased 2 times. Meanwhile, carbon nitrogen ratio (C/N) and food microbial ratio (F/M) were identified as the most important factors by principal component analysis. A multivariate nonlinear equation model between COD removal rate and C/N, F/M, time was established.
Collapse
Affiliation(s)
- Pan Wu
- College of Architectural Engineering, Weifang University, Weifang 261061, China E-mail:
| | - Ning Li
- College of Architectural Engineering, Weifang University, Weifang 261061, China E-mail:
| |
Collapse
|
16
|
Mustafa YA, Mohammed SJ, Ridha MJM. Polyaromatic hydrocarbons biodegradation using mix culture of microorganisms from sewage waste sludge: application of artificial neural network modelling. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:405-418. [PMID: 35669802 PMCID: PMC9163246 DOI: 10.1007/s40201-022-00787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/01/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE In this study, we aimed to examine the tolerance of mixed culture of microorganisms isolated from sewage waste sludge to degrade high concentrations of polyaromatic hydrocarbons, naphthalene, and phenanthrene. The performance of the artificial neural network (ANN) model to predict and simulate the experimental biodegradation results was investigated. METHODS The mixed culture of microorganisms was isolated from sewage waste sludge and adopted to biodegrade naphthalene and phenanthrene at different concentrations (100-1000mg/L). Sewage waste sludge obtained from wastewater treatment plants. A three-layer feed-forward network with a sigmoid transfer function (logsig) at the hidden layer, a linear transfer function (purelin) at the output layer, and a backpropagation training algorithm was used to set the ANN model. RESULTS The results of this study show that naphthalene at concentrations of 100, 300, 700, and 1000 mg/L was depleted after incubation with the mixed culture for 6, 8, 14, and 16 days, respectively. For phenanthrene, depletion of 100, 300, 600, and 1000 mg/L was achieved after 8, 11, 16, and 19 days of incubation, respectively. A high correlation coefficient of 99.5% between the predicted and the experimental results were obtained by using the AAN model. CONCLUSION The results indicated that the mixed culture of microorganisms from sewage waste sludge could effectively consume naphthalene and phenanthrene as carbon and energy sources. Also, the ANN model could efficiently predict the experimental results for biodegradation treatment.
Collapse
Affiliation(s)
- Yasmen A. Mustafa
- Department of Economics of Oil and Gas, University of Imam Jaafar Al-Sadiq, Baghdad, Iraq
| | - Sinan J. Mohammed
- Department of Economics of Oil and Gas, University of Imam Jaafar Al-Sadiq, Baghdad, Iraq
| | - Mohanad J. M. Ridha
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
17
|
Song X, Li C, Chen W. Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113389. [PMID: 35272194 DOI: 10.1016/j.ecoenv.2022.113389] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Soils co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and cadmium (Cd) have serious environmental impacts and are highly toxic to humans and ecosystems. Phytoremediation is an effective biotechnology for the remediation and restoration of PAH- and Cd-polluted soils. Pot experiments were conducted to investigate the individual and combined effects of PAHs (1238.62 mg kg-1) and Cd (23.1 mg kg-1) on the phytoremediation potential of Bermuda grass grown in contaminated soils. Bermuda grass exhibited a significant decrease in plant growth rate, leaf pigment content, root activity, plant height and biomass and a remarkable increase in malondialdehyde content and electrolyte leakage when grown in PAH- and Cd-contaminated soils compared with grass grown in uncontaminated soils. The activity of soil enzymes, including urease, alkaline phosphatase, sucrose, and fluorescein diacetate hydrolysis, were reduced in soil with PAH and Cd stress. Furthermore, the toxicity of combined PAHs and Cd on Bermuda grass growth and soil enzyme activity was much higher than that of PAH or Cd stress alone, suggesting a synergistic effect of PAHs and Cd on cytotoxicity. To scavenge redundant reactive oxygen species and avoid oxidative damage, Bermuda grass increased plant catalase, superoxide dismutase, and peroxidase activity and soluble sugar and proline content. The bioconcentration factor of Cd in Bermuda grass grown under Cd alone and combined PAH and Cd exposure was greater than 1 for both, suggesting that Bermuda grass has a high Cd accumulation ability. Under PAH alone and combined PAH and Cd exposure conditions, a higher PAH removal rate (41.5-56.8%) was observed in soils planted with Bermuda grass than in unplanted soils (24.8-29.8%), indicating that Bermuda grass has a great ability to degrade PAHs. Bermuda grass showed great phytoremediation potential for the degradation of PAHs and phytoextraction of Cd in co-contaminated soils.
Collapse
Affiliation(s)
- Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China
| | - Changjiang Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Weifeng Chen
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Engineering & Technology Research Center for Phyto-Microremediation in Saline-Alkali Land, Shandong, China.
| |
Collapse
|
18
|
Wang F, Dong W, Wang H, Zhao Y, Zhao Z, Huang J, Zhou T, Wu Z, Li W. Enhanced bioremediation of sediment contaminated with polycyclic aromatic hydrocarbons by combined stimulation with sodium acetate/phthalic acid. CHEMOSPHERE 2022; 291:132770. [PMID: 34736942 DOI: 10.1016/j.chemosphere.2021.132770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
In this study, four groups of laboratory scale experiments were performed by adding sodium acetate (SA), phthalic acid (PA), and SA-PA to river sediment to observe the microbial response and biodegradation efficiency of polycyclic aromatic hydrocarbons (PAHs). The results showed that the amount of total organic carbon consumed and the amount of sulfate reduction were both positively correlated (p < 0.01) with the biodegradation efficiency of the sum (∑) PAHs (∼40.5%). The lower the number of rings, the more PAHs were biodegraded, with an efficiency of 63.0% for ∑ (2 + 3) ring PAHs. Based on high-throughput sequencing and molecular ecological network analysis, it was found that the combined stimulation of SA and PA not only increased the relative abundance of PAHs-degrading bacterial (eg., Proteobacteria, Desulfobacterota, Campilobacterota and Firmicutes), but also had a strengthening effect on microbes in sediments. The altered microbial structure caused a variation in metabolic functions, which increased the amino acid metabolism to 12.2%, thus increasing the positive correlations among genera and improving the connectivity of the microbial network (p < 0.01). These changes may be responsible for the enhanced biodegradation of PAHs under SA-PA dosing in comparison to SA or PA dosing alone. This study revealed that the microbial community was stimulated by the combined addition of SA and PA, and indicated its role in enhancing biodegradation of PAHs in contaminated river sediments.
Collapse
Affiliation(s)
- Feng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Yue Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China.
| | - Jie Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Ting Zhou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zijing Wu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Wenting Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| |
Collapse
|
19
|
Construction and Degradation Performance Study of Polycyclic Aromatic Hydrocarbons (PAHs) Degrading Bacterium Consortium. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PAHs are widely distributed in the environment and pose a serious threat to ecological security and human health. The P&A (Pseudomonas aeruginosa and Alcaligenes faecalis) bacterium consortium obtained in this study comes from oily sludge and is reused for the degradation of PAHs mixture in oily sludge. Few articles pay attention to the PAHs mixture in oily sludge and reuse the bacterium consortium for its degradation. The PAHs solution degradation efficient of P&A bacterial consortium under different environmental conditions, bioaugmentations, and exogenous stimulations were studied by ultraviolet visible spectrophotometer and gas chromatography–mass spectrometry. The result shows that, after 8 days of degradation under 35 °C, pH 7, with 5% (volume percent) of the inoculation amount, the degradation rate of NAP, PHE, and PYR solution could higher than 90%, 80%, and 70%, respectively. The additional crude oil could further improve the NAP, PHE, and PYR degradation efficiency. The minimum inhibitory concentration of Cu2+, Zn2+, and Pb2+ to bacterium were 2.002, 17.388, and 9.435 mM, respectively. The addition of surfactants had negative or limited positive effect on the PAHs degradation rate. Furthermore, the average degradation rates of NAP, PHE, and PYR, in oily sludge of local petroleum polluted area by P&A bacterial consortium, could all reach above 80%. Based on gas chromatography–mass spectrometry test results before and after incubation, P&A bacterial consortium also provides more opportunities for other organic compounds’ degradation.
Collapse
|
20
|
Khan AL, Numan M, Bilal S, Asaf S, Crafword K, Imran M, Al-Harrasi A, Al-Sabahi JN, Rehman NU, A-Rawahi A, Lee IJ. Mangrove's rhizospheric engineering with bacterial inoculation improve degradation of diesel contamination. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127046. [PMID: 34481398 DOI: 10.1016/j.jhazmat.2021.127046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Mangroves (Avicennia marina) growing in intertidal areas are often exposed to diesel spills, adversely damaging the ecosystem. Herein, we showed for the first time that mangrove seedlings' associations with bacteria could reprogram host-growth, physiology, and ability to degrade diesel. We found four bacterial strains [Sphingomonas sp.-LK11, Rhodococcus corynebacterioides-NZ1, Bacillus subtilis-EP1 Bacillus safensis-SH10] exhibiting significant growth during diesel degradation (2% and 5%, v/v) and higher expression of alkane monooxygenase compared to control. This is in synergy with reduced long-chain n-alkanes (C24-C30) during microbe-diesel interactions in the bioreactor. Among individual strains, SH10 exhibited significantly higher potential to improve mangrove seedling's morphology, anatomy and growth during diesel treatment in rhizosphere compared to control. This was also evidenced by reduced activities and gene expression of antioxidant enzymes (catalases, peroxidases, ascorbic peroxidases, superoxide dismutases and polyphenol peroxidases) and lipid peroxidation during microbe-diesel interactions. Interestingly, we noticed significantly higher soil-enzyme activities (phosphatases and glucosidases) and essential metabolites in seedling's rhizosphere after bacteria and diesel treatments. Degradation of longer n-alkane chains in the rhizosphere also revealed a potential pathway that benefits mangroves by bacterial strains during diesel contaminations. Current results support microbes' application to rhizoengineer plant growth, responses, and phytoextraction abilities in environments contaminated with diesel spills. AVAILABILITY OF DATA AND MATERIALS: The datasets generated during the current study are available in the NCBI GenBank ((https://www.ncbi.nlm.nih.gov).
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, 616, Oman; Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA.
| | - Muhammad Numan
- Department of Biology, University of North Carolina at Greensboro, NC 27412, USA
| | - Saqib Bilal
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - Sajjad Asaf
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - Kerri Crafword
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, TX, USA
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu Korea, South Korea
| | - Ahmed Al-Harrasi
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA.
| | - Jamal Nasser Al-Sabahi
- Central Instrument Laboratory, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Najeeb Ur Rehman
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - Ahmed A-Rawahi
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu Korea, South Korea.
| |
Collapse
|
21
|
Imam A, Kumar Suman S, Kanaujia PK, Ray A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. BIORESOURCE TECHNOLOGY 2022; 343:126121. [PMID: 34653630 DOI: 10.1016/j.biortech.2021.126121] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
22
|
Geng S, Qin W, Cao W, Wang Y, Ding A, Zhu Y, Fan F, Dou J. Pilot-scale bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using an indigenous bacterial consortium in soil-slurry bioreactors. CHEMOSPHERE 2022; 287:132183. [PMID: 34500332 DOI: 10.1016/j.chemosphere.2021.132183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Soil-slurry bioreactor based bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil was studied through laboratory and pilot-scale trials, in which the degradation mechanism was explored. Indigenous PAH-degrading consortium was firstly screened out and it degraded 80.5% of total PAHs in lab-scale bioreactors. Then a pilot-scale trial lasting 410 days was conducted in two bioreactors of 1.5 m3 to examine the operating parameters and validate the optimum running conditions. During the initial 200 days, the crucial running parameters affecting PAH removal were evaluated and selected. Subsequently, an average PAH removal rate of 93.4% was achieved during 15 consecutive batches (210 days) under the optimum running conditions. The kinetic analysis showed that the reactor under optimum conditions achieved the highest PAH degradation rate of 0.1795 day-1 and the shortest half-life of 3.86 days. Notably, efficient mass transfer of PAHs and high biodegradation capability by bioaugmented consortia in soil-slurry bioreactors were two key mechanisms for appreciable PAH removal performance. Under the optimal operating conditions, the degradation rate of low-molecular-weight (LMW) PAHs was significantly higher than high-molecular-weight (HMW) PAHs; when the mass transfer was limited, there was no significant difference between their degradation behaviors. Both microbial co-metabolism and collaborative metabolism might occur when all PAHs demonstrated low degradation rates. The findings provide insightful guidance on the future assessment and remediation practices of PAH-contaminated sites.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Wei Qin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wei Cao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yingying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
23
|
Hashmat AJ, Afzal M, Arias CA, Ramirez-Vargas CA, Brix H. Enhanced degradation of hydrocarbons in constructed wetlands aided with nutrients, surfactant, and aeration. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1163-1172. [PMID: 34958292 DOI: 10.1080/15226514.2021.2021140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of constructed wetlands (CWs) is a promising approach for the remediation of hydrocarbon-polluted wastewater. The amendments of CWs with nutrients, surfactants, and aeration enhances the removal of pollutants from wastewater. The objective of the present study was to explore the effect of external stimulants, i.e., nutrients, surfactant, and aeration on hydrocarbons degradation potential of CWs. The CWs mesocosms were developed by the vegetation of Phragmites australis and amendments with nutrients (20 mg l-1 N, 2.6 mg l-1 P, and 16.4 mg l-1 K), surfactant Tween 20 (0.2%, v/v), and aeration (7 mg l-1) for the remediation of diesel-spiked water (2%, w/v). The comparative analysis showed that the addition of nutrients, surfactant, and aeration individually enhanced total petroleum hydrocarbons (TPHs) reduction, and maximum TPHs reduction (88.4%) was achieved after 60 days in the mesocosms amended with the combination of nutrients, surfactant, and aeration. Among different individual treatments, the aeration (alone) also played a pivotal role in TPHs reduction (61%). The least (12%) reduction in TPHs was achieved in the mesocosms supplied with surfactant only. This study revealed that the combined application of nutrients, surfactant, and aeration in CWs enhanced its hydrocarbons degradation performance.
Collapse
Affiliation(s)
- Amer Jamal Hashmat
- National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
- Centre for Water Technology (WATEC), Aarhus University, Aarhus C, Denmark
| | - Muhammad Afzal
- National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | | | | | - Hans Brix
- Centre for Water Technology (WATEC), Aarhus University, Aarhus C, Denmark
| |
Collapse
|
24
|
Kou L, Huang T, Zhang H, Wen G, Li N, Wang C, Lu L. Mix-cultured aerobic denitrifying bacterial communities reduce nitrate: Novel insights in micro-polluted water treatment at lower temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148910. [PMID: 34328901 DOI: 10.1016/j.scitotenv.2021.148910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Three mix-cultured aerobic denitrifiers were screened from a source water reservoir and named HE1, HE3 and SU4. Approximately 72.9%, 68.6% and 66.2% of nitrate were effectively removed from basal medium, respectively, after 120 h of cultivation at 8 °C. The nitrogen balance analysis revealed about one-fifth of the initial nitrogen was converted into gaseous denitrification products. According to the results of Biolog, the three microfloras had high metabolic capacity to carbon sources. The dominant genera were Pseudomonas and Paracoccus in these bacterial communities based on nirS gene sequencing. Response surface methodology elucidated that the denitrification rates of identified bacteria reached the maximum under the following optimal parameters: C/N ratio of 7.51-8.34, pH of 8.03-8.09, temperature of 18.03-20.19 °C, and shaking speed of 67.04-120 rpm. All results suggested that screened aerobic denitrifiers could potentially be applied to improve the source water quality at low temperature.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Chenxu Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Linchao Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
25
|
Ahmad M, Wang P, Li JL, Wang R, Duan L, Luo X, Irfan M, Peng Z, Yin L, Li WJ. Impacts of bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117863. [PMID: 34352636 DOI: 10.1016/j.envpol.2021.117863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Bio-stimulation of the indigenous microbial community is considered as an effective strategy for the bioremediation of polluted environments. This examination explored the near effects of various bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions using 16S rRNA amplicon sequencing and qPCR. At first, the results displayed significant differences (p < 0.05) between the prokaryotic community structures of the control group, PYR (contains pyrene only), and bio-stimulants amended groups. Among the bio-stimulants, biochar, oxalic acid, salicylate, NPK, and ammonium sulfate augmented the pyrene degradation potential of microbial communities. Moreover, the higher abundance of genera, such as Flavobacterium, Hydrogenophaga, Mycobacterium, Rhodococcus, Flavihumibacter, Pseudomonas, Novosphingobium, etc., across the treatments indicated that these genera play a vital role in pyrene metabolism. Based on the higher abundance of GP-RHD and nidA genes, we speculated that Gram-positive prokaryotic communities are more competent in pyrene dissipation than Gram-negative. Furthermore, the marked abundance of nifH, and pqqC genes in the NPK and SA treatments, respectively, suggested that different bio-stimulants might enrich certain bacterial assemblages. Besides, the significant distinctions (p < 0.05) between the bacterial consortia of HA (humic acid) and SA (sodium acetate) groups from NPK, OX (oxalic acid), UR (urea), NH4, and SC (salicylate) groups also suggested that different bio-stimulants might induce distinct ecological impacts influencing the succession of prokaryotic communities in distinct directions. This work provides new insight into the bacterial degradation of pyrene using the bio-stimulation technique. It suggests that it is equally important to investigate the community structure and functions along with studying their impacts on degradation when devising a bio-stimulation technology.
Collapse
Affiliation(s)
- Manzoor Ahmad
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Renfei Wang
- Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xiaoqing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Ziqi Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lingzi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
26
|
Ahmad M, Ling J, Yang Q, Sajjad W, Zhou W, Yin J, Dong J. Insight into Bacterial Community Responses to Polycyclic Aromatic Hydrocarbons and the Degradation Potentials of Three Bacterial Isolates in Seagrass Halophila ovalis Sediments. Curr Microbiol 2021; 78:4084-4097. [PMID: 34687349 DOI: 10.1007/s00284-021-02670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Seagrass meadows constitute a prestigious ecosystem in the marine environment, providing valuable ecological and commercial services. Among the various causes, pollutions are considered one of the significant reasons for seagrass decline globally. This study investigates the impacts of polycyclic aromatic hydrocarbons mixture (pyrene, phenanthrene, and fluorene) on bacterial communities in Halophila ovalis sediments. The seagrass sediment bacterial microbiome was evaluated in a batch culture experiment by Illumina MiSeq sequencing. Culture-able bacterial strains were isolated and characterized by 16S rRNA gene sequencing. The results demonstrated an excellent alpha diversity in the original sediments with a Shannon index of (8.078) compared to the subsequent control group (5.908) and PAH-treated group (PAH-T) (4.916). Three phyla, Proteobacteria, Firmicutes, and Bacteroidetes, were detected in high abundance in the control and PAH-T groups. However, a significant difference (P < 0.05) was observed at the genus level between control and PAH-T group bacterial consortia. Pseudomonas, Mycobacterium, Idiomarina, Hydrogenophaga, Alteromonas, Sphingobacterium, and several others were highly abundant in PAH-T groups. Most of the culture-able isolates recovered in this study showed the closest resemblance to previously identified hydrocarbon-degrading bacteria. Among the three strains, Mix-16 (Citricoccus yambaruensis) and Mix-20 (Gordonia rubripertincta) showed a higher degradation of PAHs than Mix-19 (Isoptericola halotolerans) in the monoculture experiment. The most increased degradation of PAHs was recorded in the co-culture experiment. The present work revealed that PAHs could act as environmental stress and can influence bacterial community succession. Moreover, the co-culture strategy significantly enhanced the biodegradation of PAHs.
Collapse
Affiliation(s)
- Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China. .,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China. .,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China. .,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China. .,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| |
Collapse
|
27
|
Roshandel F, Saadatmand S, Iranbakhsh A, Ardebili ZO. Mycoremediation of oil contaminant by Pleurotus florida (P.Kumm) in liquid culture. Fungal Biol 2021; 125:667-678. [PMID: 34420694 DOI: 10.1016/j.funbio.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023]
Abstract
This study investigated the potential functions of Pleurotus florida (an edible mushroom) in the biodegradation of gas oil at concentrations of 0 (control), 2.5, 5, and 10% (V: V) for 30 days. The gas oil increased dry weight and protein concentration in all treatments (by an average of 19.5 and 108%, respectively). Moreover, the pH, surface tension (ST), and interfacial tension (IFT) were reduced by the mushroom supplementation. The lowest surface tension (31.9 mN m-1) and the highest biosurfactant production belonged to the 10% gas oil treatment (0.845 ± 0.03 mg mL-1). The results demonstrated that the adsorption isotherm agreed well with the Langmuir isotherm. The maximum Langmuir adsorption capacity was calculated at 0.743 mg g-1 wet biomass of P. florida. The fungal supplementation efficiently remedied the total petroleum hydrocarbons (TPHs) by an average of 55% after 30 days. Gas chromatography (GC) analysis revealed that P. florida effectively detoxified C13-C28 hydrocarbons, Pristane, and Phytane, implying its high mycoremediation function. The toxicity test showed that mycoremediation increased the germination by an average of 35.82% ± 8.89 after 30 days. Laccase activity increased significantly with increasing gas oil concentration in the treatments. The maximum laccase activity was obtained in the 10% gas oil treatment (142.25 ± 0.72 U L-1). The presence of pollutants was also associated with induction in the tyrosinase activity when compared to the control. These results underline the high mycoremediation capacity of P. florida through the involvement of biosurfactants, laccase, and tyrosinase.
Collapse
Affiliation(s)
- Farzaneh Roshandel
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
28
|
Agbaji JE, Nwaichi EO, Abu GO. Attenuation of petroleum hydrocarbon fractions using rhizobacterial isolates possessing alkB, C23O, and nahR genes for degradation of n-alkane and aromatics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:635-645. [PMID: 34019473 DOI: 10.1080/10934529.2021.1913013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
This work assessed the catabolic versatility of functional genes in hydrocarbon-utilizing bacteria obtained from the rhizosphere of plants harvested in aged polluted soil sites in Ogoni and their attenuation efficacy in a bioremediation study. Rhizosphere soil was enumerated for its hydrocarbon-utilizing bacteria. The bacteria were in-vitro screened and selected through the quantification of their total protein and specific intermediate pathway enzyme (catechol 2,3-dioxygenase) activity in the metabolism of hydrocarbon. Thereafter, agarose gel electrophoresis technique was deployed to profile the genome of the selected strains for catechol 2,3-dioxygenase (C23O), 1,2-alkane monooxygenase (alkB), and naphthalene dioxygenase (nahR). Four rhizobacterial isolates namely Pseudomonas fluorescens (A3), Achromobacter agilis (A4), Bacillus thuringiensis (D2), and Staphylococcus lentus (L1) were selected based on the presence of C23O, alkB, and nahR genes. The gel electrophoresis results showed an approximate molecular weight of 200 bp for alkB, 300 bp for C23O, and 400 bp for nahR. The gas chromatogram for residual total petroleum hydrocarbon (TPH) revealed mineralization of fractions C8-C17, phytane, C18-C30. TPH for in-vitro bioremediation of crude oil-polluted soil was observed to have an optimal reduction/loss of 97% within the 56th day of the investigation. This study has further revealed that the microbiome of plants pre-exposed to crude oil pollution could serve as a reservoir for mining group of bacterial with broad catabolic potentials for eco-recovery and waste treatment purposes.
Collapse
Affiliation(s)
- Joseph E Agbaji
- Institute of Natural Resources, Environment, and Sustainable Development (INRES), University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Eucharia O Nwaichi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Gideon O Abu
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| |
Collapse
|
29
|
Feng L, Jiang X, Huang Y, Wen D, Fu T, Fu R. Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116476. [PMID: 33485004 DOI: 10.1016/j.envpol.2021.116476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Pollution in soil by petroleum hydrocarbon has become a global environmental problem. The bioremediation of petroleum hydrocarbon-contaminated soil was enhanced with the combination of an isolated indigenous bacterial consortium and biosurfactant. The biodegradation efficiency of total petroleum hydrocarbon (TPH) was increased from 12.2% in the contaminated soil to 44.5% and 57.7% in isolated consortium and isolated consortium & 1.5 g sophorolipid (SL)/kg dry soil, respectively. The half-life of TPH degradation process was decreased from 32.5 d in the isolated consortium reactor to 20.4 d in the isolated consortium & 1.5 g SL/kg dry soil. The addition of biosurfactant into contaminated soils improved the TPH desorption from solid matrix to the aqueous solution and the subsequent solubilization, which ultimately improved the bioavailability of TPH in contaminated soils. Biosurfactant also served as carbon sources which contributed to the stimulation of cell growth and microbial activity and accelerated the biodegradation process via co-metabolism. The enzyme activities and quantities of functional genes were demonstrated to be incremented in SL reactors. The biosurfactant improved the TPH bioavailability, stimulated the microbial activities and participated in the co-metabolism. The combination of bioaugmentation and SL benefitted the bioremediation of petroleum hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiupeng Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; School of Environmental and Safety Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu Province, 214500, China
| | - Yanning Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dongdong Wen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tianyu Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, Shandong Province, 266033, China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
30
|
Zdarta A, Smułek W, Pacholak A, Dudzińska-Bajorek B, Kaczorek E. Surfactant addition in diesel oil degradation - how can it help the microbes? JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:677-686. [PMID: 33312593 PMCID: PMC7721782 DOI: 10.1007/s40201-020-00494-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/08/2020] [Indexed: 05/07/2023]
Abstract
PURPOSE Despite wide research on bioremediation of hydrocarbon-contaminated soil, the mechanisms of surfactant-enhanced bioavailability of the contaminants are still unclear. The presented study was focused on the in-depth description of relationships between hydrocarbons, bacteria, and surfactants. In order to that, the biodegradation experiments and cell viability measurements were conducted, and the properties of cell surface were characterized. METHODS MTT assay was employed to measure plant extracts toxicity to microbes. Then, membrane permeability changes were evaluated, followed by diesel oil biodegradation in the presence of surfactants measurements by GCxGC-TOFMS and PCR-RAPD analysis. RESULTS Our study undoubtedly proves that different surfactants promote assimilation of different groups of hydrocarbons and modify cell surface properties in different ways. Increased biodegradation of diesel oil was observed when cultures with Acinetobacter calcoaceticus M1B were supplemented with Saponaria officinalis and Verbascum nigrum extracts. Interestingly, these surfactants exhibit different influences on cell surface properties and their viability in contrast to the other surfactants. Moreover, the preliminary analyses have shown changes in the genome caused by exposure to surfactants. CONCLUSIONS The results indicated that the benefits of surfactant use may be related to deep modification at the omics level, not only that of cell surface properties and confirms the complexity of the interactions between bacterial cells, pollutants and surfactants.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | | | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
31
|
Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 2020; 11:562813. [PMID: 33224110 PMCID: PMC7674206 DOI: 10.3389/fmicb.2020.562813] [Citation(s) in RCA: 382] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread across the globe mainly due to long-term anthropogenic sources of pollution. The inherent properties of PAHs such as heterocyclic aromatic ring structures, hydrophobicity, and thermostability have made them recalcitrant and highly persistent in the environment. PAH pollutants have been determined to be highly toxic, mutagenic, carcinogenic, teratogenic, and immunotoxicogenic to various life forms. Therefore, this review discusses the primary sources of PAH emissions, exposure routes, and toxic effects on humans, in particular. This review briefly summarizes the physical and chemical PAH remediation approaches such as membrane filtration, soil washing, adsorption, electrokinetic, thermal, oxidation, and photocatalytic treatments. This review provides a detailed systematic compilation of the eco-friendly biological treatment solutions for remediation of PAHs such as microbial remediation approaches using bacteria, archaea, fungi, algae, and co-cultures. In situ and ex situ biological treatments such as land farming, biostimulation, bioaugmentation, phytoremediation, bioreactor, and vermiremediation approaches are discussed in detail, and a summary of the factors affecting and limiting PAH bioremediation is also discussed. An overview of emerging technologies employing multi-process combinatorial treatment approaches is given, and newer concepts on generation of value-added by-products during PAH remediation are highlighted in this review.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Shabnam Shaikh
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Kunal R. Jain
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
| | - Chirayu Desai
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| | - Datta Madamwar
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Anand, India
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, India
| |
Collapse
|
32
|
Patel K, Patel M. Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. BIORESOURCE TECHNOLOGY 2020; 315:123861. [PMID: 32702582 DOI: 10.1016/j.biortech.2020.123861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Primarily, this study aims to evaluate the biosurfactant production capability of Stenotrophomonas sp. S1VKR-26, profiling of its bioremediation ability to remediate petroleum refinery wastewater in a lab-scale bioreactor and assessment of phytotoxicity of bioremediated petroleum wastewater. As a result, strain S1VKR-26 was found to produce 5.15 g L-1 biosurfactant, CMC of 30 mg L-1 and reduced the surface tension from 60.3 to 30.5 mN m-1. Different PAHs like naphthalene (93%), phenanthrene (86%), fluoranthene (92%), and pyrene (98.3%), total petroleum hydrocarbons (72.33%) and phenolic compounds (93.06%) were significantly remediated from the wastewater after the treatment of strain S1VKR-26. Moreover, S1VKR-26 strain treated 1:1 diluted petroleum wastewater have higher germination (100%), vigor (486), and seedling (4.86 cm) compared to untreated wastewater. Therefore, the treatment of petroleum refinery wastewater with strain S1VKR-26 could be more effective in the sense of environmental safety and irrigation for crop production in agriculture.
Collapse
Affiliation(s)
- Kartik Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Mitesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India.
| |
Collapse
|
33
|
Wang C, Luo Y, Tan H, Liu H, Xu F, Xu H. Responsiveness change of biochemistry and micro-ecology in alkaline soil under PAHs contamination with or without heavy metal interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115296. [PMID: 32791476 DOI: 10.1016/j.envpol.2020.115296] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Co-presence of organic pollutants and heavy metals in soil is causing increasing concerns, but the lack of knowledge of relation between soil ecology and pollutant fate is limiting the developing of specific control strategy. This study investigated soil change under pyrene stress and its interaction with cadmium (Cd). Soil physicochemical properties were not seriously influenced. However, pollutants' presence easily varied soil microbial activity, quantity, and diversity. Under high-level pyrene, Cd presence contributed to soil indigenous microorganisms' adaption and soil microbial community structure stability. Soils with both pyrene and Cd presented 7.11-12.0% higher pyrene degradation compared with single pyrene treatment. High-throughput sequencing analysis indicated the proportion of Mycobacterium sp., a commonly known PAHs degrader, increased to 25.2-48.5% in treatments from 0.52% in control. This phenomenon was consistent with the increase of PAHs probable degraders (the ratio increased to 2.86-6.57% from 0.24% in control). Higher Cd bioavailability was also observed in soils with both pollutants than that with Cd alone. And Cd existence caused the elevation of Cd resistant bacterium Limnobacter sp. (increased to 12.2% in CdCK from 2.06% in control). Functional gene prediction also indicated that abundance of genes related to nutrient metabolism decreased dramatically with pollutants, while the abundances of energy metabolism, lipid metabolism, secondary metabolites biosynthesis-related genes increased (especially for aromatic compound degradation related genes). These results indicated the mutual effect and internal-interaction existed between pollutants and soils resulted in pollutants' fate and soil microbial changes, providing further information regarding pollutants dissipation and transformation under soil microbial response.
Collapse
Affiliation(s)
- Can Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| | - Yao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
34
|
Vaidya SS, Patel AB, Jain K, Amin S, Madamwar D. Characterizing the bacterial consortium ASDF capable of catabolic degradation of fluoranthene and other mono- and poly-aromatic hydrocarbons. 3 Biotech 2020; 10:491. [PMID: 33134009 DOI: 10.1007/s13205-020-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022] Open
Abstract
In this study, a bacterial consortium ASDF was developed, capable of degrading fluoranthene (a non-alternant poly-aromatic hydrocarbon). It comprised of three bacterial strains: Pseudomonas sp. ASDF1, Burkholderia sp. ASDF2 and Mycobacterium sp. ASDF3 capable of degrading 100 mg/L of fluoranthene under experimentally defined and optimum conditions (37 °C, pH 7.0, 150 rpm) within 7 days. Consortium had metabolized fluoranthene as sole source of carbon and energy with maximum degradation rate of 0.52 mg/L/h and growth rate of 0.054/h. Fluoranthene degradation is an aerobic process, therefore with increasing the gyratory shaking from 50 to 150 rpm, degradation was concurrently enhanced by 7.1-fold. The synthetic surfactants SDS and CTAB had antagonistic effect on fluoranthene degradation (decreased up to 2.8-fold). The proficiency of consortium was assessed for its inherent ability to degrade seven other hydrocarbons both individually as well as in mixture. The degradation profile was studied using HPLC and the detection of two degraded intermediates (salicylic acid and derivatives of phthalic acid) suggested that fluoranthene degradation might have occurred via ortho- and meta-cleavage pathways. The competency of consortium was further validated through simulated microcosm studies, which showed 96% degradation of fluoranthene in soil ecosystem under the ambient conditions. Hence, the study suggested that the consortium ASDF has an inherent potential for its wide applicability in bioremediation of hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Sagar S Vaidya
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India
| | - Avani Bharatkumar Patel
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India
| | - Kunal Jain
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India
| | - Seema Amin
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa, Anand, Gujarat 388 421 India
| | - Datta Madamwar
- Post Graduate Department of Biosciences, UGC Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, Anand, Gujarat 388 315 India.,P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa, Anand, Gujarat 388 421 India
| |
Collapse
|
35
|
Wu M, Guo X, Wu J, Chen K. Effect of compost amendment and bioaugmentation on PAH degradation and microbial community shifting in petroleum-contaminated soil. CHEMOSPHERE 2020; 256:126998. [PMID: 32470727 DOI: 10.1016/j.chemosphere.2020.126998] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 05/15/2023]
Abstract
Efficient degradation of polycyclic aromatic hydrocarbons (PAHs) in a petroleum-contaminated soil was challenging which requires ample PAH-degrading flora and nutrients. In this study, we investigated the effects of 'natural attenuation', 'bioaugmentation', 'compost only (raw materials of compost included pig manure and rice husk mixed at a 1:2 proportion, supplemented with 2.5% charcoal)', and 'compost with bioaugmentation' treatments on degradation of polycyclic aromatic hydrocarbons (PAHs) and microbial community shifts during the remediation of petroleum-contaminated soil. After sixteen weeks of incubation, the removal efficiencies of PAHs were 0.52 ± 0.04%, 6.92 ± 0. 32%, 9.53 ± 0.29%, and 18.2 ± 0.64% in the four treatments, respectively. 'Compost with bioaugmentation' was the most effective for PAH removal among all the treatments. Illumina sequencing analysis suggested that both the 'compost only' and 'compost with bioaugmentation' treatments changed soil microbial community structures and enhanced microbial biodiversity. Some of the microorganisms affiliated with the compost including Azomonas, Luteimonas, Pseudosphingobacterium, and Parapedobacter were able to survive and become dominant in the contaminated soil. The 'bioaugmentation and 'natural attenuation' treatments had no significant effects on soil microbial community structure. Inoculation of the PAH degraders including Bacillus, Pseudomonas, and Acinetobacter directly into the contaminated soil led to lower biodiversity under natural conditions. This result suggested that compost addition increased the α-diversity of both the bacterial and fungal communities in petroleum-contaminated soil, leading to higher PAH degradation efficiency in petroleum-contaminated soil.
Collapse
Affiliation(s)
- Manli Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Xiqian Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Jialuo Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Kaili Chen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| |
Collapse
|
36
|
Qiao K, Tian W, Bai J, Wang L, Zhao J, Song T, Chu M. Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads. MARINE POLLUTION BULLETIN 2020; 159:111489. [PMID: 32892922 DOI: 10.1016/j.marpolbul.2020.111489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
A bacterial consortium immobilized in magnetic floating biochar gel beads is proposed to remove high-molecular-weight polycyclic aromatic hydrocarbons. The microbial consortium performed better than single strains and consisted of four strains of marine bacteria for degrading pyrene (PYR), two strains for benzo(a)pyrene (BAP), and three strains for indeno(1,2,3-cd)pyrene (INP), which were isolated from oil-contaminated seawater. The immobilized cells could biodegrade 89.8%, 66.9% and 78.2% of PYR, BAP and INP, respectively, and had better tolerance to pH, temperature and salinity than free cells. The Andrews model was used to explore the biodegradation kinetics, and when the initial concentrations of PYR, BAP, and INP were 7.80, 3.05, and 3.41 mg/L, the specific biodegradation rates reached maximum values of 0.2507, 0.1286, and 0.1930 d-1, respectively. The immobilized microbial consortium had a high HMW-PAH removal ability and good floatability and magnetic properties and could be collected by an external magnetic field.
Collapse
Affiliation(s)
- Kaili Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China
| | - Liang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiantian Song
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
37
|
Chettri B, Singh AK. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. BIORESOURCE TECHNOLOGY 2019; 294:122190. [PMID: 31585342 DOI: 10.1016/j.biortech.2019.122190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
This study report kinetics of PAHs and crude oil degradation by a newly isolated multiple heavy metal tolerant Novosphingobium panipatense P5:ABC. The isolate showed hydrocarbon degrading enzyme activities namely alkane hydroxylase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase. The level of C23O activity was 9.63 times higher than C12O thus suggesting active involvement of meta-cleavage pathway. The data of biodegradation of hydrocarbons fitted well to the first order kinetic model. The degradation rate was highest for phenanthrene followed by crude oil, and fluoranthene. We have further reported the estimate of fundamental kinetic parameters, half-saturation constant (Ks) and maximum degradation rates (Vmax) for biodegradation of phenanthrene and fluoranthene. Overall characterization underscores the potential of Novosphingobium in bioremediation of crude oil polluted sites.
Collapse
Affiliation(s)
- Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
38
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
39
|
Petsas AS, Vagi MC. Trends in the Bioremediation of Pharmaceuticals and Other Organic Contaminants Using Native or Genetically Modified Microbial Strains: A Review. Curr Pharm Biotechnol 2019; 20:787-824. [DOI: 10.2174/1389201020666190527113903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 01/28/2023]
Abstract
Nowadays, numerous synthetic and semisynthetic chemicals are extensively produced and consequently used worldwide for many different purposes, such as pharmaceuticals, pesticides, hydrocarbons with aromatic rings (known as polycyclic aromatic hydrocarbons, PAHs), multi-substituted biphenyls with halogens (such as polychlorinated biphenyls, PCBs), and many other toxic and persistent chemical species. The presence of the aforementioned xenobiotic substances not only in various environmental matrices (water, air, and soil), but also in biological tissues (organisms) as well as in several compartments of raw or processed food (of fruit, vegetal, and animal origin), has raised global scientific concerns regarding their potential toxicity towards non target organisms including humans. Additionally, the ability of those persistent organic pollutants to be magnified via food consumption (food chain) has become a crucial threat to human health. Microbial degradation is considered an important route influencing the fate of those toxicants in each matrix. The technique of bioremediation, either with microorganisms (native or genetically modified) which are applied directly (in a reactor or in situ), or with cell extracts or purified enzymes preparations, is reported as a low cost and potential detoxification technology for the removal of toxic chemicals. The sources and toxic impacts of target groups of chemicals are briefly presented in the present study, whereas the bioremediation applications for the removal of pharmaceuticals and other organic contaminants using microbial strains are critically reviewed. All the recently published data concerning the genes encoding the relevant enzymes that catalyze the degradation reactions, the mechanisms of reactions and parameters that influence the bioremediation process are discussed. Finally, research needs and future trends in the direction of decontamination are high-lightened.
Collapse
Affiliation(s)
- Andreas S. Petsas
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| | - Maria C. Vagi
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| |
Collapse
|
40
|
Mehetre GT, Dastager SG, Dharne MS. Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:52-60. [PMID: 31082602 DOI: 10.1016/j.scitotenv.2019.04.376] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Applicability of thermophilic and thermo-tolerant microorganisms for biodegradation of polycyclic aromatic hydrocarbons (PAHs) with low water solubility is an interesting strategy for improving the biodegradation efficiency. In this study, we evaluated utility of thermophilic and thermo-tolerant bacteria isolated from Unkeshwar hot spring (India) for biodegradation of four different PAHs. Water samples were enriched in mineral salt medium (MSM) containing a mixture of four PAHs compounds (anthracene: ANT, fluorene: FLU, phenanthrene: PHE and pyrene: PYR) at 37 °C and 50 °C. After growth based screening, four potent strains obtained which were identified as Aeribacillus pallidus (UCPS2), Bacillus axarquiensis (UCPD1), Bacillus siamensis (GHP76) and Bacillus subtilis subsp. inaquosorum (U277) based on the 16S rRNA gene sequence analysis. Degradation of mixed PAH compounds was evaluated by pure as well as mixed cultures under shake flask conditions using MSM supplemented with 200 mg/L concentration of PAHs (50 mg/L of each compound) for 15 days at 37 °C and 50 °C. A relatively higher degradation of ANT (92%- 96%), FLU (83% - 86%), PHE (16% - 54%) and PYR (51% - 71%) was achieved at 50 °C by Aeribacillus sp. (UCPS2) and mixed culture. Furthermore, crude oil was used as a substrate to study the degradation of same PAHs using these organisms which also revealed with similar results with the higher degradation at 50 °C. Interestingly, PAH-degrading strains were also positive for biosurfactant production. Biosurfactants were identified as the variants of surfactins (lipopeptide biosurfactants) based on analytical tools and phylogenetic analysis of the surfactin genes. Overall, this study has shown that hot spring microbes may have a potential for PAHs degradation and also biosurfactant production at a higher temperature, which could provide a novel perspective for removal of PAHs residues from oil contaminated sites.
Collapse
Affiliation(s)
- Gajanan T Mehetre
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Syed G Dastager
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mahesh S Dharne
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
41
|
Patel AB, Singh S, Patel A, Jain K, Amin S, Madamwar D. Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. BIORESOURCE TECHNOLOGY 2019; 284:115-120. [PMID: 30927648 DOI: 10.1016/j.biortech.2019.03.097] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant compounds and difficult to degrade. Therefore in this work, using a bioremediation approach, mixed bacterial cultures (ASPF) was developed and enriched from polluted marine sediments capable of degrading 400 mg/L of phenanthrene and fluoranthene in Bushnell Hass medium. ASPF consists of 22 bacterial genera dominated by Azoarcus and Chelativorans. The biostimulation effect of three water soluble fertilizers (NPK, urea, and ammonium sulfate) showed that NPK and ammonium sulfate have enhanced the degradation, whereas urea has decreased their degradation. ASPF was also able to degrade phenanthrene and fluoranthene in the presence of petroleum hydrocarbons. But degradation was found to decrease in the presence of pathway intermediates (phthalic acid and catechol) due to enzymatic feedback inhibition. Optimum degradation of both PAHs was observed under room temperature, suggesting the practical applicability of ASPF.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Shilpi Singh
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Aaishwarya Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa 388 421, Anand, Gujarat, India
| | - Kunal Jain
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India
| | - Seema Amin
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Charusat Campus, Changa 388 421, Anand, Gujarat, India
| | - Datta Madamwar
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol 388 315, Anand, Gujarat, India.
| |
Collapse
|
42
|
Meng L, Li W, Bao M, Sun P. Great correlation: Biodegradation and chemotactic adsorption of Pseudomonas synxantha LSH-7' for oil contaminated seawater bioremediation. WATER RESEARCH 2019; 153:160-168. [PMID: 30711791 DOI: 10.1016/j.watres.2019.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/19/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Oil Contaminated Seawaters is treated by biological processes of sorption or degradation. Considering the chemotaxis of bacteria, they migrate towards a better way to survive. However, the information concerning the chemotactic biosorption of microorganism is severely limited thus far. Therefore, chemotactic biosorption a novel way of sorption was put forward. The equation was defined as: A chemotactic biosorption = A extracellular biosorption - A passive extracellular biosorption + E intracellular. Effects of controlling parameters like pollutant, fertilizer, sediments and surfactant on bacterial chemotactic sorption capacity of tetradecane, hexadecane, phenanthrene or pyrene were described in detail. The results showed bacterial chemotactic biosorption would be promoted under the conditions of low pollutant concentration, high sediment concentration and fertilizer. However, Tween 80 would promote the sorption of pollutants onto bacterial cells depending on the concentration of surfactant. Correlational analyses were conducted with the biodegradation rate and the concentration (mg/g) of hydrocarbons measured in the biomass. We concluded there existed great correlation between them. Biodegradation rate were all linearly correlated with the concentration (mg/g) of hydrocarbons measured in the biomass in all respects with tetradecane (R2 = 0.9873), hexadecane (R2 = 0.9705), phenanthrene (R2 = 0.9098) and pyrene (R2 = 0.9424). The above idea may provide a new insight into oil spill bioremediation from sorption to degradation.
Collapse
Affiliation(s)
- Long Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, China
| | - Wen Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education / Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, China.
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, China
| |
Collapse
|
43
|
A selective genome-guided method for environmental Burkholderia isolation. J Ind Microbiol Biotechnol 2019; 46:345-362. [PMID: 30680473 DOI: 10.1007/s10295-018-02121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The genus Burkholderia is an emerging source of novel natural products chemistry, yet to date few methods exist for the selective isolation of strains of this genus from the environment. More broadly, tools to efficiently design selection media for any given genus would be of significant value to the natural products and microbiology communities. Using a modification of the recently published SMART protocol, we have developed a two-stage isolation protocol for strains from the genus Burkholderia. This method uses a combination of selective agar isolation media and multiplexed PCR profiling to derive Burkholderia strains from environmental samples with 95% efficiency. Creation of this new method paves the way for the systematic exploration of natural products chemistry from this important genus and offers new insight into potential methods for selective isolation method development for other priority genera.
Collapse
|
44
|
Yang R, Zhang G, Li S, Moazeni F, Li Y, Wu Y, Zhang W, Chen T, Liu G, Zhang B, Wu X. Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1834-1847. [PMID: 30456621 DOI: 10.1007/s11356-018-3718-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
This study investigates the biodegradation of crude oil by a mixed culture of bacteria isolated from the Qinghai-Tibet plateau using gas chromatography-mass spectrometer (GC-MS) and the gravimetric method. The results showed that a mixed culture has a stronger ability to degrade hydrocarbon than pure cultures. Once both Nocardia soli Y48 and Rhodococcus erythropolis YF28-1 (8) were present in a culture, the culture demonstrated the highest crude oil removal efficiency of almost 100% after 10 days of incubation at 20 °C. Moreover, further analysis of the degradation mechanisms used by the above strains, which revealed utilization of different n-alkane substrates, indicated the diversity of evolution and variations in different strains, as well as the importance of multiple metabolic mechanisms for alkane degradation. Therefore, it is concluded that a mixed culture of Y48 and YF28-1 (8) strains can provide a more effective method for bioremediation of hydrocarbon-contaminated soil in permafrost regions.
Collapse
Affiliation(s)
- Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Shiweng Li
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Faegheh Moazeni
- School of Science Engineering and Technology, Penn State Harrisburg University, Middletown, PA, 17057, USA
| | - Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yongna Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
| | - Binglin Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
45
|
Dutta K, Shityakov S, Khalifa I, Mal A, Moulik SP, Panda AK, Ghosh C. Effects of secondary carbon supplement on biofilm-mediated biodegradation of naphthalene by mutated naphthalene 1, 2-dioxygenase encoded by Pseudomonas putida strain KD9. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:187-197. [PMID: 29886364 DOI: 10.1016/j.jhazmat.2018.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) belong to a diverse group of environmental pollutants distributed ubiquitously in the environment. The carcinogenic properties of PAHs are the main causes of harm to human health. The green technology, biodegradation have become convenient options to address the environmental pollution. In this study, we analyzed the biodegradation potential of naphthalene with secondary carbon supplements (SCSs) in carbon deficient media (CSM) by Pseudomonas putida strain KD9 isolated from oil refinerary waste. The rigid-flexible molecular docking method revealed that the mutated naphthalene 1,2-dioxygenase had lower affinity for naphthalene than that found in wild type strain. Moreover, analytical methods (HPLC, qRT-PCR) and soft agar chemotaxis suggest sucrose (0.5 wt%) to be the best chemo-attractant and it unequivocally caused enhanced biodegradation of naphthalene (500 mg L-1) in both biofilm-mediated and shake-flask biodegradation methods. In addition, the morphological analysis detected from microscopy clearly showed KD9 to change its size and shape (rod to pointed) during biodegradation of naphthalene in CSM as sole source of carbon and energy. The forward versus side light scatter plot of the singlet cells obtained from flow cytometry suggests smaller cell size in CSM and lower florescence intensity of the total DNA content of cells. This study concludes that sucrose may be used as potential bio-stimulation agent.
Collapse
Affiliation(s)
- Kunal Dutta
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721102, West Bengal, India; Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg-97080, Würzburg, Germany
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, 13736, Moshtohor, Benha University, Egypt; College of Food Science and Technology, Huazhong Agricultural University, Wuhan-430070, China
| | - Arpan Mal
- Center for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Satya Priya Moulik
- Center for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amiya Kumar Panda
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Chandradipa Ghosh
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721102, West Bengal, India.
| |
Collapse
|