1
|
Li M, Jiang H, Li R, Liu W, Xie Y, Wu W, Liu D, Wu M, Qiu Z. Effects of biochar-loaded microbial agent in regulating nitrogen transformation and integration into humification for straw composting. BIORESOURCE TECHNOLOGY 2025; 417:131873. [PMID: 39586479 DOI: 10.1016/j.biortech.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Exogenous additives can impact organic matter transformation in composting, but their effects on nitrogen conversion and humification in straw composting require clarification. This study investigated how rice husk biochar-loaded microbial agent (RM) affects nitrogen transformation and humification during straw composting. Results showed that the addition of RM enhanced ammonia oxidation and assimilation during composting, leading to a 10.32%-22.27% increase in total nitrogen content. Furthermore, the RM treatment enriched nitrogen-converting microbes such as Longispora and Coprinopsis, enhancing synergistic relationships among microbes, facilitating the accumulation of pivotal nitrogenous humus precursors (amino acid nitrogen), and promoting humus formation. This research not only guides reducing nitrogen loss during composting and elucidating the relationship between nitrogen transformation and humification but also contributes to enhancing bioconversion efficiency of agricultural waste to explore new ways of straw waste management.
Collapse
Affiliation(s)
- Mingxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Hui Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Ruiding Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wendong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Yong Xie
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenchan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Dongyang Liu
- Liangshan Prefecture Company, Sichuan Tobacco Company, China National Tobacco Corporation, Liangshan 615000, Sichuan, PR China
| | - Minghui Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| |
Collapse
|
2
|
Yang W, Zhong Y, Zhuo Q, Xiao L, Owens G, Chen Z. Enhanced copper passivation in pig manure composting through iron nanoparticle amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177950. [PMID: 39662400 DOI: 10.1016/j.scitotenv.2024.177950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
As the world's leading producer of pigs, China is now experiencing large-scale pollution derived from agricultural usage of untreated pig manure, where passivation of metal toxicity in pig manure is a major challenge. Here, the effect of green synthesized iron nanoparticle (G-nFe) addition on copper (Cu) transformations during thermophilic aerobic composting of pig manure was investigated. The results revealed that following addition of G-nFe passivation of active Cu forms, including exchangeable (EXC-Cu), carbonate-bound (CARCu), and iron and manganese oxide-bound (IMOCu) Cu increased by 66.8, 47.5, and 15.4 %, respectively. The fraction of Cu bound to organic matter (OM-Cu) also increased with composting and was influenced by G-nFe dose. Notably, addition of 500 mL kg-1 G-nFe increased OM-Cu to 52.9 %. Residual Cu (RESCu) concentrations initially rose within the first five days of composting, followed by a subsequent decline, demonstrating that G-nFe addition had dual effects: firstly, an initial 31.3 % increase in RES-Cu five days post-G-nFe addition; and secondly, a subsequent 60.9 % reduction over the entire composting process. Furthermore, OM, Humus and Fourier transform infrared (FTIR) analysis confirmed that the increase in OM-Cu, coupled with G-nFe, facilitated the transformation of Cu into OM-Cu fractions post-composting. This work thus provides new insights into how iron nanomaterials can increase passivation of metal ions during composting.
Collapse
Affiliation(s)
- Wenqing Yang
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, Fujian Province 350300, China
| | - Yuanping Zhong
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian Province 350007, China
| | - Qian Zhuo
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, Fujian Province 350300, China
| | - Liren Xiao
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian Province 350007, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian Province 350007, China.
| |
Collapse
|
3
|
Sun Y, Wu Z, Lan J, Liu Y, Du Y, Ye H, Du D. Effect of sulfate-reducing bacteria (SRB) and dissimilatory iron-reducing bacteria (DIRB) coexistence on the transport and transformation of arsenic in sediments. WATER RESEARCH 2024; 270:122834. [PMID: 39608159 DOI: 10.1016/j.watres.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Sulfate-reducing bacteria (SRBs) and dissimilatory iron-reducing bacteria (DIRBs) are recognized as significant contributors to the occurrence of elevated arsenic (As) levels in groundwater. However, the precise effects and underlying mechanisms of their interactions on As behavior within sediments remain poorly understood. In this investigation, we compared the impacts and mechanisms of DIRBs, SRBs, and mixed bacterial consortia on the migration behavior of As and Fe/S species. Our findings revealed that during the initial phase of the reaction (0-8 days, Stage 1), the mixed bacterial consortium facilitated As release by intensifying the reduction of Fe (III) and sulfate, resulting in a maximum As concentration 1.5 times higher than that observed with either DIRBs or SRBs in isolation. Subsequently, in the intermediate phase (8-20 days, Stage 2), the mixed consortium suppressed the synthesis of sulfate reductase and the secretion of toxic substances (e.g., o-Methyltoluene) associated with steroid degradation pathways. This inhibition consequently reduced the formation of secondary Fe minerals and the fixation of As. Finally, in the latter stage (20-30 days, Stage 3), the system responded to the threat of toxic substances by secreting significant amounts of organic acids to facilitate their decomposition. However, this process also led to the re-decomposition of iron oxides, resulting in the release of As. These observations shed light on the intricate interplay between DIRBs and SRBs within bacterial consortia, elucidating their coordinated actions in inducing the migration and transformation of arsenic.
Collapse
Affiliation(s)
- Yan Sun
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaoyuan Wu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Ying Liu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hengpeng Ye
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Dongyun Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
4
|
Zhang D, Zhou H, Ding J, Shen Y, Hong Zhang Y, Cheng Q, Zhang Y, Ma S, Feng Q, Xu P. Potential of novel iron 1,3,5-benzene tricarboxylate loaded on biochar to reduce ammonia and nitrous oxide emissions and its associated biological mechanism during composting. BIORESOURCE TECHNOLOGY 2024; 396:130424. [PMID: 38341046 DOI: 10.1016/j.biortech.2024.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In this study, a novel iron 1,3,5-benzene tricarboxylate loaded on biochar (BC-FeBTC) was developed and applied to kitchen waste composting. The results demonstrated that the emissions of NH3 and N2O were significantly reduced by 57.2% and 37.8%, respectively, compared with those in control group (CK). Microbiological analysis indicated that BC-FeBTC addition altered the diversity and abundance of community structure as well as key functional genes. The nitrification genes of ammonia-oxidizing bacteria were enhanced, thereby promoting nitrification and reducing the emission of NH3. The typical denitrifying bacterium, Pseudomonas, and critical functional genes (nirS, nirK, and nosZ) were significantly inhibited, contributing to reduced N2O emissions. Network analysis further revealed the important influence of BC-FeBTC in nitrogen transformation driven by functional microbes. These findings offer crucial scientific foundation and guidance for the application of novel materials aimed at mitigating nitrogen loss and environmental pollution during composting.
Collapse
Affiliation(s)
- Dongli Zhang
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Haibin Zhou
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Jingtao Ding
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Yujun Shen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China.
| | - Yue Hong Zhang
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200, China
| | - Qiongyi Cheng
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Yang Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shuangshuang Ma
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Qikun Feng
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Pengxiang Xu
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| |
Collapse
|
5
|
Wang Z, Zhang M, Li J, Wang J, Sun G, Yang G, Li J. Effect of biochar with various pore characteristics on heavy metal passivation and microbiota development during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120048. [PMID: 38246105 DOI: 10.1016/j.jenvman.2024.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Understanding the porosity of biochar (BC) that promotes the heavy metal (HM) passivation during composting can contribute to the sustainable management of pig manure (PM). The current work aimed to explore the influence of BC with varying pore sizes on the physicochemical properties and morphological changes of HMs (including Zn, Cu, Cr, As, and Hg), and microbiota development during PM composting. The various pore sizes of BC were generated by pyrolyzing pine wood at 400 (T1), 500 (T2), 600 (T3) and 700 (T4) °C, respectively. The results revealed a positive correlation between specific surface area of BC and pyrolysis temperature. BC addition contributed to a significantly extended compost warming rate and duration of high-temperature period, as well as HM passivation, reflected in the decrease in Exc-Zn (63-34%) and Red-Cu (28-13%) content, and the conversion of Oxi-Cr (29-21%) and Red-Hg (16-5%) to more stable forms. Moreover, BC at T4 exhibited the best effect on Zn and Cu passivation due to the highest specific surface area (380.03 m2/g). In addition to its impact on HM passivation, BC addition improved the microbial environment during PM composting, leading to enhanced microbial diversity and richness. Notably, Chloroflexi and Bacteroidota played key roles in promoting the transformation of Exc-Cu and Red-Hg into stable forms. This phenomenon further stimulated the enhanced decomposition of organic matter (OM) when BC prepared at 600-700 °C was added. Therefore, it can be concluded that the regulation of BC porosity is an effective strategy to improve HM passivation and the overall effectiveness of PM composting.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| | - Guotao Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China.
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
6
|
Zhang L, Tsui TH, Wah Tong Y, Sharon S, Shoseyov O, Liu R. Biochar applications in microbial fermentation processes for producing non-methane products: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023; 386:129478. [PMID: 37460021 DOI: 10.1016/j.biortech.2023.129478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The objective of this review is to encourage the technical development of biochar-assisted microbial fermentation. To this end, recent advances in biochar applications for microbial fermentation processes (i.e., non-methane products of hydrogen, acids, alcohols, and biofertilizer) have been critically reviewed, including process performance, enhanced mechanisms, and current research gaps. Key findings of enhanced mechanisms by biochar applications in biochemical conversion platforms are summarized, including supportive microbial habitats due to the immobilization effect, pH buffering due to alkalinity, nutrition supply due to being rich in nutrient elements, promoting electron transfer by acting as electron carriers, and detoxification of inhibitors due to high adsorption capacity. The current technical limitations and biochar's industrial applications in microbial fermentation processes are also discussed. Finally, suggestions like exploring functionalized biochar materials, biochar's automatic addition and pilot-scale demonstration are proposed. This review would further promote biochar applications in microbial fermentation processes for the production of non-methane products.
Collapse
Affiliation(s)
- Le Zhang
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - To-Hung Tsui
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sigal Sharon
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Oded Shoseyov
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
7
|
Matiz-Villamil A, Méndez-Carranza KJ, Pascagaza-Pulido AF, Rendón-Rendón T, Noriega-Noriega J, Pulido-Villamarín A. Trends in the management of organic swine farm waste by composting: A systematic review. Heliyon 2023; 9:e18208. [PMID: 37576302 PMCID: PMC10412907 DOI: 10.1016/j.heliyon.2023.e18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Pig farming contributes to the economic development of nations and supplies human food demand; however, it generates a large amount of organic waste which, if not managed properly, becomes a risk to the environment and human and animal health. Considering the relevance of composting and its usefulness for the use of waste, this study aimed to determine the global trends in the management of composting manure, mortality and other organic waste produced on pig farms over the last five years (2017-2022). Systematic search involved four databases: ISI Web of Science, Scopus, Ebsco and Scielo. Of the total findings, 56 articles were included in the review, further classified into 14 categories for their respective analysis: co-substrates/additives, microbial communities, antibiotic resistance, heavy metals, polycyclic aromatic hydrocarbons, microbiological/parasitological quality, phytopathogens, nitrogen transformation, bioinoculants, comparison/combination with other waste management techniques, factors affecting composting, swine mortality and plant growth promotion/phytotoxicity. The review exemplified the importance of swine mortality composting as an alternative for organic matter management in pig farms, considering that the process also includes manure, vegetable waste and wood chips, among others. Controlled factors throughout the process are a requirement to obtain a stable product with physicochemical and microbiological quality that complies with national and international regulations and that will be useful and safe for application on crops, ensuring environmental, animal, and human health.
Collapse
Affiliation(s)
- Adriana Matiz-Villamil
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Kelly Johana Méndez-Carranza
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Andrés Felipe Pascagaza-Pulido
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Tatiana Rendón-Rendón
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Juliana Noriega-Noriega
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Adriana Pulido-Villamarín
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| |
Collapse
|
8
|
Cui H, Ou Y, Wang L, Yan B, Guan F. Phosphorus functional microorganisms and genes: A novel perspective to ascertain phosphorus redistribution and bioavailability during copper and tetracycline-stressed composting. BIORESOURCE TECHNOLOGY 2023; 371:128610. [PMID: 36640818 DOI: 10.1016/j.biortech.2023.128610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
There is limited information on the phosphorus availability under copper and tetracycline-amended composting: Insights into microbial communities and genes. Thus, this work investigated the phosphorus redistribution and transformation, illustrated the variation in microbial communities and genes, and ascertained the multiple action-patterns among which within copper and tetracycline-amended composting. Phosphorus bioavailability reduced by 8.96 % ∼ 13.10 % due to the conservation of Ex-P to Ca-P. Copper and tetracycline showed a significant effect on fungal succession, but not to bacteria, as well as inhibited the phosphorus functional genes in fungal communities, while accelerated it in bacterial communities. Under the copper/tetracycline-stressed conditions, bacterial Firmicutes could promote the mineralization of organic phosphorus, and bacterial Proteobacteria might facilitate the dissolution of inorganic phosphorus. These findings could provide theoretical guidance for the further research on phosphorus bioavailability ascribed to microbial communities and genes.
Collapse
Affiliation(s)
- Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Baixing Yan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| |
Collapse
|
9
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
10
|
Jia P, Wang X, Liu S, Hua Y, Zhou S, Jiang Z. Combined use of biochar and microbial agent can promote lignocellulose degradation and humic acid formation during sewage sludge-reed straw composting. BIORESOURCE TECHNOLOGY 2023; 370:128525. [PMID: 36572158 DOI: 10.1016/j.biortech.2022.128525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of corn straw biochar (CSB) and effective microorganisms (EM) added individually or combinedly on lignocellulose degradation, compost humification, and microbial communities during sewage sludge-reed straw composting process. All the additive practices were found to significantly elevate the humification degree of compost products. The degradation rates of cellulose, hemicellulose, and lignin in different additive treatments were 20.8-31.2 %, 36.2-44.8 %, and 19.9-25.7 %, respectively, which were greatly higher than those of the control. Compared with the single uses of CSB or EM, the combined use of CSB and EM generated greater promotions in lignin and hemicellulose degradations and increase in humic acid content. By comparing the differences in microbial communities among different treatments, the CSB-EM demonstrated greater increases in activity and diversity of lignocellulose degradation-related microbes, especially for fungus. Lastly, the combined use of CSB and EM was highly recommended as a high-efficient improvement strategy for organic compost production.
Collapse
Affiliation(s)
- Peiyin Jia
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Xin Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Shuming Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yuting Hua
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Shunxi Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
11
|
Wu R, Long M, Tai X, Wang J, Lu Y, Sun X, Tang D, Sun L. Microbiological inoculation with and without biochar reduces the bioavailability of heavy metals by microbial correlation in pig manure composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114294. [PMID: 36402075 DOI: 10.1016/j.ecoenv.2022.114294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Biochar provides a suitable microenvironment for the growth of microorganisms. It may directly or indirectly affect changes in the population of microorganisms, thus affecting heavy metal bioavailability. This study aims to explore the effects of microbiological inoculation with and without biochar on microorganisms and on the bioavailability of heavy metals during pig manure composting. Three composting experiments were conducted under various conditions including no treatment (CK), only microbiological inoculation (TA), and integration with biochar (TB). Compared with raw materials before compost, TA reduced the bioavailability of Cu by 25.1%, Zn by 25.64%, and both Pb and Cr by 1.75%. TB reduced the bioavailability of Cu by 35.38%, Zn by 19.34%, Pb by 0.81%, and Cr by 3.9%. Furthermore, correlation analysis demonstrated that Debaryomyces were the primary fungi, possibly controlling the passivation of Cr. Bacillus, Fusarium, Pseudogracilibacillus, Sinibacillus, and Botryotrichum were the primary bacteria and fungi potentially governing the passivation of Zn, Lastly, Debaryomyces and Penicillium were the primary bacteria and fungi potentially controlling the passivation of Pb and Cu, respectively. Overall, we demonstrated that pig manure added to the microbial inoculum and biochar effectively reduced the bioavailability of heavy metals, thereby offering an applicable technology for reducing heavy metal contamination during pig manure composting.
Collapse
Affiliation(s)
- Renfei Wu
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xisheng Tai
- College of Urban Environment, Lanzhou City University, Lanzhou 730070, China.
| | - Jiali Wang
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongli Lu
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xuchun Sun
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Defu Tang
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Likun Sun
- College of Animal Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
12
|
Lu X, Yang Y, Hong C, Zhu W, Yao Y, Zhu F, Hong L, Wang W. Optimization of vegetable waste composting and the exploration of microbial mechanisms related to fungal communities during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115694. [PMID: 35841778 DOI: 10.1016/j.jenvman.2022.115694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The application of additives to regulate the microbial functional composition during composting has attracted much research attention. However, little is known about the succession and role of the fungal community in the laboratory-scale composting of vegetable waste supplemented with pig manure and microbial agents. The purpose of this study was to identify effective additives for improving vegetable waste composting performance and product quality, and to analyze the microbial community succession during composting. The results showed that the combined addition of pig manure and microbial agents (T2 treatment) accelerated the pile temperature increase, enhanced total organic carbon degradation (23.36%), and promoted the maturation of the compost. Furthermore, the T2 treatment increased the activities of most enzymes, reshaped the microbial community, and reduced the relative abundance of potential animal (1.60%) and plant (0.095%) pathogens. The relative abundance of Firmicutes (71.23%) increased with the combined addition of pig manure and microbial agents in the thermophilic stage. In the middle and late stages, Saccharomonospora, Aspergillus, and Thermomyces, which were related to C/N and total phosphorus, were enriched in the T2 treatment. Network analysis demonstrated that the complexity and stability of the fungal network were more evidently increased in the T2 treatment, and Saccharomonospora, Aspergillus, and Microascus were identified as keystone taxa. The keystone taxa associated with extracellular enzymes contributed significantly to compost maturation. These results provide a reference for the application of additives to improve compost safety in pilot-scale composting.
Collapse
Affiliation(s)
- Xiaolin Lu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuxin Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Chunlai Hong
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weijing Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fengxiang Zhu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Leidong Hong
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weiping Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
13
|
Li S, Chen W, Liu D, Tao Y, Ma H, Feng Z, Li S, Zhou K, Wu J, Li J, Wei Y. Effect of superphosphate addition on heavy metals speciation and microbial communities during composting. BIORESOURCE TECHNOLOGY 2022; 359:127478. [PMID: 35714776 DOI: 10.1016/j.biortech.2022.127478] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Superphosphate fertilizer (SSP) as an additive can reduce the nitrogen loss and increase available phosphorus in composting but few studies investigated the effect of SSP addition on heavy metal and microbial communities. In this study, different ratios (10%, 18%, 26%) of SSP were added into pig manure composting to assess the changes of heavy metal (Cu, Mn, As, Zn, and Fe) fractions, bacterial and fungal communities as well as their interactions. SSP addition at 18% had lower ecological risk but still increased the bioavailability of Cu, Mn, and Fe in composts compared to control. Adding 18% SSP into compost decreased bacterial number and increased the fungal diversity compared to CK. Redundancy analysis indicated heavy metal fractions correlated significantly with bacterial and fungal community compositions in composting with 18% SSP. Network analysis showed adding 18% SSP increased microbial interaction and positive cooperation especially enhanced the proportion of Proteobacteria and Ascomycota.
Collapse
Affiliation(s)
- Shuxin Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dun Liu
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100191, China
| | - YueYue Tao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences, Suzhou 215155, China
| | - Hongting Ma
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Songrong Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Juan Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
14
|
Yousif Abdellah YA, Shi ZJ, Luo YS, Hou WT, Yang X, Wang RL. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119549. [PMID: 35644429 DOI: 10.1016/j.envpol.2022.119549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Collapse
Affiliation(s)
| | - Zhao-Ji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Sen Luo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rui-Long Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
15
|
Zheng X, Zou D, Wu Q, Wang H, Li S, Liu F, Xiao Z. Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:75-89. [PMID: 35809372 DOI: 10.1016/j.wasman.2022.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion and composting are attracting increasing attention due to the increased production of animal manure. It is essential to know about the fate and bioavailability of heavy metals (HMs) for further utilisation of animal manure. This review has systematically summarised the migration of HMs and the transformation of several typical HMs (Cu, Zn, Cd, As, and Pb) during anaerobic digestion and composting. The results showed that organic matter degradation increased the HMs content in biogas residue and compost (with the exception of As in compost). HMs migrated into biogas residue during anaerobic digestion through various mechanisms. Most of HMs in biogas residue and compost exceeded relevant standards. Then, anaerobic digestion increased the bioavailable fractions proportion in Zn and Cd, decreased the F4 proportion, and raised them more than moderate environmental risks. As (III) was the main species in the digester, which extremely increased As toxicity. The increase of F3 proportion in Cu and Pb was due to sulphide formation in biogas residue. Whereas, the high humus content in compost greatly increased the F3 proportion in Cu. The F1 proportion in Zn decreased, but the plant availability of Zn in compost did not reduce significantly. Cd and As mainly converted the bioavailable fractions into stable fractions during composting, but As (V) toxicity needs to be concerned. Moreover, additives are only suitable for animal manure treated with slightly HM contaminated. Therefore, it is necessary to combine more comprehensive methods to improve the manure treatment and make product utilisation safer.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Shuhui Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
16
|
Veena M, Puthur JT. Seed nutripriming with zinc is an apt tool to alleviate malnutrition. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2355-2373. [PMID: 34365568 PMCID: PMC8349239 DOI: 10.1007/s10653-021-01054-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/26/2021] [Indexed: 05/21/2023]
Abstract
More than 2 billion people worldwide suffer from micronutrient malnutrition, sometimes known as hidden hunger. Zn malnutrition affects around a third of the world's population. The physicochemical features of soil, which limit the availability of Zn to plants, cause Zn deficiency. The eating habits of certain populations are more depended on Zn-deficient staple foods. Due to the high expense and certain interventions such as diet diversification, zinc supplementation and food fortification cannot be achieved in disadvantaged populations. Biofortification is the most practical technique for alleviating Zn malnutrition. Seed priming with nutrients is a promising biofortification approach for edible crops. Seed nutripriming with zinc is a cost-effective and environmentally benign approach of biofortification. Seeds can be nutriprimed with Zn using a variety of methods such as Zn fertilisers, Zn chelated compounds and Zn nanoparticles. Nutripriming with nanoparticles is gaining popularity these days due to its numerous advantages and vast biofortification potential. Seeds enriched with Zn also aid plant performance in Zn-deficient soil. Zn an essential trace element can regulate physiological, biochemical and molecular processes of plant cells and thus can enhance germination, growth, yield and bioavailable Zn in edible crops. Moreover, zinc emerges as an important element of choice for the management of COVID-19 symptoms.
Collapse
Affiliation(s)
- Mathew Veena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Calicut, Kerala, 673635, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O, Calicut, Kerala, 673635, India.
| |
Collapse
|
17
|
Zhao H, Li S, Jiang Y, Wang D, Wang H, Dou X. Independent and combined effects of antibiotic stress and EM microbial agent on the nitrogen and humus transformation and bacterial community successions during the chicken manure composting. BIORESOURCE TECHNOLOGY 2022; 354:127237. [PMID: 35489576 DOI: 10.1016/j.biortech.2022.127237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the independent and combined effects of antibiotic and EM microbial agent on the nitrogen and humus (HS) transformations as well as the bacterial community successions during the chicken manure and rice husk composting. EM microbial agent accelerated the oxytetracycline (OTC) degradation, but slowed down the norfloxacin (NOR) degradation. OTC inhibited the TN retention and promoted the HS accumulation, both NOR and EM microbial agent inhibited the TN retention and HS accumulation, while EM microbial agent showed an antagonistic effect on TN immobilization with antibiotics and reduced the impacts of antibiotics on HS. Obvious bacterial community successions occurred. Firmicutes were related to HS transformation, while Firmicutes, Actinobacteriota and Proteobacteria were associated with nitrogen conversion. NOR promoted the transformations of NH4+-N to NO3--N and FA to HA. The findings provided theoretical data for the recycle of antibiotic-contaminated manure and the efficient production of high-quality compost.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Poultry Insititute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China
| | - Shangmin Li
- Poultry Insititute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China; College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yixiu Jiang
- Poultry Insititute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China
| | - Danpin Wang
- Poultry Insititute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China
| | - Hongzhi Wang
- Poultry Insititute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China
| | - Xinhong Dou
- Poultry Insititute, Chinese Academy of Agricultural Sciences, Yangzhou 225003, China
| |
Collapse
|
18
|
He Y, Huang X, Zhang H, Li H, Zhang Y, Zheng X, Xie L. Insights into the effect of iron-carbon particle amendment on food waste composting: Physicochemical properties and the microbial community. BIORESOURCE TECHNOLOGY 2022; 351:126939. [PMID: 35247558 DOI: 10.1016/j.biortech.2022.126939] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The effects of iron-carbon (Fe-C) particle amendment on organic matter degradation, product quality and functional microbial community in food waste composting were investigated. Fe-C particles (10%) were added to the material and composted for 32 days in a lab-scale composting system. The results suggested that Fe-C particle enhanced organic matter degradation by 12.3%, particularly lignocellulose, leading to a greater humification process (increased by 15.5%). In addition, NO3--N generation was enhanced (15.9%) by nitrification with more active ammonia monooxygenase and nitrite oxidoreductase activities in the cooling and maturity periods. Fe-C particles not only significantly increased the relative abundances of Bacillus and Aspergillus for organic matter decomposition, but also decreased the relative abundances of acid-producing bacteria. RDA analysis demonstrated that the bacterial community was significantly influenced by dissolved organic matter, C/N, NO3--N, humic acid, volatile fatty acids and pH, while electrical conductivity was the key factor affecting the fungal community.
Collapse
Affiliation(s)
- Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Hongning Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Huiping Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yidie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
19
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
20
|
Chen Z, Bao H, Wen Q, Wu Y, Fu Q. Effects of H 3PO 4 modified biochar on heavy metal mobility and resistance genes removal during swine manure composting. BIORESOURCE TECHNOLOGY 2022; 346:126632. [PMID: 34971775 DOI: 10.1016/j.biortech.2021.126632] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
In this research, static composting treatments of swine manure with forced ventilation were conducted to study the effects of biochar (BC) and H3PO4 modified biochar (BP) addition on heavy metals (HMs) stabilization, profiles of antibiotic resistance genes (ARGs), heavy metals resistance genes (MRGs) and bacterial communities during swine manure composting. After 42 days of the composting, compared to control (CK), BC and BP decreased the concentration of diethylenetriamine pentaacetic acid extractable Cu and Zn by 12.04%, 15.15% and 26.91%, 36.50%, respectively. Furthermore, BC and BP treatments reduced the total abundances of nine ARGs by 4.02% and 66.21%, and five MRGs by 53.66% and 58.81%, compared to CK in the compost product. Network analysis and square structural equation model analysis revealed that the decrease of ARGs and MRGs in BP treatment was related tothe change in bacterial community during the composting, rather than differences in co-selection pressure.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
21
|
Zhou S, Kong F, Lu L, Wang P, Jiang Z. Biochar - An effective additive for improving quality and reducing ecological risk of compost: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151439. [PMID: 34742793 DOI: 10.1016/j.scitotenv.2021.151439] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biochar is considered as a promising additive with multi-benefits to compost production. However, how the biochar properties and composting conditions affect the composting process and quality and ecological risk of compost is still unclear. In the present study, we conducted a global meta-analysis based on 876 observations from 84 studies. Overall, regardless of biochar properties and composting conditions, biochar addition could significantly increase the pH (5.90%), germination index (26.6%), contents of nitrate nitrogen (56.6%), total nitrogen (9.50%), and total potassium (10.1%), and degree of polymerization (29.4%) while decrease the electrical conductivity (-5.70%), contents of ammonium nitrogen (-33.7%), bioavailable zinc (-22.9%), and bioavailable copper (-38.6%), and emissions of ammonia (-44.2%), nitrous oxide (-68.4%), and methane (-61.7%). Other compost indicators, including the carbon to nitrogen ratio and total phosphorus content, were found to be insignificantly affected by biochar addition. The responses of tested compost indicators affected by the biochar properties and composting conditions were further explored, based on which the addition of straw biochars at a rate of 10-15% was recommended due to its greater potential to improve quality of compost and reduce its ecological risk. Combining the results of linear regression analysis and structural equation model, the increase in compost pH caused by biochar addition was identified as the key mechanism for the increased nutrient content and decreased heavy metal bioavailability. These results could guide us to choose suitable kinds of biochar or develop engineered biochars with specific functionality to realize an optimal compost production mode.
Collapse
Affiliation(s)
- Shunxi Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Wang
- Business School, Qingdao University, Qingdao 266071, China.
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
22
|
Cui H, Ou Y, Wang L, Yan B, Li Y, Bao M. Additive grain-size: An innovative perspective to investigate the transformation among heavy metal and phosphorus fractions during aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112768. [PMID: 33984644 DOI: 10.1016/j.jenvman.2021.112768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Considerable researches have been devoted to ascertain the transformation among heavy metal (HM) or phosphorus (P) fractions during aerobic composting. However, available information that additives with different grain-sizes regulate the activation mechanism on P through influencing the passivation effect on HMs remains limited. Thus, this work aimed to investigate the dynamic changes in HM-fractions and P-fractions, and ascertain the interaction pathway between HMs and P during aerobic composting amended with medical stone (Coarse medical stone, 3-5 mm; Fine medical stone, < 0.1 mm). Medical stone, especially for coarse-grained medical stone, significantly enhanced the HM-passivation and P-activation during the composting (P < 0.05). The bioavailability factor of HMs decreased by 48.05% (Cu), 20.65% (Pb), 15.58% (Cd) and 6.10% (Zn), and the content of labile available P (LAP) increased by 6.45%. HMs, with the explanatory capacity of 65.9%-84.9%, was important parameter superior to temperature (0.8%-5.4%), moisture content (MC, 0.1%-1.7%), pH (0.1%-8.7%), electric conductivity (EC, 0.8%-9.8%), carbon-to-nitrogen (C:N, 0.3%-2.3%) ratio and dissolved organic carbon (DOC, 0.4%-3.1%), to evaluate the transformation among P-fractions. Our results cast a new light on P-activation with respect to HM-passivation during aerobic composting.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lixia Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Yingxin Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiwen Bao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Xue J, Wu J, Hu Y, Sha C, Yao S, Li P, Lin K, Cui C. Occurrence of heavy metals, antibiotics, and antibiotic resistance genes in different kinds of land-applied manure in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40011-40021. [PMID: 33768462 DOI: 10.1007/s11356-021-13307-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Various pollutants remaining in the livestock and poultry manures pose potential threat to the soil ecosystem during land application, whose impact should be appreciated. The occurrence of heavy metals, antibiotics, and antibiotic resistance genes (ARGs) in swine manure (SM), chicken manure (CM), and the SM organic fertilizer (OF) were investigated. The order of total concentrations of antibiotics detected in manures was as follows: SM > CM > OF. The amount of ciprofloxacin (CIP) in SM reached up to 6.61 mg/kg, which only occupied 1% of the antibiotic concentration reported in the past years. The total concentration of thirteen ARGs in CM ranked first, reaching 7.35 × 1011 copies/g, among which the strB gene was detected with the highest concentration. It was worth noting that the qnr ARGs were persistent in OF with the absence of corresponding antibiotics, indicating ARGs were harder to remove than antibiotics during manure composting. Zn and Cu (46.5-843 mg/kg) were obviously higher than other seven heavy metals, and significantly correlated with most ARGs (p < 0.01). This study provided the basic data of the pollution in animal manures that will be land-applied, illuminating the original source of potential risk in soil ecosystem.
Collapse
Affiliation(s)
- Jiajia Xue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai, 200233, China.
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenyan Sha
- Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai, 200233, China
| | - Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Li
- College of Environmental Science and Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201600, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
24
|
Cui H, Ou Y, Wang L, Yan B, Li Y, Bao M. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124313. [PMID: 33160789 DOI: 10.1016/j.jhazmat.2020.124313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 05/16/2023]
Abstract
Available information about the passivation effect on heavy metals (HMs) through adsorption and humification during zeolite-amended composting remains limited. Thus, this study explored the dynamic changes in HM-fractions (Zn, Cu, Cd, Cr and Pb) during aerobic composting added with different grain-size zeolite (Fine zeolite, < 0.1 mm, ZF; Coarse zeolite: 3-5 mm, ZC). Compared to the control (without zeolite, CK) and ZF treatments, ZC treatment got the highest temperature in the thermophilic phase, and significantly reduced the bioavailability factor (BF) of HMs, especially for Cu (45.13%), Cd (16.11%) and Pb (25.49%). Redundancy analysis (RDA) and structural equation models (SEMs) indicated that zeolite accelerated the passivation effect on Cd and Pb through regulating the electrical conductivity (EC) as a result of surface adsorption, and on Cu by influencing total carbon (TC) under the function of humification. These results increase our understanding of the passivation mechanisms of HMs during aerobic composting.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixia Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yingxin Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiwen Bao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Ren X, Wang Q, Zhang Y, Li R, Pan J, Zhang Z. Enhancing composition and heavy metals combined with humic substances by adding black tourmaline during composting. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Sun Y, Lan J, Du Y, Li Z, Liao X, Du D, Ye H, Zhang TC, Chen S. Efficient removal of heavy metals by synergistic actions of microorganisms and waste molasses. BIORESOURCE TECHNOLOGY 2020; 302:122797. [PMID: 31981810 DOI: 10.1016/j.biortech.2020.122797] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
In this study, two bacteria strains (Enterobacter sp. SL and Acinetobacter sp. SL-1) and waste molasses (carbon source) were used to remove Zn(II), Cd(II), Cr(VI), and Cr(Total) in the liquid solution (87 mg·L). The results showed the removal efficiencies of Cr(Total) and Cr(VI) could reach over 98.00% after reaction, and the removal efficiencies of Zn(II) and Cd(II) were all about 90.00% by the synergistic actions of microorganisms and waste molasses. In this process, waste molasses provides nutrients for microorganisms and has the characteristics and capability of Cr, Zn, and Cd. Microorganisms mainly use biological adsorption (36.95% and 45.69%) and metabolism (24.37% and 17.05% by producing humic-acid and fulvic-acid like substances) to remove Zn(II) and Cd(II), while waste molasses could to remove Cr(Total) (81.24%) and Cr(VI) (75.90%). This study has potential application value for the treatment of wastewater containing high concentrations of heavy metals.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jirong Lan
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Zhuang Li
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Xi Liao
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Dongyun Du
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Hengpeng Ye
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Shaohua Chen
- Key Laboratory of Catalysis Conversion and Energy Materials Chemistry of Ministry of Education, PR China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| |
Collapse
|
27
|
Wang X, Chen T, Zheng G. Preservation of nitrogen and sulfur and passivation of heavy metals during sewage sludge composting with KH 2PO 4 and FeSO 4. BIORESOURCE TECHNOLOGY 2020; 297:122383. [PMID: 31735697 DOI: 10.1016/j.biortech.2019.122383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Composting is an effective method for treating sewage sludge. The aim of this work was to study preservation of nitrogen and sulfur and passivation of heavy metals during sewage sludge composting with KH2PO4 and FeSO4. The results show the loss rate of N decreased by 27.5% while that of S was increased by 32.1% compared with the control treatment during composting when KH2PO4 and FeSO4 were added. X-ray absorption near-edge structure spectra show that S was converted to a highly oxidizable state during sewage sludge composting with added KH2PO4. The mobility factors of Cu, Zn, and Pb after composting were found to decrease by 13.6%, 21.6%, and 3.8%, respectively, compared with those before composting when KH2PO4 was added. Adding these two materials to Cu and Zn inhibits Zn3(PO4)2(H2O)4 and Cu5(PO4)2(OH)4 from transforming into more mobile forms, while adding these materials to Pb promotes Pb3(PO4)2 formation.
Collapse
Affiliation(s)
- Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|