1
|
Zhou Y, Wang K, Li L, Li H, Tian Q, Ge B, Chi Y, Xu X, Liu S, Han M, Zhou T, Zhu Y, Wang Q, Yu B. A magnetic epitope-imprinted microsphere used for selective separation and rapid detection of SHV-type β-lactamases in bacteria: a novel strategy of antimicrobial resistance detection. J Nanobiotechnology 2024; 22:678. [PMID: 39501279 PMCID: PMC11539605 DOI: 10.1186/s12951-024-02949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The production of β-lactamases is the most prevalent resistance mechanism for β-lactam antibiotics in Gram-negative bacteria. Presently, over 4900 β-lactamases have been discovered, and they are categorized into hundreds of families. In each enzyme family, amino acid substitutions result in subtle changes to enzyme hydrolysis profiles; in contrast, certain conserved sequences retained by all of the family members can serve as important markers for enzyme family identification. RESULTS The SHV family was chosen as the study object. First, a unique 10-mer peptide was identified as SHV family's epitope by an approach of protein fingerprint analysis. Then, an SHV-specific magnetic epitope-imprinted gel polymer (MEI-GP) was prepared by an epitope surface imprinting technique, and its sorption behavior and recognition mechanism for template epitope and SHV were both elaborated. Finally, the MEI-GP was successfully applied to selectively extract SHV from bacteria, and the extracted SHV was submitted to MALDI-TOF MS for specific determination. By following this strategy, other β-lactamase families can also be specifically detected. According to the molecular weight displayed in mass spectra, the kind of β-lactamase and its associated hydrolysis profile on β-lactams can be easily identified. Based on this, an initial drug option scheme can be quickly formulated for antimicrobial therapy. From protein extraction to medication guidance reporting, the mean time to detection (MTTD) was less than 2 h, which is much faster than conventional phenotype-based methods (at least 16-20 h) and gene-based techniques (usually about 8 h). CONCLUSIONS This enzyme-specific detection strategy combined the specificity of epitope imprinting with the sensitivity of mass spectrometry, enabling β-lactamase to be selectively extracted from bacteria and clearly presented in mass spectra. Compared with other drug resistance detection methods, this technique has good specificity, high sensitivity (≤ 15 mg of bacteria), a short MTTD (less than 2 h), and simple operation, and therefore has a broad application prospect in clinical medicine.
Collapse
Affiliation(s)
- Yusun Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Kunqi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lele Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Hui Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuanyuan Chi
- Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Xiaotong Xu
- Department of Pediatric Emergency, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Shuhui Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Meng Han
- Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Tingting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanqi Zhu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
Song Q, Li Y, Ma L, Li Y, Lv Y. A High-Throughput Screening Strategy for Synthesizing Molecularly Imprinted Polymer Nanoparticles Selectively Targeting Tumors. Adv Healthc Mater 2024; 13:e2400290. [PMID: 39021323 DOI: 10.1002/adhm.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Molecularly imprinted polymers (MIPs) show significant promise as effective alternatives to antibodies in disease diagnosis and therapy. However, the challenging process of screening extensive libraries of monomer combinations and synthesis conditions to identify formulations with enhanced selectivity and affinity presents a notable time constraint. The need for expedient methods becomes clear in accelerating the strategic development of MIPs tailored for precise molecular recognition purposes. In this study, an innovative high-throughput screening methodology designed to identify the optimal MIP formulation for targeting tumors is presented. Employing a microtiter plate format, over 100 polymer syntheses are conducted, incorporating diverse combinations of functional monomers. Evaluation of binding performance utilizes fluorescence-based assays, focusing on an epitope of the epidermal growth factor receptor (EGFR). Through this meticulously structured screening process, synthesis conditions that produced MIP nanoparticles exhibiting substantial specificity for EGFR targeting (KD = 10-12 m) are identified. These "bionic antibodies" demonstrate selective recognition of cancer cells in whole blood samples, even at concentrations as low as 5 cells mL-1. Further validation through fluorescent imaging confirms the tumor-specific localization of the MIPs in vivo. This highly efficient screening approach facilitates the strategic synthesis of imprinted polymers functioning as precision bioprobes.
Collapse
Affiliation(s)
- Qingmei Song
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Preparation of C-Terminal Epitope Imprinted Particles Via Reversible Addition-Fragmentation Chain Transfer Polymerization and Zn2+ Chelating Strategy: Selective Recognition of Cytochrome c. Chromatographia 2022. [DOI: 10.1007/s10337-022-04180-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Zhao M, Li Z, Li X, Xie H, Zhao Q, Zhao M. Molecular imprinting of doxorubicin by refolding thermally denatured bovine serum albumin and cross-linking with hydrogel network. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Bovine serum albumin-imprinted magnetic poly(2-pyrrolidone) microparticles for protein recognition. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Boysen RI. Advances in the development of molecularly imprinted polymers for the separation and analysis of proteins with liquid chromatography. J Sep Sci 2018; 42:51-71. [PMID: 30411488 DOI: 10.1002/jssc.201800945] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
This review documents recent advances in the design, synthesis, characterization, and application of molecularly imprinted polymers in the form of monoliths and particles/beads for the use in the separation and analysis of proteins with solid-phase extraction or liquid chromatography. The merits of three-dimensional molecular imprinting, whereby the molecular template is randomly embedded in the polymer, and two-dimensional imprinting, in which the template is confined to the surface, are described. Target protein binding can be achieved by either using the entire protein as a template or by using a protein substructure as template, that is, a peptide, as in the "epitope" approach. The intended approach and strategy then determine the choice of polymerization method. A synopsis has been provided on methods used for the physical, chemical, and functional characterizations and associated performance evaluations of molecularly imprinted and nonimprinted control polymers, involving a diverse range of analytical techniques commonly used for low and high molecular mass analytes. Examples of recent applications demonstrate that, due to the versatility of imprinting methods, molecularly imprinted monoliths or particles/beads can be adapted to protein extraction/depletion and separation procedures relevant to, for example, protein biomarker detection and quantification in biomedical diagnostics and targeted proteomics.
Collapse
|
7
|
Madhumanchi S, Jadda R, Suedee R. Efficient adsorptive extraction materials by surface protein-imprinted polymer over silica gel for selective recognition/separation of human serum albumin from urine. J Appl Polym Sci 2018. [DOI: 10.1002/app.46894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sreenu Madhumanchi
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Ramana Jadda
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| |
Collapse
|
8
|
Boitard C, Rollet AL, Ménager C, Griffete N. Surface-initiated synthesis of bulk-imprinted magnetic polymers for protein recognition. Chem Commun (Camb) 2018; 53:8846-8849. [PMID: 28736780 DOI: 10.1039/c7cc04284a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bulk imprinting of proteins was used combined with a grafting approach onto maghemite nanoparticles to develop a faster and simpler polymerization method for the synthesis of magnetic protein imprinted polymers with very high adsorption capacities and very strong affinity constants.
Collapse
Affiliation(s)
- Charlotte Boitard
- UMR 8234, Laboratoire Physico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), UPMC Univ Paris 06, Sorbonne Universités, 4 place Jussieu - case 51, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
9
|
Boitard C, Bée A, Ménager C, Griffete N. Magnetic protein imprinted polymers: a review. J Mater Chem B 2018; 6:1563-1580. [PMID: 32254273 DOI: 10.1039/c7tb02985c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein imprinted polymers have received a lot of interest in the past few years because of their applications as tailor-made receptors for biomacromolecules. Generally, the preparation of these polymers requires numerous and time-consuming steps. But their coupling with magnetic nanoparticles simplifies and speeds up the synthesis of these materials. Some recent papers describe the use of protein imprinted polymer (PIP) coupled to magnetic iron oxide nanoparticles (MION) for the design of MION@PIP biosensors. With such systems, a target protein can be specifically and selectively captured from complex media due to exceptional chemical properties of the polymer. Despite such performances, only a limited number of studies address these hybrid nanosystems. This review focuses on the chemistry and preparation of MION@PIP nanocomposites as well as on the metrics used to characterize their performances.
Collapse
Affiliation(s)
- Charlotte Boitard
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX Laboratory, Case 51, 4 place Jussieu, 75252 Paris cedex 05, France.
| | | | | | | |
Collapse
|
10
|
Feng L, Zheng H, Tang X, Zheng X, Liu S, Sun Q, Wang M. The investigation of the specific behavior of a cationic block structure and its excellent flocculation performance in high-turbidity water treatment. RSC Adv 2018; 8:15119-15133. [PMID: 35541323 PMCID: PMC9079996 DOI: 10.1039/c8ra02006j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/07/2018] [Indexed: 11/21/2022] Open
Abstract
The fabrication of a cationic polyacrylamide (CPAM) with high efficiency and economy has been highly desired in the field of high-turbidity water treatment. This study introduced an ultrasound (US)-initiated template polymerization (UTP) method to develop a novel cationic templated polyacrylamide (TPAA) with a microblock structure. TPAA was prepared using acrylamide (AM) and sodium (3-acrylamidopropyl)trimethylammonium chloride (ATAC) as the monomers and sodium polyacrylate (NaPAA) as the template. Factors that affected polymerization such as the ultrasound power, ultrasound time, initiator concentration, pH, and mAM : mATAC and nNaPAA : nATAC values were investigated. The properties of the polymers were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectroscopy (1H NMR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results indicated the successful formation of a cationic microblock structure in TPAA. In addition, TPAA displayed favorable thermal decomposition properties and a rough and coarse surface morphology, as shown by analyses using TGA and SEM, respectively. Moreover, a zip (type I) template polymerization mechanism was identified via analyses of the association constant (KM), conversion (Cv) and polymerization rate (Rp). The flocculation performance of the templated copolymer TPAA was evaluated by treating high-turbidity water. According to the results for the zeta potentials and FTIR spectra of the generated flocs, it was indicated that the cationic microblocks in the templated copolymer could greatly enhance its charge neutralization, patching and bridging ability, and therefore excellent flocculation performance (residual turbidity: 5.8 NTU, Df: 1.89, floc size d50: 608.404 μm and floc kinetic: 15.86 × 10−4 s−1) for treating high-turbidity water was achieved. The fabrication of a cationic polyacrylamide (CPAM) with high efficiency and economy has been highly desired in the field of high-turbidity water treatment.![]()
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
| | - Xiaomin Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Xinyu Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Shuang Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control
- Chongqing University
- Chongqing 400044
- China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
| | - Qiang Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Moxi Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| |
Collapse
|
11
|
Zaidi SA. Molecular imprinting polymers and their composites: a promising material for diverse applications. Biomater Sci 2017; 5:388-402. [DOI: 10.1039/c6bm00765a] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imprinted polymerization is considered one of the most useful preparation strategies to obtain highly selective polymeric materials called molecular imprinted polymers (MIPs).
Collapse
|
12
|
“Smart” molecularly imprinted monoliths for the selective capture and easy release of proteins. J Sep Sci 2016; 39:3267-73. [DOI: 10.1002/jssc.201600576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 12/26/2022]
|
13
|
Preparation and characterization of novel thermosensitive magnetic molecularly imprinted polymers for selective recognition of norfloxacin. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-0972-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Raim V, Zadok I, Srebnik S. Comparison of descriptors for predicting selectivity of protein-imprinted polymers. J Mol Recognit 2016; 29:391-400. [DOI: 10.1002/jmr.2538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/03/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Vladimir Raim
- Department of Chemical Engineering; Technion - Israel institute of Technology; Haifa 32000 Israel
| | - Israel Zadok
- Department of Chemical Engineering; Technion - Israel institute of Technology; Haifa 32000 Israel
| | - Simcha Srebnik
- Department of Chemical Engineering; Technion - Israel institute of Technology; Haifa 32000 Israel
| |
Collapse
|
15
|
Yang X, Xia Y. Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers. J Sep Sci 2015; 39:419-26. [DOI: 10.1002/jssc.201501063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoqing Yang
- Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| | - Yan Xia
- Research Center for Analytical Sciences, College of Chemistry; Nankai University; Tianjin China
| |
Collapse
|
16
|
Molecularly imprinted polymers for separating and sensing of macromolecular compounds and microorganisms. Biotechnol Adv 2015; 34:30-46. [PMID: 26656748 DOI: 10.1016/j.biotechadv.2015.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
The present review article focuses on gathering, summarizing, and critically evaluating the results of the last decade on separating and sensing macromolecular compounds and microorganisms with the use of molecularly imprinted polymer (MIP) synthetic receptors. Macromolecules play an important role in biology and are termed that way to contrast them from micromolecules. The former are large and complex molecules with relatively high molecular weights. The article mainly considers chemical sensing of deoxyribonucleic acids (DNAs), proteins and protein fragments as well as sugars and oligosaccharides. Moreover, it briefly discusses fabrication of chemosensors for determination of bacteria and viruses that can ultimately be considered as extremely large macromolecules.
Collapse
|
17
|
Liu Y, Fang S, Zhai J, Zhao M. Construction of antibody-like nanoparticles for selective protein sequestration in living cells. NANOSCALE 2015; 7:7162-7167. [PMID: 25812011 DOI: 10.1039/c4nr07615j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate the successful construction of fluorescently labeled magnetic antibody-like nanoparticles (ANPs) via a facile one-step surface-initiated in situ molecular imprinting approach over silica coated magnetite (Fe3O4@SiO2) core-shell nanocomposites. The as-prepared ANPs had a highly compact structure with an overall size of 83 ± 5 nm in diameter and showed excellent aqueous dispersion stability. With the predetermined high specificity to the target protein and high biocompatibility, the ANPs enabled rapid, efficient, selective and optically trackable sequestration of target proteins within living cells. This work represents the first example of fully artificially engineered multifunctional ANPs for the intracellular protein-sequestration without disruption of the cells. The established approach may be further extended to generate ANPs for various proteins of interest and provide useful tools for related biological research and biomedical applications.
Collapse
Affiliation(s)
- Yibin Liu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
18
|
MIPs in Aqueous Environments. MOLECULARLY IMPRINTED POLYMERS IN BIOTECHNOLOGY 2015; 150:131-66. [DOI: 10.1007/10_2015_317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
20
|
Hou S, Wang Y, Liu N, Liu J. Preparation and Recognition Characteristics of Thymopentin Molecularly Imprinted Polymers on SiO2. ADSORPT SCI TECHNOL 2014. [DOI: 10.1260/0263-6174.32.10.833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Sen Hou
- School of Chemistry and Chemical Engineering, University of South of China, Hengyang 421001, China
- Training Regiment of China Xi'an Satellite Control Center, Xi'an 714000, China
| | - Yanfei Wang
- School of Chemistry and Chemical Engineering, University of South of China, Hengyang 421001, China
| | - Na Liu
- School of Chemistry and Chemical Engineering, University of South of China, Hengyang 421001, China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, University of South of China, Hengyang 421001, China
| |
Collapse
|
21
|
Dai H, Xiao D, He H, Li H, Yuan D, Zhang C. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1376-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Nematollahzadeh A, Lindemann P, Sun W, Stute J, Lütkemeyer D, Sellergren B. Robust and selective nano cavities for protein separation: An interpenetrating polymer network modified hierarchically protein imprinted hydrogel. J Chromatogr A 2014; 1345:154-63. [DOI: 10.1016/j.chroma.2014.04.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
|
23
|
Selective determination of penicillin G from tap water and milk samples using surface molecularly imprinted polymers as solid-phase extraction sorbent. ACTA ACUST UNITED AC 2014. [DOI: 10.2478/molim-2014-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractIn this study, a selective sample preparation method coupling surface molecularly imprinting polymers (SMIPs) with solid-phase extraction (SPE) was developed for the determination of penicillin G from tap water and milk samples. SMIPs for penicillin G were synthesized by using silica gel as supporting matrix, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the cross-linker, methanolacetonitrile (1:1,v/v) as the solvents and 2,2′-azo-bisisobutyronitrile (AIBN) as the initiator. Characterization and adsorption experiments revealed that SMIPs exhibited large adsorption capacity, high recognition ability and high rate of mass transfer. Application of SMIPs in SPE followed by HPLC was done to selectively determine penicillin G from tap water and milk samples. Under the optimal conditions, the proposed method demonstrated high linearity with the concentration of penicillin G ranging from 0.12 to 200 μg mL
Collapse
|
24
|
Buchegger P, Lieberzeit PA, Preininger C. Thermo-nanoimprinted biomimetic probe for LPS and LTA immunosensing. Anal Chem 2014; 86:1679-86. [PMID: 24392724 DOI: 10.1021/ac403460k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A complex prepolymerized film comprising monomers, cross-linkers, and initiator is usually used to create molecularly imprinted polymers. We herein exploit ready-to-use resist materials and link molecular surface imprinting with UV- and thermo-nanoimprinting techniques to create a sensor layer for the specific recognition of the bacterial surface markers lipopolysaccharide (LPS) and lipoteichoic acid (LTA). To account for the highly polar moieties of LPS and LTA, we evaluate different resist and stamp materials of distinct surface properties by AFM and molecularly imprinted sorbent assays. Thermo nanoimprinting of LPS and LTA micelles to Epon 1002F films exhibits excellent sensitivity of up to 13 times increased signals compared to those of the nonimprinted films and negligible cross-reaction with the tested nonspecific analyte. Additionally, the sensitivity and selectivity of the thermo nanoimprints is compared to conventional molecular surface imprints using a cocktail of acrylic monomers in QCM measurements.
Collapse
Affiliation(s)
- Patricia Buchegger
- Austrian Institute of Technology , Department of Health & Environment, Bioresources, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | | | | |
Collapse
|
25
|
Li X, Zhang B, Li W, Lei X, Fan X, Tian L, Zhang H, Zhang Q. Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosens Bioelectron 2014; 51:261-7. [DOI: 10.1016/j.bios.2013.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 11/26/2022]
|
26
|
|
27
|
Wang Y, Zhang Q, Ren Y, Jing L, Wei T. Molecularly imprinted polymer thin film based surface plasmon resonance sensor to detect hemoglobin. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3330-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Zhang J, Tian YL, Wang LL, Han YT. Preparation of a novel lysozyme molecularly imprinted polymer using uniformly sized functionalized poly(glycidyl methacrylate) microspheres as the matrix and its application to lysozyme purification. Biomed Chromatogr 2013. [DOI: 10.1002/bmc.3065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 People's Republic of China
| | - Yong-le Tian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 People's Republic of China
| | - Ling-ling Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 People's Republic of China
| | - Yan-ting Han
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 People's Republic of China
| |
Collapse
|
29
|
Awokoya KN, Batlokwa BS, Moronkola BA, Chigome S, Ondigo DA, Tshentu Z, Torto N. Development of a Styrene Based Molecularly Imprinted Polymer and Its Molecular Recognition Properties of Vanadyl Tetraphenylporphyrin in Organic Media. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.769255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Nematollahzadeh A, Shojaei A, Abdekhodaie MJ, Sellergren B. Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column. J Colloid Interface Sci 2013; 404:117-26. [DOI: 10.1016/j.jcis.2013.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 11/27/2022]
|
31
|
Liu Y, Wang S, Zhang C, Su X, Huang S, Zhao M. Enhancing the Selectivity of Enzyme Detection by Using Tailor-Made Nanoparticles. Anal Chem 2013; 85:4853-7. [DOI: 10.1021/ac4007914] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yibin Liu
- Beijing National
Laboratory for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shanshan Wang
- Beijing National
Laboratory for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chen Zhang
- Beijing National
Laboratory for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin Su
- Beijing National
Laboratory for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shan Huang
- Beijing National
Laboratory for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National
Laboratory for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Molecularly Imprinted Layer-Coated Silica Gel Particles for Selective Solid-Phase Extraction of Pefloxacin and Enrofloxacin from Milk Samples. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9552-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Conformational studies of common protein templates in macromolecularly imprinted polymers. Biomed Microdevices 2012; 14:679-87. [PMID: 22441821 DOI: 10.1007/s10544-012-9648-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Unlike the molecular imprinting of small molecule templates, molecularly imprinted polymers specific to large templates (>1,500 Da), have achieved limited success to date. Conformational stability of these labile macromolecules is one of the main factors that prevent the direct extension of successful procedures from the small molecule regime. We continue our systematic investigation of the effect of common components in macromolecular MIPs on the conformation of protein templates. Circular dichroism was used to show that frequently employed monomers and crosslinkers induce significant changes in the secondary structures of lysozyme and bovine hemoglobin. The extent to which this change occurs, at ligand concentrations far below what are typically used reported work, is cause for concern and provides as rational explanation for the lack of success in this arena. This is because a change in the template structure prior to polymerization would lead to the binding sites formed during polymerization to be specific to this alternate conformation. Subsequent studies with the macromolecule in its native state and the crosslinked network would not be successful. Using this information as a guide, we offer suggestions as to where work in macromolecular imprinted polymers should focus going forward in order for these antibody mimics to reach their vast potential as a new class of biomedical diagnostic devices.
Collapse
|
34
|
Yang HH, Lu KH, Lin YF, Tsai SH, Chakraborty S, Zhai WJ, Tai DF. Depletion of albumin and immunoglobulin G from human serum using epitope-imprinted polymers as artificial antibodies. J Biomed Mater Res A 2012; 101:1935-42. [PMID: 23225785 DOI: 10.1002/jbm.a.34491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 07/19/2012] [Accepted: 10/16/2012] [Indexed: 11/06/2022]
Abstract
Serum is a readily available source for noninvasive studies in clinical research, but it contains abundant proteins such as albumin and immunoglobulin G that can hinder the presence of low-abundant proteins as well as decrease sample loading capacity of analytical methods. Therefore, depletion of these two proteins is required to observe low-abundance serum proteins. Molecularly imprinted polymers are template-induced artificial antibodies with the ability to recognize and selectively bind the target molecule. In this study, artificial albumin and immunoglobulin G antibodies were developed by using two epitopes of human serum albumin and immunoglobulin G as templates. Acrylic acid, acrylamide, and N-acryl tyramine were the corresponding monomers; N,N'-ethylene bisacrylamide served as a cross-linker, and cellulosic fibers were used as a supporting matrix. The adsorption capacity of these artificial antibodies was 15.2 mg, 10 mg, and 15 μL per gram for human serum albumin, immunoglobulin G, and human serum, respectively. The dissociation constant (Kd ) of these artificial antibodies toward the human serum albumin and immunoglobulin G was 1 μM and 0.6 μM, respectively. The biomimetic properties of these artificial antibodies, coupled with their economical and rapid production, high specificity and their reusability, make them attractive for protein separation and analysis.
Collapse
Affiliation(s)
- Hsueh-Hui Yang
- Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien 970, Taiwan; General Education Center, Tzu-Chi College of Technology, Hualien 970, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kryscio DR, Fleming MQ, Peppas NA. Protein conformational studies for macromolecularly imprinted polymers. Macromol Biosci 2012; 12:1137-44. [PMID: 22777744 DOI: 10.1002/mabi.201200068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Indexed: 11/08/2022]
Abstract
CD is used to clearly show the negative impact of common ligands on the overall conformation of BSA, a typical protein template in macromolecularly imprinted polymers. This change occurs at concentrations far lower than those generally used in the literature. These findings are important as they offer insight into a potential fundamental reason for the lack of success in protein imprinting to date despite significant interest from the scientific community.
Collapse
Affiliation(s)
- David R Kryscio
- Fletcher Stuckey Pratt Chair in Engineering, Departments of Chemical Engineering and Biomedical Engineering, University of Texas at Austin, 1 University Station C0400, Austin, TX 78712-1062, USA
| | | | | |
Collapse
|
36
|
Kryscio DR, Peppas NA. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater 2012; 8:461-73. [PMID: 22100344 DOI: 10.1016/j.actbio.2011.11.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/25/2011] [Accepted: 11/03/2011] [Indexed: 01/11/2023]
Abstract
Molecular recognition is a fundamental and ubiquitous process that is the driving force behind life. Natural recognition elements - including antibodies, enzymes, nucleic acids, and cells - exploit non-covalent interactions to bind to their targets with exceptionally strong affinities. Due to this unparalleled proficiency, scientists have long sought to mimic natural recognition pathways. One promising approach is molecularly imprinted polymers (MIPs), which are fully synthetic systems formed via the crosslinking of organic polymers in the presence of a template molecule, which results in stereo-specific binding sites for this analyte of interest. Macromolecularly imprinted polymers, those synthesized in the presence of macromolecule templates (>1500 Da), are of particular importance because they open up the field for a whole new set of robust diagnostic tools. Although the specific recognition of small-molecular-weight analytes is now considered routine, extension of these efficacious procedures to the protein regime has, thus far, proved challenging. This paper reviews the main approaches employed, highlights studies of interest with an emphasis on recent work, and offers suggestions for future success in the field of macromolecularly imprinted polymers.
Collapse
|
37
|
Puoci F, Cirillo G, Curcio M, Parisi OI, Iemma F, Picci N. Molecularly imprinted polymers in drug delivery: state of art and future perspectives. Expert Opin Drug Deliv 2012; 8:1379-93. [PMID: 21933031 DOI: 10.1517/17425247.2011.609166] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Molecularly imprinted polymers (MIPs) are synthetic receptors, characterized by a high selectivity for the selected template. Among the different applications of MIPs, their use as controlled/sustained drug delivery devices has been extensively explored, even though the optimization of such devices needs to be performed before they are applied in clinical practice. AREAS COVERED Within drug delivery, one of the most promising fields is the possibility to modulate the drug release profile in response to a specific external stimulus; MIPs represent potentially suitable vehicles, because of the possibility to insert a stimuli-responsive co-monomer in their structure. This review discusses recent advances in the use of external stimuli to modulate drug release, as well as the synthetic strategies devoted to increase the water compatibility of these systems, which is a base requirement for their application in biomedicine. EXPERT OPINION Although it is easy to imagine imprinted polymers for biomedical applications, several aspects have to be further investigated, such as the in vivo studies, efficiency and biocompatibility. However, we think that in the next few years it will possible to see unprecedented progress in the preparation of such systems and the translational application of these intelligent structures in medicine.
Collapse
Affiliation(s)
- Francesco Puoci
- Dipartimento di Scienze Farmaceutiche, Università della Calabria, Edificio Polifunzionale, Cosenza, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Chen T, Shao M, Xu H, Zhuo S, Liu S, Lee ST. Molecularly imprinted polymer-coated silicon nanowires for protein specific recognition and fast separation. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm14329a] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Dai CM, Geissen SU, Zhang YL, Zhang YJ, Zhou XF. Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1660-6. [PMID: 21439696 DOI: 10.1016/j.envpol.2011.02.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/16/2011] [Accepted: 02/26/2011] [Indexed: 05/22/2023]
Abstract
A molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP were evaluated using equilibrium binding experiments. Compared to the non-imprinted polymer (NIP), the MIP showed an outstanding affinity towards DFC in an aqueous solution with a binding site capacity (Q(max)) of 324.8 mg/g and a dissociation constant (K(d)) of 3.99 mg/L. The feasibility of removing DFC from natural water by the MIP was demonstrated by using river water spiked with DFC. Effects of pH and humic acid on the selectivity and adsorption capacity of MIP were evaluated in detail. MIP had better selectivity and higher adsorption efficiency for DFC as compared to that of powdered activated carbon (PAC). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance, which is a definite advantage over single-use activated carbon.
Collapse
Affiliation(s)
- Chao-Meng Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
40
|
The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation. J Chromatogr A 2011; 1218:3489-95. [DOI: 10.1016/j.chroma.2011.03.069] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/24/2011] [Accepted: 03/28/2011] [Indexed: 11/23/2022]
|
41
|
Fu G, He H, Chai Z, Chen H, Kong J, Wang Y, Jiang Y. Enhanced Lysozyme Imprinting Over Nanoparticles Functionalized with Carboxyl Groups for Noncovalent Template Sorption. Anal Chem 2011; 83:1431-6. [DOI: 10.1021/ac1029924] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Guoqi Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hongyan He
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Zhihua Chai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Huachang Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Juan Kong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yizhe Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
42
|
Messing R, Schmidt AM. Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2011. [DOI: 10.1039/c0py00129e] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 2011; 40:1547-71. [DOI: 10.1039/c0cs00049c] [Citation(s) in RCA: 569] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
A Thermosensitive Monolithic Column as an Artificial Antibody for the On-line Selective Separation of the Protein. Chemistry 2010; 17:1696-704. [DOI: 10.1002/chem.201000875] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/03/2010] [Indexed: 11/07/2022]
|
45
|
Xu P, Xu W, Zhang X, Yan Y. A surface-imprinted polymer for removing dibenzothiophene from gasoline. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0462-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Zhang Z, Zhang M, Luo L, Yang X, Hu Y, Zhang H, Yao S. Synthesis and application of core-shell complex-imprinted polymer for the solid-phase extraction of melamine from dairy products. J Sep Sci 2010; 33:2854-61. [DOI: 10.1002/jssc.201000264] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|