1
|
Feng D, Cui Y, Zeng Y, Wang D, Zhang H, Zhang Y, Song W. Enhancing compost quality through biochar and oyster shell amendments in the co-composting of seaweed and sugar residue. CHEMOSPHERE 2024; 366:143500. [PMID: 39384133 DOI: 10.1016/j.chemosphere.2024.143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Aquaculture and agricultural production generate substantial amounts of waste, including seaweed (which has plant-stimulating properties), oyster shells, and sugar residues. Through composting and appropriate management, these wastes have the potential to be converted into beneficial soil amendments. However, there is a lack of research exploring the potential of composting in promoting the conversion of seaweed into more stable humified forms, as well as in assessing whether composted seaweed retains its beneficial effects on plant growth. Additionally, studies on using oyster shells as additives to reduce waste pressure and comparing their effectiveness with biochar are relatively scarce. This study examines the impact of incorporating 5% corn stover biochar (T1), 10% biochar (T2), and 10% oyster shell powder (T3) on key physicochemical properties, product quality, and microbial community dynamics during the co-composting of seaweed and sugar residues. Results indicate that organic matter (OM) loss in T1 and T2 increased by 31.2% and 26.4%, respectively, compared to the control (CK). Moreover, Excitation-emission matrix (EEM) fluorescence spectroscopy revealed that humic substances in T1 and T2 surged by 434% and 423%, respectively, far exceeding the 289% increase in CK. The 10% biochar treatment also improved alginate degradation and seed germination index, due to the presence of biostimulants in seaweed and an increased abundance of Cobetia. Microbial analysis post-composting showed that T2 and T3 significantly enhanced the diversity and richness of bacterial communities. Notably, although oyster shell powder did not improve the humification degree of compost as significantly as biochar, it achieved effective weight reduction of waste (OM loss of 43.57%, far exceeding CK's 35.34%) without hindering the composting process. All four compost treatments retained the plant-stimulating effects of seaweed and facilitated alginate degradation. These results underscore the potential of biochar to enhance composting efficiency and utilize composting to process large quantities of oyster shell waste.
Collapse
Affiliation(s)
- Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yinjie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Wanlin Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
2
|
Enebe MC, Erasmus M. Vermicomposting technology - A perspective on vermicompost production technologies, limitations and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118585. [PMID: 37421723 DOI: 10.1016/j.jenvman.2023.118585] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The need for environmental sustainability while increasing the quantity, quality, and the rate of waste treatment to generate high-value environmental friendly fertilizer products is highly in demand. Vermicomposting is a good technology for the valorisation of industrial, domestic, municipal and agricultural wastes. Various vermicomposting technologies have been in use from time past to present. These technologies range from windrow, small - scale batch vermicomposting to large - scale continuous flow systems. Each of these processes has its own merits and demerits, necessitating advancement in the technology for efficient treatment of wastes. This work explores the hypothesis that the use of a continuous flow vermireactor system of a composite frame structure performs better than batch, windrow and other continuous systems operated in a single container. Following an in-depth review of the literature on vermicomposting technologies, treatment techniques, and reactor materials used, to explore the hypothesis, it was found that vermireactors operating in continuous flow fashion perform better in waste bioconversion than the batch and windrow techniques. Overall, the study concludes that batch techniques using plastic vermireactors predominate over the other reactor systems. However, the use of frame compartmentalized composite vermireactors performs considerably better in waste valorisation.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, 9031, South Africa.
| | - Mariana Erasmus
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, 9031, South Africa
| |
Collapse
|
3
|
Abdool-Ghany AA, Pollier CGL, Oehlert AM, Swart PK, Blare T, Moore K, Solo-Gabriele HM. Assessing quality and beneficial uses of Sargassum compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:545-556. [PMID: 37806162 DOI: 10.1016/j.wasman.2023.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
Sargassum spp. (specifically Sargassum fluitans and S. natans), one of the dominant forms of marine macroalgae (seaweed) found on the beaches of Florida, is washing up on the shores throughout the Caribbean in record quantities. Currently, a common management option is to haul and dispose of beached Sargassum in local landfills, potentially wasting a valuable renewable resource. The objective of this study was to determine whether composting represents a feasible alternative to managing Sargassum inundations through measurements and comparisons to eleven guidelines. Specifically, we assessed the characteristics of the compost [physical-chemical parameters (temperature, moisture content, pH, and conductivity), nutrient ratios (C:N), elemental composition, bacteria levels, and ability to sustain plant growth] in both small- and large scale experiments. Results show that although nutrient concentration ratios were not within the standards outlined by the U.S. Composting Council (USCC), the Sargassum compost was able to sustain the growth of radishes (Raphanus sativus L., var. Champion). Trace metal concentrations in the compost product were within five regulatory guidelines evaluated, except for arsenic (As) (6.64-26.5 mg/kg), which exceeded one of the five (the Florida Soil Cleanup Target Level for residential use). Bacteria levels were consistent with regulatory guidelines for compost produced in large-scale outdoor experiments but not for the small-scale set conducted in enclosed tumblers. Overall results support that Sargassum compost can be beneficially used for fill and some farming applications.
Collapse
Affiliation(s)
- Afeefa A Abdool-Ghany
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Clément G L Pollier
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Key Biscayne, FL, USA
| | - Amanda M Oehlert
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Key Biscayne, FL, USA
| | - Peter K Swart
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Key Biscayne, FL, USA
| | - Trent Blare
- Department of Food and Resource Economics, University of Florida, Gainesville, FL, USA
| | - Kimberly Moore
- University of Florida, Institute of Food and Agricultural Sciences, Fort Lauderdale Research and Education Center, 3205 College Avenue, Davie, FL, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
4
|
Keniya B, Patel H, Patel K, Bhatt S, Patel T. Vermistabilization of mango tree pruning waste with five earthworm species: A biochemical and heavy metal assessment. Heliyon 2023; 9:e19908. [PMID: 37810132 PMCID: PMC10559316 DOI: 10.1016/j.heliyon.2023.e19908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mango tree pruning results in high biomass output, which is a serious agricultural and environmental problem. Vermicomposting is a potential, fast and sustainable tool to address these challenges. For sixty days, the experiment was carried out in six vermireactors containing five earthworm species by Eudrilus eugeniae, Eisenia fetida, Aporrectodea rosea, Lumbricus rubellus, and Lampito mauritii, as well as composting (without earthworm) using mango tree pruning waste biomass along with cattle dung as an instant preferred feeding material for earthworms. The pH, TOC, C/N and C/P ratios of the waste were substantially reduced by the earthworm activity. However, after vermicomposting, the levels of macronutrients (N, P, K, Ca, Mg, S) and micronutrients (Fe, Mn, Zn, and Cu) and microbial count substantially increased. The TOC content of waste was reduced by 42-55%, and the C/N of vermicompost ranged from 5.58 to 11.38. The results showed that earthworm fecundity was highest in vermireactors containing Eudrilus eugeniae and Eisenia fetida. The current study was ultimately determine that vermicomposting using Eudrilus eugeniae or Eisenia fetida is an effective strategy for utilising mango tree pruning waste, ensuring environmental sustainability and improving farmer revenue.
Collapse
Affiliation(s)
- Bhavik Keniya
- N.M. College of Agriculture, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Hemant Patel
- ASPEE College of Horticulture , Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Ketan Patel
- ASPEE College of Horticulture , Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Shivam Bhatt
- ASPEE College of Horticulture , Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Tushar Patel
- College of Agriculture, Navsari Agricultural University, Bharuch, 393010, Gujarat, India
| |
Collapse
|
5
|
Carmona I, Aguirre I, Griffith DM, García-Borrego A. Towards a circular economy in virgin olive oil production: Valorization of the olive mill waste (OMW) "alpeorujo" through polyphenol recovery with natural deep eutectic solvents (NADESs) and vermicomposting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162198. [PMID: 36791855 DOI: 10.1016/j.scitotenv.2023.162198] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Virgin olive oil (VOO) production generates large amounts of a harmful by-product, olive mill waste (OMW) or alpeorujo, which has a strong environmental impact and that must be recycled to adapt VOO production to a circular economy model. Here, the valorization of OMW was studied by considering three consecutive stages: Stage 1 involves the generation of OMW; Stage 2 the recovery of bioactive phenolic compounds from the fresh OMW using natural deep eutectic solvents (NADESs), generating a valuable phenolic extract and a new by-product, a dephenolized OMW named "alpeoNADES"; and Stage 3 involves vermicomposting alpeoNADES with Eisenia fetida earthworms. Six NADES were formulated and tested, selecting a NADES composed of citric acid and fructose (CF) derived from food grade and biodegradable substances. CF was the most effective solvent to obtain phenolic extracts for nutraceutical and agronomical purposes, extracting 3988.74 mg/kg of polyphenols from fresh OMW. This alpeoNADES is a non-palatable substrate for E. fetida earthworms, as the residual CF gives it an acidic pH (pH 2). Its palatability was improved by mixing it with horse manure and straw for vermicomposting, in a 1:1 and 3:1 dry weight ratio. When these substrates were precomposted for 3 weeks they reached pH 5.5-6 and they could then be vermicomposted for 23 weeks (using OMW as a control). The best substrate for vermicomposting was determined by the worm biomass, growth rate, carbon to nitrogen (C:N) ratio, and N and P content. AlpeoNADES and manure 3:1 produced the highest quality vermicompost in the shortest time, generating a product that complied with European standards for organic fertilizers. Hence, alpeoNADES was recycled to a low-cost, organic balanced fertilizer in Stage 3, enabling the olive oil industry to transition to sustainable production through this integrated circular economy design.
Collapse
Affiliation(s)
- Inmaculada Carmona
- EcoSs_Lab, Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, 1101608 Loja, Ecuador; Department of Agronomy, Universidad de Sevilla, Seville, Spain
| | - Itziar Aguirre
- Department of Agronomy, Universidad de Sevilla, Seville, Spain
| | - Daniel M Griffith
- EcoSs_Lab, Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, 1101608 Loja, Ecuador
| | - Aranzazu García-Borrego
- Department of Food Phytochemicals, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain.
| |
Collapse
|
6
|
Dang BT, Ramaraj R, Huynh KPH, Le MV, Tomoaki I, Pham TT, Hoang Luan V, Thi Le Na P, Tran DPH. Current application of seaweed waste for composting and biochar: A review. BIORESOURCE TECHNOLOGY 2023; 375:128830. [PMID: 36878373 DOI: 10.1016/j.biortech.2023.128830] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address the origins of ocean acidification, seaweed aquaculture is emerging as a key biosequestration strategy. Nevertheless, seaweed biomass is involved in developing food and animal feed, whereas seaweed waste from commercial hydrocolloid extraction is dumped in landfills, which together limit the carbon cycle and carbon sequestration. This work sought to evaluate the production, properties, and applications of seaweed compost and biochar to strengthen the "carbon sink" implications of aquaculture sectors. Due to their unique characteristics, the production of seaweed-derived biochar and compost, as well as their existing applications, are distinct when compared to terrestrial biomass. This paper outlines the benefits of composting and biochar production as well as proposes ideas and perspectives to overcome technical shortcomings. If properly synchronized, progression in the aquaculture sector, composting, and biochar production, potentially promote various Sustainable Development Goals.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | | | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Minh-Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Itayama Tomoaki
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tan-Thi Pham
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Van Hoang Luan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Pham Thi Le Na
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Duyen P H Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan, ROC
| |
Collapse
|
7
|
Ashok Kumar K, Subalakshmi R, Jayanthi M, Abirami G, Vijayan DS, Venkatesa Prabhu S, Baskaran L. Production and characterization of enriched vermicompost from banana leaf biomass waste activated by biochar integration. ENVIRONMENTAL RESEARCH 2023; 219:115090. [PMID: 36529329 DOI: 10.1016/j.envres.2022.115090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Vermicomposting uses less energy and requires fewer infrastructures, and it is capable of restoring soil nutrition and carbon. Banana cultivation produces lots of trash in a single crop season, with 30 tonnes of waste generated per acre. The biodegradable fraction of banana leaf waste is thrown out in large quantities from temples, markets place wedding halls, hotels, and residential areas. Vermicomposting can be used for recovering lignin, cellulose, pectin, and hemicellulose from banana leaves. Earthworm digests organic materials with the enzymes produced in gut microflora. Biochar adds bulk to vermicomposting, increases its value as fertilizer. The goal of this study was to amend biochar (0, 2, 4 and 6%) with banana leaf waste (BLW) + cow dung (CD) in three different combinations (1:1, 2:1 and 3:1) using Eisenia fetida to produce enriched vermicompost. In the vermicompost with biochar groups, there were higher levels of physicochemical parameters, as well as macro- and micronutrient contents. The growth and reproduction of earthworms were higher in groups with biochar. A maximum of 1.82, 1.18 and 1.67% of total nitrogen, total phosphorus and total potassium was found in the final vermicompost recovered from BLW + CD (1:1) amended with 4% biochar; while the other treatments showed lower levels of nutrients. A lower C/N ratio of 18.14 was observed in BLW + CD (1:1) + 4% biochar followed by BLW + CD (1:1) + 2% biochar amendment (19.92). The FTIR and humification index studies show that degradation of organic matter has occurred in the final vermicompost and the substrates with 4% biochar in 1:1 combination showed better degradation and this combination can be used for nutrient rich vermicompost production.
Collapse
Affiliation(s)
- K Ashok Kumar
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India.
| | - R Subalakshmi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - M Jayanthi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - G Abirami
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, 600 117, Chennai, Tamil Nadu, India
| | - D S Vijayan
- Department of Civil Engineering, Aarupadai Veedu Institute of Technology, VMRF, Paiyanur, Chennai, 603104, Tamil Nadu, India
| | - S Venkatesa Prabhu
- Center of Excellence for Bioprocess and Biotechnology, Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - L Baskaran
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram, 608 002, Tamil Nadu, India; PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
8
|
Miao L, Wang Y, Zhang M, Feng Y, Wang L, Zhang H, Zhu W. Effects of hydrolyzed polymaleic anhydride addition combined with vermicomposting on maturity and bacterial diversity in the final vermicompost from the biochemical residue of kitchen waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8998-9010. [PMID: 35648348 DOI: 10.1007/s11356-022-20795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
A large amount of kitchen waste is produced all over the world. Biochemical disposal is an effective method for the reduction and safe utilization of kitchen waste. However, high salinity, low maturity and poor biocompatibility were encountered when utilizing the biochemical residue of kitchen waste (BRKW) as a kind of soil amendment. To reduce the high salinity, accelerate the maturity and improve the biocompatibility in the BRKW, this study used the BRKW as the main feedstock for earthworms after hydrolyzed polymaleic anhydride (HPMA) was added and focused on revealing the effect of HPMA addition combined with the vermicomposting process on the growth of earthworms and on the basic physicochemical properties and the microbial diversity of the derived vermicompost. The results showed that HPMA addition can promote earthworm growth and reproduction. The pH, electric conductivity, organic matter content, C/N and NH4+-N/NO3--N were decreased in the final vermicompost, while total nitrogen, total phosphorus and total potassium contents, and the seed germination index were increased. Scanning electron microscopy analysis showed that there was more disintegration in the final vermicompost. Meanwhile, adding the HPMA also helped to decrease the total number of fungi while increasing the populations of nitrogen-fixing bacteria, phosphorus-solubilizing bacteria and potassium-solubilizing bacteria as well as amount of total bacteria and actinomycetes. The vermicomposting process increased the bacterial phyla that promote the degradation of OM, such as Actinobacteria, Firmicutes and Acidobacteria, decreased the pathogenic Enterobacter and increased the bacterial genera that promote the maturity and quality, such as Cellvibrio and Pseudomonas. Thus, HPMA addition combined with vermicomposting can promote the growth of beneficial bacteria that promote the degradation of lignocelluloses and accelerate maturity while inhibiting some potential bacterial pathogens, which helps guarantee the safety of vermicomposting products from BRKW. Hence, employing HPMA to promote BRKW vermicomposting can possibly reduce salt content and improve the maturity and biocompatibility of the final vermicompost. This approach may help realize the safe utilization of BRKW and further promote the biochemical disposal of kitchen waste.
Collapse
Affiliation(s)
- Lijuan Miao
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yifan Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingyue Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuning Feng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lang Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hangjun Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqin Zhu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
9
|
Mago M, Gupta R, Yadav A, Kumar Garg V. Sustainable treatment and nutrient recovery from leafy waste through vermicomposting. BIORESOURCE TECHNOLOGY 2022; 347:126390. [PMID: 34822988 DOI: 10.1016/j.biortech.2021.126390] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The present investigation was carried out to evaluate the vermicomposting potential of two cruciferous vegetables' residual biomasses under laboratory conditions. Cabbage and cauliflower residual biomasses were spiked with 60% cow dung and vermicomposted for 90 days. The results showed a decrease in pH (5.3-9.8%), Total Organic Carbon (36.7-42.8%); increase in Electrical Conductivity (33-99.4%) and ash content (144.7-187.8%) after vermicomposting. Significant reduction in C:N ratio (49.5-76.4%) and C:P ratio (62.8-66.04%), increase in Total Kjeldahl Nitrogen (49.3-85.3%), Total Available Phosphorus (68.2-98.1%), Total Potassium (91.8-120.3%) were observed. FT-IR spectra of the vermicomposts had lesser band heights and peak intensities than raw materials. This evidenced decomposition of organic compounds and vermicompost stability. Germination Index values was calculated to determine the phytotoxicity level. Earthworms' growth and prolificacy was evaluated in terms of biomass gain, cocoons production and worm growth rate. Finally, it was inferred that cruciferous vegetables' biomass can be used for vermicomposting. The cauliflower residual biomass has shown better decomposition efficiency than cabbage residual biomass.
Collapse
Affiliation(s)
- Monika Mago
- J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, India
| | - Renuka Gupta
- J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, India
| | - Anoop Yadav
- Central University of Haryana, Mahendergarh, India
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, India
| |
Collapse
|
10
|
Yuvaraj A, Thangaraj R, Karmegam N, Ravindran B, Chang SW, Awasthi MK, Kannan S. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. CHEMOSPHERE 2021; 278:130458. [PMID: 34126688 DOI: 10.1016/j.chemosphere.2021.130458] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The industrial revolution and indiscriminate usage of a wide spectrum of agrochemicals account for the dumping of heavy metals in the environment. In-situ/ex-situ physical, chemical, and bioremediation strategies with pros and cons have been adopted for recovering metal contaminated soils and water. Therefore, there is an urgent requirement for a cost-effective and environment-friendly technique to combat metal pollution. Biochar combined with earthworms and vermifiltration is a suitable emerging technique for the remediation of metal-polluted soils and water. The chemical substances (e.g., sodium hydroxide, zinc chloride, potassium hydroxide, and phosphoric acid) have been used to activate biochar, which also faces several shortcomings. Studies reveal that extracellular enzymes have been used to activate biochar which is produced by earthworms and microbes that can alter the surface of the biochar. The present review focuses on the global scenario of metal pollution and its remediation through biochar activation using earthworms. The earthworms and biochar can produce "vermibiochar" which is capable of reducing the metal ions from contaminated water and soils. The vermifiltration can be a suitable technology for metal removal from wastewater/effluent. Thus, the biochar has a trick of producing entirely new options at a time when vermifiltration and other technologies are least expected. Further attention to the biochar-assisted vermifiltration of different sources of wastewater is required to be explored for the large-scale utilization of the process.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
11
|
Hu X, Zhang T, Tian G, Zhang L, Bian B. Performance and mechanism of high-speed vermicomposting of dewatered sludge using a new type of laboratory earthworm reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26132-26144. [PMID: 33483928 DOI: 10.1007/s11356-021-12438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
To solve the problem of the traditional vermicomposting cycle being too long, a new type of laboratory earthworm reactor was developed for high-speed vermicomposting of sludge. The earthworm reactor was established based on the model of first creating an optimal living environment for earthworms and then introducing sludge into the environment for vermicomposting. In addition, we selected four different materials to condition sludge to optimize the treatment efficiency and shorten the vermicomposting cycle. The results revealed that the use of the new earthworm reactor for high-speed vermicomposting can shorten the vermicomposting cycle to 61.33 h, which is 1/30 of the traditional method. Compared to the traditional method, the vermicompost obtained from high-speed vermicomposting had better stability and maturity (C/N: 14.96, humification index: 4.69, Germination index: 78.84%, TOC: 88.5 mg/g and ash content: 686 mg/g). Besides, the FT-IR, SEM, EEM, and enzyme activity from the earthworm analysis results show that the addition of vermicompost (raw material) was beneficial to the stability and mineralization of the final vermicompost for dewatered sludge vermicomposting.
Collapse
Affiliation(s)
- Xiuren Hu
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Tong Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Ganpei Tian
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
12
|
Yuvaraj A, Thangaraj R, Ravindran B, Chang SW, Karmegam N. Centrality of cattle solid wastes in vermicomposting technology - A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115688. [PMID: 33039975 DOI: 10.1016/j.envpol.2020.115688] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/09/2023]
Abstract
The current review reports the importance and significance of cattle solid waste in vermicomposting technology concerning biowaste pollution in the environment. Needy increasing population evokes livestock production resulting in the massive generation of livestock wastes, especially cattle dung. Improper disposal and handling of biowastes originating from agriculture, industries, forests, rural and urban areas lead to nutrient loss, environmental pollution and health risks. Among the organic waste disposal methods available, vermicomposting is regarded as an environmentally friendly technology for bioconversion of agricultural, industrial, rural and urban generated organic solid wastes which are serving as reservoirs of environmental pollution. In vermicomposting of organic wastes, cattle dung plays a central role in mineralization, nutrient recovery, earthworm and microbial activity leading to vermifertilizer production. Even though the vermicomposting studies use cattle dung invariably as an amendment material, its importance has not been reviewed to highlight its central role. Hence, the present review mainly emphasizes the key role played by cattle dung in vermicomposting. Vermiconversion of cattle dung alone and in combination with other biowaste materials of environmental concern, mechanisms involved and benefits of vermicompost in sustainable agriculture are the major objectives addressed in the present review. The analysis reveals that cattle dung is indispensable amendment material for vermicomposting technology to ensure agricultural and environmental sustainability by reducing pollution risks associated with biowastes on one hand, and nutrient-rich benign vermifertilizer production on the other hand.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Gyeonggi - Do, 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Gyeonggi - Do, 16227, South Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
13
|
Balachandar R, Biruntha M, Yuvaraj A, Thangaraj R, Subbaiya R, Govarthanan M, Kumar P, Karmegam N. Earthworm intervened nutrient recovery and greener production of vermicompost from Ipomoea staphylina - An invasive weed with emerging environmental challenges. CHEMOSPHERE 2021; 263:128080. [PMID: 33297079 DOI: 10.1016/j.chemosphere.2020.128080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
The invasive weed, Ipomoea staphylina (IS) with cow dung (CD) and mushroom spent straw (MS) in four different combinations (IS:CD:MS), V1 (1:1:0), V2 (2:1:1), V3 (1:0:1) and V4 (1:1:1) were pre-decomposed for 21 days followed by 50 days vermicomposting using Eudrilus eugeniae in triplicates in order to alleviate and to utilize the weed biomass in an environment-friendly manner. The contents of organic matter, organic carbon, cellulose, lignin, C/N and C/P ratios showed a decrease, while electrical conductivity, total NPK, calcium, sodium, and nitrate-nitrogen showed a significant increase in vermicompost over control. Water-soluble organic carbon to organic nitrogen ratio and C/N ratio in V1 (0.52 and 17.55) and V4 (0.43 and 16.56), respectively, were in conformity with the maturity of vermicomposts. Scanning electron micrographs of the end products clearly showed more fragmented, fine, and porous particles in vermicompost. Copper, chromium, cadmium, lead, and zinc in vermicomposts were below the permissible limits. Dehydrogenase, acid phosphatase, alkaline phosphatase, cellulase, and protease activities were significantly higher in V4 than other treatments, implying the role of MS and CD addition during vermicomposting. Though V3 combination supported worm biomass, V4 combination was found to favor the fecundity of Eudrilus eugeniae. Results reveal that 1:1:1 combination of SI + CD + MS (V4) is suitable for utilizing the weed biomass for vermicompost production and nutrient recovery. From the biomass of environmentally problematic weed, Ipomoea staphylina, nutrient-rich vermicompost can be produced through vermitechnology for sustainable environmental management and agriculture.
Collapse
Affiliation(s)
- Ramalingam Balachandar
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Missions University (Deemed to Be University), Paiyanoor, Chennai, 603 104, Tamil Nadu, India
| | - Muniyandi Biruntha
- Vermitechnology Laboratory, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, Copperbelt University, Riverside, Jambo Drive, P O Box: 21692, Kitwe, Zambia
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
14
|
Luo H, Yang Y, Wang Q, Wu Y, He Z, Yu W. Protection of Siganus oramin, rabbitfish, from heavy metal toxicity by the selenium-enriched seaweed Gracilaria lemaneiformis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111183. [PMID: 32890922 DOI: 10.1016/j.ecoenv.2020.111183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Seaweed is an inherently important entity in marine ecosystems. It is not only consumed by aquatic animals but also improves environmental quality in the mariculture. Seaweed is also part of the diet of human beings. The purpose of the present study was to evaluate the antagonism of selenium (Se)-enriched Gracilaria lemaneiformis against heavy metals, specifically, the potential of dietary Se-enriched Gracilaria to protect against heavy metal toxicity in rabbitfish (Siganus oramin). Growth rate, heavy metal (Se, Cd, Pb, Cu, Zn and Cr) concentrations, malondialdehyde (MDA), metallothionein (MT), and the activity of the antioxidants, glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) were all assessed. The results showed that the total organic and inorganic Se concentration for the 250 mg L-1 Se-enriched Gracilaria was significantly higher than those of the 50 and 10 mg L-1 treatments after 3 days of enrichment. The mean total Se concentrations in Gracilaria were 42.5 μg g-1 in the 250 mg L-1 treatment, 13.5 μg g-1 in the 50 mg L-1 treatment and 2.5 μg g-1 in the 10 mg L-1 treatment, respectively. Organic Se accounts for 80-82% of total Se in Se-enriched Gracilaria. The Se concentration of rabbitfish fed Se-enriched Gracilaria was significantly higher than control. Furthermore, Se increased Cu and Zn absorption, and enhanced MT generation, and improved GPX, CAT, and SOD antioxidant activity, and decreased MDA concentrations and lipid peroxidation levels, all antagonistic to Cd, Pb and Cr. The effects of Se-enriched Gracilaria on waterborne Cd, Pb and Cr-induced toxicity occurred via both enzymatic and non-enzymatic antioxidative mechanisms in rabbitfish. Selenium had synergistic effects on Zn and Cu in rabbitfish. For the 50 mg L-1 Se-enriched Gracilaria treatment, the Se, Cu, Zn, and antagonistic Cd, Pb, Cr, and the antioxidant enzymes CAT, SOD, GPX activities, and MT concentrations in rabbitfish were higher than that with the 250 mg L-1 and 10 mg L-1 Se-enriched Gracilaria treatments. The 50 mg L-1 Se treatment of Gracilaria was deemed to be the optimum concentration to promote growth of rabbitfish. Therefore, the obtained results suggest Se-enriched Gracilaria can antagonize heavy metal toxicity, and is an advisable Se supplement to improve the edible safety of cultured animals.
Collapse
Affiliation(s)
- Hongtian Luo
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Yufeng Yang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Qing Wang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Yongjie Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Environmental Microbiome Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Environmental Microbiome Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wenbo Yu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
15
|
Singh A, Karmegam N, Singh GS, Bhadauria T, Chang SW, Awasthi MK, Sudhakar S, Arunachalam KD, Biruntha M, Ravindran B. Earthworms and vermicompost: an eco-friendly approach for repaying nature's debt. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1617-1642. [PMID: 31974693 DOI: 10.1007/s10653-019-00510-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The steady increase in the world's population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.
Collapse
Affiliation(s)
- Archana Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 011, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India
| | - Gopal Shankar Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 011, India.
| | - Tunira Bhadauria
- Department of Zoology, Feroze Gandhi College, Raebareli, Uttar Pradesh, 229 001, India
| | - Soon Woong Chang
- Department of Evironmental Energy and Engineering, Kyonggi University, Youngtong Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Sivasubramaniam Sudhakar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627 012, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM institute of science and technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Muniyandi Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Balasubramani Ravindran
- Department of Evironmental Energy and Engineering, Kyonggi University, Youngtong Gu, Suwon, 16227, South Korea.
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
16
|
Li Y, Yang X, Gao W, Qiu J, Li Y. Comparative study of vermicomposting of garden waste and cow dung using Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9646-9657. [PMID: 31925695 DOI: 10.1007/s11356-020-07667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Vermicomposting is the process of composting using worms and is applied in waste management to produce high-quality organic fertilizer. Garden waste (GW) is often mixed with other raw materials for vermicomposting. In the present study, the feasibility of vermicomposting using only GW was investigated in comparison with cow dung (CD). The total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents and the electrical conductivity increased, while total organic carbon (TOC) and the C/N ratio decreased in both substrates after vermicomposting. The nutrient content (TN, TP, and TK) of the GW vermicompost was promoted less than that in CD. Scanning electron microscopy images and specific surface area analysis showed that the vermicompost was strongly disaggregated and became more compacted and fragmented compared with the raw substrates. No mortality of earthworms was observed in GW; however, the earthworms had a higher mean body weight and reproduction rate in CD than that in GW. There were higher bacterial community richness and diversity in the vermicompost than that in the raw materials, and the dominant phylum species were Proteobacteria, Actinobacteria, and Bacteroidetes. Redundancy analysis demonstrated that TN, C/N ratio, and TOC play an important role in bacterial community dynamics. These data indicate that vermicomposting is a robust process that is suitable for the management of GW.
Collapse
Affiliation(s)
- Yingkai Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Yang
- Shanghai Agricultural Technology Extension Service Center, Shanghai, 201103, China
| | - Wen Gao
- Shanghai Shengran Agricultural Technology Co., Ltd, Shanghai, 201401, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Balachandar R, Baskaran L, Yuvaraj A, Thangaraj R, Subbaiya R, Ravindran B, Chang SW, Karmegam N. Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae. BIORESOURCE TECHNOLOGY 2020; 299:122578. [PMID: 31865155 DOI: 10.1016/j.biortech.2019.122578] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Vermicomposting of pressmud with cow dung and nitrogenous green manures (Gliricidia sepium and Leucaena leucocephala) was carried out using Eudrilus eugeniae (50 days). The reduction in pH, total organic carbon, C/N ratio, water-soluble organic carbon (Cws)/Norg and C/P ratios, and a pronounced increase in NPK contents and microbial population in vermicompost were observed. An enhanced TKN of 3.80% and 3.45% was recorded in vermicomposts of pressmud + cow dung + L. leucocephala (2:1:1) and pressmud + cow dung + G. sepium (2:1:1) respectively. The C/N and Cws/Norg ratios in vermicompost ranged from 11.86 to 16.66 and 0.53 to 1.33, respectively. The activity of dehydrogenase, urease, acid and alkaline phosphatase declined towards the end, indicating the progression of vermicompost maturity. The pressmud and green manure substrates promoted more biomass of E. eugeniae, while cow dung with green manure combination favored reproduction. The amendment of cow dung and green manure plants to pressmud (2:1:1 ratio) results in nutrient-enriched vermicompost production.
Collapse
Affiliation(s)
- Ramalingam Balachandar
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Missions Research Foundation (Deemed to be University), Paiyanoor, Chennai 603 104, Tamil Nadu, India
| | | | - Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Gyeonggi-Do 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Gyeonggi-Do 16227, South Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India.
| |
Collapse
|
18
|
Biruntha M, Karmegam N, Archana J, Karunai Selvi B, John Paul JA, Balamuralikrishnan B, Chang SW, Ravindran B. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. BIORESOURCE TECHNOLOGY 2020; 297:122398. [PMID: 31759857 DOI: 10.1016/j.biortech.2019.122398] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Seaweed (T1), sugarcane trash (T2), coir pith (T3) and vegetable waste (T4) with cowdung (1:1, w/w) were vermicomposted using Eudrilus eugeniae (50 days). The pH in vermicomposts showed a decrease while electrical conductivity showed increment. The organic matter content, organic carbon, lignin, cellulose, C/N and C/P ratios in vermicompost was significantly lower than compost. Total NPK contents of vermicompost were significantly elevated (P < 0.05) with 12.04-63.75%, 19.05-31.58% and 22.47-42.55%, respectively. The significantly higher growth rate of 1.41 and 7.74 mg/worm/day was observed in T1 on 10th and 50th day respectively, with 23.91 initial C/N ratio; while it was 0.85 and 4.81 mg/worm/day in T4 with 69.81 initial C/N ratio. A similar pattern was reflected in cocoon production, hatchling success and hatchling number/cocoon. Results revealed that vermicompost quality, worm growth, and reproduction depend on C/N ratio. The study suggests that amendment materials like cowdung are necessary to reduce C/N ratio for effective vermicomposting.
Collapse
Affiliation(s)
- Muniyandi Biruntha
- Vermiculture Technology Laboratory, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Jeyaprakasam Archana
- Vermiculture Technology Laboratory, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Balan Karunai Selvi
- Department of Botany, V. V. Vanniaperumal College for Women (Autonomous), Virudhunagar 626 001, Tamil Nadu, India
| | - James Arockia John Paul
- Department of Zoology, Arumugam Pillai Seethai Ammal College, Tiruppattur 630 211, Tamil Nadu, India
| | - B Balamuralikrishnan
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - S W Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Gyeonggi - Do 16227, South Korea
| | - B Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Gyeonggi - Do 16227, South Korea.
| |
Collapse
|
19
|
Yuvaraj A, Karmegam N, Tripathi S, Kannan S, Thangaraj R. Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: Bioaccumulation of heavy metals and metallothionein production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109813. [PMID: 31739094 DOI: 10.1016/j.jenvman.2019.109813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In the present study, Eudrilus eugeniae and Perionyx excavatus were used for vermistabilization of textile mill sludge in different combinations with cowdung for 60 days. A higher percentage of metal removal was observed in earthworm treated mixtures for cadmium (54.5%) followed by copper (36.0%), chromium (37.0%) and zinc (35.9%). Vermistabilized textile mill sludge + cowdung (1:1) showed a maximum percentage increase in total NPK, a significant (P < 0.05) increase in bacteria, fungi, and actinomycetes with a better earthworm survival rate. A higher amount of metallothionein protein was produced by E. eugeniae than P. excavatus. Further, 100% textile mill sludge showed a number of histological abnormalities like degeneration of cells, cellular debris, and uneven cellular compartmentation while textile mill sludge with cowdung showed normal earthworm histology. Results suggest that textile mill sludge + cowdung (1:1) combination is suitable for vermistabilization of textile mill sludge.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College, Salem, 636 007, Tamil Nadu, India
| | - Sudipta Tripathi
- Department of Agricultural Chemistry and Soil Science, Institute of Agricultural Science, University of Calcutta, Baruipur, Kolkata, 700 144, West Bengal, India
| | - Soundarapandian Kannan
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| |
Collapse
|
20
|
Boruah T, Barman A, Kalita P, Lahkar J, Deka H. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. BIORESOURCE TECHNOLOGY 2019; 294:122147. [PMID: 31557650 DOI: 10.1016/j.biortech.2019.122147] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
The vermicomposting potential of Eisenia fetida on citronella bagasse and paper mill sludge mixture was studied. The experiment was carried out in pots by taking a mixture of citronella bagasse and paper mill sludge in 3:2 ratios. The physico-chemical properties such as pH, conductivity, total organic carbon, nitrogen, phosphorus, potassium, calcium, trace elements and heavy metals were studied in the end products. The ash content, humification index, C/N ratio and scanning electron microscopic analysis were done to understand the maturity of the vermicompost. Results revealed that bioconversion of citronella bagasse and paper mill sludge mixture is accompanied with reduction of C/N ratio and humification index; enhancement of nutrients profile, nitrogen fixing, phosphate and potassium solubilizing bacterial population. SEM analysis showed that there was more disintegration in vermicompost samples than the initial raw materials and compost. Further, earthworm population and biomass has significantly increased by the end of the experimental trials.
Collapse
Affiliation(s)
- T Boruah
- Environmental Botany and Biotechnology Laboratory, Department of Botany, Gauhati University, Guwahati 14, Assam, India
| | - A Barman
- Environmental Botany and Biotechnology Laboratory, Department of Botany, Gauhati University, Guwahati 14, Assam, India
| | - P Kalita
- Environmental Botany and Biotechnology Laboratory, Department of Botany, Gauhati University, Guwahati 14, Assam, India
| | - J Lahkar
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - H Deka
- Environmental Botany and Biotechnology Laboratory, Department of Botany, Gauhati University, Guwahati 14, Assam, India.
| |
Collapse
|
21
|
Optimization of culture medium for improved production of antimicrobial compounds by Amycolatopsis sp. -AS9 isolated from vermicasts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|