1
|
Pradhan D, Jaiswal S, Tiwari BK, Jaiswal AK. Nanocellulose separation from barley straw via ultrasound-assisted choline chloride - Formic acid deep eutectic solvent pretreatment and high-intensity ultrasonication. ULTRASONICS SONOCHEMISTRY 2024; 110:107048. [PMID: 39241460 PMCID: PMC11405825 DOI: 10.1016/j.ultsonch.2024.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The present study aims at investigating the application of ultrasound assisted choline chloride (ChCl) - formic acid (FA) deep eutectic solvent (DES) pretreatment of Barley straw. In addition, the efficiency of a wet grinding followed by high intensity ultrasound (HIUS) treatment for production of cellulose nanofibers (CNF) has been evaluated. The DES (using ChCl: FA at 1:9 M ratio) treatment at 45 kHz ultrasound frequency and 3 h of treatment duration resulted in 84.68 ± 1.02 % and 82.96 ± 0.79 % of lignin and hemicellulose solubilisation, respectively. The purification of DES treated solid residue resulted in cellulose with more than 90 % purity. Further, 10 min of wet grinding followed by 40 min of HIUS treatment resulted in more than 80 % nano-fibrillation efficiency. The produced CNF had diameters less than 100 nm in number size distribution and type I cellulose structure. This study confirmed that the developed process offers a sustainable method for producing nanocellulose from agricultural waste.
Collapse
Affiliation(s)
- Dileswar Pradhan
- Sustainable Packaging and Bioproducts Research (SPBR), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub (SHRH), Technological University Dublin-City Campus, Grangegorman, Dublin, Ireland.
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub (SHRH), Technological University Dublin-City Campus, Grangegorman, Dublin, Ireland.
| | | | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub (SHRH), Technological University Dublin-City Campus, Grangegorman, Dublin, Ireland.
| |
Collapse
|
2
|
Nascimento AS, Nascimento UM, Muchave GJ, Marques GEC, Nascimento GS, Mendonça C, Becco GSB, Borges CP, Leite SGF. Assessment of the chemical composition of buriti (Mauritia flexuosa Liliopsida) and cassava (Manihot esculenta Crantz) residues and their possible application in the bioproduction of coconut aroma (6 pentyl-α-pyrone). Bioprocess Biosyst Eng 2024; 47:1633-1645. [PMID: 38970656 DOI: 10.1007/s00449-024-03055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.
Collapse
Affiliation(s)
- A S Nascimento
- Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - U M Nascimento
- Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - G J Muchave
- Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Open University ISCED, Beira, Sofala, Mozambique
| | - G E C Marques
- Federal Institute of Science and Technology Education of Maranhão, São Luís, Maranhão, Brazil
| | - G S Nascimento
- Federal Institute of Science and Technology Education of Maranhão, São Luís, Maranhão, Brazil
| | - C Mendonça
- Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - G S B Becco
- Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - C P Borges
- Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - S G F Leite
- Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Chaoua S, Flahaut S, Cornu B, Hiligsmann S, Chaouche NK. Unlocking the potential of Algerian lignocellulosic biomass: exploring indigenous microbial diversity for enhanced enzyme and sugar production. Arch Microbiol 2024; 206:277. [PMID: 38789671 DOI: 10.1007/s00203-024-04011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 μm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
4
|
Wang Y, Zhang Y, Cui Q, Feng Y, Xuan J. Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors. Molecules 2024; 29:2275. [PMID: 38792135 PMCID: PMC11123716 DOI: 10.3390/molecules29102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The hydrolysis and biotransformation of lignocellulose, i.e., biorefinery, can provide human beings with biofuels, bio-based chemicals, and materials, and is an important technology to solve the fossil energy crisis and promote global sustainable development. Biorefinery involves steps such as pretreatment, saccharification, and fermentation, and researchers have developed a variety of biorefinery strategies to optimize the process and reduce process costs in recent years. Lignocellulosic hydrolysates are platforms that connect the saccharification process and downstream fermentation. The hydrolysate composition is closely related to biomass raw materials, the pretreatment process, and the choice of biorefining strategies, and provides not only nutrients but also possible inhibitors for downstream fermentation. In this review, we summarized the effects of each stage of lignocellulosic biorefinery on nutrients and possible inhibitors, analyzed the huge differences in nutrient retention and inhibitor generation among various biorefinery strategies, and emphasized that all steps in lignocellulose biorefinery need to be considered comprehensively to achieve maximum nutrient retention and optimal control of inhibitors at low cost, to provide a reference for the development of biomass energy and chemicals.
Collapse
Affiliation(s)
- Yilan Wang
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Yuedong Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
5
|
Salzano F, Aulitto M, Fiorentino G, Cannella D, Peeters E, Limauro D. A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. Int J Biol Macromol 2024; 264:130550. [PMID: 38432267 DOI: 10.1016/j.ijbiomac.2024.130550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.
Collapse
Affiliation(s)
- Flora Salzano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Martina Aulitto
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - David Cannella
- PhotoBiocatalysis Unit, Biomass Transformation lab - BTL, and Crop production and Biostimulation Lab - CPBL, Universitè libre de Brussels, ULB, Belgium
| | - Eveline Peeters
- Department of Bioengineering Sciences Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
6
|
Liu D, Xie Y, Deng J, Tang J, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Extrusion puffing as a pretreatment method to change the surface structure, physicochemical properties and in vitro protein digestibility of distillers dried grains with solubles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2772-2782. [PMID: 38010266 DOI: 10.1002/jsfa.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Distillers dried grains with solubles (DDGS) are rich in nutrition, and they are potential protein feed raw material. However, the existence of cellulose, hemicellulose and lignin hinders animals' digestion and absorption of DDGS. Making full use of unconventional feed resources such as DDGS can alleviate the shortage of feed resources to a certain extent. This research investigated the effects of twin-screw extrusion on the macromolecular composition, physical and chemical properties, surface structure and in vitro protein digestibility (IVPD) of DDGS. RESULTS The findings showed that extrusion puffing significantly increased the protein solubility, bulk density, water holding capacity, and swelling capacity, while significantly decreased hemicellulose and crude protein content, particle size and zeta potential of DDGS. The structure damage of DDGS induced by the extrusion was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FITR) spectroscopy and X-ray diffraction (XRD) analysis. Interestingly, no random coil was observed in the analysis of the secondary structure, and extrusion promoted the transformation of α-helix and β-turn to β-sheet, which led to significant increases in protein solubility and IVPD of DDGS (P < 0.05). Additionally, correlation analysis revealed that IVPD and PS had a positive relationship. CONCLUSION Extrusion puffing was an ideal pretreatment method for DDGS modification to improve in vitro protein digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jianguo Deng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Zhang L, Shao G, Jin Y, Yang N, Xu X. Efficient hemicellulose removal from lignocellulose by induced electric field-aided dilute acid pretreatment. Int J Biol Macromol 2024; 261:129839. [PMID: 38309397 DOI: 10.1016/j.ijbiomac.2024.129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
This study evaluated the effectiveness of induced electric field (IEF) as a novel electrotechnology to assist dilute acid pretreatment of wheat straw (WS) at atmospheric pressure and low temperature (90 °C). The effects of acid concentration and duration on cellulose recovery, hemicellulose and lignin removal were investigated. Meanwhile, the differences between IEF pretreatment and hydrothermal pretreatment were compared by quantitative and qualitative analysis. The optimal pretreatment condition was acid concentration 1 % with the period of 5 h. Under the parameters, the hemicellulose removal of WS after IEF pretreatment was up to 73.6 %, and the enzymatic efficiency was 55.8 %. In addition, the irregular surface morphology, diminished functional groups associated with hemicellulose, increased specific surface area and pore volume, as well as improved thermal stability of the residual WS support the remarkable effect of IEF pretreatment. The feasibility of IEF pretreatment is might be due to the fact that the magneto-induced electric field promotes ionization of H+ and formation of hydrated hydrogen ions, increasing the acidity of the medium. Secondly, electroporation disrupts the anti-degradation structure of WS and increases the accessibility of cellulose to cellulases. It indicated that IEF is a green and efficient strategy for assisting the separation of hemicellulose from lignocellulose.
Collapse
Affiliation(s)
- Lingtao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoqiang Shao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Zhang Q, Wang Q, Chen H, Chen L, Wang F, Gu Z, Shi G, Liu L, Ding Z. Lignin-degrading enzyme production was enhanced by the novel transcription factor Ptf6 in synergistic microbial co-culture. Microbiol Res 2024; 280:127575. [PMID: 38147744 DOI: 10.1016/j.micres.2023.127575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Synergistic microbial co-culture has been an efficient and energy-saving strategy to produce lignin-degrading enzymes (LDEs), including laccase, manganese peroxidase, and versatile peroxidase. However, the regulatory mechanism of microbial co-culture is still unclear. Herein, the extracellular LDE activities of four white-rot fungi were significantly increased by 88-544% over monoculture levels when co-cultured with Rhodotorula mucilaginosa. Ptf6 was demonstrated from the 9 million Y1H clone library to be a shared GATA transcription factor in the four fungi, and could directly bind to the laccase gene promoter. Ptf6 exists in two alternatively spliced isoforms under monoculture, namely Ptf6-α (1078 amino acids) containing Cys2/Cys2-type zinc finger and Ptf6-β (963 amino acids) lacking the complete domain. Ptf6 responded to co-culture by up-regulation of both its own transcripts and the proportion of Ptf6-α. Ptf6-α positively activated the production of most LDE isoenzymes and bound to four GATA motifs on the LDEs' promoter with different affinities. Moreover, Ptf6-regulation mechanism can be applicable to a variety of microbial co-culture systems. This study lays a theoretical foundation for further improving LDEs production and providing an efficient way to enhance the effects of biological and enzymatic pretreatment for lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haixiu Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenghua Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Wang K, Du C, Guo X, Xiong B, Yang L, Zhao X. Crop byproducts supplemented in livestock feeds reduced greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120469. [PMID: 38432010 DOI: 10.1016/j.jenvman.2024.120469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/15/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Crop byproducts can be supplemented in livestock feeds to improve the utilization of resources and reduce greenhouse gas (GHG) emissions. We explored the mitigation potential of GHG emissions by supplementing crop byproducts in feeds based on a typical intensive dairy farm in China. Results showed that GHG emissions associated with production of forage were significantly decreased by 25.60 % when no GHG emissions were allocated to crop byproducts, and enteric methane emission was significantly decreased by 13.46 % on the basis of CO2 eq, g/kg fat and protein corrected milk. The supplementation did not affect lactation performance, rumen microbiota and microbial enzymes at the gene level. Metabolomics analysis revealed changes in amino acid catabolism of rumen fluid, which were probably responsible for more propionate production. In conclusion, supplementing crop byproducts in feeds can be a potential strategy to reduce GHG emissions of livestock.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Animal Science, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, 261061, China; Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Chunmei Du
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xianfei Guo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
10
|
Minnaar LS, Kruger F, Fortuin J, Hoffmeester LJ, den Haan R. Engineering Saccharomyces cerevisiae for application in integrated bioprocessing biorefineries. Curr Opin Biotechnol 2024; 85:103030. [PMID: 38091873 DOI: 10.1016/j.copbio.2023.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024]
Abstract
After decades of research and development, no organism - natural or engineered - has been described that can produce commodity products through direct microbial conversion to meet industry demands in terms of rates and yields. Variation in lignocellulosic biomass (LCB) feedstocks, the lack of a widely applicable pretreatment method, and the limited economic value of energy products further complicates second-generation biofuel production. Nevertheless, the emergence of advanced genomic editing tools and a more comprehensive understanding of yeast metabolic systems offer promising avenues for the creation of yeast strains tailored to LCB biorefineries. Here, we discuss recent advances toward developing yeast strains that could convert different LCB fractions into a series of economically viable commodity products in a biorefinery.
Collapse
Affiliation(s)
- Letitia S Minnaar
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Francois Kruger
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Jordan Fortuin
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Lazzlo J Hoffmeester
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
11
|
Zhou H, Cai Y, Long M, Zheng N, Zhang Z, You C, Hussain A, Xia X. Computer-Aided Reconstruction and Application of Bacillus halodurans S7 Xylanase with Heat and Alkali Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1213-1227. [PMID: 38183306 DOI: 10.1021/acs.jafc.3c08221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
β-1,4-Endoxylanase is the most critical hydrolase for xylan degradation during lignocellulosic biomass utilization. However, its poor stability and activity in hot and alkaline environments hinder its widespread application. In this study, BhS7Xyl from Bacillus halodurans S7 was improved using a computer-aided design through isothermal compressibility (βT) perturbation engineering and by combining three thermostability prediction algorithms (ICPE-TPA). The best variant with remarkable improvement in specific activity, heat resistance (70 °C), and alkaline resistance (both pH 9.0 and 70 °C), R69F/E137M/E145L, exhibited a 4.9-fold increase by wild-type in specific activity (1368.6 U/mg), a 39.4-fold increase in temperature half-life (458.1 min), and a 57.6-fold increase in pH half-life (383.1 min). Furthermore, R69F/E137M/E145L was applied to the hydrolysis of agricultural waste (corncob and hardwood pulp) to efficiently obtain a higher yield of high-value xylooligosaccharides. Overall, the ICPE-TPA strategy has the potential to improve the functional performance of enzymes under extreme conditions for the high-value utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yongchao Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Cuiping You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Asif Hussain
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, China
| |
Collapse
|
12
|
Zhang J, Zhao J, Fu Q, Liu H, Li M, Wang Z, Gu W, Zhu X, Lin R, Dai L, Liu K, Wang C. Metabolic engineering of Paenibacillus polymyxa for effective production of 2,3-butanediol from poplar hydrolysate. BIORESOURCE TECHNOLOGY 2024; 392:130002. [PMID: 37956945 DOI: 10.1016/j.biortech.2023.130002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
2,3-Butanediol is an essential renewable fuel. The synthesis of 2,3-butanediol using Paenibacillus polymyxa has attracted increasing attention. In this study, the glucose-derived 2,3-butanediol pathway and its related genes were identified in P. polymyxa using combined transcriptome and metabolome analyses. The functions of two distinct genes ldh1 and ldh3 encoding lactate dehydrogenase, the gene bdh encoding butanediol dehydrogenase, and the spore-forming genes spo0A and spoIIE were studied and directly knocked out or overexpressed in the genome sequence to improve the production of 2,3-butanediol. A raw hydrolysate of poplar wood containing 27 g/L glucose and 15 g/L xylose was used to produce 2,3-butanediol with a maximum yield of 0.465 g/g and 93 % of the maximum theoretical value, and the total production of 2,3-butanediol and ethanol reached 21.7 g/L. This study provides a new scheme for engineered P. polymyxa to produce renewable fuels using raw poplar wood hydrolysates.
Collapse
Affiliation(s)
- Jikun Zhang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China; Shandong Baolai-leelai Bioengineering Co., Ltd., Tai'an 271000, China.
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), and The State Key Laboratory of Microbial Technology, Jinan 250353, China.
| | - Quanbin Fu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Min Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Zhongyue Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Wei Gu
- Shandong Baolai-leelai Bioengineering Co., Ltd., Tai'an 271000, China.
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Rongshan Lin
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Li Dai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China.
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
13
|
Wang J, Ma D, Lou Y, Ma J, Xing D. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166992. [PMID: 37717772 DOI: 10.1016/j.scitotenv.2023.166992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Lignocellulosic biomass (LCB) presents a promising feedstock for carbon management due to enormous potential for achieving carbon neutrality and delivering substantial environmental and economic benefit. Bioenergy derived from LCB accounts for about 10.3 % of the global total energy supply. The generation of bioenergy through anaerobic digestion (AD) in combination with carbon capture and storage, particularly for methane production, provides a cost-effective solution to mitigate greenhouse gas emissions, while concurrently facilitating bioenergy production and the recovery of high-value products during LCB conversion. However, the inherent recalcitrant polymer crystal structure of lignocellulose impedes the accessibility of anaerobic bacteria, necessitating lignocellulosic residue pretreatment before AD or microbial chain elongation. This paper seeks to explore recent advances in pretreatment methods for LCB biogas production, including pulsed electric field (PEF), electron beam irradiation (EBI), freezing-thawing pretreatment, microaerobic pretreatment, and nanomaterials-based pretreatment, and provide a comprehensive overview of the performance, benefits, and drawbacks of the traditional and improved treatment methods. In particular, physical-chemical pretreatment emerges as a flexible and effective option for methane production from straw wastes. The burgeoning field of nanomaterials has provoked progress in the development of artificial enzyme mimetics and enzyme immobilization techniques, compensating for the intrinsic defect of natural enzyme. However, various complex factors, such as economic effectiveness, environmental impact, and operational feasibility, influence the implementation of LCB pretreatment processes. Techno-economic analysis (TEA), life cycle assessment (LCA), and artificial intelligence technologies provide efficient means for evaluating and selecting pretreatment methods. This paper addresses current issues and development priorities for the achievement of the appropriate and sustainable utilization of LCB in light of evolving economic and environmentally friendly social development demands, thereby providing theoretical basis and technical guidance for improving LCB biogas production of AD systems.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Ahmad N, Asif MF, Ahmad N, Ahmed U, Abdul Jameel AG. Innovative parallel synthesis of 5-nonanone and furfural from lignocellulosic biomass accompanied by deep economic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119251. [PMID: 37820435 DOI: 10.1016/j.jenvman.2023.119251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
An integrated strategy is developed to utilize all three primary components (cellulose, hemicellulose, and lignin) of lignocellulosic biomass for the coproduction of hydrocarbon fuel (5-nonanone) and bio-chemicals (furfural and high purity lignin). After biomass fractionation, (1) 5-nonanone is produced with high yield of 89% using cellulose-derived γ-valerolactone (GVL), which can potentially serve as a platform molecule for the production of liquid hydrocarbon fuels for the transportation sector; (2) furfural, a valuable platform chemical, is produced using hemicellulose; and (3) production of high-purity lignin, which can be used to produce carbon foams or battery anodes. Separation subsystems are designed to effectively recover the solvents for reuse in the conversion processes, which ultimately improves the economic feasibility of the integrated process, resulting in achieving lower minimum selling price (MSP) of $5.47 GGE-1 for 5-nonanone compared to market price. Heat pump is introduced to perform heat integration, which reduces utility requirements more than 85%. Finally, a wide range of techno-economic analysis is performed to highlight the major cost and technological drivers of the integrated process.
Collapse
Affiliation(s)
- Nauman Ahmad
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia.
| | - Moied Faizan Asif
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan.
| | - Nabeel Ahmad
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Usama Ahmed
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Abdul Gani Abdul Jameel
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
15
|
Hou Y, Wang S, Deng B, Ma Y, Long X, Qin C, Liang C, Huang C, Yao S. Selective separation of hemicellulose from poplar by hydrothermal pretreatment with ferric chloride and pH buffer. Int J Biol Macromol 2023; 251:126374. [PMID: 37595709 DOI: 10.1016/j.ijbiomac.2023.126374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
As an environmentally friendly lignocellulosic biomass separation technology, hydrothermal pretreatment (HP) has a strong application prospect. However, the low separation efficiency is a main factor limiting its application. In this study, the poplar components were separated using HP with ferric chloride and pH buffer (HFB). The optimal conditions were ferric chloride concentration of 0.10 M, reaction temperature of 150 °C, reaction time of 15 min and pH 1.9. The separation of hemicellulose was increased 34.03 % to 77.02 %. The pH buffering resulted in the highest cellulose and lignin retention yields compared to ferric chloride pretreatment (FC). The high efficiency separation of hemicellulose via HFB pretreatment inhibited the degradation of xylose. The hydrolysate was effectively reused for five times. The fiber crystallinity index reached 60.05 %, and the highest C/O ratio was obtained. The results provide theoretical support for improving the efficiency of HP and promoting its application.
Collapse
Affiliation(s)
- Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yun Ma
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xing Long
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
16
|
Zabed HM, Akter S, Dar MA, Tuly JA, Kumar Aswathi M, Yun J, Li J, Qi X. Enhanced fermentable sugar production in lignocellulosic biorefinery by exploring a novel corn stover and configuring high-solid pretreatment conditions. BIORESOURCE TECHNOLOGY 2023; 386:129498. [PMID: 37463614 DOI: 10.1016/j.biortech.2023.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to produce enhanced fermentable sugars from a novel stover system through the bioprocessing of its soluble sugars and insoluble carbohydrates. The pretreatment conditions were optimized for this high sugar-containing stover (HSS) to control inhibitor formation and obtain enhanced fermentable sugar concentrations. The optimum temperature, acid loading, and reaction time for the pretreatment were 155 °C, 0.5%, and 30 min, respectively, providing up to 97.15% sugar yield and 76.51 g/L total sugars at 10% solid-load. Sugar concentration further increased to 126.9 g/L at 20% solid-load, generating 3.89 g/L acetate, 0.92 g/L 5-hydroxymethyl furfural, 0.82 g/L furfural, and 3.75 g/L total phenolics as inhibitors. To determine the effects of soluble sugars in HSS on fermentable sugar yield and inhibitor formation, sugar-removed HSS was further studied under the optimum conditions. Although prior removal of sugars exhibited a reduction in inhibitor generation, it also decreased total fermentable sugar production to 115.45 g/L.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mudasir A Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jamila A Tuly
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mukesh Kumar Aswathi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Junhua Yun
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
17
|
Sivagurunathan P, Sahoo PC, Kumar M, Prakash Gupta R, Bhattacharyya D, Ramakumar S. Effect of nano-metal doped calcium peroxide on biomass pretreatment and green hydrogen production from rice straw. BIORESOURCE TECHNOLOGY 2023; 386:129489. [PMID: 37460017 DOI: 10.1016/j.biortech.2023.129489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
In this study, calcium peroxide was modified and doped with metal-based nanoparticles (NP) to enhance the efficiency of pretreatment and biohydrogen generation from RS. The findings revealed that the addition of MnO2-CaO2 NPs (at a dosage of 0.02 g/g TS of RS) had a synergistic effect on the breakdown of biomass and the production of biohydrogen. This enhancement resulted in a maximum hydrogen yield (HY) of 58 mL/g TS, accompanied by increased concentrations of acetic acid (2117 mg/L) and butyric acid (1325 mg/L). In contrast, RS that underwent pretreatment without the use of chemicals or NP exhibited a lower HY of 28 mL/g TS, along with the lowest concentrations of acetic acid (1062 mg/L) and butyric acid (697 mg/L). The outcome showed that supplementation of NP stimulated the pretreatment of RS and improved the formation of acetic and butyric acid through the regulation of metabolic pathways during acidogenic fermentation.
Collapse
Affiliation(s)
- Periyasamy Sivagurunathan
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad, Haryana 121007, India
| | - Prakash C Sahoo
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad, Haryana 121007, India
| | - Manoj Kumar
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad, Haryana 121007, India.
| | - Ravi Prakash Gupta
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad, Haryana 121007, India
| | - Debasis Bhattacharyya
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad, Haryana 121007, India
| | - Ssv Ramakumar
- Indian Oil Corporation Limited, Research & Development Centre, Sector 13, Faridabad, Haryana 121007, India
| |
Collapse
|
18
|
Yadav A, Sharma V, Tsai ML, Chen CW, Sun PP, Nargotra P, Wang JX, Dong CD. Development of lignocellulosic biorefineries for the sustainable production of biofuels: Towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2023; 381:129145. [PMID: 37169207 DOI: 10.1016/j.biortech.2023.129145] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The idea of environment friendly and affordable renewable energy resources has prompted the industry to focus on the set up of biorefineries for sustainable bioeconomy. Lignocellulosic biomass (LCB) is considered as an abundantly available renewable feedstock for the production of biofuels which can potentially reduce the dependence on petrochemical refineries. By utilizing various conversion technologies, an integrated biorefinery platform of LCB can be created, embracing the idea of the 'circular bioeconomy'. The development of effective pretreatment methods and biocatalytic systems by various bioengineering and machine learning approaches could reduce the bioprocessing costs, thereby making biomass-based biorefinery more sustainable. This review summarizes the development and advances in the lignocellulosic biorefineries from the LCB to the final product stage using various different state-of-the-art approaches for the progress of circular bioeconomy. The life cycle assessment which generates knowledge on the environmental impacts related to biofuel production chains is also summarized.
Collapse
Affiliation(s)
- Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Jia-Xiang Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
19
|
Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:44. [PMID: 36915167 PMCID: PMC10012730 DOI: 10.1186/s13068-023-02295-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Bioethanol is recognized as a valuable substitute for renewable energy sources to meet the fuel and energy demand of the nation, considered an environmentally friendly resource obtained from agricultural residues such as sugarcane bagasse, rice straw, husk, wheat straw and corn stover. The energy demand is sustained using lignocellulosic biomass to produce bioethanol. Lignocellulosic biomass (LCBs) is the point of attention in replacing the dependence on fossil fuels. The recalcitrant structure of the lignocellulosic biomass is disrupted using effective pretreatment techniques that separate complex interlinked structures among cellulose, hemicellulose, and lignin. Pretreatment of biomass involves various physical, chemical, biological, and physiochemical protocols which are of importance, dependent upon their individual or combined dissolution effect. Physical pretreatment involves a reduction in the size of the biomass using mechanical, extrusion, irradiation, and sonification methods while chemical pretreatment involves the breaking of various bonds present in the LCB structure. This can be obtained by using an acidic, alkaline, ionic liquid, and organosolvent methods. Biological pretreatment is considered an environment-friendly and safe process involving various bacterial and fungal microorganisms. Distinct pretreatment methods, when combined and utilized in synchronization lead to more effective disruption of LCB, making biomass more accessible for further processing. These could be utilized in terms of their effectiveness for a particular type of cellulosic fiber and are namely steam explosion, liquid hot water, ammonia fibre explosion, CO2 explosion, and wet air oxidation methods. The present review encircles various distinct and integrated pretreatment processes developed till now and their advancement according to the current trend and future aspects to make lignocellulosic biomass available for further hydrolysis and fermentation.
Collapse
Affiliation(s)
- Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Madhuri Girdhar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Abhineet Goyal
- SAGE School of Science, SAGE University Bhopal, Sahara Bypass Road Katara Hills, Extension, Bhopal, Madhya Pradesh, 462022, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|