1
|
Current Challenges and Perspectives for the Catalytic Pyrolysis of Lignocellulosic Biomass to High-Value Products. Catalysts 2022. [DOI: 10.3390/catal12121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lignocellulosic biomass is an excellent alternative of fossil source because it is low-cost, plentiful and environmentally friendly, and it can be transformed into biogas, bio-oil and biochar through pyrolysis; thereby, the three types of pyrolytic products can be upgraded or improved to satisfy the standard of biofuel, chemicals and energy materials for industries. The bio-oil derived from direct pyrolysis shows some disadvantages: high contents of oxygenates, water and acids, easy-aging and so forth, which restrict the large-scale application and commercialization of bio-oil. Catalytic pyrolysis favors the refinement of bio-oil through deoxygenation, cracking, decarboxylation, decarbonylation reactions and so on, which could occur on the specified reaction sites. Therefore, the catalytic pyrolysis of lignocellulosic biomass is a promising approach for the production of high quality and renewable biofuels. This review gives information about the factors which might determine the catalytic pyrolysis output, including the properties of biomass, operational parameters of catalytic pyrolysis and different types of pyrolysis equipment. Catalysts used in recent research studies aiming to explore the catalytic pyrolysis conversion of biomass to high quality bio-oil or chemicals are discussed, and the current challenges and future perspectives for biomass catalytic pyrolysis are highlighted for further comprehension.
Collapse
|
2
|
Kang K, Nanda S, Hu Y. Current trends in biochar application for catalytic conversion of biomass to biofuels. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Neogi S, Sharma V, Khan N, Chaurasia D, Ahmad A, Chauhan S, Singh A, You S, Pandey A, Bhargava PC. Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. CHEMOSPHERE 2022; 293:133474. [PMID: 34979200 DOI: 10.1016/j.chemosphere.2021.133474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The increasing agro-demands with the burgeoning population lead to the accumulation of lignocellulosic residues. The practice of burning agri-residues has consequences viz. Release of soot and smoke, nutrient depletion, loss of soil microbial diversity, air pollution and hazardous effects on human health. The utilization of agricultural waste as biomass to synthesize biochar and biofuels, is the pertinent approach for attaining sustainable development goals. Biochar contributes in the improvement of soil properties, carbon sequestration, reducing greenhouse gases (GHG) emission, removal of organic and heavy metal pollutants, production of biofuels, synthesis of useful chemicals and building cementitious materials. The biochar characteristics including surface area, porosity and functional groups vary with the type of biomass consumed in pyrolysis and the control of parameters during the process. The major adsorption mechanisms of biochar involve physical-adsorption, ion-exchange interactions, electrostatic attraction, surface complexation and precipitation. The recent trend of engineered biochar can enhance its surface properties, pH buffering capacity and presence of desired functional groups. This review focuses on the contribution of biochar in attaining sustainable development goals. Hence, it provides a thorough understanding of biochar's importance in enhancing soil productivity, bioremediation of environmental pollutants, carbon negative concretes, mitigation of climate change and generation of bioenergy that amplifies circular bioeconomy, and concomitantly facilitates the fulfilment of the United Nation Sustainable Development Goals. The application of biochar as seen is primarily targeting four important SDGs including clean water and sanitation (SGD6), affordable and clean energy (SDG7), responsible consumption and production (SDG12) and climate action (SDG13).
Collapse
Affiliation(s)
- Suvadip Neogi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anees Ahmad
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
4
|
Azwar E, Chan DJC, Kasan NA, Rastegari H, Yang Y, Sonne C, Tabatabaei M, Aghbashlo M, Lam SS. A comparative study on physicochemical properties, pyrolytic behaviour and kinetic parameters of environmentally harmful aquatic weeds for sustainable shellfish aquaculture. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127329. [PMID: 34601414 DOI: 10.1016/j.jhazmat.2021.127329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.
Collapse
Affiliation(s)
- Elfina Azwar
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Yafeng Yang
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
5
|
Azwar E, Wan Mahari WA, Rastegari H, Tabatabaei M, Peng W, Tsang YF, Park YK, Chen WH, Lam SS. Progress in thermochemical conversion of aquatic weeds in shellfish aquaculture for biofuel generation: Technical and economic perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126202. [PMID: 34710598 DOI: 10.1016/j.biortech.2021.126202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Rapid growth of aquatic weeds in treatment pond poses undesirable challenge to shellfish aquaculture, requiring the farmers to dispose these weeds on a regular basis. This article reviews the potential and application of various aquatic weeds for generation of biofuels using recent thermochemical technologies (torrefaction, hydrothermal carbonization/liquefaction, pyrolysis, gasification). The influence of key operational parameters for optimising the aquatic weed conversion efficiency was discussed, including the advantages, drawbacks and techno-economic aspects of the thermochemical technologies, and their viability for large-scale application. Via extensive study in small and large scale operation, and the economic benefits derived, pyrolysis is identified as a promising thermochemical technology for aquatic weed conversion. The perspectives, challenges and future directions in thermochemical conversion of aquatic weeds to biofuels were also reviewed. This review provides useful information to promote circular economy by integrating shellfish aquaculture with thermochemical biorefinery of aquatic weeds rather than disposing them in landfills.
Collapse
Affiliation(s)
- Elfina Azwar
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
6
|
Oh S, Lee J, Lam SS, Kwon EE, Ha JM, Tsang DCW, Ok YS, Chen WH, Park YK. Fast hydropyrolysis of biomass Conversion: A comparative review. BIORESOURCE TECHNOLOGY 2021; 342:126067. [PMID: 34601023 DOI: 10.1016/j.biortech.2021.126067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Recent studies show that fast hydropyrolysis (i.e., pyrolysis under hydrogen atmosphere operating at a rapid heating rate) is a promising technology for the conversion of biomass into liquid fuels (e.g., bio-oil and C4+ hydrocarbons). This pyrolysis approach is reported to be more effective than conventional fast pyrolysis in producing aromatic hydrocarbons and also lowering the oxygen content of the bio-oil obtained compared to hydrodeoxygenation (a common bio-oil upgrading method). Based on current literature, various non-catalytic and catalytic fast hydropyrolysis processes are reviewed and discussed. Efforts to combine fast hydropyrolysis and hydrotreatment process are also highlighted. Points to be considered for future research into fast hydropyrolysis and pending challenges are also discussed.
Collapse
Affiliation(s)
- Shinyoung Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jeong-Myeong Ha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yong Sik Ok
- Korea Biochar Research Centre, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
7
|
Arun J, Gopinath KP, Sivaramakrishnan R, Shyam S, Mayuri N, Manasa S, Pugazhendhi A. Hydrothermal liquefaction of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. BIORESOURCE TECHNOLOGY 2021; 319:124116. [PMID: 32957046 DOI: 10.1016/j.biortech.2020.124116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 05/22/2023]
Abstract
The objective of this work was to study the hydrothermal liquefaction (HTL) of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. Biomass was processed with various solvents (NaOH, KOH, HCl and H2SO4) to produce ferulic acid (FA). FA oxidation was carried out using the Nano ZnO catalyst to produce an optimum vanillin yield of 0.3 g at 70 °C with 0.4% catalyst loading for a time of 60 min. The spent solid residue was then processed using HTL at 5 MPa pressure and a temperature range of 240-340 °C. Various biomass loading (2.5 g to 12.5 g) was taken for a fixed water content of 200 mL. Bio-oil optimum yield was 22.5 wt% for 10 g/200 mL of biomass loading ratio. The optimum temperature was 300 °C for a processing time of 1 h. The catalyst showed the reusable capability of two three consecutive cycles.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Center for Waste Management - 'International Research Center', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600 119, Tamil Nadu, India
| | | | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sivaprasad Shyam
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Namasivayam Mayuri
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Sadhasivan Manasa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
8
|
Arun J, Gopinath KP, SundarRajan P, Malolan R, Adithya S, Sai Jayaraman R, Srinivaasan Ajay P. Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: Solid residue as catalyst for hydrogen production. BIORESOURCE TECHNOLOGY 2020; 310:123443. [PMID: 32353767 DOI: 10.1016/j.biortech.2020.123443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
This study explores the catalytic application of waste clam shell in hydrothermal liquefaction (HTL) of microalgae (Scenedesmus obliquus) for liquid hydrocarbons production. Novel catalyst (calcium hydroxide) was derived from clam shells. Catalytic HTL was performed at varying temperature of 240-320 °C for catalyst load (0.2-1 wt%) at a reaction time of 60 min. Bio-oil yield was maximum (39.6 wt%) at a temperature of 300 °C for catalyst load of 0.6 wt% at a reaction time of 60 min with calorific value of 35.01 MJ/kg. Compounds like phenols, aromatic hydrocarbons, acids and aldehydes were detected in bio-oil through Gas Chromatography Mass Spectrophotometry (GC-MS). Gasification of microalgae with waste solid residue obtained from HTL was carried out for hydrogen production. Valuable hydrogen gas production was maximum (37 wt%) at a temperature of 400 °C for 3 wt% of solid residue. Water-gas shift, methanation and steam reforming reactions favoured the hydrogen gas production.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India.
| | | | - PanneerSelvam SundarRajan
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Srikanth Adithya
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | | |
Collapse
|