1
|
Kumar P, S Dkhar D, Chandra P, Kayastha AM. Watermelon Derived Urease Immobilized Gold Nanoparticles-Graphene Oxide Transducer for Direct Detection of Urea in Milk Samples. ACS APPLIED BIO MATERIALS 2024; 7:6357-6370. [PMID: 39331047 DOI: 10.1021/acsabm.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Urea contamination in milk poses significant health risks, including kidney failure, urinary tract obstruction, fluid loss, shock, and gastrointestinal bleeding. This highlights the need for sensitive, rapid, and reliable methods to detect traces amount of urea in milk. In this study, we designed an electrochemical transducer for urea detection by utilizing purified watermelon urease (Urs), gold nanoparticles (AuNPs), and graphene oxide (GO). The nanomaterials and biosensor probe were characterized using UV-vis spectroscopy, XPS, TEM, XRD, FTIR, AFM, CV, EIS, and DPV. The engineered probe (GCE/AuNPs/GO/Urs) demonstrated a broad linear detection range of 5 to 90 mg/dL and a low limit of detection (LOD) of 0.037 (±0.012) mg/dL (RSD < 3.7%). The biosensor was tested for potential interferents that may be present in adulterated milk and an exceptionally low coefficient of selectivity (ksel <0.1) was obtained. Evaluation of milk samples from a local dairy farm showed good recovery rates from 93.13% to. 98.79% (RSD < 4.28%, n = 3), indicating reliable detection capabilities. Stability tests confirmed the sensor's reproducibility and consistent performance. Additionally, a comparison study of the system was carried out using the purified watermelon urease and the commercially available urease. Herein, the results obtained using the sensor probe was finally validated with the gold standard method.
Collapse
Affiliation(s)
- Prince Kumar
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
3
|
Papatola F, Slimani S, Peddis D, Pellis A. Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions. Microb Biotechnol 2024; 17:e14481. [PMID: 38850268 PMCID: PMC11162105 DOI: 10.1111/1751-7915.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
In this review article, a perspective on the immobilization of various hydrolytic enzymes onto magnetic nanoparticles for synthetic organic chemistry applications is presented. After a first part giving short overview on nanomagnetism and highlighting advantages and disadvantages of immobilizing enzymes on magnetic nanoparticles (MNPs), the most important hydrolytic enzymes and their applications were summarized. A section reviewing the immobilization techniques with a particular focus on supporting enzymes on MNPs introduces the reader to the final chapter describing synthetic organic chemistry applications of small molecules (flavour esters) and polymers (polyesters and polyamides). Finally, the conclusion and perspective section gives the author's personal view on further research discussing the new idea of a synergistic rational design of the magnetic and biocatalytic component to produce novel magnetic nano-architectures.
Collapse
Affiliation(s)
- F. Papatola
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| | - S. Slimani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - D. Peddis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - A. Pellis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| |
Collapse
|
4
|
Elsherbiny AS, Galal A, Ghoneem KM, Salahuddin NA. Graphene oxide-based nanocomposites for outstanding eco-friendly antifungal potential against tomato phytopathogens. BIOMATERIALS ADVANCES 2024; 160:213863. [PMID: 38642516 DOI: 10.1016/j.bioadv.2024.213863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.
Collapse
Affiliation(s)
- Abeer S Elsherbiny
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Alyaa Galal
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Khalid M Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center (ID: 60019332), Giza 12112, Egypt
| | - Nehal A Salahuddin
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Kumar P, Rajan R, Upadhyaya K, Behl G, Xiang XX, Huo P, Liu B. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives. ENVIRONMENTAL RESEARCH 2024; 247:118002. [PMID: 38151147 DOI: 10.1016/j.envres.2023.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
The amalgamation of nanostructures with modern electrochemical and optical techniques gave rise to interesting devices, so-called biosensors. A biosensor is an analytical tool that incorporates various biomolecules with an appropriate physicochemical transducer. Over the past few years, metal oxide nanomaterials (MONMs) have significantly stimulated biosensing research due to their desired functionalities, versatile chemical stability, and low cost along with their unique optical, catalytic, electrical, and adsorption properties that provide an attractive platform for linking the biomolecules, for example, antibodies, nucleic acids, enzymes, and receptor proteins as sensing elements with the transducer for the detection of signals or signal amplifications. The signals to be measured are in direct proportionate to the concentration of the bioanalyte. Because of their simplicity, cost-effectiveness, portability, quick analysis, higher sensitivity, and selectivity against a broad range of biosamples, MONMs-based electrochemical and optical biosensing platforms are exhaustively explored as powerful early-diagnosis tools for point of care applications. Herein, we made a bibliometric analysis of past twenty years (2004-2023) on the application of MONMs as electrochemical and optical biosensing units using Web of Science database and the results of which clearly reveal the increasing number of publications since 2004. Geographical area distribution analysis of these publications shows that China tops the list followed by the United States of America and India. In this review, we first describe the electrochemical and optical properties of MONMs that are crucial for the creation of extremely stable, specific, and sensitive sensors with desirable characteristics. Then, the biomedical applications of MONMs-based bare and hybrid electrochemical and optical biosensing frameworks are highlighted in the light of recent literature. Finally, current limitations and future challenges in the field of biosensing technology are addressed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China; School of Pharmacy, University College Cork, T12 K8AF, Cork, Ireland
| | - Ramachandran Rajan
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Kapil Upadhyaya
- Chemical Physiology & Biochemistry Department, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gautam Behl
- Eirgen Pharma Ltd., Westside Business Park, Waterford, Ireland
| | - Xin-Xin Xiang
- Translational Medical Center, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo, 255000, China.
| |
Collapse
|
6
|
Hussan, Nisa S, Bano SA, Zia M. Chemically synthesized ciprofloxacin-PEG-FeO nanotherapeutic exhibits strong antibacterial and controlled cytotoxic effects. Nanomedicine (Lond) 2024; 19:875-893. [PMID: 38530883 DOI: 10.2217/nnm-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Aim: To develop a biocompatible conjugated ciprofloxacin-PEG-FeO nanodelivery system with increased efficacy of available therapeutics in a controlled manner. Materials & methods: FeO nanoparticles were synthesized by chemical and biological methods and modified as ciprofloxacin-PEG-FeO nanoformulations. After initial antibacterial and cytotoxicity studies, the effective and biocompatible nanoformulations was further fabricated as nanotherapeutics for in vivo studies in mouse models. Results: Chemically synthesized ciprofloxacin-PEG-FeO nanoformulations demonstrated boosted antibacterial activity against clinically isolated bacterial strains. Nanoformulations were also found to be compatible with baby hamster kidney 21 cells and red blood cells. In in vivo studies, nanotherapeutic showed wound-healing effects with eradication of Staphylococcus aureus infection. Conclusion: The investigations indicate that the developed nanotherapeutic can eradicate localized infections and enhance wound healing with controlled cytotoxicity.
Collapse
Affiliation(s)
- Hussan
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Syeda Asma Bano
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid e Azam University Islamabad, Islamabad, 15320, Pakistan
| |
Collapse
|
7
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
8
|
Nghia NT, Tuyen BTK, Quynh NT, Thuy NTT, Nguyen TN, Nguyen VD, Tran TKN. Response Methodology Optimization and Artificial Neural Network Modeling for the Removal of Sulfamethoxazole Using an Ozone-Electrocoagulation Hybrid Process. Molecules 2023; 28:5119. [PMID: 37446780 DOI: 10.3390/molecules28135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Removing antibiotics from water is critical to prevent the emergence and spread of antibiotic resistance, protect ecosystems, and maintain the effectiveness of these vital medications. The combination of ozone and electrocoagulation in wastewater treatment provides enhanced removal of contaminants, improved disinfection efficiency, and increased overall treatment effectiveness. In this work, the removal of sulfamethoxazole (SMX) from an aqueous solution using an ozone-electrocoagulation (O-EC) system was optimized and modeled. The experiments were designed according to the central composite design. The parameters, including current density, reaction time, pH, and ozone dose affecting the SMX removal efficiency of the OEC system, were optimized using a response surface methodology. The results show that the removal process was accurately predicted by the quadric model. The numerical optimization results show that the optimum conditions were a current density of 33.2 A/m2, a time of 37.8 min, pH of 8.4, and an ozone dose of 0.7 g/h. Under these conditions, the removal efficiency reached 99.65%. A three-layer artificial neural network (ANN) with logsig-purelin transfer functions was used to model the removal process. The data predicted by the ANN model matched well to the experimental data. The calculation of the relative importance showed that pH was the most influential factor, followed by current density, ozone dose, and time. The kinetics of the SMX removal process followed the first-order kinetic model with a rate constant of 0.12 (min-1). The removal mechanism involves various processes such as oxidation and reduction on the surface of electrodes, the reaction between ozone and ferrous ions, degradation of SMX molecules, formation of flocs, and adsorption of species on the flocs. The results obtained in this work indicate that the O-EC system is a potential approach for the removal of antibiotics from water.
Collapse
Affiliation(s)
- Nguyen Trong Nghia
- Faculty of Chemical and Environmental Technology, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen 17817, Vietnam
| | - Bui Thi Kim Tuyen
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Ngo Thi Quynh
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Nguyen Thi Thu Thuy
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Thi Nguyet Nguyen
- Faculty of Chemical and Environmental Technology, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen 17817, Vietnam
| | - Vinh Dinh Nguyen
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Thi Kim Ngan Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
9
|
Bhatt P, Joshi S, Urper Bayram GM, Khati P, Simsek H. Developments and application of chitosan-based adsorbents for wastewater treatments. ENVIRONMENTAL RESEARCH 2023; 226:115530. [PMID: 36863653 DOI: 10.1016/j.envres.2023.115530] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Water quality is deteriorating continuously as increasing levels of toxic inorganic and organic contaminants mostly discharging into the aquatic environment. Removal of such pollutants from the water system is an emerging research area. During the past few years use of biodegradable and biocompatible natural additives has attracted considerable attention to alleviate pollutants from wastewater. The chitosan and its composites emerged as a promising adsorbents due to their low price, abundance, amino, and hydroxyl groups, as well as their potential to remove various toxins from wastewater. However, a few challenges associated with its practical use include lack of selectivity, low mechanical strength, and solubility in acidic medium. Therefore, several approaches for modification have been explored to improve the physicochemical properties of chitosan for wastewater treatment. Chitosan nanocomposites found effective for the removal of metals, pharmaceuticals, pesticides, microplastics from the wastewaters. Nanoparticle doped with chitosan in the form of nano-biocomposites has recently gained much attention and proven a successful tool for water purification. Hence, applying chitosan-based adsorbents with numerous modifications is a cutting-edge approach to eliminating toxic pollutants from aquatic systems with the global aim of making potable water available worldwide. This review presents an overview of distinct materials and methods for developing novel chitosan-based nanocomposites for wastewater treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Samiksha Joshi
- Graphic Era Hill University Bhimtal, Nainital, Uttarakhand, India
| | - Gulsum Melike Urper Bayram
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Priyanka Khati
- Crop Production Division, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
10
|
Wang Y, Yang Y, Zheng X, Shi J, Zhong L, Duan X, Zhu Y. Application of iron oxide nanoparticles in the diagnosis and treatment of leukemia. Front Pharmacol 2023; 14:1177068. [PMID: 37063276 PMCID: PMC10097929 DOI: 10.3389/fphar.2023.1177068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia. According to considerable researches in the context of finding new nanotechnological platform, iron oxide nanoparticles have been gained increasing attention for the leukemia patients use. In this review, a short introduction of leukemia is described followed by the evaluation of the current approaches of iron oxide nanoparticles applied in the leukemia detection and treatment. The enormous advantages of iron oxide nanoparticles for leukemia have been discussed, which consist of the detection of magnetic resonance imaging (MRI) as efficient contrast agents, magnetic biosensors and targeted delivery of anti-leukemia drugs by coating different targeting moieties. In addition, this paper will briefly describe the application of iron oxide nanoparticles in the combined treatment of leukemia. Finally, the shortcomings of the current applications of iron-based nanoparticles in leukemia diagnosis and treatment will be discussed in particular.
Collapse
|
11
|
Facile one-step synthesis of poly(styrene-glycidyl methacrylate)-Fe3O4 nanocomposite particles and application potency in glucose biosensors. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Direct continuous synthesis of macroRAFT-grafted Fe3O4 nanoclusters for the preparation of magnetic nanocomposites. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
13
|
Zulfa VZ, Nasori N, Farahdina U, Firdhaus M, Aziz I, Suprihatin H, Rhomadhoni MN, Rubiyanto A. Highly Sensitive ZnO/Au Nanosquare Arrays Electrode for Glucose Biosensing by Electrochemical and Optical Detection. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020617. [PMID: 36677675 PMCID: PMC9861633 DOI: 10.3390/molecules28020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
The fabrication of a ZnO/Au nanosquare-array electrode was successfully carried out for the detection of glucose concentration in biomedical applications. The fabrication of the ZnO/Au nanosquare array using an ultra-thin alumina mask (UTAM) based on the imprinted anodic aluminum oxide (AAO) template and the direct current (DC) sputtering method was able to produce a very well-ordered nanosquare arrangement with a side size of 300 nm and a thickness of 100 nm. Tests were done to evaluate the performance of the electrode by means of cyclic voltammetry (CV) which showed that the addition of glucose oxidase (GOx) increased the sensitivity of the electrode up to 1180 ± 116 μA mM-1cm-2, compared with its sensitivity prior to the addition of GOx of 188.34 ± 18.70 mA mM-1 cm-2. A iox/ired ratio equal to ~1 between the peaks of redox reactions was obtained for high (hyperglycemia), normal, and low (hypoglycemia) levels of glucose. The ZnO/Au nanosquare-array electrode was 7.54% more sensitive than the ZnO/Au thin-film electrode. Furthermore, finite-difference time-domain (FDTD) simulations and theoretical calculations of the energy density of the electric and magnetic fields produced by the ZnO/Au electrode were carried out and compared to the results of CV. From the results of CV, FDTD simulation, and theoretical calculations, it was confirmed that the ZnO/Au nanosquare array possessed a significant optical absorption and that the quantum effect from the nanosquare array resulted in a higher sensitivity than the thin film.
Collapse
Affiliation(s)
- Vinda Zakiyatuz Zulfa
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| | - Nasori Nasori
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
- Correspondence:
| | - Ulya Farahdina
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| | - Miftakhul Firdhaus
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| | - Ihwanul Aziz
- Research Center for Accelerator Technology, Research Organization of Nuclear Energy, National Research and Innovation Agency (BRIN), Yogyakarta 55281, Indonesia
| | - Hari Suprihatin
- Research Center for Accelerator Technology, Research Organization of Nuclear Energy, National Research and Innovation Agency (BRIN), Yogyakarta 55281, Indonesia
| | | | - Agus Rubiyanto
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya 60111, Indonesia
| |
Collapse
|
14
|
Ojaghzadeh Khalil Abad M, Masrournia M, Javid A. Simultaneous determination of paclitaxel and vinorelbine from environmental water and urine samples based on dispersive micro solid phase extraction-HPLC using a green and novel MOF-On-MOF sorbent composite. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Baabu PRS, Kumar HK, Gumpu MB, Babu K J, Kulandaisamy AJ, Rayappan JBB. Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010059. [PMID: 36614400 PMCID: PMC9820855 DOI: 10.3390/ma16010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/14/2023]
Abstract
Materials science and technology, with the advent of nanotechnology, has brought about innumerable nanomaterials and multi-functional materials, with intriguing yet profound properties, into the scientific realm. Even a minor functionalization of a nanomaterial brings about vast changes in its properties that could be potentially utilized in various applications, particularly for biological applications, as one of the primary needs at present is for point-of-care devices that can provide swifter, accurate, reliable, and reproducible results for the detection of various physiological conditions, or as elements that could increase the resolution of current bio-imaging procedures. In this regard, iron oxide nanoparticles, a major class of metal oxide nanoparticles, have been sweepingly synthesized, characterized, and studied for their essential properties; there are 14 polymorphs that have been reported so far in the literature. With such a background, this review's primary focus is the discussion of the different synthesis methods along with their structural, optical, magnetic, rheological and phase transformation properties. Subsequently, the review has been extrapolated to summarize the effective use of these nanoparticles as contrast agents in bio-imaging, therapeutic agents making use of its immune-toxicity and subsequent usage in hyperthermia for the treatment of cancer, electron transfer agents in copious electrochemical based enzymatic or non-enzymatic biosensors and bactericidal coatings over biomaterials to reduce the biofilm formation significantly.
Collapse
Affiliation(s)
- Priyannth Ramasami Sundhar Baabu
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hariprasad Krishna Kumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Acrophase, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Manju Bhargavi Gumpu
- Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Jayanth Babu K
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
16
|
Abdelrahman A, Erchiqui F, Nedil M, Mohamed S. Enhancing Fluidic Polymeric Solutions' Physical Properties with Nano Metals and Graphene Additives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Langmuir–Blodgett based ordered deposition of functionalized iron oxide nanoparticles for ultrasensitive detection of Escherichia coli O157: H7. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Plekhanova YV, Rai M, Reshetilov AN. Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect. 3 Biotech 2022; 12:231. [PMID: 35996672 PMCID: PMC9391563 DOI: 10.1007/s13205-022-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
Electrochemical biosensors and biofuel cells are finding an ever-increasing practical application due to several advantages. Biosensors are miniature measuring devices, which can be used for on-the-spot analyses, with small assay times and sample volumes. Biofuel cells have dual benefits of environmental cleanup and electric energy generation. Application of nanomaterials in biosensor and biofuel-cell devices increases their functioning efficiency and expands spheres of use. This review discusses the potential of nanomaterials in improving the basic parameters of bioelectrochemical systems, including the sensitivity increase, detection lower-limit decrease, detection-range change, lifetime increase, substrate-specificity control. In most cases, the consideration of the role of nanomaterials links a certain type of nanomaterial with its effect on the bioelectrochemical device upon the whole. The review aims at assessing the effects of nanomaterials on particular analytical parameters of a biosensor/biofuel-cell bioelectrochemical device.
Collapse
Affiliation(s)
- Yulia V. Plekhanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH 444602 India
| | - Anatoly N. Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
- Tula State University, 300012 Tula, Russian Federation
| |
Collapse
|
19
|
Kumar A, Gangawane KM. Synthesis and effect on the surface morphology & magnetic properties of ferrimagnetic nanoparticles by different wet chemical synthesis methods. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Santos LKB, Mendonça PD, Assis LKS, Prudêncio CR, Guedes MIF, Marques ETA, Dutra RF. A Redox-Probe-Free Immunosensor Based on Electrocatalytic Prussian Blue Nanostructured Film One-Step-Prepared for Zika Virus Diagnosis. BIOSENSORS 2022; 12:623. [PMID: 36005020 PMCID: PMC9406047 DOI: 10.3390/bios12080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The Zika virus (ZIKV) is a great concern for global health due to its high transmission, including disseminating through blood, saliva, urine, semen and vertical transmission. In some cases, ZIKV has been associated with microcephaly, neurological disorders, and Guillain−Barré syndrome. There is no vaccine, and controlling the disease is a challenge, especially with the co-circulation of the Dengue virus, which causes a severe cross-reaction due to the similarity between the two arboviruses. Considering that electrochemical immunosensors are well-established, sensitive, and practical tools for diagnosis, in this study we developed a sensor platform with intrinsic redox activity that facilitates measurement readouts. Prussian blue (PB) has a great ability to form electrocatalytic surfaces, dispensing redox probe solutions in voltammetric measurements. Herein, PB was incorporated into a chitosan−carbon nanotube hybrid, forming a nanocomposite that was drop-casted on a screen-printed electrode (SPE). The immunosensor detected the envelope protein of ZIKV in a linear range of 0.25 to 1.75 µg/mL (n = 8, p < 0.01), with a 0.20 µg/mL limit of detection. The developed immunosensor represents a new method for electrochemical measurements without additional redox probe solutions, and it is feasible for application in point-of-care diagnosis.
Collapse
Affiliation(s)
- Lorenna K. B. Santos
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| | - Priscila D. Mendonça
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| | - LiLian K. S. Assis
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| | | | | | - Ernesto T. A. Marques
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rosa Fireman Dutra
- Biomedical Engineering Laboratory, Department of Biomedical Engineering, Federal University of Pernambuco, Avenida Professor Moraes Rego 1235, Recife 50670-90, Brazil
| |
Collapse
|
21
|
Mansoor S, Shahid S, Ashiq K, Alwadai N, Javed M, Iqbal S, Fatima U, Zaman S, Nazim Sarwar M, Alshammari FH, Elkaeed EB, Awwad NS, Ibrahium HA. Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS OMEGA 2022; 7:22073-22088. [PMID: 35811879 PMCID: PMC9260923 DOI: 10.1021/acsomega.2c01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 10/04/2023]
Abstract
Advances in nanotechnology over the past decade have emerged as a substitute for conventional therapies and have facilitated the development of economically viable biosensors. Next-generation biosensors can play a significant role in curbing the spread of various viruses, including HCoV-2, and controlling morbidity and mortality. Pertaining to the impact of the current pandemic, there is a need for point-of-care biosensor-based testing as a detection method to accelerate the detection process. Integrating biosensors with nanostructures could be a substitute for ultrasensitive label-free biosensors to amplify sensing and miniaturization. Notably, next-generation biosensors could expedite the detection process. An elaborate description of various types of functionalized nanomaterials and their synthetic aspects is presented. The utility of the functionalized nanostructured materials for fabricating nanobiosensors to detect several types of viral infections is described in this review. This review also discusses the choice of appropriate nanomaterials, as well as challenges and opportunities in the field of nanobiosensors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
- Department
of Chemistry, Kirori Mal College, University
of Delhi, New Delhi, Delhi 110007, India
| | - Ritika Sharma
- Department
of Biochemistry, University of Delhi, New Delhi, Delhi 110021, India
| | - Bhawna
- Department
of Chemistry, University of Delhi, New Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, Delhi 110021, India
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, Delhi 110021, India
| | - Susheel Kalia
- Department
of Chemistry, Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Pankaj Thakur
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, New Delhi, Delhi 110067, India
| |
Collapse
|
23
|
Bravo I, Prata M, Torrinha Á, Delerue-Matos C, Lorenzo E, Morais S. Laccase bioconjugate and multi-walled carbon nanotubes-based biosensor for bisphenol A analysis. Bioelectrochemistry 2022; 144:108033. [PMID: 34922175 DOI: 10.1016/j.bioelechem.2021.108033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor compound that has been detected in aquatic ecosystems. In this work, the development of an electrochemical biosensor for BPA determination based on laccase from Trametes versicolor is reported. A bioconjugate was optimized to maximize the biosensor electrocatalytic activity and stability, which for the first time involved the synergistic effect of this specific enzyme (6.8 UmL-1), chitosan (5 mgmL-1) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate in an optimum 5:5:2 (v/v/v) proportion. This bioconjugate was deposited onto a screen-printed carbon electrode previously modified with multi-walled carbon nanotubes (MWCNTs). Nanostructuration with MWCNTs enlarged the electrocatalytic activity and surface area, thus improving the biosensor performance. The BPA electrochemical reaction follows an EC mechanism at the optimum pH value of 5.0. Linearity up to 12 µM, a sensitivity of (6.59 ± 0.04) × 10-2 μAμM-1 and a detection limit of 8.4 ± 0.3 nM were obtained coupled with high reproducibility (relative standard deviations lower than 6%) and stability (87% of the initial response after one month). The developed biosensor was employed to the analysis of BPA in river water displaying appropriate accuracy (94.6-97.9%) and repeatability (3.1 to 6% relative standard deviations) proving its high potential applicability for in situ environmental analysis.
Collapse
Affiliation(s)
- Iria Bravo
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Mariana Prata
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Álvaro Torrinha
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Faraday, 9, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
24
|
Arikan K, Burhan H, Sahin E, Sen F. A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support. CHEMOSPHERE 2022; 291:132718. [PMID: 34756949 DOI: 10.1016/j.chemosphere.2021.132718] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In this study, a glucose sensor modified with activated carbon supported gold-nickel (AuNi@AC) metal nanoparticles was prepared for the early diagnosis of diabetes. Electrochemical tests were carried out by determining the optimum working conditions of the prepared glucose sensor. The characterization analyses of the designed glucose sensor were performed by Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. It was determined that the average particle size of the nanoparticles in the AuNi alloy structure was 2.03 ± 0.37 nm. The determined detection limit of the AuNi@AC nanosensor was calculated as 0.41 μM as a result of the high linear range provided up to 1.7 mM. In addition, the sensitivity of AuNi@AC nanosensor to glucose, which has a high sensitivity value of 1955 μA mM-1 cm-2, was determined.
Collapse
Affiliation(s)
- Kubilay Arikan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Hakan Burhan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Elif Sahin
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey.
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
25
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Singh N, Yadav S, Mehta SK, Dan A. In situ incorporation of magnetic nanoparticles within the carboxymethyl cellulose hydrogels enables dye removal. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2026788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nirbhai Singh
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| | - Saurabh Yadav
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| | - Surinder K. Mehta
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| | - Abhijit Dan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University – Chandigarh, Chandigarh, India
| |
Collapse
|
27
|
Singh J, Singh R, Singh S, Mitra K, Mondal S, Vishwakarma S, Ray B. Colorimetric detection of hydrogen peroxide and cholesterol using Fe3O4-brominated graphene nanocomposite. Anal Bioanal Chem 2022; 414:2131-2145. [DOI: 10.1007/s00216-021-03848-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
|
28
|
Ranjan P, Yadav S, Sadique MA, Khan R, Chaurasia JP, Srivastava AK. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. BIOSENSORS 2021; 11:414. [PMID: 34821629 PMCID: PMC8615372 DOI: 10.3390/bios11110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
| | - Raju Khan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamana Prasad Chaurasia
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Naseem K. Magnetic nanoparticles (Fe3O4 NPs) fabricated composite microgels and their applications in different fields. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
This article encircles the research progress of Fe3O4 NPs loaded composite microgel particles. Preparation methodologies, properties and applications of Fe3O4 NPs loaded composite microgel particles are elaborated here. The effect of different factors on the stability and tunable properties of Fe3O4 NPs loaded composite microgel particles was also investigated in detail. These composite particles have exceptional magnetic properties that make them demanding composite nano-formulation in different fields. Applications of these composite microgel particles in different fields as micro-reactor, drug delivery vehicles, and in adsorption and catalysis have also been elaborated in detail. These composite microgel particles can easily be recovered from the reaction mixture by applying an external magnet due to the presence of fabricated Fe3O4 NPs.
Collapse
Affiliation(s)
- Khalida Naseem
- Department of Chemistry , Faculty of Sciences, University of Central Punjab , Lahore , 54590 , Pakistan
| |
Collapse
|
30
|
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10070884. [PMID: 34356805 DOI: 10.3389/fphy.2021.641481] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 05/22/2023]
Abstract
The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs. Iron is one of the key microelements and plays an important role in the function of living systems of different hierarchies. Iron abundance and its physiological functions bring into question the ability of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation that combine antimicrobial action and high biocompatibility with the human body. This review is intended to inform readers about the available data on the antimicrobial properties of IONPs, a range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy A Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Anastasia A Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
31
|
Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? Antibiotics (Basel) 2021; 10:884. [PMID: 34356805 PMCID: PMC8300809 DOI: 10.3390/antibiotics10070884] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
The use of metal oxide nanoparticles is one of the promising ways for overcoming antibiotic resistance in bacteria. Iron oxide nanoparticles (IONPs) have found wide applications in different fields of biomedicine. Several studies have suggested using the antimicrobial potential of IONPs. Iron is one of the key microelements and plays an important role in the function of living systems of different hierarchies. Iron abundance and its physiological functions bring into question the ability of iron compounds at the same concentrations, on the one hand, to inhibit the microbial growth and, on the other hand, to positively affect mammalian cells. At present, multiple studies have been published that show the antimicrobial effect of IONPs against Gram-negative and Gram-positive bacteria and fungi. Several studies have established that IONPs have a low toxicity to eukaryotic cells. It gives hope that IONPs can be considered potential antimicrobial agents of the new generation that combine antimicrobial action and high biocompatibility with the human body. This review is intended to inform readers about the available data on the antimicrobial properties of IONPs, a range of susceptible bacteria, mechanisms of the antibacterial action, dependence of the antibacterial action of IONPs on the method for synthesis, and the biocompatibility of IONPs with eukaryotic cells and tissues.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.E.B.); (D.A.S.); (M.B.R.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.E.B.); (D.A.S.); (M.B.R.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.E.B.); (D.A.S.); (M.B.R.)
| | - Maksim B. Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (D.E.B.); (D.A.S.); (M.B.R.)
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| |
Collapse
|
32
|
Kermanian M, Sadighian S, Ramazani A, Naghibi M, Khoshkam M, Ghezelbash P. Inulin-Coated Iron Oxide Nanoparticles: A Theranostic Platform for Contrast-Enhanced MR Imaging of Acute Hepatic Failure. ACS Biomater Sci Eng 2021; 7:2701-2715. [PMID: 34061500 DOI: 10.1021/acsbiomaterials.0c01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study introduces a superparamagnetic nanocomposite, Fe-Si-In, as a T2 magnetic resonance imaging (MRI) contrast agent with a core of iron oxide nanoparticles and a nonporous silica inner shell/carboxymethyl inulin outer shell. Due to its core/shell properties, the structure characterization, biocompatibility, and performance in MRI, as well as its potential as a drug delivery system, were thoroughly evaluated. The results have shown that the synthesized nanocomposite possesses excellent biocompatibility and acceptable magnetization (Ms = 20 emu g-1). It also has the potential to be a nanocarrier for drug delivery purposes, as evidenced by the results of curcumin administration studies. The developed nanocomposite has shown excellent performance in MRI, while the in vitro relaxivity measurements reveal a stronger T2 relaxivity (r2 = 223.2 ms) compared to the commercial samples available in the market. Furthermore, the in vivo MRI studies demonstrate an excellent contrast between injured livers and normal ones in rats which again upholds the high performance of Fe-Si-In in MRI diagnostics.
Collapse
Affiliation(s)
- Mehraneh Kermanian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Somayeh Sadighian
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Mehran Naghibi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Maryam Khoshkam
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil 1136756199, Iran
| | - Parviz Ghezelbash
- Department of Radiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| |
Collapse
|
33
|
Mehrabian M, Noroozian E, Maghsoudi S. Preparation and application of Fe3O4@ SiO2@ poly (o-phenylenediamine) nanoparticles as a novel magnetic sorbent for the solid-phase extraction of tellurium in water samples and its determination by ET-AAS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Parul, Sen T, Roy I. Fluorescein-entrapped magnetosomes for magnetically assisted photodynamic therapy. Nanomedicine (Lond) 2021; 16:883-894. [PMID: 33913340 DOI: 10.2217/nnm-2020-0445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: We investigated the application of fluorescein (FL)-entrapped magnetosomes, in other words, silica-coated iron oxide nanoparticles entrapped within niosomes (SIO/NIO), in magnetically assisted photodynamic therapy (PDT) in vitro. Methods: Panc-1 cells were treated with the magnetosomes, with and without external magnetic guidance, and irradiated with blue light. Results & conclusion: Upon photoactivation, the FL-entrapped magnetosomes can produce higher singlet oxygen in comparison to FL-entrapped micelles, probably due to the higher release tendency of the photosensitizer from the former. In vitro studies in Panc-1 cells revealed magnetically assisted enhancement in the cellular uptake of the magnetosomes. Magnetic assistance also led to enhancement in PDT efficiency in cells treated with the FL-entrapped magnetosomes and light, thus highlighting their potential in PDT.
Collapse
Affiliation(s)
- Parul
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Tapas Sen
- School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
35
|
Parham N, Ahmad Panahi H, Feizbakhsh A, Moniri E. Synthesis of
PEGylated
superparamagnetic dendrimers and their applications as a drug delivery system. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Negin Parham
- Department of Chemistry Central Tehran Branch, Islamic Azad University Tehran Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry Central Tehran Branch, Islamic Azad University Tehran Iran
| | - Alireza Feizbakhsh
- Department of Chemistry Central Tehran Branch, Islamic Azad University Tehran Iran
| | - Elham Moniri
- Department of Chemistry Varamin (Pishva) Branch, Islamic Azad University Varamin Iran
| |
Collapse
|
36
|
Sheel R, Kumari P, Panda PK, Jawed Ansari MD, Patel P, Singh S, Kumari B, Sarkar B, Mallick MA, Verma SK. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P.niruri contrived antibacterial iron oxide nanoparticles with zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115482. [PMID: 32889517 DOI: 10.1016/j.envpol.2020.115482] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 05/27/2023]
Abstract
Extensive use of magnetic iron oxide (magnetite) nanoparticles (IONP) has raised concerns about their biocompatibility. It has also stimulated the search for its green synthesis with greater biocompatibility. Addressing the issue, this study investigates the molecular nanotoxicity of IONP with embryonic and adult zebrafish, and reveal novel green fabrication of iron oxide nanoparticles (P-IONP) using medicinal plant extract of Phyllanthus niruri. The synthesized P-IONP was having a size of 42 ± 08 nm and a zeta potential of -38 ± 06 mV with hydrodynamic diameter of 109 ± 09 nm and 90emu/g magnetic saturation value. High antibacterial efficacy of P-IONP was found against E.coli. Comparative in vivo biocompatibility assessment with zebrafish confirmed higher biocompatibility of P-IONP compared to commercial C-IONP in the relevance of mortality rate, hatching rate, heart rate, and morphological abnormalities. LC50 of P-IONP and C-IONP was 202 μg/ml and 126 μg/ml, respectively. Molecular nano-biocompatibility analysis revealed the phenomenon as an effect of induced apoptosis lead by dysregulation of induced oxidative stress due to structural and functional influence of IONP to Sod1 and Tp53 proteins through intrinsic atomic interaction.
Collapse
Affiliation(s)
- Rishav Sheel
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribag, 825301, India
| | - Puja Kumari
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden
| | - Md Danish Jawed Ansari
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sonal Singh
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | - Baby Kumari
- University Department of Biotechnology, Vinoba Bhave University, Hazaribag, 825301, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology (IIAB), IINRG Campus, Namkum Ranchi, Jharkhand, 834010, India
| | - M Anwar Mallick
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribag, 825301, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
37
|
Sulania I, Pricilla RB, Lakshmi GBVS. Investigating the Nanocomposite Thin Films of Hematite α-Fe2O3 and Nafion for Cholesterol Biosensing Applications. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.585721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite materials are multi-phase materials, usually solids, which have two or more component materials having different chemical and physical properties. When blended together, a newer material is formed with distinctive properties which make them an eligible candidate for many important applications. In the present study, thin films of nafion (polymer) and hematite or α-Fe2O3 (nanoparticles) nanocomposite is fabricated on indium tin oxide (ITO) coated glass substrates, due to its enhanced ionic conductivity, for cholesterol biosensor applications. Scanning electron microscopy and Atomic force microscopy revealed the formation of nanorod structured α-Fe2O3 in the films. The cyclic voltammetry (CV) studies of nafion-α-Fe2O3/ITO revealed the redox properties of the nanocomposites. The sensing studies were performed on nafion-α-Fe2O3/CHOx/ITO bioelectrode using differential pulse voltammetry (DPV) at various concentrations of cholesterol. The enzyme immobilization leaded to the selective detection of cholesterol with a sensitivity of 64.93 × 10−2 μA (mg/dl)−1 cm−2. The enzyme substrate interaction (Michaelis–Menten) constant Km, was obtained to be 19 mg/dl.
Collapse
|
38
|
Saqib S, Zaman W, Ayaz A, Habib S, Bahadur S, Hussain S, Muhammad S, Ullah F. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Sarkar T, Dhiman TK, Sajwan RK, Sri S, Solanki PR. Studies on carbon-quantum-dot-embedded iron oxide nanoparticles and their electrochemical response. NANOTECHNOLOGY 2020; 31:355502. [PMID: 32396882 DOI: 10.1088/1361-6528/ab925e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A report on the synthesis of carbon-quantum-dot-embedded iron oxide nanoparticles (CQD@Fe3O4NPs) and their improved electrochemical studies is presented. Fe3O4NPs and CQD@Fe3O4NPs were synthesized by the wet-chemical co-precipitation method. X-ray diffraction measurements exhibited pure cubic phase with Fd3m space group in Fe3O4NPs and CQD@Fe3O4NPs. Fourier-transform infrared spectroscopy measurements confirmed the functionalization of Fe3O4NPs with CQDs. Dynamic light scattering measurements revealed a hydrodynamic radius of 520 nm and 319 nm for Fe3O4NPs and CQD@Fe3O4NPs, respectively. Moreover, zeta potential measurements showed positively charged Fe3O4NPs and negatively charged CQD@Fe3O4NPs. High-resolution transmission electron microscopy measurements showed nearly spherical structure with an average size of around 7 nm for Fe3O4 in both samples, whereas CQDs were nearly 2 nm in size in CQD@Fe3O4NPs. A biocompatibility study showed that CQD@Fe3O4NPs were more biocompatible than the bare Fe3O4NPs. CQD@Fe3O4NPs were then dispersed in chitosan (CHIT) solution, and drop-casted onto an indium tin oxide (ITO) glass substrate for further study. Atomic force microscopy results showed improved surface roughness of the CQD@Fe3O4-CHIT/ITO electrode, providing a better biosensing platform. The electrochemical response studies of CQD@Fe3O4-CHIT/ITO also showed enhanced electrochemical signal compared to Fe3O4-CHIT/ITO electrodes. Thus, a CQD@Fe3O4-CHIT/ITO electrode was used for the detection of vitamin D2 (10-100 ng ml-1) using a differential pulse voltammetry technique. The sensitivity and limit of detection were obtained as 0.069 µA ng-1 ml cm-2 and 2.46 ng ml-1, respectively.
Collapse
Affiliation(s)
- Tamal Sarkar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | |
Collapse
|
40
|
Haghparas Z, Kordrostami Z, Sorouri M, Rajabzadeh M, Khalifeh R. Fabrication of Non-enzymatic Electrochemical Glucose Sensor Based on Nano-copper Oxide Micro Hollow-spheres. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0058-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Magnetic dispersive solid-phase microextraction for determination of two organophosphorus pesticides in cucumber and orange samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Kaur P, Choudhary R, Pal A, Mony C, Adholeya A. Polymer - Metal Nanocomplexes Based Delivery System: A Boon for Agriculture Revolution. Curr Top Med Chem 2020; 20:1009-1028. [DOI: 10.2174/1568026620666200330160810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
Metal nanoparticles are well known for their antimicrobial properties. The use of metalbased
nanoparticles in the agricultural field has considerably increased globally by both direct and
indirect means for the management of plant diseases. In this context, the development of controlled
delivery systems for slow and sustained release of metal nanoparticles is crucial for prolonged antimicrobial
activity. Polymers have emerged as a valuable carrier for controlled delivery of metal nanoparticles
as agrochemicals because of their distinctive properties. The most significant benefits of encapsulating
metal nanoparticles in a polymer matrix include the ability to function as a protector of metal
nanoparticles and their controlled release with prolonged efficacy. This review focuses on loading
strategies and releasing behavior of metal nanoparticles in the polymer matrix as antimicrobial agents
for plant diseases. The Polymer-metal nanocomplexes (PMNs) comprise a biocompatible polymeric
matrix and metal nanoparticles as active components of an antimicrobial agent, pesticides and plant
growth regulators used to enhance the crop productivity.
Collapse
Affiliation(s)
- Pawan Kaur
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Rita Choudhary
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Anamika Pal
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Chanchal Mony
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Alok Adholeya
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| |
Collapse
|
43
|
Yadav AK, Dhiman TK, Lakshmi G, Berlina AN, Solanki PR. A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosan-yttria nanocomposite. Int J Biol Macromol 2020; 151:566-575. [DOI: 10.1016/j.ijbiomac.2020.02.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
|
44
|
Liang Z, Zhang J, Wu C, Hu X, Lu Y, Wang G, Yu F, Zhang X, Wang Y. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosens Bioelectron 2020; 155:112105. [DOI: 10.1016/j.bios.2020.112105] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023]
|
45
|
Getiren B, Çıplak Z, Gökalp C, Yıldız N. NIR
‐responsive
Fe
3
O
4
@
PPy
nanocomposite for efficient potential use in photothermal therapy. J Appl Polym Sci 2020. [DOI: 10.1002/app.49343] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bengü Getiren
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Zafer Çıplak
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Ceren Gökalp
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Nuray Yıldız
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| |
Collapse
|
46
|
EIN ALI AFJEH M, POURAHMAD R, AKBARI-ADERGANI B, AZIN M. Characteristics of glucose oxidase immobilized on Magnetic Chitosan Nanoparticles. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.32618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Mehrdad AZIN
- Iranian Research Organization for Science and Technology, Iran
| |
Collapse
|
47
|
Safari J, Esteghlal S, Keramat M, Khalesi M. Fabrication of Chitosan/Pectin/PVA Nanofibers Using Electrospinning Technique. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681208666181002124634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background:
Electrospinning is a novel cost effective technique for generating nanofibers from a
broad range of materials likely to be used as a coating film.
Methods:
In this project, pectin and chitosan solutions containing PVA were prepared and electrospun with
separate syringes for the first time. The antimicrobial and physical properties of the novel chitosan/PVApectin/
PVA nanofibrous film were evaluated using some analysis techniques such as disc diffusion assay,
scanning electron microscopy (SEM), transmission electron microscopy (TEM), viscosity and conductivity
tests, and fourier-transform infrared spectroscopy (FTIR).
Results:
The results showed that simultaneously electrospinning the dispersion of chitosan/PVA (50:50)
with pectin/PVA (50:50) led to the formation of thin nanofibers with the minimum number of beads. The results
of FTIR analysis proved the dispersion of chitosan and PVA in nanofiber mats and the interaction of
chitosan with pectin as well as PVA with pectin. Disc diffusion assay showed that nano-film could possess
significant antibacterial activity against S. aureus at 37°C but had no effects against E. coli.
Conclusion:
Based on the results of this study, the novel chitosan/PVA-pectin/PVA nanofibrous film can be
considered as a novel coating film for promising application in food packaging industry.
Collapse
Affiliation(s)
- Javad Safari
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| | - Sara Esteghlal
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| | - Malihe Keramat
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| | - Mohammadreza Khalesi
- Department of Food Science and Technology, Shiraz University, Shiraz-71441-65186, Iran
| |
Collapse
|
48
|
Eskiköy Bayraktepe D, Yazan Z. Application of Single‐use Electrode Based on Nano‐clay and MWCNT for Simultaneous Determination of Acetaminophen, Ascorbic Acid and Acetylsalicylic Acid in Pharmaceutical Dosage. ELECTROANAL 2020. [DOI: 10.1002/elan.201900601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Zehra Yazan
- Ankara UniversityScience Faculty, Chemistry Department Ankara Turkey 06560
| |
Collapse
|
49
|
Senel M, Dervisevic M, Esser L, Dervisevic E, Dyson J, Easton CD, Cadarso VJ, Voelcker NH. Enhanced electrochemical sensing performance by in situ electrocopolymerization of pyrrole and thiophene-grafted chitosan. Int J Biol Macromol 2020; 143:582-593. [DOI: 10.1016/j.ijbiomac.2019.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022]
|
50
|
de Faria CC, Favero M, Caetano MMM, Rosa AH, Tonello PS. Application of chitosan film as a binding phase in the diffusive gradients in thin films technique (DGT) for measurement of metal ions in aqueous solution. Anal Bioanal Chem 2020; 412:703-714. [PMID: 31828374 DOI: 10.1007/s00216-019-02281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022]
Abstract
Diffusive gradients in thin films technique (DGT) allows in situ determination of labile metal in water, soils, and sediments. This paper aims to evaluate the performance of a new proposal of DGT to measure Cu2+ and Cd2+ in aqueous solution using chitosan films as binding agent. These films were prepared and characterized (Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscope, and elemental analysis). The maximum adsorption rates onto chitosan films at initial concentrations of 0.5 and 1.0 mg L-1 for Cu2+ and Cd2+ were 97%, 98% and 60%, 62%, respectively. Effects of main DGT parameters were evaluated and the results obtained suggest that the pH between 4.0 and 6.0 and ionic strength from 0.0008 to 0.1 mol L-1 presented the best ranges for the application of DGT-Chitosan. The results suggest that chitosan films prepared in this work can be an effective binding agent for DGT technique in aqueous solution. Graphical abstract.
Collapse
Affiliation(s)
- Carol C de Faria
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Avenida Três de Março 511, Sorocaba, São Paulo, 18087-180, Brazil
| | - Mariana Favero
- Laboratório Multidisciplinar de Mineralogia, Águas e Solos, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau 210, Diadema, Sao Paulo, 09913-030, Brazil
| | - Marina M M Caetano
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Avenida Três de Março 511, Sorocaba, São Paulo, 18087-180, Brazil
| | - Andre H Rosa
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Avenida Três de Março 511, Sorocaba, São Paulo, 18087-180, Brazil
| | - Paulo S Tonello
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Avenida Três de Março 511, Sorocaba, São Paulo, 18087-180, Brazil.
| |
Collapse
|