1
|
Kakkar S, Gupta P, Singh Yadav SP, Raj D, Singh G, Chauhan S, Mishra MK, Martín-Ortega E, Chiussi S, Kant K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater Today Bio 2024; 28:101188. [PMID: 39221210 PMCID: PMC11364909 DOI: 10.1016/j.mtbio.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.
Collapse
Affiliation(s)
- Saloni Kakkar
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Shiv Pratap Singh Yadav
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Garima Singh
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Sakshi Chauhan
- Dept. of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Elena Martín-Ortega
- IFCAE, Research Institute of Physics and Aerospace Science, Universidade de Vigo, Ourense, 32004, Spain
| | - Stefano Chiussi
- CINTECX, Universidade de Vigo, New Materials Group, Vigo, 36310, Spain
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo, 36310, Spain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, U.P., India
| |
Collapse
|
2
|
Kalashgrani MY, Mousavi SM, Akmal MH, Gholami A, Omidifar N, Chiang WH, Lai CW, Ripaj Uddin M, Althomali RH, Rahman MM. Biosensors for metastatic cancer cell detection. Clin Chim Acta 2024; 559:119685. [PMID: 38663472 DOI: 10.1016/j.cca.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Early detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species. Biosensors are utilized to quantify chemical and biological phenomena by generating signals that are directly proportional to the quantity of the analyte present in the reaction. Biosensors are widely used in disease control, drug delivery, infection detection, detection of pathogenic microorganisms, and markers that indicate a specific disease in the body. These devices have been especially popular in the field of metastatic cancer cell diagnosis and treatment due to their portability, high sensitivity, high specificity, ease of use and short response time. This article examines biosensors for metastatic cancer cells. It also studies metastatic cancer cells and the mechanism of metastasis. Finally, the function of biosensors and biomarkers in metastatic cancer cells is investigated.
Collapse
Affiliation(s)
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), 50603 Kuala Lumpur, Malaysia
| | - Md Ripaj Uddin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
3
|
Nandhakumar P, Muñoz San Martín C, Arévalo B, Ding S, Lunker M, Vargas E, Djassemi O, Campuzano S, Wang J. Redox Cycling Amplified Electrochemical Lateral-Flow Immunoassay: Toward Decentralized Sensitive Insulin Detection. ACS Sens 2023; 8:3892-3901. [PMID: 37734056 DOI: 10.1021/acssensors.3c01445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
While paper-based lateral-flow immunoassays (LFA) offer considerable promise for centralized diagnostic applications, the analytical capability of conventional LFA remains constrained due to the low sensitivity of its common optical detection strategy. To address these issues, we report a simple electrochemical LFA (eLFA) with nanocatalytic redox cycling for decentralized insulin detection. Simultaneous binding of insulin with detection antibodies and capture antibodies through the capillary flow at the LFA platform and signal amplification through the rapid nanocatalytic reduction of [Fe(CN)6]3- (Fe3+) with Au nanoparticles (AuNP) and ammonia-borane (AB), coupled to electrochemical redox cycling reactions involving Fe3+, AuNP, and AB on the carbon working electrode, offer higher sensitivity than conventional colorimetric LFA and enzymatic redox cycling. The resulting integrated eLFA strip allows the detection of low insulin concentrations (LOD = 12 pM) and offers considerable promise for highly sensitive decentralized assays of different biological fluids (saliva and serum) without additional pretreatment or washing steps.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Cristina Muñoz San Martín
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Departamento de Química Analítica, Universidad Complutense, E-28040 Madrid, Spain
| | - Beatriz Arévalo
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Departamento de Química Analítica, Universidad Complutense, E-28040 Madrid, Spain
| | - Shichao Ding
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Mahika Lunker
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Eva Vargas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Omeed Djassemi
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Susana Campuzano
- Departamento de Química Analítica, Universidad Complutense, E-28040 Madrid, Spain
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Mahmoodpour M, Kiasari BA, Karimi M, Abroshan A, Shamshirian D, Hosseinalizadeh H, Delavari A, Mirzei H. Paper-based biosensors as point-of-care diagnostic devices for the detection of cancers: a review of innovative techniques and clinical applications. Front Oncol 2023; 13:1131435. [PMID: 37456253 PMCID: PMC10348714 DOI: 10.3389/fonc.2023.1131435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
The development and rapid progression of cancer are major social problems. Medical diagnostic techniques and smooth clinical care of cancer are new necessities that must be supported by innovative diagnostic methods and technologies. Current molecular diagnostic tools based on the detection of blood protein markers are the most common tools for cancer diagnosis. Biosensors have already proven to be a cost-effective and accessible diagnostic tool that can be used where conventional laboratory methods are not readily available. Paper-based biosensors offer a new look at the world of analytical techniques by overcoming limitations through the creation of a simple device with significant advantages such as adaptability, biocompatibility, biodegradability, ease of use, large surface-to-volume ratio, and cost-effectiveness. In this review, we covered the characteristics of exosomes and their role in tumor growth and clinical diagnosis, followed by a discussion of various paper-based biosensors for exosome detection, such as dipsticks, lateral flow assays (LFA), and microfluidic paper-based devices (µPADs). We also discussed the various clinical studies on paper-based biosensors for exosome detection.
Collapse
Affiliation(s)
- Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary, The University of Tehran, Tehran, Iran
| | - Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Arezou Abroshan
- Student Research Committee, Faculty of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran
| | - Danial Shamshirian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Delavari
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Srinivasan S, Ranganathan V, McConnell EM, Murari BM, DeRosa MC. Aptamer-based colorimetric and lateral flow assay approaches for the detection of toxic metal ions, thallium(i) and lead(ii). RSC Adv 2023; 13:20040-20049. [PMID: 37409036 PMCID: PMC10318611 DOI: 10.1039/d3ra01658g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Thallium(i) and lead(ii) ions are heavy metals and extremely toxic. These metals are environmental pollutants, posing a severe risk to the environment and human health. In this study, two approaches were examined using aptamer and nanomaterial-based conjugates for thallium and lead detection. The first approach utilized an in-solution adsorption-desorption approach to develop colorimetric aptasensors for the detection of thallium(i) and lead(ii) using gold or silver nanoparticles. The second approach was the development of lateral flow assays, and their performance was tested with thallium (limit of detection is 7.4 μM) and lead ion (limit of detection is 6.6 nM) spiked into real samples. The approaches assessed are rapid, inexpensive, and time efficient with the potential to become the basis for future biosensor devices.
Collapse
Affiliation(s)
- Sathya Srinivasan
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600 ext. 4388
- Department of Biotechnology, School of Bioscience and Technology VIT Vellore 632 104 TN India
| | - Velu Ranganathan
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600 ext. 4388
| | - Erin M McConnell
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600 ext. 4388
| | - Bhaskar Mohan Murari
- Department of Sensor and Biomedical Technology, School of Electronics Engineering VIT Vellore 632 104 TN India
| | - Maria C DeRosa
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600 ext. 4388
| |
Collapse
|
6
|
Shang Z, Su T, Jin D, Xu Q, Hu X, Shu Y. An integrated and flexible PDMS/Au film-based electrochemical immunosensor via Fe–Co MOF as a signal amplifier for alpha fetoprotein detection. Biosens Bioelectron 2023; 230:115245. [PMID: 36989661 DOI: 10.1016/j.bios.2023.115245] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Ultrasensitive determination of tumor marker (TM) is of great significance in cancer prevention and diagnosis. Traditional TM detection methods involve large instrumentation and professional manipulation, which complicate the assay procedures and increase the cost of investment. To resolve these problems, an integrated electrochemical immunosensor based on the flexible polydimethylsiloxane/gold (PDMS/Au) film with Fe-Co metal-organic framework (Fe-Co MOF) as a signal amplifier was fabricated for ultrasensitive determination of alpha fetoprotein (AFP). First, gold layer was deposited on the hydrophilic PDMS film to form the flexible three-electrode system, and then the thiolated aptamer for AFP was immobilized. Afterward, the aminated Fe-Co MOF possessing high peroxidase-like activity and large specific surface area was prepared by a facile solvothermal method, and subsequently the biofunctionalized MOF could effectively capture biotin antibody (Ab) to form MOF-Ab as a signal probe and amplify the electrochemical signal remarkably, thereby realizing highly sensitive detection of AFP with a wide linear range of 0.01-300 ng/mL and a low detection limit of 0.71 pg/mL. In addition, the PDMS based-immunosensor showed good accuracy for assaying of AFP in clinical serum samples. The integrated and flexible electrochemical immunosensor based on the Fe-Co MOF as a signal amplifier demonstrates great potential for application in the personalized point-of-care (POC) clinical diagnosis.
Collapse
|
7
|
Highly Sensitive Sensing Detection of Prostate-specific Antigen Based on Point-of-care Electrochemical Immunosensor. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Sarkar S, Gogoi M, Mahato M, Joshi AB, Baruah AJ, Kodgire P, Boruah P. Biosensors for detection of prostate cancer: a review. Biomed Microdevices 2022; 24:32. [PMID: 36169742 DOI: 10.1007/s10544-022-00631-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, 793022, Meghalaya, India.
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Abhijeet Balwantrao Joshi
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Arup Jyoti Baruah
- Department of General Surgery, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Prashant Kodgire
- Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore-453552, Madhya Pradesh, India
| | - Polina Boruah
- Department of Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong-793018, Meghalaya, India
| |
Collapse
|
9
|
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z. Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022; 147:1273-1293. [PMID: 35113085 DOI: 10.1039/d1an01702k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has become the third leading cause of global death. Insufficiency in early diagnosis and treatment of COPD, especially COPD exacerbations, leads to a tremendous economic burden and medical costs. A cost-effective and timely prevention requires decentralized point-of-care diagnostics at patients' residences at affordable prices. Advances in point-of-care (POC) diagnostics may offer new solutions to reduce medical expenditures by measuring salivary and blood biomarkers. Among them, paper-based analytical devices have been the most promising candidates due to their advantages of being affordable, biocompatible, disposable, scalable, and easy to modify. In this review, we present salivary and blood biomarkers related to COPD endotypes and exacerbations, summarize current technologies to collect human whole saliva and whole blood samples, evaluate state-of-the-art paper-based analytical devices that detect COPD biomarkers in saliva and blood, and discuss existing challenges with outlooks on future paper-based POC systems for COPD diagnosis and management.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.,Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Are Branstad
- University of Southeast Norway (USN), School of Business, Box 235, 3603 Kongsberg, Norway
| | - Lan Huang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| |
Collapse
|
10
|
Soldado A, Barrio LC, Díaz-Gonzalez M, de la Escosura-Muñiz A, Costa-Fernandez JM. Advances in quantum dots as diagnostic tools. Adv Clin Chem 2022; 107:1-40. [PMID: 35337601 DOI: 10.1016/bs.acc.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantum dots (QDs) are crystalline inorganic semiconductor nanoparticles a few nanometers in size that possess unique optical electronic properties vs those of larger materials. For example, QDs usually exhibit a strong and long-lived photoluminescence emission, a feature dependent on size, shape and composition. These special optoelectronic properties make them a promising alternative to conventional luminescent dyes as optical labels in biomedical applications including biomarker quantification, biomolecule targeting and molecular imaging. A key parameter for use of QDs is to functionalize their surface with suitable (bio)molecules to provide stability in aqueous solutions and efficient and selective tagging biomolecules of interest. Researchers have successfully developed biocompatible QDs and have linked them to various biomolecule recognition elements, i.e., antibodies, proteins, DNA, etc. In this chapter, QD synthesis and characterization strategies are reviewed as well as the development of nanoplatforms for luminescent biosensing and imaging-guided targeting. Relevant biomedical applications are highlighted with a particular focus on recent progress in ultrasensitive detection of clinical biomarkers. Finally, key future research goals to functionalize QDs as diagnostic tools are explored.
Collapse
Affiliation(s)
- Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Laura Cid Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - María Díaz-Gonzalez
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | | | | |
Collapse
|
11
|
Li Z, Wu S, Ji J, Bai Y, Jia P, Gong Y, Feng S, Li F. Ball pen writing-without-ink: a truly simple and accessible method for sensitivity enhancement in lateral flow assays. RSC Adv 2022; 12:2068-2073. [PMID: 35425219 PMCID: PMC8979190 DOI: 10.1039/d1ra07684a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 01/20/2023] Open
Abstract
Lateral flow assays (LFAs), a popular point-of-care testing platform, have found widespread applications from laboratory to clinics. However, LFA-based testing is still subject to limited detection sensitivity, especially for classical gold nanoparticle-based LFAs. Inspired by traditional pen-based writing technologies, we developed a ball pen writing-without-ink method to amplify the detection signal of LFAs through controlling fluid flow rate. An enhancement of detection sensitivity by two times was obtained. Since the underlying mechanism of this method to improve detection sensitivity is to control the flow rate of the liquid on paper, it may be suitable for most paper-based platforms.
Collapse
Affiliation(s)
- Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shuang Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jingcheng Ji
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuemeng Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Pengpeng Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yan Gong
- Suzhou DiYinAn Biotechnology Co., Ltd. Suzhou 215010 P. R. China
| | - Shangsheng Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China .,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
12
|
Cheng J, Yang G, Guo J, Liu S, Guo J. Integrated electrochemical lateral flow immunoassays (eLFIAs): recent advances. Analyst 2022; 147:554-570. [DOI: 10.1039/d1an01478a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schematic of integrated electrochemical lateral flow immunoassays.
Collapse
Affiliation(s)
- Jie Cheng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Guopan Yang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Biocompatible Osmium Telluride-Polypyrrole Nanocomposite Material: Application in Prostate Specific Antigen Immunosensing. Processes (Basel) 2021. [DOI: 10.3390/pr9122203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer is a dominant global threat to society. It affects nearly 4000 men in South Africa annually, making it the second most threatening cancerous disease after lung cancer. A potential serological biomarker to monitor early diagnosis of prostate cancer is prostate specific antigen (PSA). We used the PSA biomarker in our work to develop an extremely sensitive electrochemical immunosensor to achieve low detection limits. The fabrication steps followed with the combination of thioglycolic acid capped osmium telluride quantum dots (TGA-OsTe2QD)-polypyrrole (PPy) nanocomposite and prostate specific antigen modified on a glassy carbon electrode. The UV-Vis signatures of TGA-OsTe2QD-PPy showed an absorption band at 262 nm which is attributed to the PPy and TGA-OsTe2QD composite. This band corresponds to the energy band gap of 4.4 and 5.4 eV. The CV responses of BSA|Ab|TGA-OsTe2QD|PPy|GCE modified electrode to prostate specific antigen (PSA) was studied within a range of 0–16 ng/mL PSA that was linear, herein referred to as liner range (LR), which produced a limit of detection (LOD) value of 0.36 ng/mL PSA. The values of the immunosensor’s calibration parameters (LR and LOD) make them suitable for real sample application, due to their coverage of the PSA concentration range (0–14 ng/mL) that is of clinical importance.
Collapse
|
14
|
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7823. [PMID: 34883826 PMCID: PMC8659776 DOI: 10.3390/s21237823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Collapse
Affiliation(s)
- Anchal Pradhan
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Preeti Lahare
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Priyank Sinha
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Bhanushree Gupta
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Kallol K. Ghosh
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
15
|
Perju A, Wongkaew N. Integrating high-performing electrochemical transducers in lateral flow assay. Anal Bioanal Chem 2021. [PMID: 33913001 DOI: 10.1007/s00216-021-03301-y/published] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA's performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance. Graphical abstract.
Collapse
Affiliation(s)
- Antonia Perju
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
16
|
Nagraik R, Sethi S, Sharma A, Kumar D, Kumar D, Kumar AP. Ultrasensitive nanohybrid electrochemical sensor to detect LipL32 gene of Leptospira interrogans. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01737-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Perju A, Wongkaew N. Integrating high-performing electrochemical transducers in lateral flow assay. Anal Bioanal Chem 2021; 413:5535-5549. [PMID: 33913001 PMCID: PMC8410735 DOI: 10.1007/s00216-021-03301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022]
Abstract
Lateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance. Graphical abstract ![]()
Collapse
Affiliation(s)
- Antonia Perju
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
18
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Feng D, Su J, Xu Y, He G, Wang C, Wang X, Pan T, Ding X, Mi X. DNA tetrahedron-mediated immune-sandwich assay for rapid and sensitive detection of PSA through a microfluidic electrochemical detection system. MICROSYSTEMS & NANOENGINEERING 2021; 7:33. [PMID: 34567747 PMCID: PMC8433179 DOI: 10.1038/s41378-021-00258-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
Prostate-specific antigen (PSA) is the most widely used biomarker for the early diagnosis of prostate cancer. Existing methods for PSA detection are burdened with some limitations and require improvement. Herein, we developed a novel microfluidic-electrochemical (μFEC) detection system for PSA detection. First, we constructed an electrochemical biosensor based on screen-printed electrodes (SPEs) with modification of gold nanoflowers (Au NFs) and DNA tetrahedron structural probes (TSPs), which showed great detection performance. Second, we fabricated microfluidic chips by DNA TSP-Au NF-modified SPEs and a PDMS layer with designed dense meandering microchannels. Finally, the μFEC detection system was achieved based on microfluidic chips integrated with the liquid automatic conveying unit and electrochemical detection platform. The μFEC system we developed acquired great detection performance for PSA detection in PBS solution. For PSA assays in spiked serum samples of the μFEC system, we obtained a linear dynamic range of 1-100 ng/mL with a limit of detection of 0.2 ng/mL and a total reaction time <25 min. Real serum samples of prostate cancer patients presented a strong correlation between the "gold-standard" chemiluminescence assays and the μFEC system. In terms of operation procedure, cost, and reaction time, our method was superior to the current methods for PSA detection and shows great potential for practical clinical application in the future.
Collapse
Affiliation(s)
- Dezhi Feng
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Guifang He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiao Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Tingrui Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, 518055 Shenzhen, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Xianqiang Mi
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- CAS Center for Excellence in Superconducting Electronics, (CENSE), 200050 Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 310024 Hangzhou, China
| |
Collapse
|
20
|
Nagraik R, Sharma A, Kumar D, Mukherjee S, Sen F, Kumar AP. Amalgamation of biosensors and nanotechnology in disease diagnosis: Mini-review. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Laghrib F, Saqrane S, El Bouabi Y, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem J 2020; 160:105606. [PMID: 33052148 PMCID: PMC7543751 DOI: 10.1016/j.microc.2020.105606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 infection poses a serious risk to human life by causing acute lung damage. Various techniques used to identify and quantify COVID-19 infection. Major challenges for containing the spread of COVID-19 is the ability to identify asymptomatic cases. Currently available diagnostic methods, biosensing technology developed during COVID-19 infection.
The technologies used for coronavirus testing consist of a pre-existing device developed to examine different pathologies, such as bacterial infections, or cancer biomarkers. However, for the 2019 pandemic, researchers knew that their technology could be modified to detect a low viral load at an early stage. Today, countries around the world are working to control the new coronavirus disease (n-SARS-CoV-2). From this perspective, laboratories, universities, and companies around the world have embarked on a race to develop and produce much-needed test kits. This review has been developed to provide an overview of current trends and strategies in n-SARS-CoV-2 diagnostics based on traditional and new emerging assessment technologies, to continuous innovation. It focuses on recent trends in biosensors to build a fast, reliable, more sensitive, accessible, user-friendly system and easily adaptable technology n-SARS-CoV-2 detection and monitoring. On the whole, we have addressed and identified research evidence supporting the use of biosensors on the premise that screening people for n-SARS-CoV-2 is the best way to contain its spread.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - Y El Bouabi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| |
Collapse
|
22
|
Semi-quantitative analysis of drugs of abuse in human urine by end-point dilution flow immunochromatographic assay. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Quantum Dot Bioconjugates for Diagnostic Applications. Top Curr Chem (Cham) 2020; 378:35. [PMID: 32219574 DOI: 10.1007/s41061-020-0296-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/29/2020] [Indexed: 01/22/2023]
Abstract
Quantum dots (QDs) are a special type of engineered nanomaterials with outstanding optoelectronic properties that make them as a very promising alternative to conventional luminescent dyes in biomedical applications, including biomolecule (BM) targeting, luminescence imaging and drug delivery. A key parameter to ensure successful biomedical applications of QDs is the appropriate surface modification, i.e. the surface of the nanomaterials should be modified with the appropriate functional groups to ensure stability in aqueous solutions and it should be conjugated with recognition elements capable of ensuring an efficient tagging of the BMs of interest. In this review we summarize the most relevant strategies used for surface modification of QDs and for their conjugation to BMs in preparation of their application in nanoplatforms for luminescent BM sensing and imaging-guided targeting. The applications of conjugations of photoluminescent QDs with different BMs in both in vitro and in vivo chemical sensing, immunoassays or luminescence imaging are reviewed. Recent progress in the application of functionalized QDs in ultrasensitive detection in bioanalysis, diagnostics and imaging strategies are reported. Finally, some key future research goals in the progress of bioconjugation of QDs for diagnosis are identified, including novel synthetic approaches, the need for exhaustive characterization of bioconjugates and the design of signal amplification schemes.
Collapse
|
24
|
Negahdary M, Sattarahmady N, Heli H. Advances in prostate specific antigen biosensors-impact of nanotechnology. Clin Chim Acta 2020; 504:43-55. [PMID: 32004532 DOI: 10.1016/j.cca.2020.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
Abstract
Prostate cancer is one of the most dangerous and deadly cancers in elderly men. Early diagnosis using prostate-specific antigen (PSA) facilitates disease detection, management and treatment. Biosensors have recently been used as sensitive, selective, inexpensive and rapid diagnostic tools for PSA detection. In this review, a variety of PSA biosensors such as aptasensors, peptisensors and immunesensors are highlighted. These use aptamers, peptides and antibodies in the biorecognition element, respectively, and can detect PSA with very high sensitivity via electrochemical, electrochemiluminescence, fluorescence and surface-enhanced Raman spectroscopy. To improve the sensitivity of most of these PSA biosensors, different nanostructured materials have played a critical role.
Collapse
Affiliation(s)
- M Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019; 213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.
Collapse
Affiliation(s)
- Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qiaobin Li
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Kwaku Baryeh
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Wanwei Qiu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Jing Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qingcai Yu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Dongqin Xu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Wenju Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueji Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China.
| | - Wei Chen
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota.
| |
Collapse
|
26
|
Ranganathan V, Srinivasan S, Singh A, DeRosa MC. An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal Biochem 2019; 588:113471. [PMID: 31614117 DOI: 10.1016/j.ab.2019.113471] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
An aptamer-based colorimetric lateral flow assay was developed for the detection of human epidermal growth factor receptor 2 (HER2). In this study, two approaches were examined using HER2 binding aptamers and gold nanoparticles. The first method used was a solution-based adsorption-desorption colorimetric approach wherein aptamers were adsorbed onto the gold nanoparticle surface. Upon the addition of HER2, HER2 binds specifically with its aptamer, releasing the gold nanoparticles. Addition of NaCl then induces the formation of gold nanoparticle aggregates. This leads to a color change from red to blue and a detection limit of 10 nM was achieved. The second method used an adsorption-desorption colorimetric lateral flow assay approach wherein biotin-modified aptamers were adsorbed onto the gold nanoparticle surface in the absence of HER2. In the presence of HER2, HER2 specifically binds with its aptamer leading to release of the gold nanoparticles. These solutions were applied to the lateral flow assay format and a detection limit of 20 nM was achieved. Both colorimetric and lateral flow assays are inexpensive, simple, rapid to perform and produce results visible to the naked-eye.
Collapse
Affiliation(s)
- Velu Ranganathan
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Sathya Srinivasan
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; Department of Biotechnology, School of Bioscience and Technology, VIT Vellore, Vellore, 632 104, TN, India
| | - Aryan Singh
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
27
|
Wang C, Sun Y, Zhao Q. A sensitive thrombin-linked sandwich immunoassay for protein targets using high affinity phosphorodithioate modified aptamer for thrombin labeling. Talanta 2019; 207:120280. [PMID: 31594565 DOI: 10.1016/j.talanta.2019.120280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
Thrombin and its aptamers have been well studied and widely used as models in aptamer based assays and sensors. Here we reported a thrombin-linked sandwich immunoassay for proteins to demonstrate new applications of thrombin and the aptamers, converting protein detection to analysis of thrombin label. In this assay, target protein was sandwiched by the capture antibody on a microplate and the biotinylated detection antibody. Thrombin bound to one biotinylated aptamer, and then the thrombin-labeled aptamer was attached on the sandwich complex through streptavidin-biotin interaction by using streptavidin as a linker. Thrombin catalyzed cleavage of fluorogenic peptide substrates, generating fluorescence signals for target detection. Among a few different anti-thrombin aptamers, the use of one nuclease resistant RNA aptamer having phosphorodithioate (PS2) modification on a specific backbone position enabled higher assay sensitivity due to its much higher affinity. This thrombin-linked sandwich immunoassay allowed detection of prostate-specific antigen (PSA) at 2 pM, an important protein related cancer disease, with high sensitivity and specificity. The strategy was general, and also enabled sensitive detection of botulinum neurotoxin type A (BoNTA) light chain, one toxin protein causing risk to human health. This assay combines advantages of antibody recognition, aptamer affinity labeling, high affinity of aptamers, and enzyme activity of thrombin. Labeling thrombin on the immunosandwich complex through simple affinity binding overcomes limitations of covalent conjugating enzyme on antibody in conventional immunoassay. This assay is promising in applications for protein detection.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Sun
- The People's Hospital of Peking University, Beijing, 100044, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Urusov AE, Zherdev AV, Dzantiev BB. Towards Lateral Flow Quantitative Assays: Detection Approaches. BIOSENSORS 2019; 9:E89. [PMID: 31319629 PMCID: PMC6784366 DOI: 10.3390/bios9030089] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Point-of-care (POC) or bedside analysis is a global trend in modern diagnostics. Progress in POC testing has largely been provided by advanced manufacturing technology for lateral flow (immunochromatographic) test strips. They are widely used to rapidly and easily control a variety of biomarkers of infectious diseases and metabolic and functional disorders, as well as in consumer protection and environmental monitoring. However, traditional lateral flow tests rely on visual assessment and qualitative conclusion, which limit the objectivity and information output of the assays. Therefore, there is a need for approaches that retain the advantages of lateral flow assays and provide reliable quantitative information about the content of a target compound in a sample mixture. This review describes the main options for detecting, processing, and interpreting immunochromatographic analysis results. The possibilities of modern portable detectors that register colored, fluorescent, magnetic, and conductive labels are discussed. Prospects for further development in this direction are also examined.
Collapse
Affiliation(s)
- Alexandr E Urusov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| |
Collapse
|
29
|
Singh S, Gill AA, Nlooto M, Karpoormath R. Prostate cancer biomarkers detection using nanoparticles based electrochemical biosensors. Biosens Bioelectron 2019; 137:213-221. [DOI: 10.1016/j.bios.2019.03.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
|
30
|
Dai L, Li Y, Wang Y, Luo X, Wei D, Feng R, Yan T, Ren X, Du B, Wei Q. A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosens Bioelectron 2019; 132:97-104. [DOI: 10.1016/j.bios.2019.02.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022]
|
31
|
Velu R, DeRosa MC. Lateral flow assays for Ochratoxin A using metal nanoparticles: comparison of "adsorption-desorption" approach to linkage inversion assembled nano-aptasensors (LIANA). Analyst 2019; 143:4566-4574. [PMID: 30112551 DOI: 10.1039/c8an00963e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nano-aptamer probes were prepared and used in lateral flow colorimetric assays for the detection of Ochratoxin A (OTA). In this study, two approaches were examined using 5'-biotin-modified OTA aptamers and silver or gold nanoparticles (AgNP or AuNP). The first method used an "adsorption-desorption" approach wherein aptamers were adsorbed onto the metal nanoparticle surface. Upon the addition of OTA, the aptamer binds specifically to the target, releasing the NPs. The above solutions were applied on a lateral flow assay (LFA) and a detection limit of 6.3 nM was achieved with both metal nanoparticles. The second method used a labelled approach based on Linkage Inversion Assembled Nano-Aptasensors (LIANAs) using a DNA linker containing a 5'-5' linkage inversion (5'-5' linker) to assemble biotinylated aptamer-functionalized metal nanoparticles. In the presence of target, OTA specifically binds with its aptamer leading to release of the linker and disassembly of LIANA aggregates into dispersed nanoparticles. The same solutions were applied in LFA format and the lowest detection limit of 0.63 nM was achieved. The results indicated that the LIANA-based LFA strips were more sensitive than the "adsoprtion-desorption" LFAs. Both lateral flow assays are inexpensive, simple, and rapid to perform and produces results visible to the naked-eye.
Collapse
Affiliation(s)
- Ranganathan Velu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | | |
Collapse
|
32
|
Maj-Hes A, Sevcenco S, Szarvas T, Kramer G. Claros System: A Rapid Microfluidics-Based Point-of-Care System for Quantitative Prostate Specific Antigen Analysis from Finger-Stick Blood. Adv Ther 2019; 36:916-922. [PMID: 30778908 DOI: 10.1007/s12325-019-0888-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Determination of circulating prostate specific antigen (PSA) is commonly used in the diagnosis and treatment monitoring of prostate cancer [1]. Presently, PSA testing is performed in centralized laboratories, which is associated with prolonged time between venipuncture and the PSA value being available. In this prospective study, we present a new and rapid test system for the quantitative determination of PSA levels from finger-stick blood. METHODS The Claros1® analyzer is a rapid microfluidics-based point-of-care system for quantitative PSA analysis from 10-µl finger-stick blood that requires only 10 min for testing. Total PSA concentrations by the Claros system in 100 consecutive asymptomatic men (median age 57 years, range 44-81 years) were compared with two commercially available, commonly used PSA assays (Abbott and Elecsys by Roche) performed by a reference laboratory. RESULTS Eighty-six percent of finger-stick blood-borne probes from 100 men were evaluable for PSA testing by the Claros1® analyzer system. In 13/14 cases the expiry date of the microfluid cassettes of the Claros system was exceeded and one blood puncture was performed inadequately. The correlations between the Claros results and OPKO-Abbott and OPKO-Roche assay results were high, with R2 values of 0.982 and 0.985, respectively. The R2 value for the Roche-Abbott correlation was 0.991 with a slope value of 1.160. Prostate cancer was diagnosed in seven cases, with a median PSA of 1.8 ng/ml in the Claros group compared to 1.75 ng/ml and 2.1 ng/ml in the Abbott and Roche groups, respectively. CONCLUSION The Claros1® PSA assay combines the advantages of rapid, accurate detection with a low required sample volume, allowing the analysis to be performed using finger-stick blood. Provided that further analysis proves the reproducibility of the test, it may help to reduce the number of office visits, thus decreasing costs to the health care system.
Collapse
Affiliation(s)
- Agnieszka Maj-Hes
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Oncology, Kaiser Franz Josef Hospital, Vienna, Austria
| | - Sabina Sevcenco
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Danube Hospital, Vienna, Austria
| | - Tibor Szarvas
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Faculty of Medicine University Duisburg-Essen, Essen, Germany
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Lu Z, Rey E, Vemulapati S, Srinivasan B, Mehta S, Erickson D. High-yield paper-based quantitative blood separation system. LAB ON A CHIP 2018; 18:3865-3871. [PMID: 30444230 PMCID: PMC6287273 DOI: 10.1039/c8lc00717a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interest in developing paper-based devices for point-of-care diagnostics in resource-limited settings has risen remarkably in recent decades. In this paper, we demonstrate what we refer to as "high yield passive rrythrocyte removal" (HYPER) technology, which utilizes capillary forces in a unique cross-flow filtration for the separation of whole blood with performance comparable to centrifuges. As we will demonstrate, state-of-the-art passive blood separation methods implemented in paper-based systems exhibit rapid blood cell clogging on the filtration media or serum outlet and yield only about 10-30% of the total serum present in the sample. Our innovation results from the inclusion of a differentiation pad, which exploits hydrodynamic effects to reduce the formation of a fouling layer on the blood filtration membrane resulting in more than 60% serum yield with undiluted whole blood as direct input. To demonstrate the effectiveness of the HYPER technology we implement it in a lateral flow system and demonstrate the accurate quantification of vitamin A and iron levels in whole blood samples in 15 minutes.
Collapse
Affiliation(s)
- Zhengda Lu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Elizabeth Rey
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Sasank Vemulapati
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Balaji Srinivasan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Saurabh Mehta
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA. and Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA. and Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA. and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Tominaga K, Arimoto S, Shimono K, Yoshioka T, Mizutani F, Yasukawa T. Quantitative and Single-step Enzyme Immunosensing Based on an Electrochemical Detection Coupled with Lateral-flow System. ANAL SCI 2018; 33:531-536. [PMID: 28392533 DOI: 10.2116/analsci.33.531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A single-step electrochemical immunochromatography has been developed: the device was based on two pieces of nitrocellulose membrane, a sample pad with anti-mouse IgG antibody labeled with glucose oxidase (GOx-labeled antibody), a conjugate pad with glucose, and a Pt working electrode. Either antibody or antigen was immobilized on the membrane. The addition of a solution containing mouse IgG, a model target, allows for the dissolution of GOx-labeled antibody in the sample pad to form an immunocomplex. The produced immunocomplex was automatically separated by capturing to the antibody immobilized on the membrane with the sandwich structure or by passing through the membrane modified with an antigen for the competitive reaction. The separated GOx label arrived at the conjugate pad with glucose to undergo the enzyme reaction. Hydrogen peroxide generated by this reaction was detected at the Pt electrode prepared on the second nitrocellulose membrane downstream from the conjugate pad. The results demonstrated that the designed immunochromatography can be applied to quantitative detection with a single-step procedure, because both the GOx-labeled antibody for revealing the immunoreactions and the substrate for the enzyme reaction were prepared in the device. Moreover, the initial concentration of the GOx-labeled antibody permitted control of the detectable concentration for mouse IgG.
Collapse
Affiliation(s)
- Kohei Tominaga
- Graduate School of Material Science, University of Hyogo
| | | | | | | | | | | |
Collapse
|
35
|
Paschoalino WJ, Kogikoski S, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 2018. [DOI: 10.1002/celc.201800677] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Waldemir J. Paschoalino
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Sergio Kogikoski
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - José T. C. Barragan
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Juliana F. Giarola
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Lory Cantelli
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Thais M. Rabelo
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Tatiana M. Pessanha
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| | - Lauro T. Kubota
- Department of Analytical Chemistry, Institute of Chemistry; State University of Campinas (UNICAMP); P.O. Box 6154 13083-970 Campinas-SP Brazil
| |
Collapse
|
36
|
Song S, Choi S, Ryu S, Kim S, Kim T, Shin J, Jung HI, Joo C. Highly sensitive paper-based immunoassay using photothermal laser speckle imaging. Biosens Bioelectron 2018; 117:385-391. [PMID: 29960270 DOI: 10.1016/j.bios.2018.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
Paper-based lateral-flow assay (LFA) is a simple and inexpensive point-of-care device that has become commonplace in medicine, environmental monitoring, and over-the-counter personal use. Some LFAs have demonstrated comparable analytical performance with laboratory-based methods, but the detection limit or sensitivity of most LFAs is significantly inferior to other molecular techniques by 10-100 × . Consequently, LFAs are not viable for the early detection of disease-relevant biomarkers that are present in extremely small amounts in clinical specimens. Herein, we present a simple, cost-effective, and highly sensitive LFA sensor based on photothermal laser speckle imaging (PT-LSI). Under the illumination of a photothermal excitation light, gold nanoparticles (AuNPs), a common signal transduction medium in LFAs, absorb the light energy to produce heat, which subsequently induces modulation of the optical property and thermal deformation of the membrane. We measured these fluctuations through laser speckle imaging to quantify the concentration of AuNP-biomarker complexes. We experimentally demonstrate that the detection limit of our technique is superior to that of colorimetric detector by 68-125 × . The capability of our sensor for highly sensitive detection of disease biomarkers is validated by using U.S. FDA-approved LFA kits for cryptococcal antigens (CrAg).
Collapse
Affiliation(s)
- Seungri Song
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea
| | - Seoyeon Choi
- Mirimedix Inc., 43, Geodudanji 1-gil, Chuncheon, Gangwon-do, Republic of Korea
| | - Suho Ryu
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea
| | - Soocheol Kim
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea
| | - Tongwha Kim
- Department of Mechanical & Industrial Engineering, University of Toronto, Ontario M5S 1A1, Canada
| | - Joonchul Shin
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea
| | - Chulmin Joo
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
37
|
Suresh L, Brahman PK, Reddy KR, J.S. B. Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker. Enzyme Microb Technol 2018; 112:43-51. [DOI: 10.1016/j.enzmictec.2017.10.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022]
|
38
|
Iordănescu A, Tertis M, Cernat A, Suciu M, Săndulescu R, Cristea C. Poly-(pyrrole-3-carboxylic acid) Based Nanostructured Platform for the Detection of Carcinoembryonic Antigen. ELECTROANAL 2018. [DOI: 10.1002/elan.201700803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreea Iordănescu
- Analytical Chemistry Department, Faculty of Pharmacy; Iuliu Haţieganu University of Medicine and Pharmacy; 4 Pasteur St. 400349 Cluj-Napoca Romania
| | - Mihaela Tertis
- Analytical Chemistry Department, Faculty of Pharmacy; Iuliu Haţieganu University of Medicine and Pharmacy; 4 Pasteur St. 400349 Cluj-Napoca Romania
| | - Andreea Cernat
- Analytical Chemistry Department, Faculty of Pharmacy; Iuliu Haţieganu University of Medicine and Pharmacy; 4 Pasteur St. 400349 Cluj-Napoca Romania
| | - Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies; 67-103 Donat St. 400293 Cluj-Napoca Romania
| | - Robert Săndulescu
- Analytical Chemistry Department, Faculty of Pharmacy; Iuliu Haţieganu University of Medicine and Pharmacy; 4 Pasteur St. 400349 Cluj-Napoca Romania
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy; Iuliu Haţieganu University of Medicine and Pharmacy; 4 Pasteur St. 400349 Cluj-Napoca Romania
| |
Collapse
|
39
|
Savin M, Mihailescu CM, Matei I, Stan D, Moldovan CA, Ion M, Baciu I. A quantum dot-based lateral flow immunoassay for the sensitive detection of human heart fatty acid binding protein (hFABP) in human serum. Talanta 2018; 178:910-915. [DOI: 10.1016/j.talanta.2017.10.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/14/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
|
40
|
Serebrennikova K, Samsonova J, Osipov A. Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay. NANO-MICRO LETTERS 2018; 10:24. [PMID: 30393673 PMCID: PMC6199071 DOI: 10.1007/s40820-017-0180-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/23/2017] [Indexed: 05/14/2023]
Abstract
Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5-10 ng mL-1 with the limit of detection of 0.1 ng mL-1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).
Collapse
Affiliation(s)
- Kseniya Serebrennikova
- Chemistry Faculty, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia, 119991.
- National University of Science and Technology "MISiS", Leninskiy Prospect 4, Moscow, Russia, 119049.
| | - Jeanne Samsonova
- Chemistry Faculty, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia, 119991
- National University of Science and Technology "MISiS", Leninskiy Prospect 4, Moscow, Russia, 119049
| | - Alexander Osipov
- Chemistry Faculty, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia, 119991
- National University of Science and Technology "MISiS", Leninskiy Prospect 4, Moscow, Russia, 119049
| |
Collapse
|
41
|
Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens Bioelectron 2017; 98:267-284. [DOI: 10.1016/j.bios.2017.06.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
|
42
|
Huang Y, Xu J, Liu J, Wang X, Chen B. Disease-Related Detection with Electrochemical Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2375. [PMID: 29039742 PMCID: PMC5676665 DOI: 10.3390/s17102375] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 01/05/2023]
Abstract
Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.
Collapse
Affiliation(s)
- Ying Huang
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Jin Xu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Junjie Liu
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
| | - Xiangyang Wang
- CET-College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| | - Bin Chen
- Chongqing Key Laboratory of Non-linear Circuit and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China.
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
43
|
Kim MS, Kweon SH, Cho S, An SSA, Kim MI, Doh J, Lee J. Pt-Decorated Magnetic Nanozymes for Facile and Sensitive Point-of-Care Bioassay. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35133-35140. [PMID: 28944656 DOI: 10.1021/acsami.7b12326] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Development of facile and sensitive bioassays is important for many point-of-care applications. In this study, we fulfilled such demand by synthesizing Pt-decorated magnetic nanozymes and developing a bioassay based on unique properties of the newly synthesized nanozymes. Fe3O4-Pt/core-shell nanoparticles (MPt/CS NPs) with various compositions were synthesized and characterized. Fe3O4 NP itself is a good nanozyme with catalytic activity superior to that of natural enzymes, but catalytic activity can be further improved by incorporating Pt to the outer layers of the Fe3O4 NPs and building heterogeneous nanostructures. Magnetic properties of MPt/CS NPs enable magnetic enrichment of liquid samples, whereas catalytic properties of MPt/CS NPs allow signal amplification by enzyme-like reactions. By integrating MPt/CS NPs in lateral flow immunoassay strips, one of the widely used point-of-care bioassay devices, and harnessing magnetic and enzyme-like properties of MPt/CS NPs, an increase in sensitivity of two orders of magnitude was achieved compared to the sensitivity of conventional lateral flow immunoassay based on Au nanoparticles.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 37673, Republic of Korea
| | - Soon Ho Kweon
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH , Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seongyeon Cho
- Department of BioNano Technology, Gachon University , Seongnam, Gyeonggi 13120, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University , Seongnam, Gyeonggi 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University , Seongnam, Gyeonggi 13120, Republic of Korea
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), POSTECH , Pohang, Gyeongbuk 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
44
|
Baynes C, Yoon JY. μPAD Fluorescence Scattering Immunoagglutination Assay for Cancer Biomarkers from Blood and Serum. SLAS Technol 2017; 23:30-43. [PMID: 28922620 DOI: 10.1177/2472630317731891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A microfluidic paper analytical device (μPAD) was created for the sensitive quantification of cancer antigens, carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9), from human whole blood and serum, toward diagnosis and prognosis of colorectal cancer. Anti-CEA and anti-CA 19-9 antibodies were covalently linked to submicron, fluorescent polystyrene particles, loaded, and then dried in the center of the μPAD channel. CEA- or CA 19-9-spiked blood or serum samples were loaded to the inlet of μPAD, and subsequent immunoagglutination changed the fluorescent scatter signals upon ultraviolet (UV) excitation. The total assay time was about 1 min. Detection limits were 1 pg/mL for CEA and 0.1 U/mL for CA 19-9 from both 10% diluted blood and undiluted serum. The use of UV excitation and subsequent fluorescence scattering enabled much higher double-normalized intensities (up to 1.28-3.51, compared with 1.067 with the elastic Mie scatter detection), successful detection in the presence of blood or serum, and distinct multiplex assays with minimum cross-reaction of antibodies. The results with undiluted serum showed the larger dynamic range and smaller standard errors, which can be attributed to the presence of serum proteins, functioning as a stabilizer or a passivating protein for the particles within paper fibers.
Collapse
Affiliation(s)
- Cayla Baynes
- 1 Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Jeong-Yeol Yoon
- 1 Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
45
|
Gao X, Zheng P, Kasani S, Wu S, Yang F, Lewis S, Nayeem S, Engler-Chiurazzi EB, Wigginton JG, Simpkins JW, Wu N. Paper-Based Surface-Enhanced Raman Scattering Lateral Flow Strip for Detection of Neuron-Specific Enolase in Blood Plasma. Anal Chem 2017; 89:10104-10110. [PMID: 28817769 DOI: 10.1021/acs.analchem.7b03015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An inexpensive and disposable paper-based lateral flow strip (PLFS) has been developed as an immunoassay, in which surface-enhanced Raman scattering (SERS) is utilized for sensing signal transduction. The Au nanostar@Raman Reporter@silica sandwich nanoparticles are developed as the SERS probes, which is the key to the high sensitivity of the device. Compared with a colorimetric PLFS, the SERS-PLFS exhibits superior performance in terms of sensitivity and limit of detection (LOD) in a blood plasma-containing sample matrix. In addition, the SERS-PLFS has been successfully used for detection of neuron-specific enolase (NSE), a traumatic brain injury (TBI) protein biomarker, in diluted blood plasma samples, achieving a LOD of 0.86 ng/mL. Moreover, the SERS-PLFS was successfully employed to measure the NSE level in clinical blood plasma samples taken from deidentified TBI patients. This work demonstrates that the SERS-PLFS has great potential in assisting screening of TBI patients in the point-of-care setting.
Collapse
Affiliation(s)
- Xuefei Gao
- Department of Mechanical and Aerospace Engineering, West Virginia University , Morgantown, West Virginia 26506-6106, United States
| | - Peng Zheng
- Department of Mechanical and Aerospace Engineering, West Virginia University , Morgantown, West Virginia 26506-6106, United States
| | - Sujan Kasani
- Lane Department of Computer Science and Electrical Engineering, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Steven Wu
- Department of Mechanical and Aerospace Engineering, West Virginia University , Morgantown, West Virginia 26506-6106, United States
| | - Feng Yang
- Industrial and Management Systems Engineering Department, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sara Lewis
- Physiology and Pharmacology; Center for Basic and Translational Stroke Research; Center for Neuroscience, Morgantown, West Virginia 26505, United States
| | - Sara Nayeem
- Physiology and Pharmacology; Center for Basic and Translational Stroke Research; Center for Neuroscience, Morgantown, West Virginia 26505, United States
| | - Elizabeth B Engler-Chiurazzi
- Physiology and Pharmacology; Center for Basic and Translational Stroke Research; Center for Neuroscience, Morgantown, West Virginia 26505, United States
| | - Jane G Wigginton
- Department of Surgery, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - James W Simpkins
- Physiology and Pharmacology; Center for Basic and Translational Stroke Research; Center for Neuroscience, Morgantown, West Virginia 26505, United States
| | - Nianqiang Wu
- Department of Mechanical and Aerospace Engineering, West Virginia University , Morgantown, West Virginia 26506-6106, United States
| |
Collapse
|
46
|
Abstract
Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored.
Collapse
|
47
|
Zhu X, Sarwar M, Yue Q, Chen C, Li CZ. Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection. Int J Nanomedicine 2017; 12:979-987. [PMID: 28203077 PMCID: PMC5298300 DOI: 10.2147/ijn.s125437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-glucose biomarker-DNA oxidative damage biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG) has been successfully detected using a smartphone-enabled glucose meter. Through a series of immune reactions and enzymatic reactions on a solid lateral flow platform, 8-OHdG concentration has been converted to a relative amount of glucose, and therefore can be detected by conventional glucose meter directly. The device was able to detect 8-OHdG concentrations in phosphate buffer saline as low as 1.73 ng mL−1 with a dynamic range of 1–200 ng mL−1. Considering the inherent advantages of the personal glucose meter, the demonstration of this device, therefore, should provide new opportunities for the monitoring of a wide range of biomarkers and various target analytes in connection with different molecular recognition events.
Collapse
Affiliation(s)
- Xuena Zhu
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Mehenur Sarwar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Qiaoli Yue
- Department of Chemistry, College of Chemistry and Chemical Engineering, Liao Chen University, Shandong
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
48
|
Ye R, Zhu C, Song Y, Song J, Fu S, Lu Q, Yang X, Zhu MJ, Du D, Li H, Lin Y. One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. NANOSCALE 2016; 8:18980-18986. [PMID: 27808326 DOI: 10.1039/c6nr06870g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Protein-protein conjugates play a vital role in bioassays with their inherent functions of biological recognition and signal amplification. Herein, a one-pot green method for synthesis of all-inclusive protein-protein nanoflowers has been developed. The protein-protein nanoflowers integrate both essential functions of biological recognition and signal amplification, and they were used as ideal signal labels for the sensitive point-of-care detection of Escherichia coli O157:H7. Especially noteworthy, the prepared Con A-invertase-CaHPO4 hybrid nanoflowers simultaneously loaded sufficient invertase and enhanced the activity of the immobilized invertase, which fits well with the requirements of signal labels for bioassays. Due to the conversion of sucrose to glucose by invertase, Con A-invertase-CaHPO4 hybrid nanoflowers were successfully used for the reliable point-of-care detection of food pathogens by a personal glucose meter. The presented approach successfully resolved the bottleneck in preparing protein-protein conjugate-based signal labels for bioassays using enzyme-based signal amplification strategies, which holds great promise to develop on-demand protein-protein conjugates for a variety of applications extending from biosensors and biomedicine to energy, environmental monitoring and remediation.
Collapse
Affiliation(s)
- Ranfeng Ye
- College of Chemistry and College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li H, Yin X, Sun D, Xia K, Kang C, Chu S, Zhang P, Wang H, Qiu Y. Detection of NT-pro BNP using fluorescent protein modified by streptavidin as a label in immunochromatographic assay. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
50
|
Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM, González IJ, Bell D, Rees-Channer RR, Chiodini P, Chan WCW, Bischof JC. Thermal Contrast Amplification Reader Yielding 8-Fold Analytical Improvement for Disease Detection with Lateral Flow Assays. Anal Chem 2016; 88:11774-11782. [PMID: 27750420 DOI: 10.1021/acs.analchem.6b03406] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an increasing need for highly sensitive and quantitative diagnostics at the point-of-care. The lateral flow immunoassay (LFA) is one of the most widely used point-of-care diagnostic tests; however, LFAs generally suffer from low sensitivity and lack of quantification. To overcome these limitations, thermal contrast amplification (TCA) is a new method that is based on the laser excitation of gold nanoparticles (GNPs), the most commonly used visual signature, to evoke a thermal signature. To facilitate the clinical translation of the TCA technology, we present the development of a TCA reader, a platform technology that significantly improves the limit of detection and provides quantification of disease antigens in LFAs. This TCA reader provides enhanced sensitivity over visual detection by the human eye or by a colorimetric reader (e.g., BD Veritor System Reader). More specifically, the TCA reader demonstrated up to an 8-fold enhanced analytical sensitivity and quantification among LFAs for influenza, malaria, and Clostridium difficile. Systematic characterization of the laser, infrared camera, and other components of the reader and their integration into a working reader instrument are described. The development of the TCA reader enables simple, highly sensitive quantification of LFAs at the point-of-care.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Mechanical Engineering, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| | - David R Boulware
- Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Bobbi S Pritt
- Division of Clinical Microbiology, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Lynne M Sloan
- Division of Clinical Microbiology, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Iveth J González
- Foundation of New Innovative Diagnostics , Geneva, 1202, Switzerland
| | - David Bell
- Independent Consultant, 5 Voie de Gex, Geneva, 1202, Switzerland
| | | | | | - Warren C W Chan
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota - Twin Cities , Minneapolis, Minnesota 55455, United States
| |
Collapse
|