1
|
Bhardwaj A, Bansal M, Garima, Wilson K, Gupta S, Dhanawat M. Lignocellulose biosorbents: Unlocking the potential for sustainable environmental cleanup. Int J Biol Macromol 2025; 294:139497. [PMID: 39756760 DOI: 10.1016/j.ijbiomac.2025.139497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health. To counteract hazardous chemicals in wastewater and promote ecological sustainability, there has been a significant deal of interest in finding environmentally benign and renewable materials. Because of its constituents' distinct physical and chemical qualities, lignocellulose stands out among the many possibilities as the most appealing possibility for water cleanup. It is an abundant, biocompatible, and renewable substance. Sustainable social development requires wastewater cleanup using renewable lignocellulosic resources. However, the generation of lignocellulose-based materials is restricted by the byproducts that are produced and the complicated, expensive, and environmentally harmful synthetic process. It has been determined that biosorption on lignocellulosic wastes and by-products is a suitable substitute for the current technologies used to remove hazardous metal ions and dye from wastewater streams. Lignocellulose is highly effective at adsorbing heavy metals like arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), and lead (Pb). Beyond heavy metals, it can also capture various organic pollutants, that includes dyes (like methylene blue, methyl orange and malachite green), and pharmaceutical residues, and pesticides. Additionally, lignocellulosic materials are valuable for adsorbing oil and hydrocarbons from water, playing a crucial role in addressing environmental concerns related to oil spills. The pollutant removal efficiency of lignocellulose can be greatly improved through a range of physical, chemical, and biological modification methods, including thermal and ultrasound treatments, acid and alkali processing, ammoniation, amination, grafting, crosslinking, enzymatic modifications, and microbial colonization. In this article, we examine the most recent developments in lignocellulose-based adsorbent research, with an emphasis on lignocellulosic composition, adsorbent application, and material modification. A methodical and thorough presentation of the preparation and modification techniques for lignin, cellulose, and hemicellulose, as well as their utilization for treating various types of contaminated water, is provided. Additionally, a great resource for comprehending the specified adsorption mechanism and recycling of adsorbents is the thorough explanation of the mechanism of adsorption, the adsorbent renewal process, and the adsorption model.
Collapse
Affiliation(s)
- Anjali Bhardwaj
- HRIT University, 8 Km Stone Delhi Meerut Road NH-58 Morta, Ghaziabad, Uttar Pradesh 201003, India
| | - Mukesh Bansal
- HRIT University, 8 Km Stone Delhi Meerut Road NH-58 Morta, Ghaziabad, Uttar Pradesh 201003, India
| | - Garima
- 4Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Kashish Wilson
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Sumeet Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India.
| |
Collapse
|
2
|
Saha TR, Kang NK, Lee EY. Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast. J Biol Eng 2024; 18:73. [PMID: 39731138 DOI: 10.1186/s13036-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The biological production of lipids presents a sustainable method for generating fuels and chemicals. Recognized as safe and enhanced by advanced synthetic biology and metabolic engineering tools, yeasts are becoming versatile hosts for industrial applications. However, lipids accumulate predominantly as triacylglycerides in yeasts, which are suboptimal for industrial uses. Thus, there have been efforts to directly produce free fatty acids and their derivatives in yeast, such as fatty alcohols, fatty aldehydes, and fatty acid ethyl esters. This review offers a comprehensive overview of yeast metabolic engineering strategies to produce free fatty acids and their derivatives. This study also explores current challenges and future perspectives for sustainable industrial lipid production, particularly focusing on engineering strategies that enable yeast to utilize alternative carbon sources such as CO2, methanol, and acetate, moving beyond traditional sugars. This review will guide further advancements in employing yeasts for environmentally friendly and economically viable lipid production technologies.
Collapse
Affiliation(s)
- Tisa Rani Saha
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin- si, Gyeonggi-do, 17104, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
3
|
Han J, Hamza F, Guo J, Sayed M, Pyo SH, Xu Y. Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products. Biotechnol Adv 2024; 79:108509. [PMID: 39732443 DOI: 10.1016/j.biotechadv.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.
Collapse
Affiliation(s)
- Jian Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Faqiha Hamza
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Jianming Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
4
|
Zhai Q, Li J, Miao K, Song Y, Yang S, Zhao S, Lu Y, Hu J. Atmospheric one-pot fractionation and catalytic conversion of lignocellulose in multifunctional deep eutectic solvent system. Int J Biol Macromol 2024; 290:138736. [PMID: 39675620 DOI: 10.1016/j.ijbiomac.2024.138736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
This study developed a "one-pot" three-stage process using a "multifunctional" deep eutectic solvent (DES) containing choline chloride (ChCl), ethylene glycol (EG), and protonic acids for the production of phenolic monomers, furfural, and glucose. In the first stage, the DES effectively dissolved over 70 % of lignin and 78 % of hemicellulose while preserving aryl ether bonds in lignin due to the grafting of EG onto the aryl ether bonds. Concurrently, the retention of a near-quantitative amount of cellulose led to a glucose yield of >80 % after enzymatic saccharification. In the next stage, the DES enabled the catalytic depolymerization of lignin using a Ru/C catalyst at mild temperatures and atmospheric pressure, eliminating the need for an external hydrogen source and yielding G/S-propyl and G/S-propenyl monomers at 13.8 %. Additionally, the ratio of ChCl to EG in the DES could regulate the composition and selectivity of the phenolic monomers. Following this, the hemicellulose sugars dissolved in the DES underwent catalytic hydrolysis in a DES/water system, achieving a furfural yield of 36.4 % under optimized conditions. The results of this study offer important insights into the valorization of lignocellulose in "one-pot" under mild conditions, thereby advancing the field of biorefining.
Collapse
Affiliation(s)
- Qiaolong Zhai
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jie Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Kangze Miao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunhao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaoqi Yang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuheng Zhao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanju Lu
- College of Chemical Engineering, Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, International Innovation Highland of Forest Products Chemistry and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Bai Y, Wang Q, Wang J, Zhang S, Wei C, Cao L, Zhang S. In Situ, Nitrogen-Doped Porous Carbon Derived from Mixed Biomass as Ultra-High-Performance Supercapacitor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1368. [PMID: 39195406 DOI: 10.3390/nano14161368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
How to address the destruction of the porous structure caused by elemental doping in biochar derived from biomass is still challenging. In this work, the in-situ nitrogen-doped porous carbons (ABPCs) were synthesized for supercapacitor electrode applications through pre-carbonization and activation processes using nitrogen-rich pigskin and broccoli. Detailed characterization of ABPCs revealed that the best simple ABPC-4 exhibited a super high specific surface area (3030.2-3147.0 m2 g-1) and plentiful nitrogen (1.35-2.38 wt%) and oxygen content (10.08-15.35 wt%), which provided more active sites and improved the conductivity and electrochemical activity of the material. Remarkably, ABPC-4 showed an outstanding specific capacitance of 473.03 F g-1 at 1 A g-1. After 10,000 cycles, its capacitance retention decreased by only 4.92% at a current density of 10 A g-1 in 6 M KOH. The assembled symmetric supercapacitor ABPC-4//ABPC-4 achieved a power density of 161.85 W kg-1 at the maximum energy density of 17.51 Wh kg-1 and maintained an energy density of 6.71 Wh kg-1 when the power density increased to 3221.13 W kg-1. This study provides a mixed doping approach to achieve multi-element doping, offering a promising way to apply supercapacitors using mixed biomass.
Collapse
Affiliation(s)
- Yuqiao Bai
- Miami College, Henan University, Kaifeng 475004, China
| | - Qizhao Wang
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Yerolla R, P S, Besta CS. Advanced temperature control in ethanol fermentation using a PSO-PID controller with split-range control strategy. Prep Biochem Biotechnol 2024:1-13. [PMID: 39096305 DOI: 10.1080/10826068.2024.2381761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Global energy demand is experiencing a notable surge due to growing energy security. Renewable energy sources, like ethanol, are becoming more viable. In the present study, the application of a PSO-PID (Particle Swarm Optimization - Proportional Integral Derivative) controller with a split-range control strategy was suggested for the regulation of temperature within the fermentation system. To optimize performance, a POS-PID controller with a split-range arrangement utilizing two control valves for hot and cold utilities was constructed. The study began by examining the open-loop dynamic response of the system to inlet temperature and concentration disturbances during ethanol production fermentation. Subsequently, a transfer function model was developed through linearization at the steady-state operating point. The split-range controller structure, implemented by optimizing the PSO-PID controller parameters using PSO, effectively demonstrated temperature control in simulations of a nonlinear model. In this investigation, the ethanol fermentation system was modeled as a CSTR using a modified Monod equation for microbial growth kinetics. Various dynamic behavioral disturbances were explored and verified in the model with plant data in this study. The simulation model results were validated through plant data. The proposed method showed superior closed-loop performance with respect to errors, with the actuators proving to be effective than other reported methods for temperature control.
Collapse
Affiliation(s)
- Raju Yerolla
- Department of Chemical Engineering, National Institute of Technology, Calicut, India
| | - Suhailam P
- Department of Chemical Engineering, National Institute of Technology, Calicut, India
| | - Chandra Shekar Besta
- Department of Chemical Engineering, National Institute of Technology, Calicut, India
| |
Collapse
|
7
|
Bejenaru LE, Radu A, Segneanu AE, Biţă A, Manda CV, Mogoşanu GD, Bejenaru C. Innovative Strategies for Upcycling Agricultural Residues and Their Various Pharmaceutical Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2133. [PMID: 39124251 PMCID: PMC11314045 DOI: 10.3390/plants13152133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This review investigates innovative strategies for upcycling agricultural residues into valuable pharmaceutical compounds. The improper disposal of agricultural residues contributes to significant environmental issues, including increased greenhouse gas emissions and ecosystem degradation. Upcycling offers a sustainable solution, transforming these residues into high-value bioproducts (antioxidants, antitumor agents, antidiabetic compounds, anti-inflammatory agents, and antiviral drugs). Nanotechnology and microbial biotechnology have a crucial role in enhancing bioavailability and targeted delivery of bioactive compounds. Advanced techniques like enzymatic hydrolysis, green solvents, microwave processing, pyrolysis, ultrasonic processing, acid and alkaline hydrolysis, ozonolysis, and organosolv processes are explored for their effectiveness in breaking down agricultural waste and extracting valuable compounds. Despite the promising potential, challenges such as variability in residue composition, scalability, and high costs persist. The review emphasizes the need for future research on cost-effective extraction techniques and robust regulatory frameworks to ensure the safety, efficacy, and quality of bioproducts. The upcycling of agricultural residues represents a viable path towards sustainable waste management and production of pharmaceutical compounds, contributing to environmental conservation and public health improvements. This review provides an analysis of the current literature and identifies knowledge gaps, offering recommendations for future studies to optimize the use of agricultural residues in the drug industry.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Costel-Valentin Manda
- Department of Analytical and Instrumental Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (A.R.); (C.B.)
| |
Collapse
|
8
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
9
|
Leme VFC, Lopez K, Costa T, Conerty B, B Leonelli L, Zhang Y, Davidson PC. Hydrothermal liquefaction aqueous phase mycoremediation to increase inorganic nitrogen availability. Heliyon 2024; 10:e31992. [PMID: 38882322 PMCID: PMC11176836 DOI: 10.1016/j.heliyon.2024.e31992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Hydrothermal liquefaction aqueous phase (HTL-AP) is a waste product from a thermochemical process where wet biomass is converted into biocrude oil. This nutrient-rich wastewater may be repurposed to benefit society by assisting crop growth after adequate treatment to increase inorganic nitrogen, especially NO3 -. This study aims to increase HTL-AP inorganic nitrogen, specifically NH3/NH4 + and NO3 -, through fungal remediation for further use in hydroponic systems. Trametes versicolor, a white-rot fungus known for degrading a range of organic pollutants, was used to treat a diluted (5 %) HTL-AP for 9 days. No fungal growth was observed, but T. versicolor activity was suspected by laccase activity throughout cultivation time. NO3 --N and NH3/NH4 +-N increased by 17 and 8 times after three days of fungal treatment, which was chosen as the appropriate time for HTL-AP fungal treatment as it resulted in the highest concentration of NO3 --N. The addition of nitrifying bacteria to the fungal treatment resulted in a twofold increase in NO3 --N concentration compared to the fungal treatment alone, indicating an enhancement in treatment efficacy. COD decreased by 51.33 % after 24 h, which may be related to the fungus' capacity to reduce the concentration of organics in the wastewater; nonetheless, COD increased in the following days, which may be related to the release of fungal byproducts. T. versicolor shows promise as a potential candidate for increasing inorganic nitrogen in HTL-AP. However, future studies should primarily address HTL-AP toxicity, reducing NH3/NH4 +-N while increasing NO3 --N, and hydroponics crop production after fungal treatment.
Collapse
Affiliation(s)
- Vitoria F C Leme
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karla Lopez
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tiago Costa
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Beth Conerty
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Laurie B Leonelli
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yuanhui Zhang
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul C Davidson
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
10
|
Xu F, Sun D, Wang Z, Li M, Yin X, Li H, Xu L, Zhao J, Bao X. Highly Efficient Production of Cellulosic Ethanol from Poplar Using an Optimal C6/C5 Co-Fermentation Strain of Saccharomyces cerevisiae. Microorganisms 2024; 12:1174. [PMID: 38930556 PMCID: PMC11205669 DOI: 10.3390/microorganisms12061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study demonstrates the effective conversion of poplar wood waste into fuel-grade ethanol. By employing a two-step pretreatment using sodium chlorite (SC)-dilute sulfuric acid (DSA), the raw material achieved a sugar conversion rate exceeding 85% of the theoretical value. Under optimized conditions, brewing yeast co-utilizing C6/C5 enabled a yield of 35 g/L ethanol from 10% solid loading delignified poplar hydrolysate. We increased the solid loading to enhance the final ethanol concentration and optimized both the hydrolysis and fermentation stages. With 20% solid loading delignified poplar hydrolysate, the final ethanol concentration reached 60 g/L, a 71.4% increase from the 10% solid loading. Our work incorporates the pretreatment, enzymatic hydrolysis, and fermentation stages to establish a simple, crude poplar waste fuel ethanol process, expanding the range of feedstocks for second-generation fuel ethanol production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianzhi Zhao
- Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | | |
Collapse
|
11
|
Adnane I, Taoumi H, Elouahabi K, Lahrech K, Oulmekki A. Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon 2024; 10:e26440. [PMID: 38439870 PMCID: PMC10909651 DOI: 10.1016/j.heliyon.2024.e26440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.
Collapse
Affiliation(s)
- Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Karim Elouahabi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco
| | - Abdellah Oulmekki
- Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
12
|
Navina BK, Velmurugan NK, Senthil Kumar P, Rangasamy G, Palanivelu J, Thamarai P, Vickram AS, Saravanan A, Shakoor A. Fungal bioremediation approaches for the removal of toxic pollutants: Mechanistic understanding for biorefinery applications. CHEMOSPHERE 2024; 350:141123. [PMID: 38185426 DOI: 10.1016/j.chemosphere.2024.141123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.
Collapse
Affiliation(s)
- Bala Krishnan Navina
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - Nandha Kumar Velmurugan
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, West Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
13
|
Bizualem YD, Nurie AG. A review on recent biodiesel intensification process through cavitation and microwave reactors: Yield, energy, and economic analysis. Heliyon 2024; 10:e24643. [PMID: 38312610 PMCID: PMC10834826 DOI: 10.1016/j.heliyon.2024.e24643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The use of biodiesel as a reliable and green energy source has grown over the past few years. Biodiesel is sustainable and biodegradable because it is only made from vegetable contents and waste cooking oil. Although biodiesel has many advantages over conventional fuels, there are still a lot of technological issues that need to be addressed during the production process. The yield of biodiesel produced using conventional methods is poor and the process is time-consuming. Process enhancements like cavitation and microwave have thus been developed to address this problem. Starting with a comparison to the conventional biodiesel process, this paper has reviewed the most recent developments in the increase of mixture and transfer of heat in these two reactors. This paper examined biodiesel improvement using microwave and cavitation reactors, including biodiesel yield, by meticulously reviewing and analyzing previous works. The production of biodiesel from various raw materials using a range of catalysts, energy requirements, as well as operating factors, activation energy, and constraints also have been discussed. Additionally, the economic analysis discusses the feasibility and cost-effectiveness of implementing these technologies on a commercial scale. Overall, this review provides valuable insights into the intensification of biodiesel production using cavitation and microwave reactors while considering both the technical and economic aspects.
Collapse
Affiliation(s)
- Yonas Desta Bizualem
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| | - Amare Gashu Nurie
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, P.O. Box: 208, Kombolcha, Ethiopia
| |
Collapse
|
14
|
Lozano-Calvo S, Loaiza JM, García JC, Tapias R, López F. Kinetic and hydrogen production analysis in the sequential valorization of a Populus clone by cold alkaline extraction and pyrolysis. Sci Rep 2024; 14:1509. [PMID: 38233531 PMCID: PMC10794177 DOI: 10.1038/s41598-024-52052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
This work employed a two-step biorefining process, consisting of a hemicellulose-rich liquor production through ultrasound-assisted cold alkaline extraction (CAE), followed by thermochemical treatment of the resultant solid phase. The post-CAE solid phase's pyrolytic potential was assessed by application of thermogravimetric analysis (TGA) and Friedman's isoconversional method, and also from hydrogen production. The solid phases remaining after the CAE treatment were more reactive than the untreated raw material. Notably, the alkali concentration employed in the first step was the individual variable most pronounced influence on their activation energy (Ea). Thus, at a degree of conversion α = 0.50, Ea ranged from 109.7 to 254.3 kJ/mol for the solid phases, compared to 177 kJ/mol for the raw material; this value decreased with rising glucan content. At maximal degradation, the post-CAE solid phases produced up to 15.57% v/v more hydrogen than did the untreated raw material.
Collapse
Affiliation(s)
- S Lozano-Calvo
- Research Centre for Technology of Products and Chemical Processes (PRO2TECS), Department of Chemical Engineering, University of Huelva, Av. 3 de Marzo S/N, 21071, Huelva, Spain.
| | - J M Loaiza
- Research Centre for Technology of Products and Chemical Processes (PRO2TECS), Department of Chemical Engineering, University of Huelva, Av. 3 de Marzo S/N, 21071, Huelva, Spain
| | - J C García
- Research Centre for Technology of Products and Chemical Processes (PRO2TECS), Department of Chemical Engineering, University of Huelva, Av. 3 de Marzo S/N, 21071, Huelva, Spain
| | - R Tapias
- Department of Forest Engineering, University of Huelva, Huelva, Spain
| | - F López
- Research Centre for Technology of Products and Chemical Processes (PRO2TECS), Department of Chemical Engineering, University of Huelva, Av. 3 de Marzo S/N, 21071, Huelva, Spain
| |
Collapse
|
15
|
Wang Z, Su C, Zhang Y, Shangguan S, Wang R, Su J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol 2024; 14:1294182. [PMID: 38274755 PMCID: PMC10808364 DOI: 10.3389/fmicb.2023.1294182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Saccharomyces cerevisiae is a eukaryotic organism with a clear genetic background and mature gene operating system; in addition, it exhibits environmental tolerance. Therefore, S. cerevisiae is one of the most commonly used organisms for the synthesis of biological chemicals. The investigation of fatty acid catabolism in S. cerevisiae is crucial for the synthesis and accumulation of fatty acids and their derivatives, with β-oxidation being the predominant pathway responsible for fatty acid metabolism in this organism, occurring primarily within peroxisomes. The latest research has revealed distinct variations in β-oxidation among different fatty acids, primarily attributed to substrate preferences and disparities in the metabolic regulation of key enzymes involved in the S. cerevisiae fatty acid metabolic pathway. The synthesis of lipids, on the other hand, represents another crucial metabolic pathway for fatty acids. The present paper provides a comprehensive review of recent research on the key factors influencing the efficiency of fatty acid utilization, encompassing β-oxidation and lipid synthesis pathways. Additionally, we discuss various approaches for modifying β-oxidation to enhance the synthesis of fatty acids and their derivatives in S. cerevisiae, aiming to offer theoretical support and serve as a valuable reference for future studies.
Collapse
Affiliation(s)
- Zhaoyun Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Chunli Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sifan Shangguan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
16
|
Wang C, Chang D, Zhang Q, Yu Z. Enhanced bioethanol production by evolved Escherichia coli LGE2-H in a microbial electrolysis cell system. BIORESOUR BIOPROCESS 2024; 11:4. [PMID: 38647898 PMCID: PMC10992536 DOI: 10.1186/s40643-023-00717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/12/2023] [Indexed: 04/25/2024] Open
Abstract
Lignocellulose pretreated using pyrolysis can yield clean energy (such as bioethanol) via microbial fermentation, which can significantly contribute to waste recycling, environmental protection, and energy security. However, the acids, aldehydes, and phenols present in bio-oil with inhibitory effects on microorganisms compromise the downstream utilization and conversion of lignocellulosic pyrolysates. In this study, we constructed a microbial electrolysis cell system for bio-oil detoxification and efficient ethanol production using evolved Escherichia coli to overcome the bioethanol production and utilization challenges highlighted in previous studies. In electrically treated bio-oil media, the E. coli-H strain exhibited significantly higher levoglucosan consumption and ethanol production capacities compared with the control. In undetoxified bio-oil media containing 1.0% (w/v) levoglucosan, E. coli-H produced 0.54 g ethanol/g levoglucosan, reaching 94% of the theoretical yield. Our findings will contribute to developing a practical method for bioethanol production from lignocellulosic substrates, and provide a scientific basis and technical demonstration for its industrialized application.
Collapse
Affiliation(s)
- Cong Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, People's Republic of China
| | - Dongdong Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, People's Republic of China
| | - Qi Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, People's Republic of China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, People's Republic of China.
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, People's Republic of China.
| |
Collapse
|
17
|
Begum YA, Kumari S, Jain SK, Garg MC. A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery. ENVIRONMENTAL SCIENCE: ADVANCES 2024. [DOI: 10.1039/d4va00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Integrating thermochemical–biochemical methods overcomes the single-path limits for bioenergy production. This synergy lowers costs and enhances energy sustainability, highlighting waste-to-energy's vital role in the circular economy transition.
Collapse
Affiliation(s)
- Yasmin Ara Begum
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Sheetal Kumari
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Shailendra Kumar Jain
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| |
Collapse
|
18
|
Acosta-Santoyo G, Treviño-Reséndez J, Robles I, Godínez LA, García-Espinoza JD. A review on recent environmental electrochemistry approaches for the consolidation of a circular economy model. CHEMOSPHERE 2024; 346:140573. [PMID: 38303389 DOI: 10.1016/j.chemosphere.2023.140573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Availability of raw materials in the chemical industry is related to the selection of the chemical processes in which they are used as well as to the efficiency, cost, and eventual evolution to more competitive dynamics of transformation technologies. In general terms however, any chemically transforming technology starts with the extraction, purification, design, manufacture, use, and disposal of materials. It is important to create a new paradigm towards green chemistry, sustainability, and circular economy in the chemical sciences that help to better employ, reuse, and recycle the materials used in every aspect of modern life. Electrochemistry is a growing field of knowledge that can help with these issues to reduce solid waste and the impact of chemical processes on the environment. Several electrochemical studies in the last decades have benefited the recovery of important chemical compounds and elements through electrodeposition, electrowinning, electrocoagulation, electrodialysis, and other processes. The use of living organisms and microorganisms using an electrochemical perspective (known as bioelectrochemistry), is also calling attention to "mining", through plants and microorganisms, essential chemical elements. New process design or the optimization of the current technologies is a major necessity to enhance production and minimize the use of raw materials along with less generation of wastes and secondary by-products. In this context, this contribution aims to show an up-to-date scenario of both environmental electrochemical and bioelectrochemical processes for the extraction, use, recovery and recycling of materials in a circular economy model.
Collapse
Affiliation(s)
- Gustavo Acosta-Santoyo
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - José Treviño-Reséndez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro, Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico
| | - Josué D García-Espinoza
- Centro de Investigación en Química para la Economía Circular, CIQEC. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de Las Campanas, SN, Querétaro, Querétaro, 76010, Mexico.
| |
Collapse
|
19
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
20
|
Roberto JA, Costa Júnior EFDA, Costa AOSDA. Analysis of the conversion of cellulose present in lignocellulosic biomass for biofuel production. AN ACAD BRAS CIENC 2023; 95:e20220635. [PMID: 37909561 DOI: 10.1590/0001-3765202320220635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 11/03/2023] Open
Abstract
Among the steps for the conversion of biomass into bioenergy, there is enzymatic hydrolysis. However, factors such as composition, formation of inhibitors, inhibition and enzymatic deactivation can affect the yield and productivity of this process. Lignocellulosic biomass is composed of cellulose, hemicellulose and lignin. However, lignin is organized in a complex and non-uniform way, promotes biomass recalcitrance, which repress the enzymatic attack on cellulose to be converted into glucose, and, consequently, the production of biofuel. Thus, a challenge in enzymatic hydrolysis is to model the reaction behavior. In this context, this study aims to evaluate the performance in enzymatic hydrolysis for the conversion of cellulose present in sugarcane bagasse into glucose. Therefore, modeling and optimization will be proposed to produce high glucose concentration rates. Therefore, a previously developed study will be used, in which the authors proposed a kinetic model for the hydrolysis step. However, as a differential to what has been proposed, the calculation will be carried out evaluating the evaporation, in order to maximize the response to the glucose concentration. Thus, considering evaporation and optimized kinetic parameters, it was possible to obtain high rates of glucose concentration at 204.23 $g.L^{-1.
Collapse
Affiliation(s)
- Jaqueline A Roberto
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Esly F DA Costa Júnior
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Andréa O S DA Costa
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Saddique Z, Imran M, Latif S, Javaid A, Nawaz S, Zilinskaite N, Franco M, Baradoke A, Wojciechowska E, Boczkaj G. Advanced nanomaterials and metal-organic frameworks for catalytic bio-diesel production from microalgal lipids - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119028. [PMID: 39492394 DOI: 10.1016/j.jenvman.2023.119028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024]
Abstract
Increasing energy demands require exploring renewable, eco-friendly (green), and cost-effective energy resources. Among various sources of biodiesel, microalgal lipids are an excellent resource, owing to their high abundance in microalgal biomass. Transesterification catalyzed by advanced materials, especially nanomaterials and metal-organic frameworks (MOFs), is a revolutionary process for overcoming the energy crisis. This review elaborates on the conversion of microalgal lipids (including genetically modified algae) into biodiesel while primarily focusing on the transesterification of lipids into biodiesel by employing catalysts based on above mentioned advanced materials. Furthermore, current challenges faced by this process for industrial scale upgradation are presented with future perspectives and concluding remarks. These materials offer higher conversion (>90%) of microalgae into biodiesel. Nanocatalytic processes, lack the need for higher pressure and temperature, which simplifies the overall process for industrial-scale application. Green biodiesel production from microalgae offers better fuel than fossil fuels in terms of performance, quality, and less environmental harm. The chemical and thermal stability of advanced materials (particularly MOFs) is the main benefit of the blue recycling of catalysts. Advanced materials-based catalysts are reported to reduce the risk of biodiesel contamination. While purity of glycerin as side product makes it useful skin-related product. However, these aspects should still be controlled in future studies. Further studies should relate to additional aspects of green production, including waste management strategies and quality control of obtained products. Finally, catalysts stability and recycling aspects should be explored.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nemira Zilinskaite
- Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Faculty of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101, Vilnius, Lithuania
| | - Marcelo Franco
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370, Ilhéus, Brazil
| | - Ausra Baradoke
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Ewa Wojciechowska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdańsk, G. Narutowicza 11/12 Str, Poland
| | - Grzegorz Boczkaj
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdańsk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland.
| |
Collapse
|
22
|
Subbarao PMV, D' Silva TC, Adlak K, Kumar S, Chandra R, Vijay VK. Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. ENVIRONMENTAL RESEARCH 2023; 234:116286. [PMID: 37263473 DOI: 10.1016/j.envres.2023.116286] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Carbon emissions and associated global warming have become a threat to the world, the major contributor being the extensive use of fossil fuels and uncontrolled generation of solid wastes. Energy generation from renewable energy sources is considered an alternative to achieving carbon neutrality. Anaerobic digestion (AD) is a sustainable technology that has been endorsed as a low-carbon technology complimenting both waste management and renewable energy sectors. The AD technology recovers the volatile matter from waste biomass as much as possible to produce biogas, thus reducing carbon emission as compared to open dumping or burning. However, there is a need of compilation of information on how each subsystem in AD contributes to the overall carbon neutrality of the entire system and chances of achieving a circular economy along with it. Therefore, this article aims to clarify the associated internal and external factors that determine the low carbon characteristic of anaerobic digestion technology. From this review, the potential of AD system for energy-atmosphere-agriculture nexus has been explored. Carbon emission mapping of the potential entities involved in AD were identified and perspective to life cycle assessment and future research direction has been pointed out. Climate change impact and acidification potential are the two entities that can influence the overall environmental sustainability of an AD system. It was recognized that each stage of AD system starting from substrate supply chain, biogas production, upgradation, utilization, and digestate application had a remarkable effect on the overall carbon emission potential based on its design, operation, and maintenance. Selection of suitable substrates and co-digesting them together for improved biogas production rate with high methane content and proper digestate post-processing and storage can vastly reduce the carbon emission potential of the AD technology. Further, a case scenario of India was assessed considering the utilization of major surplus biomass available through AD. Re-routing the three major substrates such as agricultural crop residues, animal wastes and organic fraction of municipal solid wastes through AD can reduce at least 3.5-3.8 kg CO2-eq per capita of annual carbon emission load in India. Furthermore, the pathways in which the policy and legislations over establishment of AD technology and how to explore linkages between achieving circular economy and low carbon economy for Indian scenario has been highlighted.
Collapse
Affiliation(s)
- Paruchuri M V Subbarao
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tinku Casper D' Silva
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Komalkant Adlak
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Subodh Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ram Chandra
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
23
|
Hernández-Ramos F, Alriols MG, Antxustegi MM, Labidi J, Erdocia X. Valorisation of crude glycerol in the production of liquefied lignin bio-polyols for polyurethane formulations. Int J Biol Macromol 2023; 247:125855. [PMID: 37460069 DOI: 10.1016/j.ijbiomac.2023.125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Bio-polyols, produced by liquefying lignin with polyhydric alcohols, offer a promising alternative to conventional polyols for polyurethane production. To enhance the sustainability on the production of these bio-polyols, this study proposes the use of crude glycerol and microwave-assisted liquefaction as substitutes for conventional methods and commercial glycerol. This approach reduces the energy requirements of the reaction while also adding value to this by-product. The synthesis of bio-polyols with suitable properties to produce elastic and rigid polyurethane was carried out using previously optimised reaction conditions. Organosolv lignins obtained from Eucalyptus globulus and Pinus radiata were employed, using polyethylene glycol and crude glycerol as solvents and sulphuric acid as a catalyst. Several parameters of the bio-polyols were analysed, including hydroxyl number (IOH), acid number (An), and functionality (f), suggesting that the bio-polyols were suitable for polyurethane synthesis. Bio-polyols formulated to produce rigid polyurethanes exhibited IOH values of 554 and 383 (mg KOH/g), An values of 1.91 and 4.21 (mg KOH/g), and functionalities of 4.16 and 3.14 for Eucalyptus globulus and Pinus radiata lignin. In the case of bio-polyols for elastic polyurethanes, the values were 228 and 173 (mg KOH/g) (IOH), 20.94 and 25.09 (mg KOH/g) (An), and functionalities of 3.51 and 2.08.
Collapse
Affiliation(s)
- Fabio Hernández-Ramos
- Biorefinery Processes Research Group (BioRP), Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastian, Spain.
| | - María González Alriols
- Biorefinery Processes Research Group (BioRP), Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastian, Spain
| | - M Mirari Antxustegi
- Biorefinery Processes Research Group (BioRP), Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Avda. Otaola 29, 20600 Eibar, Spain
| | - Jalel Labidi
- Biorefinery Processes Research Group (BioRP), Chemical and Environmental Engineering Department, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 San Sebastian, Spain
| | - Xabier Erdocia
- Biorefinery Processes Research Group (BioRP), Department of Applied Mathematics, University of the Basque Country (UPV/EHU), Rafael Moreno "Pichichi" 3, Bilbao 48013, Spain
| |
Collapse
|
24
|
Zhu Z, Wu S, Qi B, Wang C, Luo J, Wan Y. High-solids enzymatic saccharification of starch-rich raw herbal biomass residues for producing high titers of glucose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86232-86243. [PMID: 37402046 DOI: 10.1007/s11356-023-28501-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
The bioresource utilization of herbal biomass residues (HBRs) has been receiving more attention. Herein, three different HBRs from Isatidis Radix (IR) and Sophorae Flavescentis Radix (SFR) and Ginseng Radix (GR) were subjected to batch and fed-batch enzymatic hydrolysis to produce high-concentration glucose. Compositional analysis showed the three HBRs had substantial starch content (26.36-63.29%) and relatively low cellulose contents (7.85-21.02%). Due to their high starch content, the combined action of cellulolytic and amylolytic enzymes resulted in greater release of glucose from the raw HBRs compared to using the individual enzyme alone. Batch enzymatic hydrolysis of 10% (w/v) raw HBRs with low loadings of cellulase (≤ 10 FPU/g substrate) and amylolytic enzymes (≤ 5.0 mg/g substrate) led to a high glucan conversion of ≥ 70%. The addition of PEG 6000 and Tween 20 did not contribute to glucose production. Furthermore, to achieve higher glucose concentrations, fed-batch enzymatic hydrolysis was conducted using a total solid loading of 30% (w/v). After 48-h of hydrolysis, glucose concentrations of 125 g/L and 92 g/L were obtained for IR and SFR residues, respectively. GR residue yielded an 83 g/L glucose concentration after 96 h of digestion. The high glucose concentrations produced from these raw HBRs indicate their potential as ideal substrate for a profitable biorefinery. Notably, the obvious advantage of using these HBRs is the elimination of the pretreatment step, which is typically required for agricultural and woody biomass in similar studies.
Collapse
Affiliation(s)
- Zhenzhou Zhu
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sirong Wu
- National R&D Center for Se-Rich Agricultural Products Processing, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinhua Wan
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341119, China
| |
Collapse
|
25
|
Kaur D, Joshi A, Sharma V, Batra N, Sharma AK. An insight into microbial sources, classification, and industrial applications of xylanases: A rapid review. Biotechnol Appl Biochem 2023; 70:1489-1503. [PMID: 37186103 DOI: 10.1002/bab.2469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Endo 1,4-β-d-xylanases (EC3.2.1.8) are one of the key lignocellulose hydrolyzing enzymes. Xylan, which is present in copious amounts on earth, forms the primary substrate of endo-xylanases, which can unchain the constituent monosaccharides linked via β-1,4-glycosidic bonds from the xylan backbone. Researchers have shown keen interest in the xylanases belonging to glycoside hydrolase families 10 and 11, whereas those placed in other glycoside hydrolase families are yet to be investigated. Various microbes such as bacteria and fungi harbor these enzymes for the metabolism of their lignocellulose fibers. These microbes can be used as miniature biofactories of xylanase enzymes for a plethora of environmentally benign applications in pulp and paper industry, biofuel production, and for improving the quality of food in bread baking and fruit juice industry. This review highlights the potential of microbes in production of xylanase for industrial biotechnology.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Amit Joshi
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, GGDSD College, Chandigarh, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (deemed to be University), Mullana-Ambala, Haryana, India
| |
Collapse
|
26
|
Hasan M, Abedin MZ, Amin MB, Nekmahmud M, Oláh J. Sustainable biofuel economy: A mapping through bibliometric research. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117644. [PMID: 36893543 DOI: 10.1016/j.jenvman.2023.117644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Biofuels have received a lot of attention as an important source of renewable energy, with number of economic impacts. This study aims to investigate the economic potential of biofuels and then extract core aspects of how biofuels relate to a sustainable economy in order to achieve a sustainable biofuel economy. This study conducts a bibliometric analysis of publications about biofuel economic research covering 2001 to 2022 experimenting with multiple bibliometric tools, such as R Studio, Biblioshiny, and VOSviewer. Findings show that research on biofuels and biofuel production growth are positively correlated. From the analyzed publications, The United States, India, China, and Europe are the largest biofuel markets, with the USA taking the lead in publishing scientific papers, engaging country collaboration on biofuel, and has the highest social impact. Findings also show that the United Kingdom, the Netherlands, Germany, France, Sweden, and Spain are more inclined to develop sustainable biofuel economies and energy than other European countries. It also indicates that sustainable biofuel economies are still far behind those of less developed and developing countries. Besides, this study finds that biofuel linked to sustainable economy with poverty reduction, agriculture development, renewable energy production, economic growth, climate change policy, environmental protection, carbon emission reduction, green-house gas emission, land use policy, technological innovations, and development. The findings of this bibliometric research are presented using different clusters, mapping, and statistics. The discussion of this study affirms the good and effective policies for a sustainable biofuel economy.
Collapse
Affiliation(s)
- Morshadul Hasan
- Károly Ihrig Doctoral School of Management and Business, University of Debrecen, Debrecen, Hungary.
| | - Mohammad Zoynul Abedin
- Department of Finance, Performance & Marketing, Teesside University International Business School, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, United Kingdom.
| | - Mohamamd Bin Amin
- Károly Ihrig Doctoral School of Management and Business, University of Debrecen, Debrecen, Hungary.
| | - Md Nekmahmud
- Doctoral School of Economic and Regional Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary; Institute of Agricultural and Food Economics, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| | - Judit Oláh
- Institute of Applied Informatics and Logistics, Faculty of Economics and Business, University of Debrecen, Debrecen, Hungary; Department of Public Management and Governance, College of Business and Economics, University of Johannesburg, Johannesburg 2006, South Africa.
| |
Collapse
|
27
|
Nguyen DV, Nguyen HM, Bui QLN, Do TVT, Lam HH, Tran-Thuy TM, Nguyen LQ. Magnetic Activated Carbon from ZnCl 2 and FeCl 3 Coactivation of Lotus Seedpod: One-Pot Preparation, Characterization, and Catalytic Activity towards Robust Degradation of Acid Orange 10. Bioinorg Chem Appl 2023; 2023:3848456. [PMID: 37324575 PMCID: PMC10264712 DOI: 10.1155/2023/3848456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Lotus seedpods (LSPs) are an abundant and underutilized agricultural residue discarded from lotus seed production. In this study, ZnCl2 and FeCl3 coactivation of LSP for one-pot preparation of magnetic activated carbon (MAC) was explored for the first time. X-ray diffraction (XRD) results showed that Fe3O4, Fe0, and ZnO crystals were formed in the LSP-derived carbon matrix. Notably, transmission electron microscopy (TEM) images showed that the shapes of these components consisted of not only nanoparticles but also nanowires. Fe and Zn contents in MAC determined by atomic absorption spectroscopy (AAS) were 6.89 and 3.94 wt%, respectively. Moreover, SBET and Vtotal of MAC prepared by coactivation with ZnCl2 and FeCl3 were 1080 m2/g and 0.51 cm3/g, which were much higher than those prepared by single activation with FeCl3 (274 m2/g and 0.14 cm3/g) or ZnCl2 (369 m2/g and 0.21 cm3/g). MAC was subsequently applied as an oxidation catalyst for Fenton-like degradation of acid orange 10 (AO10). As a result, 0.20 g/L MAC could partially remove AO10 (100 ppm) with an adsorption capacity of 78.4 mg/g at pH 3.0. When 350 ppm H2O2 was further added, AO10 was decolorized rapidly, nearly complete within 30 min, and 66% of the COD was removed in 120 min. The potent catalytic performance of MAC might come from the synergistic effect of Fe0 and Fe3O4 nanocrystals in the porous carbon support. MAC also demonstrated effective stability and reusability after five consecutive cycles, when total AO10 removal at 20 min of H2O2 addition slightly decreased from 93.9 ± 0.9% to 86.3 ± 0.8% and minimal iron leaching of 1.14 to 1.19 mg/L was detected. Interestingly, the MAC catalyst with a saturation magnetization of 3.6 emu/g was easily separated from the treated mixture for the next cycle. Overall, these findings demonstrate that magnetic activated carbon prepared from ZnCl2 and FeCl3 coactivation of lotus seedpod waste can be a low-cost catalyst for rapid degradation of acid orange 10.
Collapse
Affiliation(s)
- Dung Van Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hung Minh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Quang Le Nam Bui
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thao Vy Thanh Do
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hung Hoa Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tuyet-Mai Tran-Thuy
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Long Quang Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Tao X, Morgan JS, Liu J, Kempher ML, Xu T, Zhou J. Target integration of an exogenous β-glucosidase enhances cellulose degradation and ethanol production in Clostridium cellulolyticum. BIORESOURCE TECHNOLOGY 2023; 376:128849. [PMID: 36898565 DOI: 10.1016/j.biortech.2023.128849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
The bacteria Clostridium cellulolyticum is a promising candidate for consolidated bioprocessing (CBP). However, genetic engineering is necessary to improve this organism's cellulose degradation and bioconversion efficiencies to meet standard industrial requirements. In this study, CRISPR-Cas9n was used to integrate an efficient β-glucosidase into the genome of C. cellulolyticum, disrupting lactate dehydrogenase (ldh) expression and reducing lactate production. The engineered strain showed a 7.4-fold increase in β-glucosidase activity, a 70% decrease in ldh expression, a 12% increase in cellulose degradation, and a 32% increase in ethanol production compared to wild type. Additionally, ldh was identified as a potential site for heterologous expression. These results demonstrate that simultaneous β-glucosidase integration and lactate dehydrogenase disruption is an effective strategy for increasing cellulose to ethanol bioconversion rates in C. cellulolyticum.
Collapse
Affiliation(s)
- Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Josiah S Morgan
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jiantao Liu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Tao Xu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
29
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
30
|
Favaretto DPC, Rempel A, Lanzini JR, Silva ACM, Lazzari T, Barbizan LD, Brião VB, Colla LM, Treichel H. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World J Microbiol Biotechnol 2023; 39:144. [PMID: 37004675 DOI: 10.1007/s11274-023-03588-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
The commercialization of fruits in markets generates a large amount of waste because they are perishable and have a short shelf life, so, they are discarded. This study aimed to provide a noble end to discarded fruits that have fermentable sugars. Banana, apple, mango and papaya residues were collected from supermarkets and underwent an enzymatic hydrolysis process. The ability of four pectinases, two amylases, one xylanase and one cellulase to release reducing sugars from fruit biomass before fermentation with two yeast strains (S. cerevisiae CAT-1 and S. cerevisiae Angel) for bioethanol production was investigated, obtaining a total of RS (Reducing sugar) of 268.08 mg/mL in banana residues. A fermentation with yeast S. cerevisiae CAT-1 resulted in 98% consumption of RS and the production of a total of 28.02 g/L of ethanol. Furthermore, fermentation with the yeast S. cerevisiae Angel, resulted in 97% RS consumption and 31.87 g/L ethanol production, which was the best result obtained throughout all the tests of hydrolysis, highlighting the banana residue as a promising biomass for the production of bioethanol.
Collapse
Affiliation(s)
- Danúbia Paula Cadore Favaretto
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil.
| | - Alan Rempel
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Julia Roberta Lanzini
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Ana Carolina Mattana Silva
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Tauane Lazzari
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Luiza Desengrini Barbizan
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Vandré Barbosa Brião
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Luciane Maria Colla
- University of Passo Fundo, Campus I, km 171, BR 285, P. O. Box 611, Passo Fundo City, Rio Grande do Sul State, 99001-970, Brazil
| | - Helen Treichel
- Federal University of the South Border - Campus Erechim, RS 135, Km 72, Erechim City, Rio Grande do Sul State, 99700-000, Brazil
| |
Collapse
|
31
|
Jin X, Wei S. Efficient short time pretreatment on lignocellulosic waste using an isolated fungus Trametes sp. W-4 for the enhancement of biogas production. Heliyon 2023; 9:e14573. [PMID: 36950623 PMCID: PMC10025918 DOI: 10.1016/j.heliyon.2023.e14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Biological pretreatment to the lignocellulosic waste prior to anaerobic digestion is a popular method to increase biogas production. However, the long time needed for the pretreatment is not suitable to the practical application. A fungus strain, which could produce many kinds of lignocellulosic enzymes including CMCase, FPase, xylanase and laccase, was isolated from the soil of Tibet in this study. The fungus was identified as Trametes sp. W-4 by morphological and molecular characterization. The optimum culture temperature was 30 °C and the optimum nitrogen source was peptone. Under the optimum fermentation condition, the activity of CMCase, FPase, xylanase and laccase could reach 2.73 U/mL, 0.41 U/mL, 0.29 U/mL, and 1.11 U/mL, respectively. The results of pretreatment of Trametes sp. W-4 on the mixtures of high land barley straw, cow manure and pig manure for enhancement of biogas production showed that a very short time pretreatment of 3 days could obtain the highest cumulative methane production of 111.51 mL/g-VS, which was 63.81% higher than that of the control group of 68.07 mL/g-VS. The finding indicated that Trametes sp. W-4 pretreatment could be a candidate for the improving of biogas production from lignocellulosic waste.
Collapse
|
32
|
Maurya R, Gohil N, Nixon S, Kumar N, Noronha SB, Dhali D, Trabelsi H, Alzahrani KJ, Reshamwala SMS, Awasthi MK, Ramakrishna S, Singh V. Rewiring of metabolic pathways in yeasts for sustainable production of biofuels. BIORESOURCE TECHNOLOGY 2023; 372:128668. [PMID: 36693507 DOI: 10.1016/j.biortech.2023.128668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The ever-increasing global energy demand has led world towards negative repercussions such as depletion of fossil fuels, pollution, global warming and climate change. Designing microbial cell factories for the sustainable production of biofuels is therefore an active area of research. Different yeast cells have been successfully engineered using synthetic biology and metabolic engineering approaches for the production of various biofuels. In the present article, recent advancements in genetic engineering strategies for production of bioalcohols, isoprenoid-based biofuels and biodiesels in different yeast chassis designs are reviewed, along with challenges that must be overcome for efficient and high titre production of biofuels.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Snovia Nixon
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nilesh Kumar
- M.Tech. Programme in Bioprocess Engineering, Institute of Chemical Technology, Mumbai, India; DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debarun Dhali
- EV Biotech BV, Zernikelaan 8, 9747 AA Groningen, The Netherlands
| | - Heykel Trabelsi
- Carbocode GmbH, Byk-Gulden-Strasse 2, 78467 Konstanz, Germany
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suresh Ramakrishna
- College of Medicine, Hanyang University, Seoul, South Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
33
|
Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
34
|
du Pasquier J, Paës G, Perré P. Principal factors affecting the yield of dilute acid pretreatment of lignocellulosic biomass: A critical review. BIORESOURCE TECHNOLOGY 2023; 369:128439. [PMID: 36493953 DOI: 10.1016/j.biortech.2022.128439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This review provides a critical analysis of the state of the art of dilute acid pretreatment applied to lignocellulosic biomass. Data from 63 publications were extracted and analysed. The majority of the papers used residence times of<30 min, temperature ranges from 100 °C to 200 °C, and acid levels between 0 % and 2 %. Yields are quantified directly after pretreatment (xylose content) or after enzymatic hydrolysis (glucose content). Statistical analyses allowed the time-temperature equivalence to be quantified for three types of biomass: they were formulated by non-linear expressions. In further works, investigating less explored areas, for example moderate temperature levels with longer residence times, is recommended. Pretreatment material (time-temperature kinetics, reactor type) and analytical methods should be standardized and better described. It becomes mandatory to promote the development of an open, findable, accessible, interoperable, and reusable data approach for pretreatments research.
Collapse
Affiliation(s)
- Julien du Pasquier
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France; Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France.
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| |
Collapse
|
35
|
Kiehbadroudinezhad M, Merabet A, Ghenai C, Abo-Khalil AG, Salameh T. The role of biofuels for sustainable MicrogridsF: A path towards carbon neutrality and the green economy. Heliyon 2023; 9:e13407. [PMID: 36816276 PMCID: PMC9932676 DOI: 10.1016/j.heliyon.2023.e13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Today, with the progress of technology, the world is facing an increasing growth in power consumption. Since the fuel of most power plants is supplied from fossil fuels, it has caused an increase in global fossil fuel consumption and environmental degradation. ّFurthermore, the volatility of fossil fuel prices and unstable energy security have prompted international organizations and governments to apply policies to restrict fossil fuel use and examine alternatives to fossil fuels. Since biofuels come from renewable sources and are clean fuels, they can be an appropriate alternative to fossil fuels and play a more expansive role in supplying energy for transportation industries, power plants, and heat production systems. Although there is some research about the drawbacks of using fossil fuels and the commendation of using biofuels in various industries such as transportation, the literature lacks a comprehensive study on the evaluation and analysis of the potential of using biofuels instead of conventional fuels in power generation systems. The primary purpose of this study is to evaluate the impact of utilizing biofuels instead of fossil fuels in microgrids to achieve carbon neutrality objectives. Furthermore, this paper reviews previous research studies that have operated biofuels in three categories: solid, liquid, and gas, to generate electricity and analyzes the potential of different biofuels to produce heat and electricity for microgrid power systems. In addition to outlining the present knowledge gaps in this area, this study explores the prospects and threats associated with expanding the use of biofuels in the power production industry and the development of sustainable microgrids. This study indicated that if the technical and economic problems of employing biofuels are overcome, these clean fuels have a great potential to obtain the maximum share of the global power generation market and move toward Net Zero Emissions by 2050 Scenario (NZE) goals.
Collapse
Affiliation(s)
| | - Adel Merabet
- Division of Engineering, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
| | - Chaouki Ghenai
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, P. O. Box 27272, United Arab Emirates
| | - Ahmed G. Abo-Khalil
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, P. O. Box 27272, United Arab Emirates
| | - Tareq Salameh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, P. O. Box 27272, United Arab Emirates
| |
Collapse
|
36
|
Transformation of Agro-Waste into Value-Added Bioproducts and Bioactive Compounds: Micro/Nano Formulations and Application in the Agri-Food-Pharma Sector. Bioengineering (Basel) 2023; 10:bioengineering10020152. [PMID: 36829646 PMCID: PMC9952426 DOI: 10.3390/bioengineering10020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The agricultural sector generates a significant amount of waste, the majority of which is not productively used and is becoming a danger to both world health and the environment. Because of the promising relevance of agro-residues in the agri-food-pharma sectors, various bioproducts and novel biologically active molecules are produced through valorization techniques. Valorization of agro-wastes involves physical, chemical, and biological, including green, pretreatment methods. Bioactives and bioproducts development from agro-wastes has been widely researched in recent years. Nanocapsules are now used to increase the efficacy of bioactive molecules in food applications. This review addresses various agri-waste valorization methods, value-added bioproducts, the recovery of bioactive compounds, and their uses. Moreover, it also covers the present status of bioactive micro- and nanoencapsulation strategies and their applications.
Collapse
|
37
|
Rodriguez A, Hirakawa MP, Geiselman GM, Tran-Gyamfi MB, Light YK, George A, Sale KL. Prospects for utilizing microbial consortia for lignin conversion. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Naturally occurring microbial communities are able to decompose lignocellulosic biomass through the concerted production of a myriad of enzymes that degrade its polymeric components and assimilate the resulting breakdown compounds by members of the community. This process includes the conversion of lignin, the most recalcitrant component of lignocellulosic biomass and historically the most difficult to valorize in the context of a biorefinery. Although several fundamental questions on microbial conversion of lignin remain unanswered, it is known that some fungi and bacteria produce enzymes to break, internalize, and assimilate lignin-derived molecules. The interest in developing efficient biological lignin conversion approaches has led to a better understanding of the types of enzymes and organisms that can act on different types of lignin structures, the depolymerized compounds that can be released, and the products that can be generated through microbial biosynthetic pathways. It has become clear that the discovery and implementation of native or engineered microbial consortia could be a powerful tool to facilitate conversion and valorization of this underutilized polymer. Here we review recent approaches that employ isolated or synthetic microbial communities for lignin conversion to bioproducts, including the development of methods for tracking and predicting the behavior of these consortia, the most significant challenges that have been identified, and the possibilities that remain to be explored in this field.
Collapse
|
38
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
39
|
Sharma L, Alam NM, Roy S, Satya P, Kar G, Ghosh S, Goswami T, Majumdar B. Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology. BIORESOURCE TECHNOLOGY 2023; 368:128318. [PMID: 36375701 DOI: 10.1016/j.biortech.2022.128318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Reduction of inherent structural recalcitrance and improved saccharification efficiency are two important facets to enhance fermentable sugar yield for bioethanol production from lignocellulosic biomass. This study optimized alkaline pretreatment and saccharification conditions employing response surface methodology to improve saccharification yield of jute (Corchorus olitorius cv. JROB-2) biomass. The biomass is composed of cellulose (66.6 %), lignin (19.4 %) and hemicellulose (13.1 %). NaOH concentration exhibited significant effect on delignification during pretreatment. The highest delignification (80.42 %) was obtained by pretreatment with 2.47 % NaOH at 55.8 °C for 5.9 h removing 79.8 % lignin and 34.2 % hemicellulose from biomass, thereby increasing cell wall porosity and allowing better accessibility to saccharification enzyme. During saccharification optimization, significant effect was observed for biomass loading, enzyme concentration and temperature. Optimized saccharification condition yielded maximum saccharification (76.48 %) when hydrolysis was performed at 6.9 % biomass loading with enzyme concentration of 49.52 FPU/g substrate at 51.05 °C for 74.46 h.
Collapse
Affiliation(s)
- Laxmi Sharma
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India.
| | - Nurnabi Meherul Alam
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Suman Roy
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Pratik Satya
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Subhojit Ghosh
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Tinku Goswami
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| | - Bijan Majumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700121, India
| |
Collapse
|
40
|
Cambraia MVS, Barbosa MS, Soares CMF, Carvalho AKF, Mendes AA. Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid. Bioprocess Biosyst Eng 2023; 46:53-67. [PMID: 36409316 DOI: 10.1007/s00449-022-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
The enzymatic production of isoamyl levulinate via esterification of isoamyl alcohol (IA) and levulinic acid (LA), a biomass-based platform chemical with attractive properties, in a solvent system has been performed in this study. For such a purpose, a low-cost liquid lipase (Eversa® Transform 2.0) immobilized by physical adsorption via hydrophobic interactions (mechanism of interfacial activation) on mesoporous poly(styrenene-divinylbenzene) (PSty-DVB) beads was used as heterogeneous biocatalyst. It was prepared at low ionic strength (5 mmol.L-1 buffer sodium acetate pH 5.0) and 25 ℃ using an initial protein loading of 40 mg.g-1 of support. Maximum protein loading of 31.2 ± 2.8 mg.g-1 of support and an immobilization yield of 83% was achieved. The influence of relevant factors (biocatalyst concentration and reaction temperature) on ester production was investigated using a central composite rotatable design (CCRD). Maximum acid conversion percentage of 65% was achieved after 12 h of reaction at 40 °C, 20% of mass of heterogeneous biocatalyst per mass of reaction mixture (20% m.m-1), and LA:IA molar ratio of 1:1.5 in a methyl isobutyl ketone (MIBK) medium. The biocatalyst retained around of 30% of its initial activity after five consecutive esterification batches under optimal experimental conditions. The proposed experimental procedure can be considered as an acceptable green process (EcoScale score of 66.5), in addition to the fact that a new strategy is proposed to sustainably produce a valuable industrial ester (isoamyl levulinate) from biomass-based materials using an immobilized and low-cost commercial lipase as catalyst.
Collapse
Affiliation(s)
- Marcus V S Cambraia
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Milson S Barbosa
- Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Cleide M F Soares
- Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Ana K F Carvalho
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Adriano A Mendes
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil. .,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
41
|
Qian H, Fan Y, Chen J, He L, Sun Y, Li L. Enabling the complete valorization of hybrid Pennisetum: Directly using alkaline black liquor for preparing UV-shielding biodegradable films. Front Bioeng Biotechnol 2022; 10:1027511. [PMID: 36545683 PMCID: PMC9760701 DOI: 10.3389/fbioe.2022.1027511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
The conversion of lignocellulosic biomass into various high-value chemicals has been a rapid expanding research topic in industry and agriculture. Among them, alkaline removal and utilization of lignin are important for the accelerated degradation of biomass. Modern biorefinery has been focusing the vision on the advancement of economical, green, and environmentally friendly processes. Therefore, it is indispensable to develop cost-effective and simple biomass conversion technologies to obtain high-value products. In this study, the black liquor (BL) obtained from the alkaline pretreatment of biomass was added to polyvinyl alcohol (PVA) solution and used to prepare degradable ultraviolet (UV) shielding films, achieving direct and efficient utilization of the aqueous phase from alkaline pretreatment. This method avoids the extraction step of lignin fraction from black liquor, which can be directly utilized as the raw materials of films preparation. In addition, the direct use of alkaline BL results in films with similar UV-shielding properties, higher physical strength, and similar thermal stability compared with films made by commercial alkaline lignin. Therefore, this strategy is proposed for alkaline-pretreated biorefineries as a simple way to convert waste BL into valuable products and partially recover unconsumed sodium hydroxide to achieve as much integration of biomass and near zero-waste biorefineries as possible.
Collapse
Affiliation(s)
- Haojiang Qian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Yafeng Fan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Jiazhao Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Linsong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China,*Correspondence: Lianhua Li,
| |
Collapse
|
42
|
Moogi S, Lam SS, Chen WH, Ko CH, Jung SC, Park YK. Household food waste conversion to biohydrogen via steam gasification over copper and nickel-loaded SBA-15 catalysts. BIORESOURCE TECHNOLOGY 2022; 366:128209. [PMID: 36323373 DOI: 10.1016/j.biortech.2022.128209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Household food waste (FW) was converted into biohydrogen-rich gas via steam gasification over Ni and bimetallic Ni (Cu-Ni and Co-Ni) catalysts supported on mesoporous SBA-15. The effect of catalyst method on steam gasification efficiency of each catalyst was investigated using incipient wetness impregnation, deposition precipitation, and ethylenediaminetetraacetic acid metal complex impregnation methods. H2-TPR confirmed the synergistic interaction of the dopants (Co and Cu) and Ni. Furthermore, XRD and HR-TEM revealed that the size of the Ni particle varied depending on the method of catalyst synthesis, confirming the formation of solid solutions in Co- or Cu-doped Ni/SBA-15 catalysts due to dopant insertion into the Ni. Notably, the exceptional activity of the Cu-Ni/SBA-15-EMC catalyst in FW steam gasification was attributed to the fine distribution of the concise Ni nanoparticles (9 nm), which resulted in the highest hydrogen selectivity (62 vol%), gas yield (73.6 wt%). Likewise, Cu-Ni solid solution decreased coke to 0.08 wt%.
Collapse
Affiliation(s)
- Surendar Moogi
- School of Environmental Engineering, University of Seoul, 02504 Seoul, Republic of Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Chang Hyun Ko
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504 Seoul, Republic of Korea.
| |
Collapse
|
43
|
Kukkar D, Sharma PK, Kim KH. Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass. ENVIRONMENTAL RESEARCH 2022; 215:114369. [PMID: 36165858 DOI: 10.1016/j.envres.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose wastes stemming from agricultural residues can offer an excellent opportunity as alternative energy solutions in addition to fossil fuels. Besides, the unrestrained burning of agricultural residues can lead to the destruction of the soil microflora and associated soil sterilization. However, the difficulties associated with the biodegradation of lignocellulose biomasses remain as a formidable challenge for their sustainable management. In this respect, metagenomics can be used as an effective option to resolve such dilemma because of its potential as the next generation sequencing technology and bioinformatics tools to harness novel microbial consortia from diverse environments (e.g., soil, alpine forests, and hypersaline/acidic/hot sulfur springs). In light of the challenges associated with the bulk-scale biodegradation of lignocellulose-rich agricultural residues, this review is organized to help delineate the fundamental aspects of metagenomics towards the assessment of the microbial consortia and novel molecules (such as biocatalysts) which are otherwise unidentifiable by conventional laboratory culturing techniques. The discussion is extended further to highlight the recent advancements (e.g., from 2011 to 2022) in metagenomic approaches for the isolation and purification of lignocellulolytic microbes from different ecosystems along with the technical challenges and prospects associated with their wide implementation and scale-up. This review should thus be one of the first comprehensive reports on the metagenomics-based analysis of different environmental samples for the isolation and purification of lignocellulose degrading enzymes.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul - 04763, South Korea.
| |
Collapse
|
44
|
Fatema N, Ceballos RM, Fan C. Modifications of cellulose-based biomaterials for biomedical applications. Front Bioeng Biotechnol 2022; 10:993711. [PMID: 36406218 PMCID: PMC9669591 DOI: 10.3389/fbioe.2022.993711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of cellulose that enhance its properties for use as a biomaterial. Three cellulosic products are discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose, with a focus on how each may serve as a platform for the development of advanced cellulose-based biomaterials for Biomedical applications. In addition to associating mechanical and chemical properties of cellulosic materials to specific applications, a prospectus is offered for the future development of cellulose-based biomaterials for biomedicine.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Ruben Michael Ceballos
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
45
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
46
|
Yu Y, Liu S, Zhang Y, Lu M, Sha Y, Zhai R, Xu Z, Jin M. A novel fermentation strategy for efficient xylose utilization and microbial lipid production in lignocellulosic hydrolysate. BIORESOURCE TECHNOLOGY 2022; 361:127624. [PMID: 35872269 DOI: 10.1016/j.biortech.2022.127624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 05/06/2023]
Abstract
The sugar utilization efficiency and the tolerance of microorganism to inhibitors are essential for lipid production from lignocellulosic biomass. In this study, the sugar consumption and inhibitor tolerance characteristics of Trichosporon dermatis 32,903 were investigated. The results showed that the lipid yield on xylose was much lower than that on glucose, while these substrates exhibited comparative efficiency for cell growth. High inoculum size improved the tolerance of T. dermatis 32,903 to inhibitors. Based on these characteristics, sugar-targeted-utilization and cyclic fermentation strategy was developed. The tolerance of high inoculum size to inhibitors was utilized, glucose was targeted for lipid fermentation and xylose was targeted for cell growth. As a result, the lipid production efficiency was greatly enhanced. The lipid titer in hydrolysate of DLCA (Densifying Lignocellulosic biomass with Chemicals followed by Autoclave) pretreated rice straw was improved to as high as 38.4 g/L with lipid yield of 0.207 g/g consumed sugar.
Collapse
Affiliation(s)
- Yang Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Shuangmei Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
47
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Valorization of agro-food wastes: Ease of concomitant-enzymes production with application in food and biofuel industries. BIORESOURCE TECHNOLOGY 2022; 361:127738. [PMID: 35940324 DOI: 10.1016/j.biortech.2022.127738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The novel and greener approach toward the co-production of hydrolytic enzymes in a single-cultivation medium with inexpensive substrates can bring down the production costs. Likewise, the natural and industrial organic biomass/solid are all nutritionally rich substrates waiting for free use in industries such as food, biofuel, etc. Valorization must broaden its applications in industries and households with a step towards a sustainable environment. The biofuel approach can be projected as one of the most promising deputations to meet future energy demands, in reduction of the environmental pollution due to excessive fossil fuel consumption. The present review highlights the multifaceted stature of microbial enzymes in this direction and possible implications mainly in the food industry and biofuel with the global impact of similar bio-based industries. In this review, design scale-up, fermentation cost, energy needs,and agro-food waste management have been meticulously delineated.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Shivani M Yagnik
- Department of Microbiology, Christ College, Vidya Niketan, Rajkot 360005, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India.
| |
Collapse
|
48
|
Osorio-González CS, Saini R, Hegde K, Brar SK, Avalos Ramirez A. Furfural degradation and its effect on Rhodosporidium toruloides-1588 during microbial growth and lipid accumulation. BIORESOURCE TECHNOLOGY 2022; 359:127496. [PMID: 35718247 DOI: 10.1016/j.biortech.2022.127496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The presence of furfural in the hydrolysates obtained from lignocellulosic biomass sources represents an enormous challenge during their fermentation because furfural is a toxic compound for different microorganisms. Rhodosporidium toruloides-1588 can grow and accumulate lipids using wood hydrolysate as a substrate containing up to 1 g/L of furfural. In this study, the capacity of R. toruloides-1588 to grow and accumulate lipids using furfural without glucose in the media has been observed. R. toruloides-1588 degraded up to 3 g/L of furfural into furfuryl alcohol (1.8 g/L) and 2-furoic acid (0.9 g/L). Furthermore, R. toruloides-1588 accumulated 52% and 30% of its dry weight into lipids using YM media and YM media without glucose, respectively. Fatty acids such as palmitic, stearic and oleic were the most abundant. Finally, R. toruloides-1588 could potentially utilize furfural as a carbon source.
Collapse
Affiliation(s)
- Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Krishnamoorthy Hegde
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder K Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en technologies environnementales, 2263, Avenue du Collège, Shawinigan, G9N 6V8, QC, Canada
| |
Collapse
|
49
|
Babu S, Singh Rathore S, Singh R, Kumar S, Singh VK, Yadav SK, Yadav V, Raj R, Yadav D, Shekhawat K, Ali Wani O. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. BIORESOURCE TECHNOLOGY 2022; 360:127566. [PMID: 35788385 DOI: 10.1016/j.biortech.2022.127566] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Globally agricultural production system generates a huge amount of solid waste. Improper agri-waste management causes environmental pollution which resulted in economic losses and human health-related problems. Hence, there is an urgent need to design and develop eco-friendly, cost-effective, and socially acceptable agri-waste management technologies. Agri-waste has high energy conversion efficiency as compared to fossil fuel-based energy generation materials. Agri-waste can potentially be exploited for the production of second-generation biofuels. However, composted agri-waste can be an alternative to energy-intensive chemical fertilizers in organic production systems. Furthermore, value-added agri-waste can be a potential feedstock for livestock and industrial products. But comprehensive information concerning agri-waste management is lacking in the literature. Therefore, the present study reviewed the latest advancements in efficient agri-waste management technologies. This latest review will help the researchers and policy planners to formulate environmentally robust residue management practices for achieving a green economy in the agricultural production sector.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Raghavendra Singh
- ICAR- Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024, India
| | - Sanjeev Kumar
- ICAR- Indian Institute of Farming Systems Research, Modipuram, Uttar Pradesh 250110, India
| | - Vinod K Singh
- ICAR- Central Research Institute on Dryland Agriculture, Hyderabad, Telangana 500 059, India
| | - S K Yadav
- ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226 002, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Rishi Raj
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Devideen Yadav
- ICAR-Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand 248 195, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Owais Ali Wani
- Division of Soil Science and Agricultural Chemistry, SKUAST- Kashmir, 193201, India
| |
Collapse
|
50
|
Biohydrogen and Methane Production from Sugarcane Leaves Pretreated by Deep Eutectic Solvents and Enzymatic Hydrolysis by Cellulolytic Consortia. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study determined the optimal conditions for the deep eutectic solvent (DES) pretreatment of sugarcane leaves and the best fermentation mode for hydrogen and methane production from DES-pretreated sugarcane leaves. Choline chloride (ChCl):monoethanolamine (MEA) is the most effective solvent for removing lignin from sugarcane leaves. The optimum conditions were a ChCl: MEA molar ratio of 1:6, 120 °C, 3 h, and substrate-to-DES solution ratio of 1:12. Under these conditions, 86.37 ± 0.36% lignin removal and 73.98 ± 0.42% hemicellulose removal were achieved, whereas 84.13 ± 0.77% cellulose was recovered. At a substrate loading of 4 g volatile solids (VS), the simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF) processes yielded maximum hydrogen productions of 3187 ± 202 and 2135 ± 315 mL H2/L, respectively. In the second stage, methane was produced using the hydrogenic effluent. SSF produced 5923 ± 251 mL CH4/L, whereas SHF produced 3583 ± 128 mL CH4/L. In a one-stage methane production process, a maximum methane production of 4067 ± 320 mL CH4/L with a substrate loading of 4 g VS was achieved from the SSF process. SSF proved to be more efficient than SHF for producing hydrogen from DES-pretreated sugarcane leaves in a two-stage hydrogen and methane production process as well as a one-stage methane production process.
Collapse
|