1
|
Chen M, Cao Z, Jing B, Chen W, Wen X, Han M, Wang Y, Liao X, Wu Y, Chen T. The production of methyl mercaptan is the main odor source of chicken manure treated with a vertical aerobic fermenter. ENVIRONMENTAL RESEARCH 2024; 260:119634. [PMID: 39029729 DOI: 10.1016/j.envres.2024.119634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The process of harmless treatment of livestock manure produces a large amount of odor, which poses a potential threat to human and livestock health. A vertical fermentation tank system is commonly used for the environmentally sound treatment of chicken manure in China, but the composition and concentration of the odor produced and the factors affecting odor emissions remain unclear. In this study, we investigated the types and concentrations of odors produced in the mixing room (MR), vertical fermenter (VF), and aging room (AR) of the system, and analyzed the effects of bacterial communities and metabolic genes on odor production. The results revealed that 34, 26 and 26 odors were detected in the VF, MR and AR, respectively. The total odor concentration in the VF was 66613 ± 10097, which was significantly greater than that in the MR (1157 ± 675) and AR (1143 ± 1005) (P < 0.001), suggesting that the VF was the main source of odor in the vertical fermentation tank system. Methyl mercaptan had the greatest contribution to the odor produced by VF, reaching 47.82%, and the concentration was 0.6145 ± 0.2164 mg/m3. The abundance of metabolic genes did not correlate significantly with odor production, but PICRUSt analysis showed that cysteine and methionine metabolism involved in methyl mercaptan production was significantly more enriched in MR and VF than in AR. Bacillus was the most abundant genus in the VF, with a relative abundance significantly greater than that in the MR (P < 0.05). The RDA results revealed that Bacillus was significantly and positively correlated with methyl mercaptan. The use of large-scale aerobic fermentation systems to treat chicken manure needs to focused on the production of methyl mercaptan.
Collapse
Affiliation(s)
- Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Boyu Jing
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Wenjun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Han
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Liu Y, Dai A, Xia L, Zhou Y, Ren T, Huang Y, Zhou Y. Deciphering the roles of nitrogen source in sharping synchronous metabolic pathways of linear alkylbenzene sulfonate and nitrogen in a membrane biofilm for treating greywater. ENVIRONMENTAL RESEARCH 2024; 260:119650. [PMID: 39034023 DOI: 10.1016/j.envres.2024.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Nitrogen (N) source is an important factor affecting biological wastewater treatment. Although the oxygen-based membrane biofilm showed excellent greywater treatment performance, how N source impacts the synchronous removal of organics and N is still unclear. In this work, how N species (urea, nitrate and ammonia) affect synchronous metabolic pathways of organics and N were evaluated during greywater treatment in the membrane biofilm. Urea and ammonia achieved efficient chemical oxygen demand (>97.5%) and linear alkylbenzene sulfonate (LAS, >98.5%) removal, but nitrate enabled the maximum total N removal (80.8 ± 2.6%). The nitrate-added system had poor LAS removal ratio and high residual LAS, promoting the accumulation of effluent protein-like organics and fulvic acid matter. N source significantly induced bacterial community succession, and the increasing of corresponded functional flora can promote the transformation and utilization of microbial-mediated N. The nitrate system was more conducive to the accumulation of denitrification related microorganisms and enzymes, enabling the efficient N removal. Combining with high amount of ammonia monooxygenase that contributing to LAS and N co-metabolism, LAS mineralization related microbes and functional enzymes were generously accumulated in the urea and ammonia systems, which achieved the high efficiency of organics and LAS removal.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anqi Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Liang Z, Wu J, He DC, Li Y, Liang YQ, Hu JW, Zou MY, Ning JF, Liu WR. Degradation characteristics and effect mechanisms of estrogens during aerobic composting of chicken manure based on the orthogonal test. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122751. [PMID: 39378806 DOI: 10.1016/j.jenvman.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Environmental estrogens are currently a significant research topic, and poultry manure serves as a crucial source. This study investigated the degradation characteristics and effect mechanisms of six estrogens (E1, 17α-E2, 17β-E2, E3, 17α-EE2, and DES) during the aerobic composting of chicken manure. An orthogonal test comprising four factors (aeration rate, calcium-magnesium-phosphorus fertilizer (Ca-Mg-P fertilizer), coconut shell biochar, initial moisture content) and three levels of aerobic composting was conducted over a 45-day period to monitor the changes in estrogens and basic parameters. The results indicated that the factors influencing the estrogen degradation rate ranked as: initial moisture content (MC) > Ca-Mg-P fertilizer > aeration rate > coconut shell biochar. These factors significantly influenced the abundance of estrogen-degrading genera. Optimal composting conditions for estrogen degradation were identified as the addition of 10% coconut shell biochar, maintaining an initial moisture content of 60%, and using an aeration rate of 0.08 L min-1∙kg-1DM (dry matter), with an average degradation rate of 86.88% for the six estrogens under these conditions. During the composting process under various treatments, five known estrogen-degrading genera were observed with high relative abundance (max 31.08%), and the predominant genera were Staphylococcus and Brachybacterium for 17α-E2, 17β-E2, E3, 17α-EE2, and DES, and Pusillimonas for E1. The composition of microbial community structure changed significantly, and the dominated environment factors effecting the composition and succession of these genera were carbon to nitrogen ratio (C/N) and MC. The research results can provide both a theoretical basis and practical reference for the effective degradation of estrogens during the composting of chicken manure.
Collapse
Affiliation(s)
- Ziwei Liang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Junhao Wu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - De-Chun He
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Yan Li
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jia-Wu Hu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Meng-Yao Zou
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Jian-Feng Ning
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China.
| |
Collapse
|
4
|
Xu W, Wang W, Ma R, Guo D, Wang Y, Li X, Yuan J, Wang Y, Dong H. Dual mechanism of membrane covering on GHG and NH 3 mitigation during industrial-scale experiment on dairy manure composting: Inhibiting formation and blocking emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122585. [PMID: 39303595 DOI: 10.1016/j.jenvman.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
An industrial-scale experiment on dairy manure composting with the control group (Ctrl) and the membrane covering group (CM) was conducted to explore the effects of functional membrane covering on gas emissions, the conversion of carbon and nitrogen, and revealing the underlying mechanisms. Results indicated that CM achieved the synergistic effects on gas mitigation and improved compost product quality. CO2, CH4, N2O, and NH3 emissions were reduced by 81.8%, 87.0%, 82.6%, and 82.2%, respectively. The micro-aerobic condition formed in membrane covering compost pile together with the covering inhibiting effect dominated the mitigation effect. CM significantly downregulated the mcrA gene copies and the value of mcrA/pmoA (p < 0.01), which reduced CH4 emission. CM decreased the nirS and nirK gene copies and increased the nosZ gene copies to reduce N2O emission. Functional Annotation of Prokaryotic Taxa showed that membrane covering effectively amended part of carbon and nitrogen cycles, which stimulated the degradation of organic matter, accelerated compost maturity and reduced the gaseous emissions.
Collapse
Affiliation(s)
- Wenqian Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiqiang Ma
- Zhongnong Chuangda Environmental Protection Technology Co., Ltd., Beijing, 100081, China
| | - Dongpo Guo
- Beijing Green Tech Science and Technology Co., Ltd., Beijing, 100080, China
| | - Youxu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
5
|
Fang J, Liu Z, Deng Y, Song B, Adams JM. Key microbial taxa play essential roles in maintaining soil muti-nutrient cycling following an extreme drought event in ecological buffer zones along the Yangtze River. FRONTIERS IN PLANT SCIENCE 2024; 15:1460462. [PMID: 39297006 PMCID: PMC11408313 DOI: 10.3389/fpls.2024.1460462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024]
Abstract
Climatic extremes, especially extreme droughts, are occurring more frequently and profoundly impacting biogeochemical processes. However, the relative importance of microbial communities on soil nutrient cycling and community maintenance under natural extreme drought events remains elusive. During a record-breaking drought in the Yangtze River Basin (YRB) in the summer of 2022, we collected ambient soils and drought-affected bare and vegetated soils in ecological buffer zones from two sites with similar soil and vegetation characteristics along the YRB, and examined the relative contribution of soil bacterial communities in supporting multi-nutrient cycling index (MNCI) involving carbon-, nitrate- and phosphorus-cycling and their associations with microbial network. Extreme drought decreased (p < 0.05) bacterial α-diversity but increased MNCI in vegetated soils at both sites, while both remained unchanged (p > 0.05) in bare soils, possibly as a result of vegetation releasing rhizodeposits under drought which selectively recruited bacterial communities. Bacterial community compositions were shifted (p < 0.05) only in vegetated soils, and they exerted more influence than α-diversity on soil MNCI. Notably, the Anaerolineae, identified as a biomarker enriched in vegetated soils, had close associations with enzyme activities and soil MNCI at both sites, suggesting their potential recruitment by vegetation to withstand drought. Furthermore, key ecological clusters (Module 1) in bacterial co-occurrence networks at both sites supported (p < 0.05) higher MNCI, despite no substantial variation in network structure due to drought. Specifically, the most important taxa within Module 1 for predicting soil MNCI revealed by random forest modeling analysis (R2 = 0.44 - 0.63, p < 0.001), such as B1-7BS, SBR1031 and Nocardioides, could be deeply involved in soil nitrogen-cycling, suggesting an essential role of specialized interactions of bacterial communities in maintaining soil multifunctionality. Overall, this study demonstrates that changes in biomarkers and functional taxa under extreme drought may better reflect the biological mechanisms involved in microbial communities impacting ecosystem function, which may aid in forecasting the ecological consequences of ongoing climate change in the ecological buffer zones along the YRB.
Collapse
Affiliation(s)
- Jie Fang
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| | - Zihao Liu
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Bin Song
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jonathan M Adams
- School of Geography and Ocean Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Yan X, Liu D, de Smit SM, Komin V, Buisman CJN, Ter Heijne A. Oxygen-to-ammonium-nitrogen ratio as an indicator for oxygen supply management in microoxic bioanodic ammonium oxidation. WATER RESEARCH 2024; 261:121993. [PMID: 38968732 DOI: 10.1016/j.watres.2024.121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Microbial electrolysis cells (MECs) have been proven effective for oxidizing ammonium (NH4+), where the anode acts as an electron acceptor, reducing the energy input by substituting oxygen (O2). However, O2 has been proved to be essential for achieving high removal rates MECs. Thus, precise control of oxygen supply is crucial for optimizing treatment performance and minimizing energy consumption. Unlike previous studies focusing on dissolved oxygen (DO) levels, this study introduces the O2/NH4+-N ratio as a novel control parameter for balancing oxidation rates and the selectivity of NH4+ oxidation towards dinitrogen gas (N2) under limited oxygen condition. Our results demonstrated that the O2/NH4+-N ratio is a more relevant oxygen supply indicator compared to DO level. Oxygen served as a more favorable electron acceptor than the electrode, increasing NH4+ oxidation rates but also resulting in more oxidized products such as nitrate (NO3-). Additionally, nitrous oxide (N2O) and N2 production were higher with the electrode as the electron acceptor compared to oxygen alone. An O2/NH4+-N ratio of 0.5 was found to be optimal, achieving a balance between product selectivity for N2 (51.4 % ± 4.5 %) and oxidation rates (344.6 ± 14.7 mg-N/L*d), with the columbic efficiency of 30.7 % ± 2.0 %. Microbial community analysis revealed that nitrifiers and denitrifiers were the primary bacteria involved, with oxygen promoting the growth of nitrite-oxidizing bacteria, thus facilitating complete NH4+ oxidation to NO3-. Our study provides new insights and guidelines on the appropriate oxygen dosage, offering strategies into optimizing operational conditions for NH4+ removal using MECs.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Dandan Liu
- Paqell B.V., Reactorweg 301, 3542 CE Utrecht, the Netherlands
| | - Sanne M de Smit
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Vera Komin
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
7
|
Li F, Yuan Q, Li M, Zhou J, Gao H, Hu N. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4397-4407. [PMID: 37615415 DOI: 10.1080/09593330.2023.2252162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.
Collapse
Affiliation(s)
- Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Huang X, Niu P, Gao Y, Rong W, Luo C, Zhang X, Jiang P, Wang M, Chu G. Effects of Water and Nitrogen on Growth, Rhizosphere Environment, and Microbial Community of Sophora alopecuroides: Their Interrelationship. PLANTS (BASEL, SWITZERLAND) 2024; 13:1970. [PMID: 39065497 PMCID: PMC11281131 DOI: 10.3390/plants13141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The effective management of water and nitrogen is crucial in the artificial cultivation of medicinal plants. Sophora alopecuroides, a perennial herbaceous plant in the Fabaceae family, is extensively used in medicine, with alkaloids as its primary bioactive constituents. Nevertheless, there remains a significant knowledge gap regarding how rhizospheric microbial communities respond to varying water and nitrogen conditions and their intricate relationships with soil environments and the growth of S. alopecuroides. In this study, two-year-old S. alopecuroides were used in a two-factor, three-level water-nitrogen interaction experiment. The irrigation levels included W1 (30-35% of maximum water holding capacity), W2 (50-55%), and W3 (70-75%), while nitrogen levels comprised N1 (32 mg/kg), N2 (64 mg/kg), and N3 (128 mg/kg). The study assessed plant growth indicators, total alkaloid content, and rhizospheric soil physicochemical parameters of S. alopecuroides. High-throughput sequencing (16S rRNA and ITS) was employed to analyze variations in rhizospheric microbial community composition and structure. The results showed that Proteobacteria and Ascomycota are the predominant bacterial and fungal phyla in the rhizosphere microbial community of S. alopecuroides. The highest biomass and alkaloid accumulation of S. alopecuroides were observed under the N1W3 treatment (50% nitrogen application and 70-75% of maximum water holding capacity). Specifically, six bacterial genus-level biomarkers (TRA3_20, MND1, env_OPS_17, SBR1031, Haliangium, S0134_terrestrial_group) and six fungal genus-level biomarkers (Pseudeurotium, Rhizophagus, Patinella, Pseudeurotium, Patinella, Rhizophagus) were identified under the N1W3 treatment condition. In the partial least squares path modeling (PLS-PM), water and nitrogen treatments demonstrated markedly positive direct effects on soil physicochemical parameters (p < 0.01), while showing significant negative direct impacts on alkaloid accumulation and plant growth indicators (p < 0.05). Soil physicochemical parameters, in turn, significantly negatively affected the rhizosphere fungal community (p < 0.05). Additionally, the rhizosphere fungal community exhibited highly significant negative direct effects on both the plant growth indicators and total alkaloid content of S. alopecuroides (p < 0.01). This study provides new insights into the interactions among rhizosphere soil environment, rhizosphere microbiota, plant growth, and alkaloid accumulation under water and nitrogen regulation, offering a scientific basis for the water and nitrogen management in the cultivation of S. alopecuroides.
Collapse
Affiliation(s)
- Xiang Huang
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Panxin Niu
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Yude Gao
- Practice Forest Farm, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Wenwen Rong
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Cunkai Luo
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Xingxin Zhang
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Ping Jiang
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Mei Wang
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| | - Guangming Chu
- Agricultural College, Shihezi University, Shihezi 832003, China; (X.H.); (P.N.); (W.R.); (C.L.); (P.J.)
| |
Collapse
|
9
|
Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, Hai Nguyen NS, Xie S, Zhang T, Mukherjee S, Bolan NS. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124115. [PMID: 38718963 DOI: 10.1016/j.envpol.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Tra Van Tung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Shiyu Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
10
|
Zhang J, Kong Y, Yang Y, Ma R, Li G, Wang J, Cui Z, Yuan J. Effects of thermophilic bacteria inoculation on maturity, gaseous emission and bacterial community succession in hyperthermophilic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172304. [PMID: 38604357 DOI: 10.1016/j.scitotenv.2024.172304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hyperthermophilic composting, characterized by temperatures equal to or exceeding 75 °C, offers superior compost maturity and performance. Inoculation with thermophilic bacteria presents a viable approach to achieving hyperthermophilic composting. This study investigates the effects of inoculating thermophilic bacteria, isolated at different temperatures (50 °C, 60 °C, and 70 °C) into compost on maturity, gaseous emissions, and microbial community dynamics during co-composting. Results indicate that the thermophilic bacteria inoculation treatments exhibited peak temperature on Day 3, with the maximum temperature of 75 °C reached two days earlier than the control treatment. Furthermore, these treatments demonstrated increased bacterial richness and diversity, along with elevated relative abundances of Firmicutes and Proteobacteria. They also fostered mutualistic correlations among microbial species, enhancing network connectivity and complexity, thereby facilitating lignocellulose degradation. Specifically, inoculation with thermophilic bacteria at 60 °C increased the relative abundance of Thermobifida and unclassified-f-Thermomonosporaceae (Actinobacteriota), whereas Bacillus, a thermophilic bacterium, was enriched in the 70 °C inoculation treatment. Consequently, the thermophilic bacteria at 60 °C and 70 °C enhanced maturity by 36 %-50 % and reduced NH3 emissions by 1.08 %-27.50 % through the proliferation of thermophilic heterotrophic ammonia-oxidizing bacteria (Corynebacterium). Moreover, all inoculation treatments decreased CH4 emissions by 6 %-27 % through the enrichment of methanotrophic bacteria (Methylococcaceae) and reduced H2S, Me2S, and Me2SS emissions by 1 %-25 %, 47 %-63 %, and 15 %-53 %, respectively. However, the inoculation treatments led to increased N2O emissions through enhanced denitrification, as evidenced by the enrichment of Truepera and Pusillimonas. Overall, thermophilic bacteria inoculation promoted bacteria associated with compost maturity while attenuating the relationship between core bacteria and gaseous emissions during composting.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Zhongliang Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Wang F, Pan T, Fu D, Fotidis IA, Moulogianni C, Yan Y, Singh RP. Pilot-scale membrane-covered composting of food waste: Initial moisture, mature compost addition, aeration time and rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171797. [PMID: 38513870 DOI: 10.1016/j.scitotenv.2024.171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The impact of different operational parameters on the composting efficiency and compost quality during pilot-scale membrane-covered composting (MCC) of food waste (FW) was evaluated. Four factors were assessed in an orthogonal experiment at three different levels: initial mixture moisture (IMM, 55 %, 60 %, and 65 %), aeration time (AT, 6, 9, and 12 h/d), aeration rate (AR, 0.2, 0.4, and 0.6 m3/h) and mature compost addition ratio (MC, 2 %, 4 %, and 6 %). Results indicated that 55 % IMM, 6 h/d AT, 0.4 m3/h AR, and 4 % MC addition ratio simultaneously provided the compost with the maximum cumulative temperature and the minimum moisture. It was shown that the IMM was the driving factor of this optimum composting process. On contrary, the optimal parameters for reducing carbon and nitrogen loss were 65 % IMM, 6 h/d AT, 0.4 m3/h AR, and 2 % MC addition ratio. The AR had the most influence on reducing carbon and nitrogen losses compared to all other factors. The optimal conditions for compost maturity were 55 % IMM, 9 h/d AT, 0.2 m3/h AR, and 6 % MC addition ratio. The primary element influencing the pH and electrical conductivity values was the AR, while the germination index was influenced by IMM. Protein was the main organic matter limiting the composting efficiency. The results of this study will provide guidance for the promotion and application of food waste MCC technology, and contribute to a better understanding of the mechanisms involved in MCC for organic solid waste treatment.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ting Pan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ioannis A Fotidis
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Department of Environment, Ionian University, 29100 Zakynthos, Greece
| | | | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | | |
Collapse
|
12
|
Liu Y, Wang H, Zhang H, Tao Y, Chen R, Hang S, Ding X, Cheng M, Ding G, Wei Y, Xu T, Li J. Synergistic effects of chemical additives and mature compost on reducing H 2S emission during kitchen waste composting. J Environ Sci (China) 2024; 139:84-92. [PMID: 38105080 DOI: 10.1016/j.jes.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 12/19/2023]
Abstract
Additives could improve composting performance and reduce gaseous emission, but few studies have explored the synergistic of additives on H2S emission and compost maturity. This research aims to make an investigation about the effects of chemical additives and mature compost on H2S emission and compost maturity of kitchen waste composting. The results showed that additives increased the germination index value and H2S emission reduction over 15 days and the treatment with both chemical additives and mature compost achieved highest germination index value and H2S emission reduction (85%). Except for the treatment with only chemical additives, the total sulfur content increased during the kitchen waste composting. The proportion of effective sulfur was higher with the addition of chemical additives, compared with other groups. The relative abundance of H2S-formation bacterial (Desulfovibrio) was reduced and the relative abundance of bacterial (Pseudomonas and Paracoccus), which could convert sulfur-containing substances and H2S to sulfate was improved with additives. In the composting process with both chemical additives and mature compost, the relative abundance of Desulfovibrio was lowest, while the relative abundance of Pseudomonas and Paracoccus was highest. Taken together, the chemical additives and mature compost achieved H2S emission reduction by regulating the dynamics of microbial community.
Collapse
Affiliation(s)
- Yongdi Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Haihou Wang
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake District, Suzhou 215155, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yueyue Tao
- Suzhou Academy of Agricultural Sciences, Institute of Agricultural Sciences in Taihu Lake District, Suzhou 215155, China
| | - Rui Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Sheng Hang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| |
Collapse
|
13
|
Bortoloti MA, Challiol AZ, Sicchieri IMB, Kuroda EK, Fernandes F. Co-composting of green waste and biogas waste: physical, chemical parameters and quality of ripe compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34258-34270. [PMID: 38700772 DOI: 10.1007/s11356-024-33539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
The impact of adding biogas waste (BW) to green waste (GW) composting to increase nitrogen supplementation and improve mature compost quality was investigated. Conducted over 90 days using static windrows, the experiment compared treatments with GW alone (T1) and GW supplemented with BW (T2 and T3). The results showed that the addition of BW increased temperatures, improved the C/N ratio, and expedited the stabilization process compared to T1. Furthermore, the addition of BW led to significant degradation of hemicellulose (up to 39.98%) and cellulose (up to 27.63%) compared to GW alone. Analysis of Fourier-transform infrared (FTIR) spectra revealed the presence of aromatic, phenolic, aliphatic, and polysaccharide structures in the compost, with BW supplementation enhancing these characteristics. Importantly, the germination index (GI) assessment indicated that the compounds produced were not toxic and instead exhibited stimulatory effects on seed germination. Overall, the findings suggest that supplementing GW composting with BW can enhance the quality and efficacy of the composting process, resulting in compost with desirable properties for agricultural use.
Collapse
Affiliation(s)
- Mauricio Aparecido Bortoloti
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Celso Garcia Cid Highway (PR-445), Km 380, Londrina, Paraná, 86057-970, Brazil.
| | - Adriana Zemiani Challiol
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Celso Garcia Cid Highway (PR-445), Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Isabela Mangerino Bortoloti Sicchieri
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Celso Garcia Cid Highway (PR-445), Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Emília Kiyomi Kuroda
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Celso Garcia Cid Highway (PR-445), Km 380, Londrina, Paraná, 86057-970, Brazil
| | - Fernando Fernandes
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Celso Garcia Cid Highway (PR-445), Km 380, Londrina, Paraná, 86057-970, Brazil
| |
Collapse
|
14
|
Zhang Y, Deng F, Su X, Su H, Li D. Semi-permeable membrane-covered high-temperature aerobic composting: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120741. [PMID: 38522273 DOI: 10.1016/j.jenvman.2024.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Semi-permeable membrane-covered high-temperature aerobic composting (SMHC) is a suitable technology for the safe treatment and disposal of organic solid waste as well as for improving the quality of the final compost. This paper presents a comprehensive summary of the impact of semi-permeable membranes centered on expanded polytetrafluoroethylene (e-PTFE) on compost physicochemical properties, carbon and nitrogen transformations, greenhouse gas emission reduction, microbial community succession, antibiotic removal, and antibiotic resistance genes migration. It is worth noting that the semi-permeable membrane can form a micro-positive pressure environment under the membrane, promote the uniform distribution of air in the heap, reduce the proportion of anaerobic area in the heap, improve the decomposition rate of organic matter, accelerate the decomposition of compost and improve the quality of compost. In addition, this paper presents several recommendations for future research areas in the SMHC. This investigation aims to guide for implementation of semi-permeable membranes in high-temperature aerobic fermentation processes by systematically compiling the latest research progress on SMHC.
Collapse
Affiliation(s)
- Yanzhao Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiongshuang Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haifeng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
15
|
Yang JH, Fu JJ, Jia ZY, Geng YC, Ling YR, Fan NS, Jin RC. Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108599. [PMID: 38554504 DOI: 10.1016/j.envint.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L-1 CIP, while the higher concentration (20 mg L-1) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m-3 d-1 promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics.
Collapse
Affiliation(s)
- Jun-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yu Jia
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yin-Ce Geng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Rong Ling
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Hao J, Tan J, Zhang Y, Gu X, Zhu G, Wang S, Li J. Sewage sludge-derived nutrients and biostimulants stimulate rice leaf photosynthesis and root metabolism to enhance carbohydrate, nitrogen and antioxidants accumulation. CHEMOSPHERE 2024; 352:141335. [PMID: 38301837 DOI: 10.1016/j.chemosphere.2024.141335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The production of high quality liquid nitrogen fertilizer with both nutrient comprehensive and biostimulant properties by alkaline thermal hydrolysis of sewage sludge has shown great potential in agricultural production. However, little is known about the effects of sewage sludge-derived nutrients, and biostimulants (SS-NB) on leaf photosynthesis and root growth in rice. Phenotypic, metabolic and microbial analyses were used to reveal the mechanism of SS-NB on rice. Compared to NF treatment, phenotypic parameters (fresh/dry weight, soluble sugar, amino acid, protein) were increased by SS-NB in rice. SS-NB can enhance the photosynthesis of rice leaves by improving the photoconversion efficiency, chlorophyll content, ATP synthase activity, Rubisco and NADPH production. Meanwhile, SS-NB also increased antioxidant capacity (SOD, POD, CAT and proline) in rice leaf and root tissues. Metabolomics revealed that SS-NB application increased the expression levels of metabolites in root and leaf tissues, including carbohydrate, nitrogen and sulfur metabolism, amino acid metabolism, antioxidants, and phytohormone. Most importantly, the regulation of metabolites in rice root tissues is more sensitive than in leaf tissues, especially to the higher levels of antioxidants and phytohormones (IAA and GA) in rice root tissues. Furthermore, SS-NB increased the abundance of photosynthetic autotrophic, organic acids-degrading and denitrifying functional bacteria in rice roots and recruited plant growth-promoting bacteria (Azospirillum and norank_f_JG30-KF-CM45), while the NF treatment group resulted in an imbalance of the microbial community, leading to the dominance of pathogenic bacteria. The results showed that SS-NB had great application potential in crop growth and stress resistance improvement.
Collapse
Affiliation(s)
- Jiahou Hao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiayi Tan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing, 100082, China
| | - Xuejia Gu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Ge Zhu
- Wuxi Huilian Green Ecological Technology Co., LTD, Wuxi, 214100, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
17
|
Zhang L, Yang Y, Bao Z, Zhang X, Yao S, Li Y, Li G, Wang D, Li Q, Yuan J. Plant-derived biochar amendment for compost maturity improvement and gaseous emission reduction in food waste composting: Insight from bacterial community and functions. CHEMOSPHERE 2024; 352:141457. [PMID: 38378050 DOI: 10.1016/j.chemosphere.2024.141457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
This study assessed the impact of different plant-derived biochar (cornstalk, rice husk, and sawdust) on bacterial community and functions for compost maturity and gaseous emissions during the composting of food waste. Results showed that all biochar strengthened organic biotransformation and caused a higher germination index on day 12 (over 100%), especially for rice husk biochar to enhance the growth of Thermobifida related to aerobic chemoheterotrophy. Rice husk biochar also achieved a relatively higher reduction efficiency of methane (85.8%) and ammonia (82.7%) emissions since its greater porous structure. Besides, the growth of Pseudomonas, Pusillimonas, and Desulfitibacter was restricted to constrict nitrate reduction, nitrite respiration, and sulfate respiration by optimized temperature and air permeability, thus reducing nitrous oxide and hydrogen sulfide emissions by 48.0-57.3% by biochar addition. Therefore, rice husk biochar experienced the optimal potential for maturity increment and gaseous emissions mitigation.
Collapse
Affiliation(s)
- Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ziyang Bao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Xuanshuo Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Sheng Yao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| | - Dingmei Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
18
|
Zhu L, Li W, Huang C, Tian Y, Xi B, Wu W, Yan Y. Contribution of sulfur-containing precursors to release of hydrogen sulfide in sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120195. [PMID: 38306858 DOI: 10.1016/j.jenvman.2024.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Hydrogen sulfide (H2S) production during composting can impact the environment and human health. Especially during the thermophilic phase, H2S is discharged in large quantities. However, in sludge composting, the contributions of different sulfur-containing precursors to H2S fluxes, key functional microorganisms, and key environmental parameters for reducing H2S flux remain unclear. Analysis of cysteine (Cys), methionine (Met), and sulfate (SO42-) concentrations, multiple stepwise regression analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis of metagenomes showed that Cys was the main contributor to the production of H2S and that Met was among the main sources during the first three days of composting, while the SO42- contribution to H2S was negligible. Fifteen functional genera involved in the conversion of precursors to H2S were identified by co-occurrence network analysis. Only Bacillus showed high temperature resistance (>50 °C) and the ability to reduce H2S. Redundancy analysis showed that total carbon (64.0 %) and pH (23.3 %) had significant effects on functional bacteria. H2S had a quadratic relationship with sulfur-containing precursors. All microbial network sulfur-containing precursors metabolism modules showed a highly significant relationship with Cys.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yimeng Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
19
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
20
|
Li C, Zhang C, Ran F, Yao T, Lan X, Li H, Bai J, Lei Y, Zhou Z, Cui X. Effects of microbial deodorizer on pig feces fermentation and the underlying deodorizing mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:174-186. [PMID: 38056366 DOI: 10.1016/j.wasman.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Microbial deodorization is a novel strategy for reducing odor in livestock and poultry feces. Herein, 12 strains of ammonia (NH3) and 15 hydrogen sulfide (H2S) removing bacteria were obtained with a removal efficiency of 65.20-79.80% and 34.90-79.70%, respectively. A novel bacteria deodorant named MIX (Bacillus zhangzhouensis, Bacillus altitudinis, and Acinetobacter pittii at a ratio of 1:1:2) were obtained. MIX can shorten the temperature rising stage by 2 days and prolong the thermophilic stage by 4 days. The ability of MIX to remove NH3, H2S, and volatile fatty acids (VFAs) and the underlying removal mechanism were analyzed during pig feces fermentation. MIX can significantly reduce the concentrations of NH3 and H2S by 41.82% and 66.35% and increase the concentrations of NO3--N and SO42- by 7.80% and 8.83% (P < 0.05), respectively, on the 25th day. Moreover, the concentrations of acetic, propionate, iso-valerate, and valerate were significantly reduced. The dominant bacteria communities at the phylum level were Firmicutes, Proteobacteria, Bacteroidetes, and Spirochaetes. B. zhangzhouensis and B. altitudinis could convert NH4+-N to NO3--N, and A. pittii could transfer H2S to SO42-. This study revealed that bacteria deodorant can reduce the concentrations of NH3, H2S, and VFAs in pig feces and increase those of NH4+, NO3-, and SO42- and has excellent potential in deodorizing livestock and poultry feces composting.
Collapse
Affiliation(s)
- Changning Li
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Chen Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Fu Ran
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Tuo Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, 730070 Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Xiaojun Lan
- Agricultural College, Anshun University, Anshun 561000, Guizhou, China
| | - Haiyun Li
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jie Bai
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yang Lei
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Ze Zhou
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Xiaoning Cui
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
21
|
Song Y, Hou Y, Mu L, Chen G, Zeng Y, Yan B. Effect of heterogeneous fenton-like pretreatment on semi-permeable membrane-covered co-composting: Humification and microbial community succession. BIORESOURCE TECHNOLOGY 2024; 393:130112. [PMID: 38013034 DOI: 10.1016/j.biortech.2023.130112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
This study focused on the impacts of heterogeneous Fenton-like pretreatment on the humification and bacterial community during co-composting of wheat straw with cattle dung covered with a semi-permeable membrane. In this study, FeOCl and low concentration of H2O2 were used for pretreatment and composting, which lasted for 39 days. The results showed that the pretreatment promoted the humification process, with degree of polymerization and percentage of humic acid increasing by 53.2 % and 7.3 %, respectively. Furthermore, the diversity and structure of bacterial communities were altered by pretreatment. During the thermophilic phase, pretreatment considerably promoted the metabolism of carbohydrate. According to redundancy analysis, C/N, moisture and organic matter were the key environmental factors that dominated the microbial community. In summary, heterogeneous Fenton-like pretreatment provided a novel idea for improving the humic acid content and maturity of the compost pile.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yu Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yamei Zeng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Double Carbon Research Institute, Tianjin 300350, China
| |
Collapse
|
22
|
Fang C, Su Y, Zhuo Q, Wang X, Ma S, Zhan M, He X, Huang G. Responses of greenhouse gas emissions to aeration coupled with functional membrane during industrial-scale composting of dairy manure: Insights into bacterial community composition and function. BIORESOURCE TECHNOLOGY 2024; 393:130079. [PMID: 37993066 DOI: 10.1016/j.biortech.2023.130079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Greenhouse gas (GHG) emissions from manure management processes deserve more attention. Using three industrial-scale experiments, this study comprehensively evaluated the effects of different aeration coupled with semi-permeable membrane-covered strategies on the structure and function of bacterial communities and their impact on GHG emissions during dairy manure aerobic composting. The succession of the bacterial communities tended to be consistent for similar aeration strategies. Ruminiclostridium and norank_f__MBA03 were significantly positively correlated with the methane emission rate, and forced aeration coupled with semi-permeable membrane-covered decreased GHG emissions by inhibiting these taxa. Metabolism was the most active function of the bacterial communities, and its relative abundance accounted for 75.69%-80.23%. The combined process also enhanced carbohydrate metabolism and amino acid metabolism. Therefore, forced aeration coupled with semi-permeable membrane-covered represented a novel strategy for reducing global warming potential by regulating the structure and function of the bacterial communities during aerobic composting of dairy manure.
Collapse
Affiliation(s)
- Chen Fang
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China; Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoli Wang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Muqing Zhan
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province 550025, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
Li D, Jiang W, Ye Y, Luo J, Zhou X, Yang L, Guo G, Wang S, Liu Z, Guo W, Ngo HH. A change in substance and microbial community structure during the co-composting of kitchen waste anaerobic digestion effluent, sewage sludge and Chinese medicine residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167679. [PMID: 37848150 DOI: 10.1016/j.scitotenv.2023.167679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Anaerobic digestion is a resource recovery method for organic waste, gaining attention due to carbon reduction. Disposing of anaerobic digestion effluent (ADE) is crucial for developing anaerobic digestion, but conventional wastewater treatment fails to effectively recover nutrients contained in the ADE. In the present study, the ADE without solid-liquid separation was mixed with sewage sludge and Chinese medicine residue for the composting, where the ADE could be recovered at high temperature through humification. Besides, the nitrogen balance, humification process, and microbial dynamics during the composting process were studied. The results showed that the group supplemented with ADE could increase the nitrogen retention efficiency by 2.21 % compared to the control group. High ammonia nitrogen content and salinity did not negatively affect the maturity and phytotoxicity of compost products and even increase the humification degree of compost products. Moreover, additional ADE may not alter microbial community structure, which could contribute to microbial succession. This is the first time to investigate the substance transformation and shift in microbial community structure while applying composting process for ADE treatment, in which the anaerobic-aerobic collaborative disposal process provides an alternative solution for the recovery of ADE.
Collapse
Affiliation(s)
- Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China.
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China.
| | - Jiwu Luo
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., No. 8 Jiefang Park Rord, Wuhan 430010, China
| | - Xiaojuan Zhou
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., No. 8 Jiefang Park Rord, Wuhan 430010, China
| | - Lin Yang
- Wuhan Huantou Solid Waste Operation Co., Ltd., No. 37 Xinye Road, Wuhan 430024, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Songlin Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8 Donghu South Road, Wuhan 430072, China
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
24
|
Xiong J, Zhuo Q, Su Y, Qu H, He X, Han L, Huang G. Nitrogen evolution during membrane-covered aerobic composting: Interconversion between nitrogen forms and migration pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118727. [PMID: 37531862 DOI: 10.1016/j.jenvman.2023.118727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Aerobic composting is a promising technology for converting manure into organic fertilizer with low capital investment and easy operation. However, the large nitrogen losses in conventional aerobic composting impede its development. Interconversion of nitrogen species was studied during membrane-covered aerobic composting (MCAC) and conventional aerobic composting, and solid-, liquid-, and gas-phase nitrogen migration pathways were identified by performing nitrogen balance measurements. During the thermophilic phase, nitrogenous organic matter degradation and therefore NH3 production were faster during MCAC than uncovered composting. However, the water films inside and outside the membrane decreased NH3 release by 13.92%-22.91%. The micro-positive pressure environment during MCAC decreased N2O production and emission by 20.35%-27.01%. Less leachate was produced and therefore less nitrogen and other pollutants were released during MCAC than uncovered composting. The nitrogen succession patterns during MCAC and uncovered composting were different and NH4+ storage in organic nitrogen fractions was better facilitated during MCAC than uncovered composting. Overall, MCAC decreased total nitrogen losses by 33.24%-50.07% and effectively decreased environmental pollution and increased the nitrogen content of the produced compost.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
25
|
Li R, Cai L, Cao J, Wang P, Qu H, Chen M, Chen Y. Effect of different multichannel ventilation methods on aerobic composting and vegetable waste gas emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112104-112116. [PMID: 37824054 DOI: 10.1007/s11356-023-30017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Aerobic composting, especially semipermeable membrane-covered aerobic fermentation, is known to be an effective method for recycling and reducing vegetable waste. However, this approach has rarely been applied to the aerobic composting of vegetable waste; in addition, the product characteristics and GHG emissions of the composting process have not been studied in-depth. This study investigated the effect of using different structural ventilation systems on composting efficiency and greenhouse gas emissions in a semipermeable membrane-covered vegetable waste compost. The results for the groups (MV1, MV2, and MV3) with bottom ventilation plus multichannel ventilation and the group (BV) with single bottom ventilation were compared here. The MV2 group effectively increased the average temperature by 19.06% whilst also increasing the degradation rate of organic matter by 30.81%. Additionally, the germination index value reached more than 80%, 3 days in advance. Compared to those of the BV group, the CH4, N2O, and NH3 emissions of MV2 were reduced by 32.67%, 21.52%, and 22.57%, respectively, with the total greenhouse gas emissions decreasing by 24.17%. Overall, this study demonstrated a multichannel ventilation system as a new method for improving the composting efficiency of vegetable waste whilst reducing gas emissions.
Collapse
Affiliation(s)
- Ruirong Li
- School of Energy and Environment, Southeast University (SEU), Nanjing, 210096, China
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Liang Cai
- School of Energy and Environment, Southeast University (SEU), Nanjing, 210096, China.
| | - Jie Cao
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Pengjun Wang
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Haoli Qu
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Mingjiang Chen
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Yongsheng Chen
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| |
Collapse
|
26
|
Liu H, Awasthi MK, Zhang Z, Syed A, Bahkali AH, Sindhu R, Verma M. Evaluation of fungal dynamics during sheep manure composting employing peach shell biochar. BIORESOURCE TECHNOLOGY 2023; 386:129559. [PMID: 37506930 DOI: 10.1016/j.biortech.2023.129559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
In this study, explored the influence of different proportion (0%, 2.5%, 5%, 7.5%, and 10%) peach shell biochar (PSB) with microbial agents (EM) on the carbon transformation, humification process and fungal community dynamics during sheep manure (SM) composting. And no additives were used as control. The results manifested that the CO2 and CH4 emissions were effectively reduced 8.23%∼13.10% and 17.92%∼33.71%. The degradation rate of fulvic acid increased by 17.12%∼23.08% and the humic acid contents were enhanced by 27.27%∼33.97% so that accelerated the composting. Besides, the dominant fungal phylum was Ascomycota (31.43%∼52.54%), Basidiomycota (3.12%∼13.85%), Mucoromycota (0.40%∼7.61%) and Mortierellomycota (0.97%∼2.39%). Pearson correlation analysis and network indicated that there were different correlations between physicochemical indexes and fungal community under different additive concentrations. In brief, the two modifiers application promoted the SM degradation and affected the fungal community structure.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
27
|
Cao T, Zheng Y, Dong H. Control of odor emissions from livestock farms: A review. ENVIRONMENTAL RESEARCH 2023; 225:115545. [PMID: 36822532 DOI: 10.1016/j.envres.2023.115545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Odor emission seriously affects human and animal health, and the ecological environment. Nevertheless, a systematic summary regarding the control technology for odor emissions in livestock breeding is currently lacking. This paper summarizes odor control technology, highlighting its applicability, advantages, and limitations, which can be used to evaluate and identify the most appropriate methods in livestock production management. Odor control technologies are divided into four categories: dietary manipulation (low-crude protein diet and enzyme additives in feed), in-housing management (separation of urine from feces, adsorbents used as litter additive, and indoor environment/manure surface spraying agent), manure management (semi-permeable membrane-covered, reactor composting, slurry cover, and slurry acidification), and end-of-pipe measures for air treatment (wet scrubbing of the exhaust air from animal houses and biofiltration of the exhaust air from animal houses or composting). Findings of this paper provide a theoretical basis for the application of odor control technology in livestock farms.
Collapse
Affiliation(s)
- Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| |
Collapse
|
28
|
Yang Y, Chen W, Liu G, Kong Y, Wang G, Yin Z, Li G, Yuan J. Effects of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:104-114. [PMID: 37167708 DOI: 10.1016/j.wasman.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Manure covered by organic materials during the storage has shown that it can effectively reduce emissions of greenhouse gases, but few studies have focused on the bacterial communities in manure or the coverage and mechanism responsible for reducing gas emissions. Therefore, this study investigated the impacts and mechanisms of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Sheep manure covered by organic material reduced nitrous oxide (N2O) emissions (42.27%-42.55%) relative to uncovered control through physical adsorption and biological transformation of Acinetobacter, Corynebacterium, Brachybacterium, Dietzia and Brevibacterium. Sheep manure covered by organic materials also increased methane (CH4) emissions (16.31%-43.07%) by increasing anaerobic zones of coverage. Overall, coverings reduced carbon dioxide equivalent (CO2eq) by 29.87%-33.60%. Coverings had less effect on the bacterial diversity and community of sheep manure, and the number of bacteria shared by sheep manure and the covering material increased with storage progress, indicating that these bacteria were transferred to the covering materials with gas emissions and moisture volatilization. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images showed that functional group intensities of the covering materials increased and the fibrous structures became more disordered during the storage period. In general, it was safe to use organic materials as coverages during sheep manure storage, which was conducive to reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
29
|
Su Y, Xiong J, Fang C, Qu H, Han L, He X, Huang G. Combined effects of amoxicillin and copper on nitrogen transformation and the microbial mechanisms during aerobic composting of cow manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131569. [PMID: 37172386 DOI: 10.1016/j.jhazmat.2023.131569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Pollutants in livestock manure have a compound effect during aerobic composting, but research to date has focused more on single factors. This study investigated the effects of adding amoxicillin (AMX), copper (Cu) and both (ACu) on nitrogen transformation and the microbial mechanisms in cow manure aerobic composting with wheat straw. In this study, compared with CK, AMX, Cu, and ACu increased NH3 cumulative emissions by 32.32%, 41.78% and 8.32%, respectively, due to their inhibition of ammonia oxidation. Coexisting AMX and Cu decreased the absolute abundances of amoA/ nxrA genes and increased the absolute abundances of nirS /nosZ genes, but they had an antagonistic effect on the changes in functional gene abundances. Pseudomonas and Luteimonas were enriched during the thermophilic and cooling periods due to the addition of AMX and ACu, which enhanced denitrification in these two groups. Moreover, adding AMX and/or Cu led to more complex bacterial networks, but the effect of the two pollutants was lower than those of the individual pollutants. These findings provide theoretical and experimental support for controlling typical combined pollution with antibiotics and heavy metals in livestock manure.
Collapse
Affiliation(s)
- Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
30
|
Sun X, Li Z, Li J, Li Z, Ma Y, Zhou Z, Liu Y, Zeng J, Xu L, Li L. Dynamic composting actuated by a Caldibacillus thermoamylovorans isolate enables biodecomposability and reusability of Cinnamomum camphora garden wastes. BIORESOURCE TECHNOLOGY 2023; 376:128852. [PMID: 36898566 DOI: 10.1016/j.biortech.2023.128852] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The ecotoxic substances in Cinnamomum camphora garden wastes (CGW) often restrain microbe-driven composting process. Here, a dynamic CGW-Kitchen waste composting system actuated by a wild-type Caldibacillus thermoamylovorans isolate (MB12B) with distinctive CGW-decomposable and lignocellulose-degradative activities was reported. An initial inoculation of MB12B optimized for temperature promotion with reduced emission of CH4 and NH3 by 61.9% and 37.6%, respectively, increased germination index and humus content by 18.0% and 44.1%, respectively, and reduced moisture and electrical conductivity, and all were further reinforced by reinoculation of MB12B during the cooling stage of composting. High-throughput sequencing showed varied bacterial community structure and abundance following MB12B inoculation, with temperature-relative Caldibacillus, Bacillus, and Ureibacillus, and humus-forming Sphingobacterium emerging to dominate abundance, which strongly contrasted with Lactobacillus (acidogens related to CH4 emission). Finally, the ryegrass pot experiments showed significant growth-promoting effectiveness of the composted product that successfully demonstrated the decomposability and reuse of CGW.
Collapse
Affiliation(s)
- Xiaowen Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhe Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Zhi Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yini Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhicheng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongxuan Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zeng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangzheng Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Xiong J, Su Y, Qu H, Han L, He X, Guo J, Huang G. Effects of micro-positive pressure environment on nitrogen conservation and humification enhancement during functional membrane-covered aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161065. [PMID: 36565881 DOI: 10.1016/j.scitotenv.2022.161065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Aerobic composting is a humification process accompanied by nitrogen loss. This study is the first research systematically investigating and elucidating the mechanism by which functional membrane-covered aerobic composting (FMCAC) reduces nitrogen loss and enhances humification. The variations in bioavailable organic nitrogen (BON) and humic substances (HSs) in different composting systems were quantitatively studied, and the functional succession patterns of fungal groups were determined by high-throughput sequencing and FUNGuild. The FMCAC improved oxygen utilization and pile temperature, increased BON by 29.95 %, reduced nitrogen loss by 34.00 %, and enhanced humification by 26.09 %. Meanwhile, the FMCAC increased the competitive advantage of undefined saprotroph and significantly reduced potential pathogenic fungi (<0.10 %). Structural equation modeling indicated that undefined saprotroph facilitated the humification process by increasing the production of BON and storing BON in stable humic acid. Overall, the FMCAC increased the safety, stability, and quality of the final compost product.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
32
|
Song Y, Li R, Wang Y, Hou Y, Chen G, Yan B, Cheng Z, Mu L. Co-composting of cattle manure and wheat straw covered with a semipermeable membrane: organic matter humification and bacterial community succession. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32776-32789. [PMID: 36471148 DOI: 10.1007/s11356-022-24544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Semipermeable membrane-covered composting is one of the most commonly used composting technologies in northeast China, but its humification process is not yet well understood. This study employed a semipermeable membrane-covered composting system to detect the organic matter humification and bacterial community evolution patterns over the course of agricultural waste composting. Variations in physicochemical properties, humus composition, and bacterial communities were studied. The results suggested that membrane covering improved humic acid (HA) content and degree of polymerization (DP) by 9.28% and 21.57%, respectively. Bacterial analysis indicated that membrane covering reduced bacterial richness and increased bacterial diversity. Membrane covering mainly affected the bacterial community structure during thermophilic period of composting. RDA analysis revealed that membrane covering may affect the bacterial community by altering the physicochemical properties such as moisture content. Correlation analysis showed that membrane covering activated the dominant genera Saccharomonospora and Planktosalinus to participate in the formation of HS and HA in composting, thus promoting HS formation and its structural complexity. Membrane covering significantly reduced microbial metabolism during the cooling phase of composting.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruiyi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yuxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yu Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
- School of Science, Tibet University, Lhasa, 850012, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
33
|
Xiong S, Liu Y, Zhang H, Xu S, Li S, Fan X, Chen R, Ding G, Li J, Wei Y. Effects of chemical additives and mature compost on reducing nitrogen loss during food waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39000-39011. [PMID: 36593319 DOI: 10.1007/s11356-022-24752-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This study is aimed at adding different types of mature compost and sulfur powder, as additives into food waste composting to investigate the effect on nitrogen loss and compost maturity. The composting experiment used the in-vessel composting method and was conducted continuously for 15 days. High-throughput sequencing was used to analyze the bacterial community during composting. Results showed that the secondary fermentation mature compost mixed with sulfur powder group had the most reduction of ammonia emission (56%) and the primary fermentation mature compost amendments were the most effective for nitrous oxide emission reduction (37%). The temperature, pH, and nitrogen forms of transformation of the pile significantly affect the nitrogen loss during composting. Firmicutes helped to promote the rapid warming of the pile, and Actinobacteria and Proteobacteria played an important role in decomposition of organic matter. Thermobifida and Ureibacillus had a main contribution to the rapid degradation of organic matter in the process of composting. The relative abundance of nitrogen-fixing bacteria was higher, and the relative abundance of predominantly ammonifying and denitrifying bacteria was lower than the control group, with the addition of different additives.
Collapse
Affiliation(s)
- Shangao Xiong
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100043, China
| | - Yongdi Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Songrong Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Xinqi Fan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Rui Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
34
|
Xie T, Zhang Z, Zhang D, Wei C, Lin Y, Feng R, Nan J, Feng Y. Effect of hydrothermal pretreatment and compound microbial agents on compost maturity and gaseous emissions during aerobic composting of kitchen waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158712. [PMID: 36099942 DOI: 10.1016/j.scitotenv.2022.158712] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Though aerobic composting is commonly used in kitchen waste (KW) disposal, the high-oil and high-salt characteristics of KW could affect composting efficiency and lead to the land using risk of produced fertilizer. The impact of hydrothermal pretreatment (HTP) and addition of compound microbial agent (CMA) on compost maturity, greenhouse gas (GHGs) emissions and bacterial community during the kitchen waste composting were evaluated in the present work. Results indicated that N2O, CH4 and CO2 emissions from treatment by HTP and CMA addition were reduced by 82.72%, 13.77% and 20.78 %, respectively, comparing with the control (without HTP and without CMA addition). The seed germination index (GI) value of the HTP and CMA addition treatment was 1.03 and had the highest maturity in all treatments. Furthermore, the bacterial community analysis indicated that CMA inoculation could increase the relative abundance of genus Bacillus at the thermophilic stage of composting to accelerate organic biodegradation. This work provided important insight into mitigating GHGs emissions and improving compost quality in kitchen waste composting.
Collapse
Affiliation(s)
- Ting Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem, Harbin Institute of Technology, China
| | - Dawei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Yong Lin
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Rongwei Feng
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
35
|
Wang N, Zhao K, Li F, Peng H, Lu Y, Zhang L, Pan J, Jiang S, Chen A, Yan B, Luo L, Huang H, Li H, Wu G, Zhang J. Characteristics of carbon, nitrogen, phosphorus and sulfur cycling genes, microbial community metabolism and key influencing factors during composting process supplemented with biochar and biogas residue. BIORESOURCE TECHNOLOGY 2022; 366:128224. [PMID: 36328174 DOI: 10.1016/j.biortech.2022.128224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling functional genes and bacterial and fungal communities during composting with biochar and biogas residue amendments were studied. Correlations between microbial community structure, functional genes and physicochemical properties were investigated by network analysis and redundancy analysis. It was shown that the gene of acsA abundance accounted for about 50% of the C-related genes. Biogas residue significantly decreased the abundance of denitrification gene nirK. Biogas residues can better promote the diversity of bacteria and fungi during composting. Biochar significantly increased the abundance of Humicola. Redundancy analysis indicated that pile temperature, pH, EC were the main physicochemical factors affecting the microbial community. WSC and NO3--N have significant correlation with C, N, P, S functional genes. The research provides a theoretical basis for clarifying the metabolic characteristics of microbial communities during composting and for the application of biochar and biogas residues in composting.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Keqi Zhao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Hua Peng
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Yaoxiong Lu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hui Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
36
|
Sun X, Huang G, Huang Y, Fang C, He X, Zheng Y. Large Semi-Membrane Covered Composting System Improves the Spatial Homogeneity and Efficiency of Fermentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15503. [PMID: 36497578 PMCID: PMC9737267 DOI: 10.3390/ijerph192315503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Homogenous spatial distribution of fermentation characteristics, local anaerobic conditions, and large amounts of greenhouse gas (GHGs) emissions are common problems in large-scale aerobic composting systems. The aim of this study was to examine the effects of a semi-membrane covering on the spatial homogeneity and efficiency of fermentation in aerobic composting systems. In the covered group, the pile was covered with a semi-membrane, while in the non-covered group (control group), the pile was uncovered. The covered group entered the high-temperature period earlier and the spatial gradient difference in the group was smaller compared with the non-covered group. The moisture content loss ratio (5.91%) in the covered group was slower than that in the non-covered group (10.78%), and the covered group had a more homogeneous spatial distribution of water. The degradation rate of organic matter in the non-covered group (11.39%) was faster than that in the covered group (10.21%). The final germination index in the covered group (85.82%) was higher than that of the non-covered group (82.79%) and the spatial gradient difference in the covered group was smaller. Compared with the non-covered group, the oxygen consumption rate in the covered group was higher. The GHG emissions (by 30.36%) and power consumption in the covered group were reduced more significantly. The spatial microbial diversity of the non-covered group was greater compared with the covered group. This work shows that aerobic compost covered with a semi-membrane can improve the space homogeneity and efficiency of fermentation.
Collapse
Affiliation(s)
| | | | | | | | - Xueqin He
- Correspondence: (X.H.); (Y.Z.); Tel./Fax: +86-10-6273-6778 (X.H.); +86-10-6273-6385 (Y.Z.)
| | - Yongjun Zheng
- Correspondence: (X.H.); (Y.Z.); Tel./Fax: +86-10-6273-6778 (X.H.); +86-10-6273-6385 (Y.Z.)
| |
Collapse
|
37
|
Huan C, Yan Z, Sun J, Liu Y, Zeng Y, Qin W, Cheng Y, Tian X, Tan Z, Lyu Q. Nitrogen removal characteristics of efficient heterotrophic nitrification-aerobic denitrification bacterium and application in biological deodorization. BIORESOURCE TECHNOLOGY 2022; 363:128007. [PMID: 36155812 DOI: 10.1016/j.biortech.2022.128007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
A heterotrophic nitrifying aerobic denitrifying (HN-AD) strain HY-1 with excellent capacity, identified as Paracoccus denitrificans, was isolated from activated sludge. HY-1 was capable of removing NH4+, NO2-, and NO3- with the corresponding rate of 17.33 mg-N L-1 h-1, 21.83 mg-N L-1 h-1, and 32.37 mg-N L-1 h-1, as well as the mixture of multiple nitrogen sources. Meanwhile, HY-1 could execute denitrification function under anaerobic conditions with a rate of 14.56 mg-N L-1 h-1. HY-1 required less energy investment, which exhibited average denitrification rate of 5.19 mg-N L-1 h-1 at carbon-nitrogen ratio was 1. After nitrification-denitrification metabolic pathway analysis, HY-1 was applied in a biological trickling filter reactor for compost deodorization. The results showed that adding of HY-1 greatly reduced the ionic concentration of NH4+ and NO3- in the circulating liquid without impairing the deodorization effect (NH3 removal rate>98.07%). These findings extend the field of application of HN-AD and provide new insights for biological deodorization.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiang Sun
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Qin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
38
|
Gao X, Yang F, Cheng J, Xu Z, Zang B, Li G, Xie X, Luo W. Emission of volatile sulphur compounds during swine manure composting: Source identification, odour mitigation and assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:129-137. [PMID: 36088860 DOI: 10.1016/j.wasman.2022.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to identify the sources of volatile sulphur compounds (VSCs) and evaluate their mitigation by ferric oxide (Fe2O3) during swine manure composting. Four chemicals, including l-cysteine, l-methionine, sodium sulphite, and sodium sulphate, were further added to simulate organic and inorganic sulphur-containing substances in swine manure to track VSC sources during composting. Results show that sulphur simulants induced the emission of six common VSCs, including methyl sulphide (Me2S), dimethyl sulphide (Me2SS), carbonyl sulphide (COS), carbon disulphide (CS2), methyl mercaptan (MeSH), and ethyl mercaptan (EtSH), during swine manure composting. Of them, COS, CS2, MeSH and Me2SS were predominantly contributed by the biodegradation of methionine and cysteine, while Me2S and EtSH were dominated by the reduction of sulphite and sulphate. Further Fe2O3 addition at 1.5 % of total wet weight of composting materials immobilized elemental sulphur and inhibited sulphate reduction to reduce the emission of VSCs by 46.7-80.9 %. Furthermore, odour assessment indicated that adding Fe2O3 into composting piles significantly reduced the odour intensity level to below 4, the odour value of VSCs by 47.1-81.3 %, and thus the non-carcinogenic risk by 68.4 %.
Collapse
Affiliation(s)
- Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feiyu Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Bing Zang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China
| | - Xiaomin Xie
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China.
| |
Collapse
|
39
|
Fang C, Su Y, He X, Han L, Qu H, Zhou L, Huang G. Membrane-covered composting significantly decreases methane emissions and microbial pathogens: Insight into the succession of bacterial and fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157343. [PMID: 35842148 DOI: 10.1016/j.scitotenv.2022.157343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effects of semipermeable membrane-covered on methane emissions and potential pathogens during industrial-scale composting of the solid fraction of dairy manure were investigated. The results showed that the oxygen concentration in the membrane-covered group (CT) was maintained above 10 %, and the cumulative methane emission in CT was >99 % lower than that in the control group (CK). Microbial analysis showed that the bacterial genus Thermus and the fungal genus Mycothermus were dominant in CT, and the richness and diversity of the bacterial community were greater than those of the fungal community. At the end of the composting, the relative abundance of potential bacterial pathogens in CT was 32.59 % lower than that in CK, and the relative abundance of potential fungal pathogens in each group was <2 %. Structural equation models revealed that oxygen concentration was a major factor influencing the bacterial diversity in CT, and the increase of oxygen concentration could limit methane emissions by inhibiting the growth of anaerobic bacteria. Therefore, membrane-covered composting could effectively improve compost safety and reduce methane emissions by regulating microbial community structure.
Collapse
Affiliation(s)
- Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar, Xinjiang 843300, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
40
|
Ma C, Chen X, Zheng G, Liu N, Zhao J, Zhang H. Exploring the influence mechanisms of polystyrene-microplastics on sewage sludge composting. BIORESOURCE TECHNOLOGY 2022; 362:127798. [PMID: 35995344 DOI: 10.1016/j.biortech.2022.127798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
To explore the influence mechanisms of polystyrene-microplastics (PS-MPs) on sewage sludge composting and put forward relevant composting adjustment strategies, a 30-day sewage sludge (SS) composting experiment was conducted by adding 0%, 0.5%, and 1% (w/w) PS-MPs. The addition of PS-MPs reduced compost temperature, microbial biomass carbon (MBC), and the degradation of volatile solids (2.6%-4.8%), and inhibited the activities of key enzymes (β-glucosidase and alkaline phosphatase) but increased urease activity in the thermophilic phase. Moreover, PS-MPs altered the relative abundance of dominant bacteria and changed the relevance of main enzymes and bacterial communities. Moreover, high levels of PS-MPs inhibited the contribution of dominant bacterial to alkaline phosphatase and β-glucosidase. Redundancy analysis revealed that PS-MPs affected the composting process mainly through reduced MBC at the mesophilic phase and temperature at the thermophilic phase. Thus, regulating MBC and temperature in specific phases could help overcome the adverse effects of PS-MPs on composting.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Xiaoyu Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Jihong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| |
Collapse
|
41
|
Fang C, Yuan X, Liao K, Qu H, Han L, He X, Huang G. Micro-aerobic conditions based on membrane-covered improves the quality of compost products: Insights into fungal community evolution and dissolved organic matter characteristics. BIORESOURCE TECHNOLOGY 2022; 362:127849. [PMID: 36031127 DOI: 10.1016/j.biortech.2022.127849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of micro-aerobic conditions on fungal community succession and dissolved organic matter transformation during dairy manure membrane-covered composting. The results showed that lignocellulose degradation in the micro-aerobic composting group (AC: oxygen concentration < 5 %) was slower than that in the static composting group (SC: oxygen concentration < 1 %), but the dissolved organic carbon in AC was greatly increased. The degree of aromatic polymerization was higher in AC than in SC. But the carboxyl carbon and alcohol/ether biodegradations were faster in SC than in AC, which promoted carbon dioxide and methane emissions, respectively. The relative abundances of pathogenic and dung saprotrophic fungi in AC were 44.6 % and 10.59 % lower than those in SC on day 30, respectively. Moreover, the relative abundance of soil saprotrophs increased by 5.18 % after micro-aerobic composting. Therefore, micro-aerobic conditions improved the quality of compost products by influencing fungal community evolution and dissolved organic matter transformation.
Collapse
Affiliation(s)
- Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangru Yuan
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Keke Liao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
42
|
Lin X, Wang N, Li F, Yan B, Pan J, Jiang S, Peng H, Chen A, Wu G, Zhang J, Zhang L, Huang H, Luo L. Evaluation of the synergistic effects of biochar and biogas residue on CO 2 and CH 4 emission, functional genes, and enzyme activity during straw composting. BIORESOURCE TECHNOLOGY 2022; 360:127608. [PMID: 35840030 DOI: 10.1016/j.biortech.2022.127608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This study examined the effects of biochar, biogas residue, and their combined amendments on CO2 and CH4 emission, enzyme activity, and related functional genes during rice straw composting. Results showed that the biogas residue increased CO2 and CH4 emissions by 13.07 % and 74.65 %, while biochar had more obvious inhibition. Biogas residue addition enhanced functional gene abundance more than biochar. Biogas residue raised the methanogens mcrA gene by 2.5 times. Biochar improved the Acetyl-CoA synthase and β-glucosidase activities related to carbon fixation and decreased coenzyme activities related to methanogens. Biochar and biogas residue combined amendments enhanced the acsB gene abundance for CO2 assimilation process and decreased methyl-coenzyme M reductase α subunit activity. Pearson correlation analysis indicated that organic matter was the significant variable affecting CO2 and CH4 emissions (P < 0.01). These results indicated biochar played significant roles in carbon loss and greenhouse emissions caused by biogas residue incorporation during composting.
Collapse
Affiliation(s)
- Xu Lin
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, 410128, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China.
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| |
Collapse
|
43
|
Zheng G, Cheng Y, Zhu Y, Yang J, Wang L, Chen T. Correlation of microbial dynamics to odor production and emission in full-scale sewage sludge composting. BIORESOURCE TECHNOLOGY 2022; 360:127597. [PMID: 35835422 DOI: 10.1016/j.biortech.2022.127597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Odor is inevitably produced during sewage sludge composting, and the subsequent pollution hinders the further development of composting technologies. Third-generation high-throughput sequencing was used to analyze microbial community succession, and the correlations between odor and microbial communities were evaluated. Hydrogen sulfide (47.5-87.9 %) and ammonia (9.4-49.9 %) contributed majorly to odor emissions, accounting for 93.7-98.5 % of the emissions. Volatile sulfur compounds were mainly produced in the mesophilic and pre-thermophilic phases (43.0-83.4 %), whereas ammonia was mainly produced in the thermophilic phase (52.1-59.4 %). Microorganisms dominant in the mesophilic and thermophilic phases correlated positively with odor production in the following order: Rhodocyclaceae > Clostridiaceae_1 > Hyphomicrobiaceae > Acidimicrobiales > Family_XI, whereas those dominant in the cooling phase showed negative correlations with odor production in the following order: Bacillus > Sphingobacteriaceae > Pseudomonadaceae > DSSF69 > Chitinophagaceae. The back mixing of mature compost is expected to serve as an economical measure for controlling odor during sewage sludge composting.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Cheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Chen Y, Qin H, Lu Y, Liu H, Zhang J. A novel method to measure air-immobile regions of the composting pile by inverse calculation combined with gas tracer test. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:131-140. [PMID: 35830767 DOI: 10.1016/j.wasman.2022.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Air-immobile regions in composting piles obstruct O2 mass transport and exacerbate the formation and emission of harmful off-gases. However, effective methods for measuring the parameters of these air-immobile regions are lacking. With quartz sand piles, this study first adjusted the circumstances of a gas tracer test (gas tracer, its injection volume, and chamber type) using the two-region model (TRM). The effects of β (proportional coefficient of gas in the air-mobile region) and ω (mass exchange coefficient) on the breakthrough curves (BTCs) of the gases were then explored. Finally, an inverse calculation method was used to measure the feature parameters of air-immobile regions in two composting piles (temperature-increasing and thermophilic phases) and estimate the O2 concentrations in different composting piles (50, 100, 200 cm whole height; layers of 50, 100, 200 cm height in a 200-cm high pile). The results showed that the optimal conditions were achieved when 100 mL helium (He) as the gas tracer and a cylinder with a height/diameter ratio of 3 as the chamber were used. With the simulating composting piles, increasing β or ω slowed breakthrough and decreased peak concentration in BTCs of a gas tracer. Tracer-inverse calculation protocol can be used to efficiently estimate the volume ratios of air-immobile regions (φ) and first-order mass transfer coefficient (α), with the values of 39%/46% and 0.001/0.006 min-1 in the composting piles during temperature-increasing /thermophilic phase. The TRM also predicted the O2 concentration in the off-gas or air-mobile/immobile regions of the temperature-increasing-phase composting piles.
Collapse
Affiliation(s)
- Yixiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Haiguang Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yulan Lu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
45
|
Wang N, Awasthi MK, Pan J, Jiang S, Wan F, Lin X, Yan B, Zhang J, Zhang L, Huang H, Li H. Effects of biochar and biogas residue amendments on N 2O emission, enzyme activities and functional genes related with nitrification and denitrification during rice straw composting. BIORESOURCE TECHNOLOGY 2022; 357:127359. [PMID: 35618192 DOI: 10.1016/j.biortech.2022.127359] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study was carried out to determine the response characteristics of N2O emission, enzyme activities, and functional gene abundances involved in nitrification/denitirification process with biochar and biogas residue amendments during rice straw composting. The results revealed that N2O release mainly occurred during the second fermentation phase. Biogas residue amendment promoted N2O emission, while biochar addition decreased its emission by 33.6%. The nirK gene was abundant through composting process. Biogas residues increased the abundance of denitrification genes, resulting in further release of N2O. Biochar enhanced nosZ gene abundance and accelerated the reduction of N2O. Nitrate reductase (NR), nitrite reductase (NiR), N2O reductase (N2OR), and ammonia monooxygenase (AMO) activities were greatly stimulated by biochar or biogas residue rather than their combined addition. Pearson regression analysis indicated that N2O emission negatively correlated with ammonium and positively correlated with nosZ, nirK, 18S rDNA, total nitrogen, and nitrate (P < 0.05).
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xu Lin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| |
Collapse
|
46
|
Wang N, Huang D, Bai X, Lin Y, Miao Q, Shao M, Xu Q. Mechanism of digestate-derived biochar on odorous gas emissions and humification in composting of digestate from food waste. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128878. [PMID: 35427971 DOI: 10.1016/j.jhazmat.2022.128878] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Emissions of odorous gases and prolonged composting duration are the key concerns in the composting of digestate from food waste (DFW). In this study, different amounts of biochar derived from DFW (BC-DFW) were introduced in the composting process of DFW to decrease the emissions of ammonia (NH3) and volatile sulfur compounds (VSCs) and composting duration. The addition of BC-DFW increased the temperature and germination index during DFW composting. The group with 25% BC-DFW exhibited a 30% smaller composting duration. Significant amounts of NH3 and VSCs emissions were observed in the initial phase of DFW composting. Dimethyl disulfide (DMDS) was a prominent contributor to the odor associated with VSCs. The addition of BC-DFW facilitated the adsorption of NH3 and VSCs, and the corresponding contents decreased by 5-21% and 15-20%, respectively. Moreover,the BC-DFW accelerated the transformation of ammonium-nitrogen (NH4+-N) to nitrate-nitrogen (NO3--N), thereby alleviating the NH3 volatilization. The addition of 25% BC-DFW minimized the NH3 emission and enhanced the generation of humic-acid-like matter, thereby promoting humification. Therefore, the addition of 25% BC-DFW was optimal for promoting the degradation of organic matter and humification and odor emission reduction (e.g., NH3, DMDS).
Collapse
Affiliation(s)
- Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China; School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Yeqi Lin
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qianming Miao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
47
|
Xu M, Sun H, Yang M, Xie D, Sun X, Meng J, Wang Q, Wu C. Biodrying of biogas residue through a thermophilic bacterial agent inoculation: Insights into dewatering contribution and microbial mechanism. BIORESOURCE TECHNOLOGY 2022; 355:127256. [PMID: 35550925 DOI: 10.1016/j.biortech.2022.127256] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Biogas residue (BR) is difficult to transport and compost due to its high moisture content. The purpose of this study was to elucidate the dewatering and microbial mechanisms underlying the inoculation of a thermophilic bacterial agent (TBA) onto BR with a high moisture content (i.e., 90.4%). TBA accounted for 78.7% of the water loss rate in BR, dramatically higher than the effects of aeration, external heat, or indigenous microorganisms (i.e., 1.8%, 0.1%, and 19.4%, respectively). Furthermore, TBA inoculation resulted in a stable product [with a low moisture content (9.4%) and a high seed germination index (107.3%)]. Finally, TBA increased microbial diversity and the abundance of functional bacteria (Proteobacteria and Bacteroidota), which might be beneficial for refractory organic compound decomposition and plant growth. Thus, biodrying BR via inoculation with a TBA is recommended economically.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Min Yang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Dong Xie
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jie Meng
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
48
|
Effects of Manure Removal Frequencies and Deodorants on Ammonia and GHG Concentrations in Livestock House. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to mitigate the concentration of NH3 and greenhouse gases (GHGs: CO2, N2O, CH4) in livestock houses, two experiments, one determining the ideal manure removal frequency by cleaning the feces from a livestock house once, twice, three, and four times a day, and one in which microbial deodorant and VenaZn deodorant were sprayed, were conducted in a rabbit breeding house. The NH3, CO2, N2O, and CH4 concentrations were monitored continuously with an Innova 1512 photoacoustic gas monitor during the experiments. The results were as follows: the manure removal frequency had a significant impact on the average concentrations of NH3, CO2, and CH4 in the rabbit house. Cleaning the feces in the rabbit breeding house two to three times a day significantly reduced the NH3 concentration, and, on the contrary, cleaning the feces four times a day increased the NH3 concentration in rabbit house; increasing the manure removal frequency significantly reduced the concentrations of CO2 and CH4 in the rabbit house. Considering the average concentrations of NH3, CO2, N2O, and CH4 in the rabbit house and economic cost, it was better to remove feces twice a day. The average NH3 and CO2 concentration declined significantly within 3 days in the summer and winter; the N2O concentration declined within 3 days in the summer but did not decline in the winter; and there was no effect on the CH4 concentration in the summer and in the winter after spraying the rabbit house with microbial deodorant. Therefore, it was better to spray microbial deodorant twice a week on Monday and Thursday to reduce the NH3, CO2, and N2O concentrations in rabbit houses. The NH3, CO2, N2O, and CH4 concentrations first showed a decreasing trend and then an increasing trend over 5 days in the summer and 7 days in the winter after VenaZn deodorant was sprayed in the rabbit house, and the NH3, CO2, N2O, and CH4 concentrations on day 3 and day 4 were significantly lower than they were on the other days.
Collapse
|
49
|
Inhibitory Effects of the Addition of KNO 3 on Volatile Sulfur Compound Emissions during Sewage Sludge Composting. Bioengineering (Basel) 2022; 9:bioengineering9060258. [PMID: 35735501 PMCID: PMC9220069 DOI: 10.3390/bioengineering9060258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
Odor released from the sewage sludge composting process often has a negative impact on the sewage sludge treatment facility and becomes a hindrance to promoting compost technology. This study investigated the effect of adding KNO3 on the emissions of volatile sulfur compounds, such as hydrogen sulfide (H2S), dimethyl sulfide (DMS), and carbon disulfide (CS2), during sewage sludge composting and on the physicochemical properties of compost products, such as arylsulfatase activity, available sulfur, total sulfur, moisture content, and germination index. The results showed that the addition of KNO3 could inhibit the emissions of volatile sulfur compounds during composting. KNO3 can also increase the heating rate and peak temperature of the compost pile and reduce the available sulfur loss. The addition of 4% and 8% KNO3 had the best effect on H2S emissions, and it reduced the emissions of H2S during composting by 19.5% and 20.0%, respectively. The addition of 4% KNO3 had the best effect on DMS and CS2 emissions, and it reduced the emissions of DMS and CS2 by 75.8% and 63.0%, respectively. Furthermore, adding 4% KNO3 had the best effect from the perspective of improving the germination index of the compost.
Collapse
|
50
|
Xiong J, Su Y, He X, Han L, Guo J, Qiao W, Huang G. Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: Metabolic pathways, functional enzymes, and functional genes. BIORESOURCE TECHNOLOGY 2022; 354:127205. [PMID: 35462015 DOI: 10.1016/j.biortech.2022.127205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This study investigated and assessed the effect of the functional-membrane covering technique (FMCT) on nitrogen succession during aerobic composting. By comparative experiments involving high-throughput sequencing and qPCR, nitrogen metabolism (including the ko00910 pathway and functional enzyme and gene abundances) was analyzed, and the nitrogen succession mechanism was identified. The FMCT created a micro-positive pressure, improved the aerobic conditions, and increased the oxygen utilization rate and temperature. This strongly affected the nitrogen metabolism pathway and down-regulated the nitrifying and denitrifying bacteria abundances. The FMCT up-regulated the relative abundance of glutamate dehydrogenase and down-regulated the absolute abundances of AOB and nxrA. This and the high temperature increased NH3 emissions by 13.78%-73.37%. The FMCT down-regulated the abundances of denitrifying gene groups (nirS + nirK)/nosZ and nitric oxide reductase associated with N2O emissions and decreased N2O emissions by 16.44%-41.15%. The results improve the understanding of the mechanism involved in nitrogen succession using the FMCT.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Wei Qiao
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|