1
|
Rajamanickam R, Selvasembian R. Mechanistic insights into the potential application of Scenedesmus strains towards the elimination of antibiotics from wastewater. BIORESOURCE TECHNOLOGY 2024; 410:131289. [PMID: 39153695 DOI: 10.1016/j.biortech.2024.131289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Scenedesmus strains have been reported to have the potential to tolerate and bioremediate antibiotic pollutants through bioadsorption, bioaccumulation, and biodegradation mechanism from the wastewater medium. Hormesis effects have been observed in the Scenedesmus strains when exposed to different concentrations of antibiotic pollutants. Lower concentrations of antibiotic pollutants are known to trigger growth-stimulating effects by triggering adaptive responses such as increased metabolic activity and activating detoxifying mechanisms leading to the biotransformation pathway. The present review examines the existing body of information pertaining to biotransformation pathways tolerance, hormesis effects, and efficiency of Scenedesmus strains in removing various antibiotic pollutants. This review provides critical information on using Scenedesmus species to treat antibiotic-polluted wastewater by boosting growth and resilience tolerant doses and avoiding toxicity at higher doses.
Collapse
Affiliation(s)
- Ricky Rajamanickam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|
2
|
Zhao K, Si T, Liu S, Liu G, Li D, Li F. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176561. [PMID: 39362550 DOI: 10.1016/j.scitotenv.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Tingting Si
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Ma Y, Lin S, Guo T, Guo C, Li Y, Hou Y, Gao Y, Dong R, Liu S. Exploring the influence of sulfadiazine-induced stress on antibiotic removal and transformation pathway using microalgae Chlorella sp. ENVIRONMENTAL RESEARCH 2024; 256:119225. [PMID: 38797461 DOI: 10.1016/j.envres.2024.119225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.
Collapse
Affiliation(s)
- Yanfang Ma
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shupeng Lin
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Ting Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, PR China
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA, 22202, USA
| | - Yahan Hou
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yongchang Gao
- Shandong High Speed Renewable Energy Group Limited, Jinan, 250000, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China.
| |
Collapse
|
4
|
Ho QN, Hidaka T, Rahman MA, Yoshida N. Application of natural zeolite adsorption in cooperation with photosynthesis for the post-treatment of microbial fuel cells. RSC Adv 2024; 14:26484-26493. [PMID: 39175683 PMCID: PMC11339683 DOI: 10.1039/d4ra04672b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Microbial fuel cells (MFCs) are a promising technology that directly converts organic matter (OM) in wastewater into electricity while simultaneously degrading contaminants. However, MFCs are insufficient for the removal of nitrogenous compounds. Therefore, the post-treatment of MFCs is essential. This study was the first to use natural zeolite adsorption integrated with photosynthesis (ZP) for post-treating MFCs. In this system, no external energy was required; instead, natural light was used to promote the growth of photosynthetic microorganisms, thereby enhancing contaminants removal through the photosynthesis process. To assess the effectiveness of the method, comparisons were conducted under two conditions: dark (no photosynthesis) and light (with photosynthesis). In darkness, extending hydraulic retention time (HRT) enhanced COD and BOD removal by 19.8% and 28.9%, respectively. When exposed to natural light, improvements were even more notable, with COD and BOD removal reaching 32% and 40%, respectively. In both conditions, the method effectively removed NH4 +, achieving 60% efficiency in darkness and 84.5% in light. This study showed that the adsorption capacity of the zeolite reached saturation when the cumulative liquid volume per unit weight of the zeolite exceeded 0.2 L g-1. The key functional photosynthetic microbes were investigated using 16S rRNA and 18S rRNA. This revealed the presence of microorganisms such as Chlorobium, Acidovorax, Novosphingobium, and Scenedesmus, which likely play a role in enhancing the efficiency of photosynthesis in removing contaminants. The study findings indicated that the integration of MFCs-ZP represents an eco-friendly approach capable of resource recovery from wastewater while also meeting discharge standards.
Collapse
Affiliation(s)
- Que Nguyen Ho
- Department of Civil Engineering, Nagoya Institute of Technology Nagoya Japan
| | - Taira Hidaka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura Nishikyo Kyoto 615-8540 Japan
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia 81310 UTM Skudai Johor Malaysia
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology Nagoya Japan
| |
Collapse
|
5
|
Bang Truong H, Nguyen THT, Ba Tran Q, Son Lam V, Thao Nguyen Nguyen T, Cuong Nguyen X. Algae-constructed wetland integrated system for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 406:131003. [PMID: 38925406 DOI: 10.1016/j.biortech.2024.131003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Integrating algae into constructed wetlands (CWs) enhances wastewater treatment, although the results vary. This review evaluates the role of algae in CWs and the performance of different algae-CW (A-CW) configurations based on literature and meta-analysis. Algae considerably improve N removal, although their impact on other parameters varies. Statistical analysis revealed that 70 % of studies report improved treatment efficiencies with A-CWs, achieving average removal rates of 75 % for chemical oxygen demand (COD), 74 % for total nitrogen and ammonium nitrogen, and 79 % for total phosphorus (TP). This review identifies hydraulic retention times, which average 3.1 days, and their varied impact on treatment efficacy. Mixed-effects models showed a slight increase in COD and TP removal efficiencies of 0.6 % every ten days in the A-CWs. Future research should focus on robust experimental designs, adequate algal storage and separation techniques, and advanced modeling to optimize the treatment potential of algae in CWs.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 70000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Viet Nam
| | - T Hong Tinh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Quoc Ba Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Vinh Son Lam
- HUTECH Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - T Thao Nguyen Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Viet Nam
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
6
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
7
|
Li J, Li T, Sun D, Guan Y, Zhang Z. Treatment of agricultural wastewater using microalgae: A review. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:41-82. [PMID: 39059843 DOI: 10.1016/bs.aambs.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.
Collapse
Affiliation(s)
- Jiayi Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Tong Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Dongzhe Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, P.R. China.
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, P.R. China; College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China.
| |
Collapse
|
8
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
9
|
Kumar N, Shukla P. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants. ENVIRONMENTAL RESEARCH 2024; 247:118135. [PMID: 38218523 DOI: 10.1016/j.envres.2024.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The enhanced industrial growth and higher living standards owing to the incessant population growth have caused heightened production of various chemicals in different manufacturing sectors globally, resulting in pollution of aquatic systems and soil with hazardous chemical contaminants. The bioremediation of such hazardous pollutants through microalgal processes is a viable and sustainable approach. Accomplishing microalgal-based bioremediation of polluted wastewater requires a comprehensive understanding of microalgal metabolic and physiological dynamics. Microalgae-bacterial consortia have emerged as a sustainable agent for synergistic bioremediation and metabolite production. Effective bioremediation involves proper consortium functioning and dynamics. The present review highlights the mechanistic processes employed through microalgae in reducing contaminants present in wastewater. It discusses the multi-omics approaches and their advantages in understanding the biological processes, monitoring, and dynamics among the partners in consortium through metagenomics. Transcriptomics, proteomics, and metabolomics enable an understanding of microalgal cell response toward the contaminants in the wastewater. Finally, the challenges and future research endeavors are summarised to provide an outlook on microalgae-based bioremediation.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Li Z, Li S, Wu Q, Gao X, Zhu L. Physiological responses and removal mechanisms of ciprofloxacin in freshwater microalgae. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133519. [PMID: 38278073 DOI: 10.1016/j.jhazmat.2024.133519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Antibiotics, such as ciprofloxacin (CIP), are frequently detected in various environmental compartments, posing significant risks to ecosystems and human health. In this study, the physiological responses and elimination mechanisms of CIP in Chlorella sorokiniana and Scenedesmus dimorphus were determined. The exposure CIP had a minimal impact on the growth of microalgae, with maximum inhibit efficiency (IR) of 5.14% and 22.74 for C. sorokiniana and S. dimorphus, respectively. Notably, the photorespiration in S. dimorphus were enhanced. Both microalgae exhibited efficient CIP removal, predominantly through bioaccumulation and biodegradation processes. Intermediates involved in photolysis and biodegradation were analyzed through Liquid Chromatography High Resolution Mass Spectrometer (HPLC-MS/MS), providing insights into degradation pathways of CIP. Upregulation of key enzymes, such as dioxygenase, oxygenase and cytochrome P450, indicated their involvement in the biodegradation of CIP. These findings enhance our understanding of the physiological responses, removal mechanisms, and pathways of CIP in microalgae, facilitating the advancement of microalgae-based wastewater treatment approaches, particularly in antibiotic-contaminated environments.
Collapse
Affiliation(s)
- Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Qirui Wu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Xinxin Gao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
11
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
12
|
Zhou JL, Li JN, Zhou D, Wang JM, Ye YH, Zhang C, Gao F. Dialysis bag-microalgae photobioreactor: Novel strategy for enhanced bioresource production and wastewater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120439. [PMID: 38401502 DOI: 10.1016/j.jenvman.2024.120439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Cultivating microalgae in wastewater offers various advantages, but it still faces limitations such as bacteria and other impurities in wastewater affecting the growth and purity of microalgae, difficulty in microalgae harvesting, and extracellular products of microalgae affecting effluent quality. In this study, a novel dialysis bag-microalgae photobioreactor (Db-PBR) was developed to achieve wastewater purification and purer bioresource recovery by culturing microalgae in a dialysis bag. The dialysis bag in the Db-PBR effectively captured the microalgae cells and promoted their lipid accumulation, leading to higher biomass (1.53 times of the control) and lipid production (2.50 times of the control). During the stable operation stage of Db-PBR, the average soluble microbial products (SMP) content outside the dialysis bag was 25.83 mg L-1, which was significantly lower than that inside the dialysis bag (185.63 mg L-1), indicating that the dialysis bag effectively intercepted the SMP secreted by microalgae. As a result, the concentration of dissolved organic carbon (DOC) in Db-PBR effluent was significantly lower than that of traditional photobioreactor. Furthermore, benefiting from the dialysis bag in the reactor effectively intercepted the microorganisms in wastewater, significantly improving the purity of the cultured microalgae biomass, which is beneficial for the development of high-value microalgae products.
Collapse
Affiliation(s)
- Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jia-Nan Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Dan Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jia-Ming Wang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Yi-Hang Ye
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ci Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
13
|
Zhou JL, Yang ZY, Vadiveloo A, Li C, Chen QG, Chen DZ, Gao F. Enhancing lipid production and sedimentation of Chlorella pyrenoidosa in saline wastewater through the addition of agricultural phytohormones. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120445. [PMID: 38412732 DOI: 10.1016/j.jenvman.2024.120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
In this study, the effect of external agricultural phytohormones (mixed phytohormones) addition (1.0, 5.0, 10.0, and 20.0 mg L-1) on the growth performance, lipid productivity, and sedimentation efficiency of Chlorella pyrenoidosa cultivated in saline wastewater was investigated. Among the different concentrations evaluated, the highest biomass (1.00 g L-1) and lipid productivity (11.11 mg L-1 d-1) of microalgae were obtained at 10.0 mg L-1 agricultural phytohormones addition. Moreover, exogenous agricultural phytohormones also improved the sedimentation performance of C. pyrenoidosa, which was conducive to the harvest of microalgae resources, and the improvement of sedimentation performance was positively correlated with the amount of agricultural phytohormones used. The promotion of extracellular polymeric substances synthesis by phytohormones in microalgal cells could be considered as the reason for its promotion of microalgal sedimentation. Transcriptome analysis revealed that the addition of phytohormones upregulated the expression of genes related to the mitogen-activated protein kinase (MAPK)-mediated phytohormone signaling pathway and lipid synthesis, thereby improving salinity tolerance and lipid production in C. pyrenoidosa. Overall, agricultural phytohormones provide an effective and inexpensive strategy for increasing the lipid productivity and sedimentation efficiency of microalgae cultured in saline wastewater.
Collapse
Affiliation(s)
- Jin-Long Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Zi-Yan Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Chen Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Qing-Guo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Dong-Zhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Feng Gao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
14
|
Mehariya S, Das P, Thaher MI, Abdul Quadir M, Khan S, Sayadi S, Hawari AH, Verma P, Bhatia SK, Karthikeyan OP, Zuorro A, Al-Jabri H. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. CHEMOSPHERE 2024; 351:141245. [PMID: 38242513 DOI: 10.1016/j.chemosphere.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to μg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | | | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
15
|
Qu Y, Chen J, Russel M, Huang W, Bingke Y, Lei W, Zhang D, Blaszczak-Boxe C. Optimizing concentration and interaction mechanism of Demodesmus sp. and Achromobacter pulmonis sp. consortium to evaluate their potential for dibutyl phthalate removal from synthetic wastewater. BIORESOURCE TECHNOLOGY 2024; 395:130372. [PMID: 38278454 DOI: 10.1016/j.biortech.2024.130372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
A green approach of Desmodesmus sp. to Achromobacter pulmonis (1:1) coculture ratios was optimized to improve the removal efficiency of dibutyl phthalate (DBP) from simulated wastewater. High DBP resistance bacterial strains and microalgae was optimized from plastic contaminated water and acclimation process respectively. The influence of various factors on DBP removal performance was comprehensively investigated. Highest DBP removal 93 % was recorded, when the ratios algae-bacteria 1:1, with sodium acetate, pH-6, shaking speed-120 rpm and lighting periods L:D-12:12. Enough nutrient (TN/TP/TOC) availability and higher protein-108 mg/L and sugar-40 mg/L were observed in presences of 50 mg/L DBP. The degradation and sorption were calculated 81,12; 27,39 & 43,12 % in algae-bacteria, only algae and only bacteria system respectively. The degradation kinetics t1/2 3.74,22.15,12.86 days were evaluated, confirming that algae-bacteria effectively degrade the DBP. This outcome leading to promote a green sustainable approach to remove the emerging contamination from wastewater.
Collapse
Affiliation(s)
- Yihe Qu
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing 100012, P.R.China
| | - Mohammad Russel
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China.
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yang Bingke
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Wu Lei
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Dayong Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Christopher Blaszczak-Boxe
- Earth, Environment, & Equity Department, NOAA Center for Atmospheric Science & Meteorology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
16
|
Dai C, Wang F. Potential applications of microalgae-bacteria consortia in wastewater treatment and biorefinery. BIORESOURCE TECHNOLOGY 2024; 393:130019. [PMID: 38000638 DOI: 10.1016/j.biortech.2023.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The use of microalgae-bacteria consortia (MBC) for wastewater treatment has garnered attention as their interactions impart greater environmental adaptability and stability compared with that obtained by only microalgae or bacteria use, thereby improving the efficiency of pollutant removal and bio-product productivity. Additionally, the value-added bio-products produced via biorefineries can improve economic competitiveness and environmental sustainability. Therefore, this review focuses on the interaction between microalgae and bacteria that leads to nutrient exchange, gene transfer and signal transduction to comprehensively understand the interaction mechanisms underlying their strong adaptability. In addition, it includes recent research in which MBC has been efficiently used to treat various wastewater. Moreover, the review summarizes the use of MBC-produced biomass in a biorefining context to produce biofuel, biomaterial, high-value bio-products and bio-fertilizer. Overall, more effort is needed to identify the symbiotic mechanism in MBC to provide a foundation for circular bio-economy and environmentally friendly development programmes.
Collapse
Affiliation(s)
- Chenming Dai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
17
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
18
|
Zhou JL, Vadiveloo A, Chen DZ, Gao F. Regulation effects of indoleacetic acid on lipid production and nutrient removal of Chlorella pyrenoidosa in seawater-containing wastewater. WATER RESEARCH 2024; 248:120864. [PMID: 37979569 DOI: 10.1016/j.watres.2023.120864] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/12/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The utilization of seawater supplemented with wastewater nutrients for microalgae cultivation represents a promising and cost-effective approach that combines the benefits of wastewater treatment and microalgal resource recovery. However, the high salt content in seawater poses a significant challenge, hindering microalgal growth and reducing the removal of nitrogen and phosphorus on a large scale. The phytohormone indoleacetic acid (IAA) was used in this study to enhance stress resistance and lipid production of Chlorella pyrenoidosa grown in seawater-wastewater medium. Compared to the control groups involving regular wastewater and seawater-containing wastewater without IAA, Chlorella pyrenoidosa cultivated in the seawater-containing wastewater supplemented with IAA exhibited remarkable outcomes. Specifically, microalgae in IAA-enhanced seawater-containing wastewater achieved the highest lipid productivity (22.67 mg L-1 d-1) along with impressive nitrogen (99.3 %) and phosphorus (97.3 %) removal rates. Moreover, their cell sedimentation ratio reached 76.6 %, indicating enhanced settling properties. Additionally, the physiological mechanism changes after exposure to seawater stress and IAA were revealed based on the changes in antioxidant enzymes, endogenous hormones, and fatty acid saturation. Furthermore, the transcriptomic analysis elucidated the molecular mechanisms underlying microalgal lipid synthesis and their response to antioxidant stress when exposed to seawater. The supplementation of IAA under seawater stress stimulated energy metabolism and the antioxidant response in microalgal cells, effectively mitigating the adverse effects of seawater stress and promoting overall algal lipid productivity. Overall, this study unveiled the potential of exogenous plant hormones, particularly IAA, in enhancing stress resistance and lipid productivity of microalgae grown in seawater-wastewater medium, which significantly contributed towards the efficient use of seawater resources for microalgae cultivation and biofuel production.
Collapse
Affiliation(s)
- Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
19
|
Huang KX, Mao BD, Lu MM, Chen DZ, Qiu J, Gao F. Effect of external acetate added in aquaculture wastewater on mixotrophic cultivation of microalgae, nutrient removal, and membrane contamination in a membrane photobioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119391. [PMID: 37890297 DOI: 10.1016/j.jenvman.2023.119391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The mixotrophic cultivation of microalgae in wastewater has attracted extensive attention due to its many advantages. In this study, acetate, which can be prepared by hydrolysis of aquaculture waste, was used as exogenous organic matter to promote the growth of Chlorella pyrenoidosa cultured in aquaculture wastewater. Microalgae cultivation was carried out in a membrane photobioreactor (MPBR) with continuous inflow and outflow mode. The results showed that exogenous acetate greatly promoted the mixotrophic growth of C. pyrenoidosa. When the dosage of acetate reached 1.0 g L-1, the relative growth rate of microalgae in the logarithmic stage reached 0.31 d-1, which was 4.4 times that of the control. As a result, exogenous acetate also promoted the removal of nutrients from aquaculture wastewater. During the stable operation stage of the MPBR with acetate added in the influent, an average of 87.41%-93.93% nitrogen and 76.34%-88.55% phosphorus was removed from the aquaculture wastewater containing 19.41 mg L-1 total inorganic nitrogen and 1.31 mg L-1 total inorganic phosphorus. However, it was worth noting that adding exogenous acetate also led to an increase in the membrane resistance of the membrane module in the MPBR. Membrane resistance was mainly composed of internal resistance (Ri) and cake resistance (Rc), and with the increase of acetate content in the influent, their proportion in the total resistance gradually increased. Ri contributed the major membrane resistance and was most affected by acetate dosage. Ri reached 32.04 × 1012 m-1 with 1 g L-1 acetate, which accounted for 69.49% of total resistance. Moreover, with the increase of influent acetate concentration of the MPBRs, both the number of insoluble contaminants and dissolved organic contaminants in the membrane modules increased. In addition, the composition of proteins, polysaccharides, and humus in dissolved organic contaminants was close to that in extracellular polymeric substances and soluble microbial products secreted by microalgae. These results suggested that the membrane fouling of membrane modules was closely related to the algal biomass content in the MPBRs. The above results provided a theoretical basis for reducing membrane fouling of MPBR.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Bing-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Miao-Miao Lu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
20
|
Bai Y, Ji B. Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater. World J Microbiol Biotechnol 2023; 40:40. [PMID: 38071273 DOI: 10.1007/s11274-023-03819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
21
|
Ricky R, Shanthakumar S. A pilot-scale study on the removal of binary mixture (ciprofloxacin and norfloxacin) by Scenedesmus obliquus: Optimization, biotransformation, and biofuel profile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118388. [PMID: 37354597 DOI: 10.1016/j.jenvman.2023.118388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
Ciprofloxacin (CIP) and norfloxacin (NOR) belong to the organic contaminants of emerging concern (OCECs) that are frequently detected in wastewater matrices at ng/L to mg/L concentrations. This study investigates the potential of Scenedesmus obliquus in the treatment of CIP and NOR as a binary mixture from raw wastewater. Optimization of inoculum was done to find the required cell density concentration that has less inhibition and high removal. The optimum inoculum (cell density: 200 × 105 cells/mL and OD680: 1.0) has shown 75% removal with no inhibition of growth. A pilot scale study was conducted in controlled environment using high-rate algal pond to investigate the contribution of abiotic and biotic removal. Abiotic removal is negligible in comparison with the biotic contribution of removal. The order of removal efficiency is observed as COD (88%) > NOR (84.8%) > CIP (84.6%) > NH4+ (71.7%) with biodegradation as the major removal mechanism. Biotransformed products of CIP + NOR were identified inside the Scenedesmus obliquus. During the pilot-scale study, Biomass (3.70 ± 0.07 g/L) was harvested with carbohydrates (17.85 ± 0.1%), lipids (38.36 ± 0.13%), and proteins (28.18 ± 1.63%). Lipid productivity in binary mixture was 2.6 times higher than the lipid production in control condition. Transesterification of these lipids yielded good biofuel composition of 32.72% of saturated fatty acids and 21.7% of unsaturated fatty acids.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Centre for Clean Environment, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
22
|
Zhou JL, Gao F. Phytohormones: novel strategy for removing emerging contaminants and recovering resources. Trends Biotechnol 2023; 41:992-995. [PMID: 36959081 DOI: 10.1016/j.tibtech.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Microalgae have the ability to remove emerging contaminants (ECs) from wastewater and to recover resources, but this is limited by oxidative damage caused by the contaminants. Recently, phytohormones have been found to improve the tolerance of microalgae under oxidative stress, to promote the removal of ECs, and to enhance the synthesis of metabolites.
Collapse
Affiliation(s)
- Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
23
|
Krishnani KK, Boddu VM, Singh RD, Chakraborty P, Verma AK, Brooks L, Pathak H. Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)-a circular bioresource utilization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84999-85045. [PMID: 37400699 DOI: 10.1007/s11356-023-28261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
The release of contaminants of environmental concern including heavy metals and metalloids, and contaminants of emerging concern including organic micropollutants from processing industries, pharmaceuticals, personal care, and anthropogenic sources, is a growing threat worldwide. Mitigating inorganic and organic contaminants, which can be coined as contaminants of environmental and emerging concern (CEECs), is a big challenge as traditional physicochemical processes are not economically viable for managing mixed contaminants of low concentrations. As a result, low-cost materials must be designed to provide high CEEC removal efficiency. One of the environmentally viable and energy-efficient approaches is biosorption, which involves using biomass or biopolymers isolated from plants or animals to decontaminate heavy metals in contaminated environments using inherent biological mechanisms. Among chemical constituents in plant biomass, cellulose, lignin, hemicellulose, proteins, polysaccharides, phenolic compounds, and animal biomass include polysaccharides and other compounds to bind heavy metals covalently and non-covalently. These functional groups include carboxyl, hydroxyl, carbonyl, amide, amine, and sulfhydryl. Cation-exchange capacities of these bioadsorbents can be improved by applying chemical modifications. The relevance of chemical constituents and bioactives in biosorbents derived from agricultural production such as food and fodder crops, bioenergy and cash crops, fruit and vegetable crops, medicinal and aromatic plants, plantation trees, aquatic and terrestrial weeds, and animal production such as dairy, goatery, poultry, duckery, and fisheries is highlighted in this comprehensive review for sequestering and bioremediation of CEECs, including as many as ten different heavy metals and metalloids co-contaminated with other organic micropollutants in circular bioresource utilization and one-health concepts.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Veera Mallu Boddu
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Rajkumar Debarjeet Singh
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Lance Brooks
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India
| |
Collapse
|
24
|
Yang L, Vadiveloo A, Chen AJ, Liu WZ, Chen DZ, Gao F. Supplementation of exogenous phytohormones for enhancing the removal of sulfamethoxazole and the simultaneous accumulation of lipid by Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2023; 378:129002. [PMID: 37019415 DOI: 10.1016/j.biortech.2023.129002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
In this study, the phytohormone gibberellins (GAs) were used to enhance sulfamethoxazole (SMX) removal and lipid accumulation in the microalgae Chlorella vulgaris. At the concentration of 50 mg/L GAs, the SMX removal achieved by C. vulgaris was 91.8 % while the lipid productivity of microalga was at 11.05 mg/L d-1, which were much higher than that without GAs (3.5 % for SMX removal and 0.52 mg/L d-1 for lipid productivity). Supplementation of GAs enhanced the expression of antioxidase-related genes in C. vulgaris as a direct response towards the toxicity of SMX. In addition, GAs increased lipid production of C. vulgaris by up-regulating the expression of genes related to carbon cycle of microalgal cells. In summary, exogenous GAs promoted the stress tolerance and lipid accumulation of microalgae at the same time, which is conducive to improving the economic benefits of microalgae-based antibiotics removal as well as biofuel production potential.
Collapse
Affiliation(s)
- Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Ai-Jie Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wen-Zhu Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
25
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
26
|
Thepsuthammarat K, Reungsang A, Plangklang P. Microalga Coelastrella sp. Cultivation on Unhydrolyzed Molasses-Based Medium towards the Optimization of Conditions for Growth and Biomass Production under Mixotrophic Cultivation. Molecules 2023; 28:molecules28083603. [PMID: 37110836 PMCID: PMC10145047 DOI: 10.3390/molecules28083603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Improving biomass production with the utilization of low-cost substrate is a crucial approach to overcome the hindrance of high cost in developing large-scale microalgae production. The microalga Coelastrella sp. KKU-P1 was mixotrophically cultivated using unhydrolyzed molasses as a carbon source, with the key environmental conditions being varied in order to maximize biomass production. The batch cultivation in flasks achieved the highest biomass production of 3.81 g/L, under an initial pH 5.0, a substrate to inoculum ratio of 100:3, an initial total sugar concentration of 10 g/L, and a sodium nitrate concentration of 1.5 g/L with continuous light illumination at 23.7 W/m2. The photobioreactor cultivation results indicated that CO2 supplementation did not improve biomass production. An ambient concentration of CO2 was sufficient to promote the mixotrophic growth of the microalga as indicated by the highest biomass production of 4.28 g/L with 33.91% protein, 46.71% carbohydrate, and 15.10% lipid. The results of the biochemical composition analysis suggest that the microalgal biomass obtained is promising as a source of essential amino acids and pigments as well as saturated and monounsaturated fatty acids. This research highlights the potential for bioresource production via microalgal mixotrophic cultivation using untreated molasses as a low-cost raw material.
Collapse
Affiliation(s)
- Kamolwan Thepsuthammarat
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Pensri Plangklang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
27
|
Gao F, Zhou JL, Zhang YR, Vadiveloo A, Chen QG, Liu JZ, Yang Q, Ge YM. Efficient coupling of sulfadiazine removal with microalgae lipid production in a membrane photobioreactor. CHEMOSPHERE 2023; 316:137880. [PMID: 36649892 DOI: 10.1016/j.chemosphere.2023.137880] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
This study explored the feasibility of a coupled system for antibiotic removal and biofuel production through microalgae cultivation. Initial, batch culture experiments demonstrated that sulfadiazine (SDZ) had an inhibitory effect on Chlorella sp. G-9, and 100.0 mg L-1 SDZ completely inhibited its growth. In order to improve SDZ removal efficiency by microalgae, three membrane photobioreactors (MPBRs) with different hydraulic retention times (HRTs) were established for continuous microalgae cultivation. The efficient coupling of SDZ removal and microalgal lipid production was achieved through the gradual increment of influent SDZ concentration from 0 to 100.0 mg L-1. The reduction in SDZ ranged between 57.8 and 89.7%, 54.7-91.7%, and 54.6-93.5% for the MPBRs with HRT of 4 d, 2 d, and 1 d, respectively. Chlorella sp. Was found to tolerate higher concentrations of SDZ in the MPBR system, and the resulting stress from high concentrations of SDZ effectively increased the lipid content of microalgae for potential biodiesel production. With the increase of influent SDZ concentration from 0 to 100.0 mg L-1, the lipid content of microalgae increased by 43.5%. Chlorophyll content, superoxide dismutase activity, and malondialdehyde content of microalgae were also evaluated to explore the mechanism of microalgae tolerance to SDZ stress in MPBR.
Collapse
Affiliation(s)
- Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu-Ru Zhang
- Zhejiang Zhouhuan Environmental Engineering Design Co. LTD, Zhoushan, 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Qing-Guo Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jun-Zhi Liu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhoushan, 316000, China.
| |
Collapse
|
28
|
Puvača N, Ljubojević Pelić D, Pelić M, Bursić V, Tufarelli V, Piemontese L, Vuković G. Microbial Resistance to Antibiotics and Biofilm Formation of Bacterial Isolates from Different Carp Species and Risk Assessment for Public Health. Antibiotics (Basel) 2023; 12:antibiotics12010143. [PMID: 36671344 PMCID: PMC9855140 DOI: 10.3390/antibiotics12010143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this research was to investigate the effects of biofilm on antibiotic resistance of the bacterial isolates present in fish meat and to assess the risk of antibiotic residues for public health. Common carp, silver carp and grass carp fishes were purchased from retail stores for an in vitro biofilm investigation and a drug-resistant pattern determination. In all samples, up to 104 CFU/g of bacteria, such as Escherichia coli, Aeromonas hydrophila, Shewanella putrefaciens, Vibrio spp. and Staphylococcus spp., were observed. Isolates from the samples and their biofilms were subjected to an antibiogram assay using antibiotics such as amoxicillin, ampicillin, cefotaxime, ciprofloxacin, chloramphenicol, gentamicin, streptomycin, tetracycline and trimethoprim. Obtained results showed that some of the isolates were sensitive to antibiotics and some were resistant. Results of LC-MS/MS analysis showed that antibiotics residues were present in fish samples in the range between 4.9 and 199.4 µg/kg, with a total sum of 417.1 µg/kg. Estimated daily intake (EDI) was established to be 0.274 μg/kg of body weight/day for men and 0.332 μg/kg of body weight/day for women, with an acceptable daily intake (ADI) of 8.5 and 7.0 µg/kg of body weight/day for men and women, respectively. The results of the present study, therefore, highlight the safe consumption of fresh fish.
Collapse
Affiliation(s)
- Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia
- Correspondence: ; Tel.: +381-65-219-1284
| | | | - Miloš Pelić
- Scientific Veterinary Institute Novi Sad, Rumenački Put 20, 21000 Novi Sad, Serbia
| | - Vojislava Bursić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, 70010 Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Gorica Vuković
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
29
|
Yang ZY, Huang KX, Zhang YR, Yang L, Zhou JL, Yang Q, Gao F. Efficient microalgal lipid production driven by salt stress and phytohormones synergistically. BIORESOURCE TECHNOLOGY 2023; 367:128270. [PMID: 36347483 DOI: 10.1016/j.biortech.2022.128270] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel method of coupling phytohormones with saline wastewater was proposed to drive efficient microalgal lipid production. All the six phytohormones effectively promoted microalgae growth in saline wastewater, and further increased the microalgal lipid content based on salt stress, so as to achieve a large increase in microalgal lipid productivity. Among the phytohormones used, abscisic acid had the most significant promoting effect. Under the synergistic effect of 20 g/L salt and 20 mg/L abscisic acid, the microalgal lipid productivity reached 3.7 times that of the control. Transcriptome analysis showed that differentially expressed genes (DEGs) of microalgae in saline wastewater were mainly up-regulated under the effects of phytohormones except brassinolide. Common DEGs analysis showed that phytohormones all regulated the expression of genes related to DNA repair and substance synthesis. In conclusion, synergistic effect of salt stress and phytohormones can greatly improve the microalgal lipid production efficiency.
Collapse
Affiliation(s)
- Zi-Yan Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu-Ru Zhang
- Zhejiang Zhouhuan Environmental Engineering Design Co. LTD, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Donghai Laboratory, Zhoushan 316021, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Donghai Laboratory, Zhoushan 316021, China.
| |
Collapse
|