1
|
Cheng R, Huang D, Xu X, Yang F. Optimal algae species inoculation strategy for algal-bacterial granular sludge: Sludge characteristics, performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123011. [PMID: 39447357 DOI: 10.1016/j.jenvman.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/16/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The algal-bacterial granular sludge (ABGS) system is emerging as a promising technology for future wastewater treatment. This study assessed the impact of different algae species inoculation on granulation, performance, and microbial communities within ABGS systems. The experimental setup included single-species inoculations (Chlorella sp. (R1), Scenedesmus sp. (R2), and Desmodesmus sp. (R3)) and a mixed-species inoculation strategy (R4). Results revealed that R4 achieved the fastest completed granulation process (15 days) with the largest average granule diameter (772.93 μm) and highest physical strength (2.24 ± 0.26%) in the end of the experiment. The relative abundance of extracellular polymeric substances secreting bacteria of R4 maintained high level in whole operation time. Algae assimilation capacity and the abundance of functional bacteria can also influence removal performance. In mature stage, only the average effluent total nitrogen (3.15 ± 2.87 mg/L), total phosphorus (0.37 ± 0.27 mg/L), chemical oxygen demand (25.25 ± 2.98 mg/L) concentration in R4 was lower than that of Grade I discharge standard of municipal wastewater treatment plants in China. The best inorganic carbon utilization and lipid production ability were observed in R4 and R3, respectively. The choice of inoculated algae species was identified as a key factor for bacterial community dynamics. Overall, above results demonstrated that mixed algae species inoculation can be selected as the optimal algae inoculation strategy due to its excellent granulation, performance, and acceptable carbon utilization and lipid production.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Dan Huang
- China State Shipbuilding Corporation Environmental Development Co., Ltd, Beijing, 100039, PR China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
2
|
Patelou M, Koletti A, Infante C, Skliros D, Komaitis F, Kalloniati C, Tsiplakou E, Mavrommatis A, Mantecón L, Flemetakis E. Omics exploration of Tetraselmis chuii adaptations to diverse light regimes. Antonie Van Leeuwenhoek 2024; 118:21. [PMID: 39419938 DOI: 10.1007/s10482-024-02028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
Microalgae are significantly influenced by light quality and quantity, whether in their natural habitats or under laboratory and industrial culture conditions. The present study examines the adaptive responses of the marine microalga Tetraselmis chuii to different light regimes, using a cost-effective filtering method and a multi-omics approach. Microalgal growth rates were negatively affected by all filtered light regimes. After six days of cultivation, growth rate for cultures exposed to blue and green filtered light was 67%, while for red filter was 83%, compared to control cultures. Transcriptomic analysis revealed that the usage of green filters resulted in upregulation of transcripts involved in ribosome biogenesis or coding for elongation factors, exemplified by a 2.3-fold increase of TEF3. On the other hand, a 2.7-fold downregulation was observed in photosynthesis-related petJ. Exposure to blue filtered light led to the upregulation of transcripts associated with pyruvate metabolism, while photosynthesis was negatively impacted. In contrast, application of red filter induced minor transcriptomic alterations. Regarding metabolomic analysis, sugars, amino acids, and organic acids exhibited significant changes under different light regimes. For instance, under blue filtered light sucrose accumulated over 6-fold, while aspartic acid content decreased by 4.3-fold. Lipidomics analysis showed significant accumulation of heptadecanoic and linoleic acids under green and red light filters. Together, our findings indicate that filter light can be used for targeted metabolic manipulation.
Collapse
Affiliation(s)
- Maria Patelou
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Carlos Infante
- Fitoplancton Marino, S.L., Dársena Comercial S/N (Muelle Pesquero), El Puerto de Santa María, 11500, Cádiz, Spain
| | - Dimitrios Skliros
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Fotios Komaitis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Chrysanthi Kalloniati
- Department of Marine Sciences, University of the Aegean, University Hill, 81100, Mytilene, Greece
| | - Eleni Tsiplakou
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Alexandros Mavrommatis
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Lalia Mantecón
- Fitoplancton Marino, S.L., Dársena Comercial S/N (Muelle Pesquero), El Puerto de Santa María, 11500, Cádiz, Spain
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
3
|
Ruales E, Gómez-Serrano C, Morillas-España A, González-López C, Escolà Casas M, Matamoros V, Garfí M, Ferrer I. Resource recovery and contaminants of emerging concern mitigation by microalgae treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121950. [PMID: 39068780 DOI: 10.1016/j.jenvman.2024.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to investigate the recovery of agricultural biostimulants and biogas from microalgae treating wastewater, in the framework of a circular bioeconomy. To this end, municipal wastewater was treated in demonstrative raceway ponds, and microalgal biomass (Scenedesmus sp.) was then harvested and downstream processed to recover biostimulants and biogas in a biorefinery approach. The effect of microalgal biostimulants on plants was evaluated by means of bioassays, while the biogas produced was quantified in biochemical methane potential (BMP) tests. Furthermore, the fate of contaminants of emerging concern (CECs) over the process was also assessed. Bioassays confirmed the biostimulant effect of microalgae, which showed gibberellin-, auxin- and cytokinin-like activity in watercress seed germination, mung bean rooting, and wheat leaf chlorophyll retention. In addition, the downstream process applied to raw biomass acted as a pre-treatment to enhance anaerobic digestion performance. After biostimulant extraction, the residual biomass represented 91% of the methane yield from the raw biomass (276 mLCH4·g-1VS). The kinetic profile of the residual biomass was 43% higher than that of the unprocessed biomass. Co-digestion with primary sludge further increased biogas production by 24%. Finally, the concentration of CECs in wastewater was reduced by more than 80%, and only 6 out of 22 CECs analyzed were present in the biostimulant obtained. Most importantly, the concentration of those contaminants was lower than in biosolids that are commonly used in agriculture, ensuring environmental safety.
Collapse
Affiliation(s)
- Evelyn Ruales
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Cintia Gómez-Serrano
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Ainoa Morillas-España
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Cynthia González-López
- UAL - Chemical Engineering Department, Universidad de Almería, Carretera Sacramento s/n, E-04120, Almería, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
4
|
Lee HK, Woo S, Baek D, Min M, Jung GY, Lim HG. Direct and robust citramalate production from brown macroalgae using fast-growing Vibrio sp. dhg. BIORESOURCE TECHNOLOGY 2024; 394:130304. [PMID: 38211713 DOI: 10.1016/j.biortech.2024.130304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Brown macroalgae is a promising feedstock for biorefinery owing to its high biomass productivity and contents of carbohydrates such as alginate and mannitol. However, the limited availability of microbial platforms efficiently catabolizing the brown macroalgae sugars has restricted its utilization. In this study, the direct production of citramalate, an important industrial compound, was demonstrated from brown macroalgae by utilizing Vibrio sp. dhg, which has a remarkably efficient catabolism of alginate and mannitol. Specifically, citramalate synthase from Methanocaldococcus jannaschii was synthetically expressed, and competing pathways were removed to maximally redirect the carbon flux toward citramalate production. Notably, a resulting strain, VXHC, produced citramalate up to 9.8 g/L from a 20 g/L mixture of alginate and mannitol regardless of their ratios. Citramalate was robustly produced even when diverse brown macroalgae were provided directly. Collectively, this study showcased the high potential of brown macroalgae biorefinery using Vibrio sp. dhg.
Collapse
Affiliation(s)
- Hye Kyung Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sunghwa Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dongyeop Baek
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myeongwon Min
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Hyun Gyu Lim
- Department of Biological Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon 22212, Korea.
| |
Collapse
|
5
|
Kalwani M, Kumari A, Rudra SG, Chhabra D, Pabbi S, Shukla P. Application of ANN-MOGA for nutrient sequestration for wastewater remediation and production of polyunsaturated fatty acid (PUFA) by Chlorella sorokiniana MSP1. CHEMOSPHERE 2024; 349:140835. [PMID: 38043617 DOI: 10.1016/j.chemosphere.2023.140835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Chlorella bears excellent potential in removing nutrients from industrial wastewater and lipid production enriched with polyunsaturated fatty acids. However, due to the changing nutrient dynamics of wastewater, growth and metabolic activity of Chlorella are affected. In order to sustain microalgal growth in wastewater with concomitant production of PUFA rich lipids, RSM (Response Surface Methodology) followed by heuristic hybrid computation model ANN-MOGA (Artificial Neural Network- Multi-Objective Genetic Algorithm) were implemented. Preliminary experiments conducted taking one factor at a time and design matrix of RSM with process variables viz. Sodium chloride (1 mM-40 mM), Magnesium sulphate (100 mg-800 mg) and incubation time (4th day to 20th day) were validated by ANN-MOGA. The study reported improved biomass and lipid yield by 54.25% and 12.76%, along with total nitrogen and phosphorus removal by 21.92% and 18.72% respectively using ANN-MOGA. It was evident from FAME results that there was a significantly improved concentration of linoleic acid (19.1%) and γ-linolenic acid (21.1%). Improved PUFA content makes it a potential feedstock with application in cosmeceutical, pharmaceutical and nutraceutical industry. The study further proves that C. sorokiniana MSP1 mediated industrial wastewater treatment with PUFA production is an effective way in providing environmental benefits along with value addition. Moreover, ANN-MOGA is a relevant tool that could control microalgal growth in wastewater.
Collapse
Affiliation(s)
- Mohneesh Kalwani
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India; Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arti Kumari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shalini G Rudra
- Division of Food Science and Post Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Deepak Chhabra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
6
|
Rossi S, Carecci D, Marazzi F, Di Benedetto F, Mezzanotte V, Parati K, Alberti D, Geraci I, Ficara E. Integrating microalgae growth in biomethane plants: Process design, modelling, and cost evaluation. Heliyon 2024; 10:e23240. [PMID: 38163195 PMCID: PMC10755323 DOI: 10.1016/j.heliyon.2023.e23240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of microalgae cultivation in anaerobic digestion (AD) plants can take advantage of relevant nutrients (ammonium and ortho-phosphate) and CO2 loads. The proposed scheme of microalgae integration in existing biogas plants aims at producing approximately 250 t·y-1 of microalgal biomass, targeting the biostimulants market that is currently under rapid expansion. A full-scale biorefinery was designed to treat 50 kt·y-1 of raw liquid digestate from AD and 0.45 kt·y-1 of CO2 from biogas upgrading, and 0.40 kt·y-1 of sugar-rich solid by-products from a local confectionery industry. An innovative three-stage cultivation process was designed, modelled, and verified, including: i) microalgae inoculation in tubular PBRs to select the desired algal strains, ii) microalgae cultivation in raceway ponds under greenhouses, and iii) heterotrophic microalgae cultivation in fermenters. A detailed economic assessment of the proposed biorefinery allowed to compute a biomass production cost of 2.8 ± 0.3 €·kg DW-1, that is compatible with current downstream process costs to produce biostimulants, suggesting that the proposed nutrient recovery route is feasible from the technical and economic perspective. Based on the case study analysis, a discussion of process, bioproducts and policy barriers that currently hinder the development of microalgae-based biorefineries is presented.
Collapse
Affiliation(s)
- Simone Rossi
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Davide Carecci
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Francesca Marazzi
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Francesca Di Benedetto
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Valeria Mezzanotte
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Katia Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Aquaculture division, 26027 Rivolta d’Adda, Italy
| | | | | | - Elena Ficara
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| |
Collapse
|
7
|
Qin S, Wang K, Gao F, Ge B, Cui H, Li W. Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:131. [PMID: 37644516 PMCID: PMC10466707 DOI: 10.1186/s13068-023-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Microalgal biomass represents a sustainable bioresource for various applications, such as food, nutraceuticals, pharmaceuticals, feed, and other bio-based products. For decades, its mass production has attracted widespread attention and interest. The process of microalgal biomass production involves several techniques, mainly cultivation, harvesting, drying, and pollution control. These techniques are often designed and optimized to meet optimal growth conditions for microalgae and to produce high-quality biomass at acceptable cost. Importantly, mass production techniques are important for producing a commercial product in sufficient amounts. However, it should not be overlooked that microalgal biotechnology still faces challenges, in particular the high cost of production, the lack of knowledge about biological contaminants and the challenge of loss of active ingredients during biomass production. These issues involve the research and development of low-cost, standardized, industrial-scale production equipment and the optimization of production processes, as well as the urgent need to increase the research on biological contaminants and microalgal active ingredients. This review systematically examines the global development of microalgal biotechnology for biomass production, with emphasis on the techniques of cultivation, harvesting, drying and control of biological contaminants, and discusses the challenges and strategies to further improve quality and reduce costs. Moreover, the current status of biomass production of some biotechnologically important species has been summarized, and the importance of improving microalgae-related standards for their commercial applications is noted.
Collapse
Affiliation(s)
- Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China.
| | - Kang Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengzheng Gao
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, Netherlands
- Laboratory of Sustainable Food Processing, ETH Zürich, 8092, Zurich, Switzerland
- Laboratory of Nutrition and Metabolic Epigenetics, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Baosheng Ge
- College of Chemical Engineering and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
| |
Collapse
|
8
|
Mao X, Zhou X, Fan X, Jin W, Xi J, Tu R, Naushad M, Li X, Liu H, Wang Q. Proteomic analysis reveals mechanisms of mixed wastewater with different N/P ratios affecting the growth and biochemical characteristics of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 381:129141. [PMID: 37169198 DOI: 10.1016/j.biortech.2023.129141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Effects of different nutrient ratios on the biochemical compositions of microalgae and the changes were rarely studied at the molecular level. In this study, the impacts of various nitrogen to phosphorus (N/P) ratios on growing of C. pyrenoidosa, as well as biochemical compositions and the metabolic regulation mechanism in mixed sewage, were investigated. The results suggested that 18 was optimal N/P ratio, while the dry weight (1.0 g/L), chlorophyll-a (Chla) (3.63 mg/L), and lipid production (0.28 g/L) were all the highest comparing with other groups. In contrast, the protein production (0.37 g/L) was the least. The nature of the regulatory mechanisms inthe metabolic pathways of these biochemical compositions was revealed by proteomic results, and there were 62 different expression proteins (DEPs) taken part in fatty acid and lipid biosynthesis metabolism (FA), amino acid biosynthesis metabolism (AA), photosynthesis (PHO), carbon fixation in photosynthetic organisms (CFP), and central carbon metabolism (CCM).
Collapse
Affiliation(s)
- Xinrui Mao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Xiumin Fan
- Shenzhen ecological and environmental intelligent management and control center, Shenzhen, 518034, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jingjing Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Renjie Tu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Rambabu K, Avornyo A, Gomathi T, Thanigaivelan A, Show PL, Banat F. Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128257. [PMID: 36343781 DOI: 10.1016/j.biortech.2022.128257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Phycoremediation is gaining attention not only as a pollutant mitigation approach but also as one of the most cost-effective paths to achieve carbon neutrality. When compared to conventional treatment methods, phycoremediation is highly effective in removing noxious substances from wastewater and is inexpensive, eco-friendly, abundantly available, and has many other advantages. The process results in valuable bioproducts and bioenergy sources combined with pollutants capture, sequestration, and utilization. In this review, microalgae-based phycoremediation of various wastewaters for carbon neutrality and circular economy is analyzed scientometrically. Different mechanisms for pollutants removal and resource recovery from wastewaters are explained. Further, critical parameters that influence the engineering design and phycoremediation performance are described. A comprehensive knowledge map highlighting the microalgae potential to treat a variety of industrial effluents is also presented. Finally, challenges and future prospects for industrial implementation of phycoremediation towards carbon neutrality coupled with circular economy are discussed.
Collapse
Affiliation(s)
- K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Amos Avornyo
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - T Gomathi
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, India
| | - A Thanigaivelan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Dębowski M, Kazimierowicz J, Świca I, Zieliński M. Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls- Scenedesmus sp. and Pinnularia sp. PLANTS (BASEL, SWITZERLAND) 2022; 12:53. [PMID: 36616189 PMCID: PMC9823343 DOI: 10.3390/plants12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Microalgae are considered to be very promising feedstocks for biomethane production. It has been shown that the structure of microalgal cell walls can be highly detrimental to the anaerobic digestibility of biomass. Therefore, there is a real need to seek ways to eliminate this problem. The aim of the present study was to assess the effect of ultrasonic disintegration of Scenedesmus sp. and Pinnularia sp. microalgal biomass on the performance and energy efficiency of anaerobic digestion. The pretreatment was successful in significantly increasing dissolved COD and TOC in the system. The highest CH4 yields were noted for Scenedesmus sp. sonicated for 150 s and 200 s, which produced 309 ± 13 cm3/gVS and 313 ± 15 cm3/gVS, respectively. The 50 s group performed the best in terms of net energy efficiency at 1.909 ± 0.20 Wh/gVS. Considerably poorer performance was noted for Pinnularia sp., with biomass yields and net energy gains peaking at CH4 250 ± 21 cm3/gVS and 0.943 ± 0.22 Wh/gVS, respectively. Notably, the latter value was inferior to even the non-pretreated biomass (which generated 1.394 ± 0.19 Wh/gVS).
Collapse
Affiliation(s)
- Marcin Dębowski
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Izabela Świca
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Marcin Zieliński
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| |
Collapse
|
11
|
Oh YK, Kim S, Ilhamsyah DPA, Lee SG, Kim JR. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances. BIORESOURCE TECHNOLOGY 2022; 366:128183. [PMID: 36307027 DOI: 10.1016/j.biortech.2022.128183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Chlorella is a promising microalga for CO2-neutral biorefinery that co-produces drop-in biofuels and multiple biochemicals. Cell disruption and selective lipid extraction steps are major technical bottlenecks in biorefinement because of the inherent robustness and complexity of algal cell walls. This review focuses on the state-of-the-art achievements in cell disruption and lipid extraction methods for Chlorella species within the last five years. Various chemical, physical, and biological approaches have been detailed theoretically, compared, and discussed in terms of the degree of cell wall disruption, lipid extractability, chemical toxicity, cost-effectiveness, energy use, scalability, customer preferences, environment friendliness, and synergistic combinations of different methods. Future challenges and prospects of environmental-friendly and efficient extraction technologies are also outlined for practical applications in sustainable Chlorella biorefineries. Given the diverse industrial applications of Chlorella, this review may provide useful information for downstream processing of the advanced biorefineries of other algae genera.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Sangui Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Goveas LC, Nayak S, Vinayagam R, Loke Show P, Selvaraj R. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 365:128169. [PMID: 36283661 DOI: 10.1016/j.biortech.2022.128169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Overexploitation of natural resources to meet human needs has considerably impacted CO2 emissions, contributing to global warming and severe climatic change. This review furnishes an understanding of the sources, brutality, and effects of CO2 emissions and compelling requirements for metamorphosis from a linear to a circular bioeconomy. A detailed emphasis on microalgae, its types, properties, and cultivation are explained with significance in attaining a zero-carbon circular bioeconomy. Microalgal treatment of a variety of wastewaters with the conversion of generated biomass into value-added products such as bio-energy and pharmaceuticals, along with agricultural products is elaborated. Challenges encountered in large-scale implementation of microalgal technologies for low-carbon circular bioeconomy are discussed along with solutions and future perceptions. Emphasis on the suitability of microalgae in wastewater treatment and its conversion into alternate low-carbon footprint bio-energies and value-added products enforcing a zero-carbon circular bioeconomy is the major focus of this review.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
13
|
Arora N, Nanda M, Kumar V. Sustainable algal biorefineries: capitalizing on many benefits of GABA. Trends Biotechnol 2022; 41:600-603. [PMID: 36473767 DOI: 10.1016/j.tibtech.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022]
Abstract
We provide physiological and metabolic insights into the complex role of γ-aminobutyric acid (GABA) in fine-tuning algal metabolism to improve productivity. Genetic engineering strategies to improve algal GABA biosynthesis are also discussed. Our aim is to provide an understanding of how GABA can be used for cost-competitive algae-based biofuels and bioproducts.
Collapse
Affiliation(s)
- Neha Arora
- Department of Cell, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun, Uttarakhand 248007, India
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
14
|
Sharmila VG, Rajesh Banu J, Dinesh Kumar M, Adish Kumar S, Kumar G. Algal biorefinery towards decarbonization: Economic and environmental consideration. BIORESOURCE TECHNOLOGY 2022; 364:128103. [PMID: 36243260 DOI: 10.1016/j.biortech.2022.128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Algae biomass contains various biological elements, including lipids, proteins, and carbohydrates, making it a viable feedstock for manufacturing biofuels. However, the biggest obstacle to commercializing algal biofuels is their high production costs, primarily related to an algae culture. The extraction of additional high value added bioproducts from algal biomass is thus required to increase the economic viability of producing algae biofuel. This study aims to discuss the economic benefits of a zero-carbon economy and an environmentally sustainable algae resource in decarbonizing the environment through the manufacture of algal-based biofuels from algae biomass for a range of potential uses. In addition, research on the algae biorefineries, with an emphasis on case studies for various cultivation methods, as well as the commercialization of biofuel and bioenergy. Overall, the algal biorefinery offers fresh potential for synthesizing various products.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Behera B, Mari Selvam S, Balasubramanian P. Hydrothermal processing of microalgal biomass: Circular bio-economy perspectives for addressing food-water-energy nexus. BIORESOURCE TECHNOLOGY 2022; 359:127443. [PMID: 35697260 DOI: 10.1016/j.biortech.2022.127443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal processing of microalgae is regarded as a promising technology to generate multitude of energy based and value-added products. The niche of hydrothermal technologies is still under infancy in terms of the technical discrepancies related to research and development. Thus, the present review critically surveyed the recent advancements linked to the influencing factors governing the algal hydrothermal processing in terms of the product yield and quality. The sustainability of hydrothermal technologies as a standalone method and in broader aspects of circular bio-based economy for energy and value-added platform chemicals are comprehensively discussed. Process optimization and strategic integration of technologies has been suggested to improve efficiency, with reduced energy usage and environmental impacts for addressing the energy-food-water supply chains. Within the wider economic transition and sustainability debate, the knowledge gaps identified and the research hotspots fostering future perspective solutions proposed herewith would facilitate its real-time implementation.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, India.
| | - S Mari Selvam
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, India
| | - Paramasivan Balasubramanian
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, India
| |
Collapse
|