1
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Brito TP, Butto-Miranda N, Neira-Carrillo A, Bollo S, Ruíz-León D. Synergistic Effect of Composite Nickel Phosphide Nanoparticles and Carbon Fiber on the Enhancement of Salivary Enzyme-Free Glucose Sensing. BIOSENSORS 2022; 13:49. [PMID: 36671884 PMCID: PMC9856003 DOI: 10.3390/bios13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
An electrospinning method was used for the preparation of an in situ composite based on Ni2P nanoparticles and carbon fiber (FC). The material was tested for the first time against direct glucose oxidation reaction. The Ni2P nanoparticles were distributed homogeneously throughout the carbon fibers with a composition determined by thermogravimetric analysis (TGA) of 40 wt% Ni2P and 60 wt% carbon fiber without impurities in the sample. The electrochemical measurement results indicate that the GCE/FC/Ni2P in situ sensor exhibits excellent catalytic activity compared to the GCE/Ni2P and GCE/FC/Ni2P ex situ electrodes. The GCE/FC/Ni2P in situ sensor presents a sensitivity of 1050 µAmM-1cm-2 in the range of 5-208 µM and a detection limit of 0.25 µM. The sensor was applied for glucose detection in artificial saliva, with a low interference observed from normally coexisting electroactive species. In conclusion, our sensor represents a novel and analytical competitive alternative for the development of non-enzymatic glucose sensors in the future.
Collapse
Affiliation(s)
- Tania P. Brito
- Centro de Investigación de Procesos Redox (CiPRex), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8330015, Chile
- Laboratorio de Fisicoquímica y Electroquímica del Estado Sólido, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 8330015, Chile
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago 8330015, Chile
| | - Nicole Butto-Miranda
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330015, Chile
| | - Andrónico Neira-Carrillo
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330015, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8330015, Chile
| | - Domingo Ruíz-León
- Laboratorio de Fisicoquímica y Electroquímica del Estado Sólido, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 8330015, Chile
| |
Collapse
|
3
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
4
|
Visser D, Bakhshi H, Rogg K, Fuhrmann E, Wieland F, Schenke-Layland K, Meyer W, Hartmann H. Green Chemistry for Biomimetic Materials: Synthesis and Electrospinning of High-Molecular-Weight Polycarbonate-Based Nonisocyanate Polyurethanes. ACS OMEGA 2022; 7:39772-39781. [PMID: 36385898 PMCID: PMC9648058 DOI: 10.1021/acsomega.2c03731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Conventional synthesis routes for thermoplastic polyurethanes (TPUs) still require the use of isocyanates and tin-based catalysts, which pose considerable safety and environmental hazards. To reduce both the ecological footprint and human health dangers for nonwoven TPU scaffolds, it is key to establish a green synthesis route, which eliminates the use of these toxic compounds and results in biocompatible TPUs with facile processability. In this study, we developed high-molecular-weight nonisocyanate polyurethanes (NIPUs) through transurethanization of 1,6-hexanedicarbamate with polycarbonate diols (PCDLs). Various molecular weights of PCDL were employed to maximize the molecular weight of NIPUs and consequently facilitate their electrospinnability. The synthesized NIPUs were characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. The highest achieved molecular weight (M w) was 58,600 g/mol. The NIPUs were consecutively electrospun into fibrous scaffolds with fiber diameters in the submicron range, as shown by scanning electron microscopy (SEM). To assess the suitability of electrospun NIPU mats as a possible biomimetic load-bearing pericardial substitute in cardiac tissue engineering, their cytotoxicity was investigated in vitro using primary human fibroblasts and a human epithelial cell line. The bare NIPU mats did not need further biofunctionalization to enhance cell adhesion, as it was not outperformed by collagen-functionalized NIPU mats and hence showed that the NIPU mats possess a great potential for use in biomimetic scaffolds.
Collapse
Affiliation(s)
- Dmitri Visser
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Hadi Bakhshi
- Department
of Life Science and Bioprocesses, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
- Department
of Functional Polymer Systems, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Katharina Rogg
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Ellena Fuhrmann
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Franziska Wieland
- Department
of Functional Polymer Systems, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Katja Schenke-Layland
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
- Institute
of Biomedical Engineering, Dept. for Medical Technologies and Regenerative
Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Wolfdietrich Meyer
- Department
of Life Science and Bioprocesses, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
- Department
of Functional Polymer Systems, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Hanna Hartmann
- NMI
Natural and Medical Science Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| |
Collapse
|
5
|
Ni-Coated Diamond-like Carbon-Modified TiO2 Nanotube Composite Electrode for Electrocatalytic Glucose Oxidation. Molecules 2022; 27:molecules27185815. [PMID: 36144550 PMCID: PMC9501468 DOI: 10.3390/molecules27185815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, a Ni and diamond-like carbon (DLC)-modified TiO2 nanotube composite electrode was prepared as a glucose sensor using a combination of an anodizing process, electrodeposition, and magnetron sputtering. The composition and morphology of the electrodes were analyzed by a scanning electron microscope and energy dispersive X-ray detector, and the electrochemical glucose oxidation performance of the electrodes was evaluated by cyclic voltammetry and chronoamperometry. The results show that the Ni-coated DLC-modified TiO2 electrode has better electrocatalytic oxidation performance for glucose than pure TiO2 and electrodeposited Ni on a TiO2 electrode, which can be attributed to the synergistic effect between Ni and carbon. The glucose test results indicate a good linear correlation in a glucose concentration range of 0.99–22.97 mM, with a sensitivity of 1063.78 μA·mM−1·cm−2 and a detection limit of 0.53 μM. The results suggest that the obtained Ni-DLC/TiO2 electrode has great application potential in the field of non-enzymatic glucose sensors.
Collapse
|
6
|
Shiba S, Koike A, Takahashi S, Kato D, Kamata T, Niwa O. Vertically Oriented Metallic Heterodimer Array Semiembedded in Flat Conductive Carbon Film for Electrochemical Application. ACS NANO 2022; 16:10589-10599. [PMID: 35758937 DOI: 10.1021/acsnano.2c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
General synthesis of a highly oriented metallic heterodimer array based on a selective electrodeposition technique onto a metal nanoparticle-embedded carbon film is proposed, which enables the preparation of heterodimers with a wide variety of metal combinations. This method requires no surfactant, capping agent, organic solvent, or heat treatment. As a representative metal combination, a nickel (Ni)/palladium (Pd) heterodimer array was prepared by selective electrodeposition of Ni nanoparticles (Ni NPs) on top of partially exposed Pd NPs embedded in carbon film electrodes fabricated by a cosputtering technique. Such a selective electrodeposition becomes possible by utilizing the difference in electrodeposition overpotentials between carbon and Pd NP surfaces. X-ray photoelectron spectroscopy revealed a charge transfer from Ni NPs to Pd NPs, implying that the catalytic and optical properties can be expected to be controllable. The formed heterodimer array structure was mechanically stable against ultrasonication in ethanol for over 1 h because most parts of the Pd NPs were tightly embedded in the carbon film. After conversion from Ni to nickel hydroxide (Ni(OH)2), the electrode showed high electrocatalytic activity toward glucose oxidation, with a higher turnover rate and lower overpotential compared to Ni(OH)2 electrodeposited on pure carbon film electrodes.
Collapse
Affiliation(s)
- Shunsuke Shiba
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime 790-8577, Japan
| | - Ayaka Koike
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Shota Takahashi
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Dai Kato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyuki Kamata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
7
|
Radi AE, Ashour WFD, Elshafey R. Glycerol Electrocatalytic Oxidation on Nickel Hydroxide Nanoparticles/Poly-Eriochrome Black T Modified Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Chang JL, Liao CW, Arthisree D, Senthil Kumar A, Zen JM. A Size-Controlled Graphene Oxide Materials Obtained by One-Step Electrochemical Exfoliation of Carbon Fiber Cloth for Applications to In Situ Gold Nanoparticle Formation and Electrochemical Sensors—A Preliminary Study. BIOSENSORS 2022; 12:bios12060360. [PMID: 35735508 PMCID: PMC9221386 DOI: 10.3390/bios12060360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
A simple, one-step and facile method has been introduced to prepare fluorescent and electrochemically active carbon nanoparticles with single-size distribution and good long-term stability by electrochemical exfoliation of polyacrylonitrile-based carbon fibers in an alkaline solution-phase condition. The preparation condition was systematically optimized by studying the effect of temperature and electrolytes. It has been found that an electrochemical exfoliation reaction carried out at an applied potential of 2 V vs. Ag/AgCl in a phosphate-ion-containing alkaline solution at a temperature of 40 °C is an ideal condition for the preparation of 14 ± 4 nm-sized carbon nanoparticles. Unlike the literature protocols, there are no filtration and membrane dialysis-based off-line sample pretreatments adopted in this work. The as-prepared carbon nanoparticles were characterized by fluorescence, Raman spectrum, transmission electron microscope, and X-ray photoelectron spectroscopic characterization methods. It was found that the carbon–oxygen functional group rich in graphene–oxide quantum dots (GOQDs) such as carbon nanoparticles were formed in this work. A preliminary study relating to simultaneous electrochemical oxidation and the sensing of uric acid and ascorbic acid with well-resolved peaks was demonstrated as a model system to extend the new carbon material for electroanalytical applications. Furthermore, in situ synthesis of 2 nm-sized gold nanoparticles stabilized by GOQDs was presented. The carbon nanoparticles prepared by the direct method in this work have shown good stability over 6 months when stored at room temperature. The electrochemical exfoliation reaction has been found to be highly reproducible and suitable for bulk synthesis of luminescence-effective carbon nanoparticles to facilitate fundamental studies and practical applications.
Collapse
Affiliation(s)
- Jen-Lin Chang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.C.); (C.-W.L.)
| | - Chen-Wei Liao
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.C.); (C.-W.L.)
| | - D. Arthisree
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore 632 014, India;
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore 632 014, India;
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
- Correspondence: or (A.S.K.); (J.-M.Z.)
| | - Jyh-Myng Zen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; (J.-L.C.); (C.-W.L.)
- Correspondence: or (A.S.K.); (J.-M.Z.)
| |
Collapse
|
9
|
Batvani N, Alimohammadi S, Kiani MA. Nonenzymatic glucose sensor design based on carbon fiber ultra-microelectrode: Controlled with a manual micro adjuster. Anal Chim Acta 2022; 1209:339845. [DOI: 10.1016/j.aca.2022.339845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/01/2022]
|
10
|
Mohammadpour-Haratbar A, Mazinani S, Sharif F, Bazargan AM. Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers decorated with Ni/Co Particles via Oxidation. Appl Biochem Biotechnol 2022; 194:2542-2564. [PMID: 35171465 DOI: 10.1007/s12010-022-03833-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Nonenzymatic biosensors do not require enzyme immobilization nor face degradation problem. Hence, nonenzymatic biosensors have recently attracted growing attention due to the stability and reproducibility. Here, a comparative study was conducted to quantitatively evaluate the glucose sensing of pure/oxidized Ni, Co, and their bimetal nanostructures grown on electrospun carbon nanofibers (ECNFs) to provide a low-cost free-standing electrode. The prepared nanostructures exhibited sensitivity (from 66.28 to 610.6 μA mM-1 cm-2), linear range of 2-10 mM, limit of detection in the range of 1 mM, and the response time (< 5 s), besides outstanding selectivity and applicability for glucose detection in the human serum. Moreover, the oxidizable interfering species, such as ascorbic acid (AA), uric acid (UA), and dopamine (DA), did not cause interference. Co-C and Ni-C phase diagrams, solid-state diffusion phenomena, and rearrangement of dissolved C atoms after migration from metal particles were discussed. This study undoubtedly provides new prospects on the nonenzymatic biosensing performance of mono-metal, bimetal, and oxide compounds of Ni and Co elements, which could be quite helpful for the fabrication of biomolecules detecting devices.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box, 15875-4413, Tehran, Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, 15875- 4413, Tehran, Iran.
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box, 15875-4413, Tehran, Iran
| | - Ali Mohammad Bazargan
- New Technologies Research Center (NTRC), Amirkabir University of Technology, 15875- 4413, Tehran, Iran
| |
Collapse
|
11
|
Li H, Jiang L, Shao D, Wu C, Gao Y, Yang Z, Yang Z. Facile synthesis of Cu@Cu2O aerogel for an effective electrochemical hydrogen peroxide sensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Falahi S, Jaafar A, Petrenko I, Zarejousheghani M, Ehrlich H, Rahimi P, Joseph Y. High-Performance Three-Dimensional Spongin-Atacamite Biocomposite for Electrochemical Nonenzymatic Glucose Sensing. ACS APPLIED BIO MATERIALS 2022; 5:873-880. [PMID: 35050590 DOI: 10.1021/acsabm.1c01248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The design of sensitive and cost-effective biocomposite materials with high catalytic activity for the effective electrooxidation of glucose plays a key role in developing enzyme-free glucose sensors. The porous three-dimensional (3D) spongin scaffold of marine sponge origin provides an excellent template for the growth of atacamite crystals and improves the activity of atacamite as a catalyst. By using the design of experiment method, the influence of different parameters on the electrode efficiency was optimized. The optimized sensor based on spongin-atacamite showed distinguished performance toward glucose with two linear ranges of 0.4-200 μM and 0.2-10 mM and high sensitivities of 3908.4 and 600.5 μA mM-1 cm-2, respectively. Importantly, the designed sensor exhibited strong selectivity and favorable stability, reproducibility, and repeatability. The performance in the real application was estimated by glucose detection in spiked human blood serum samples, which verified its great potential as a reliable platform for enzyme-free glucose sensing.
Collapse
Affiliation(s)
- Sedigheh Falahi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Alaa Jaafar
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Mashaalah Zarejousheghani
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.,Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.,Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
13
|
Khosravi Ardakani H, Gerami M, Chashmpoosh M, Omidifar N, Gholami A. Recent Progress in Nanobiosensors for Precise Detection of Blood Glucose Level. Biochem Res Int 2022; 2022:2964705. [PMID: 35083086 PMCID: PMC8786499 DOI: 10.1155/2022/2964705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) follows a series of metabolic diseases categorized by high blood sugar levels. Owing to the increasing diabetes disease in the world, early diagnosis of this disease is critical. New methods such as nanotechnology have made significant progress in many areas of medical science and physiology. Nanobiosensors are very sensible and can identify single virus particles or even low concentrations of a material that can be inherently harmful. One of the main factors for developing glucose sensors in the body is the diagnosis of hypoglycemia in individuals with insulin-dependent diabetes. Therefore, this study aimed to evaluate the most up-to-date and fastest glucose detection method by nanosensors and, as a result, faster and better treatment in medical sciences. In this review, we try to explore new ways to control blood glucose levels and treat diabetes. We begin with a definition of biosensors and their classification and basis, and then we examine the latest biosensors in glucose detection and new biosensors applications, including the artificial pancreas and updating quantum graphene data.
Collapse
Affiliation(s)
| | - Mitra Gerami
- Biotechnology Research Center, University of Medical Sciences, Shiraz, Iran
| | - Mostafa Chashmpoosh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Coşkuner Filiz B, Basaran Elalmis Y, Bektaş İS, Kantürk Figen A. Fabrication of stable electrospun blended chitosan-poly(vinyl alcohol) nanofibers for designing naked-eye colorimetric glucose biosensor based on GOx/HRP. Int J Biol Macromol 2021; 192:999-1012. [PMID: 34655587 DOI: 10.1016/j.ijbiomac.2021.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
In this study, designing of a stable electrospun blended chitosan (CS)-poly(vinyl alcohol) (PVA) nanofibers for colorimetric glucose biosensing in an aqueous medium was investigated. CS and PVA solutions were blended to acquire an optimum content (CS/PVA:1/4) and electrospunned to obtain uniform and bead-free CS/PVA nanofiber structures following the optimization of the electrospinning parameters (33 kV, 20 cm, and 1.2 ml.h-1). Crosslinking process applied subsequently provided mechanically and chemically stable nanofibers with an average diameter of 378 nm. The morphological homogeneity, high fluid absorption ability (>%50), thermal (<230 °C) and morphological stability, surface hydrophilicity and degrability properties of cross-linked CS/PVA nanofiber demonstrated their great potential to be developed as an eye-readable strip for biosensing applications. The glucose oxidase (GOx) and horseradish peroxidase (HRP) was immobilized by physical adsorption on the cross-linked CS/PVA nanofiber. The glucose assay analysis by ultraviolet-visible (UV-Vis) spectrophotometry using the same enzymatic system of the proposed glucose strips in form of absorbance versus concentration plot was found to be linear over a glucose concentration range of 2.7 to 13.8 mM. The prepared naked eye colorimetric glucose detection strips, with lower detection limit of 2.7 mM, demonstrated dramatic color change from white (0 mM) to brownish-orange (13.8 mM). The developed cross-linked CS/PVA nanofiber strips, prepared by electrospinnig procedure, could be easily adapted to a color map, as an alternative material for glucose sensing. Design of a practical, low-cost, and environmental-friendly bio-based CS/PVA testing strips for eye readable detection were presented and suggested as an applicable medium for a wide range of glucose concentrations.
Collapse
Affiliation(s)
- Bilge Coşkuner Filiz
- Yıldız Technical University, Metallurgy and Materials Engineering Department, İstanbul 34210, Turkey.
| | | | - İrem Serra Bektaş
- Yıldız Technical University, Chemical Engineering Department, İstanbul 34210, Turkey
| | - Aysel Kantürk Figen
- Yıldız Technical University, Chemical Engineering Department, İstanbul 34210, Turkey
| |
Collapse
|
15
|
Advances on ultra-sensitive electrospun nanostructured electrochemical and colorimetric sensors for diabetes mellitus detection. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Preparation, Properties and Applications of the Hybrid Organic/Inorganic Nanocomposite Based on Nanoporous Carbon Matrix. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 2021; 9:7927-7954. [PMID: 34612291 DOI: 10.1039/d1tb01403j] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is a type of disease that threatens human health, which can be diagnosed based on the level of glucose in the blood. Recently, various MOF-based materials have been developed as efficient electrochemical glucose sensors because of their tunable pore channels, large specific surface area well dispersed metallic active sites, etc. In this review, the significance of glucose detection and the advantages of MOF-based materials for this application are primarily discussed. Then, the application of MOF-based materials can be categorized into two types of glucose sensors: enzymatic biosensors and non-enzymatic sensors. Finally, insights into the current research challenges and future breakthrough possibilities regarding electrochemical glucose sensors are considered.
Collapse
Affiliation(s)
- Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| | - Srikanth Ponnada
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Maryam Sadat Kiai
- Nano-Science and Nano-Engineering Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul-34469, Turkey
| | - Kishore Kumar Nair
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Annapurna Nowduri
- Department of Engineering Chemistry, Andhra University College of Engineering, Andhra University, Visakhapatnam-530003, India
| | - Hendrik C Swart
- Department of Physics, University of Free state, Bloemfontein-9300, South Africa
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education Singapore, Nanyang Technological University Singapore, Nanyang Walk-637616, Singapore
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
18
|
Simsek M, Wongkaew N. Carbon nanomaterial hybrids via laser writing for high-performance non-enzymatic electrochemical sensors: a critical review. Anal Bioanal Chem 2021; 413:6079-6099. [PMID: 33978780 PMCID: PMC8440307 DOI: 10.1007/s00216-021-03382-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
Non-enzymatic electrochemical sensors possess superior stability and affordability in comparison to natural enzyme-based counterparts. A large variety of nanomaterials have been introduced as enzyme mimicking with appreciable sensitivity and detection limit for various analytes of which glucose and H2O2 have been mostly investigated. The nanomaterials made from noble metal, non-noble metal, and metal composites, as well as carbon and their derivatives in various architectures, have been extensively proposed over the past years. Three-dimensional (3D) transducers especially realized from the hybrids of carbon nanomaterials either with metal-based nanocatalysts or heteroatom dopants are favorable owing to low cost, good electrical conductivity, and stability. In this critical review, we evaluate the current strategies to create such nanomaterials to serve as non-enzymatic transducers. Laser writing has emerged as a powerful tool for the next generation of devices owing to their low cost and resultant remarkable performance that are highly attractive to non-enzymatic transducers. So far, only few works have been reported, but in the coming years, more and more research on this topic is foreseeable.
Collapse
Affiliation(s)
- Marcel Simsek
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
19
|
Hira SA, Yusuf M, Annas D, Nagappan S, Song S, Park S, Park KH. Recent Advances on Conducting Polymer-Supported Nanocomposites for Nonenzymatic Electrochemical Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shamim Ahmed Hira
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Mohammad Yusuf
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Dicky Annas
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Saravanan Nagappan
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
20
|
Ahmed J, Faisal M, Jalalah M, Alsaiari M, Alsareii S, Harraz FA. An efficient amperometric catechol sensor based on novel polypyrrole-carbon black doped α-Fe2O3 nanocomposite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Qu L, Zhao L, Chen T, Li J, Nie X, Li R, Sun C. Two novel coordination polymers and their hybrid materials with Ag nanoparticles for non-enzymatic detection of glucose. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Flores-Hernandez DR, Santamaria-Garcia VJ, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Bonilla-Rios J. Paper and Other Fibrous Materials-A Complete Platform for Biosensing Applications. BIOSENSORS 2021; 11:128. [PMID: 33919464 PMCID: PMC8143474 DOI: 10.3390/bios11050128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Paper-based analytical devices (PADs) and Electrospun Fiber-Based Biosensors (EFBs) have aroused the interest of the academy and industry due to their affordability, sensitivity, ease of use, robustness, being equipment-free, and deliverability to end-users. These features make them suitable to face the need for point-of-care (POC) diagnostics, monitoring, environmental, and quality food control applications. Our work introduces new and experienced researchers in the field to a practical guide for fibrous-based biosensors fabrication with insight into the chemical and physical interaction of fibrous materials with a wide variety of materials for functionalization and biofunctionalization purposes. This research also allows readers to compare classical and novel materials, fabrication techniques, immobilization methods, signal transduction, and readout. Moreover, the examined classical and alternative mathematical models provide a powerful tool for bioanalytical device designing for the multiple steps required in biosensing platforms. Finally, we aimed this research to comprise the current state of PADs and EFBs research and their future direction to offer the reader a full insight on this topic.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaime Bonilla-Rios
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (D.R.F.-H.); (V.J.S.-G.); (E.M.M.-M.); (J.E.S.-H.); (R.P.-S.)
| |
Collapse
|
23
|
Apetrei RM, Camurlu P. Facile copper-based nanofibrous matrix for glucose sensing: Eenzymatic vs. non-enzymatic. Bioelectrochemistry 2021; 140:107751. [PMID: 33667903 DOI: 10.1016/j.bioelechem.2021.107751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
The current study aims to provide a valid comparison between glucose detection efficiency with an enzymatic and a non-enzymatic sensing platform. A low-cost nano-matrix for glucose sensing was developed by drop-coating copper nanoparticles (Cu NPs) onto a polyacrylonitrile (PAN) electrospun nanofibrous assembly. The PAN NFs/Cu NPs matrix was optimized regarding electrospinning time and Cu NPs content and employed as a non-enzymatic sensor or further modified by cross-linking of glucose oxidase (GOD) for the development of an enzymatic sensor. The non-enzymatic glucose sensor was three times more sensitive (300 mAM-1cm-2) than the enzymatic one (81 mAM-1cm-2) with similar limit of detection values (5.9 and 5.6 µM, respectively). Incorporation of MWCNTs improved both the LOD (3.3 µM) and the operational stability of the non-enzymatic configuration (RSD 7.3%). The interference effect proved insignificant for the enzymatic sensor due to the innate catalytic selectivity whilst the non-enzymatic sensor acquired selectivity due to the nanofibrous PAN matrix and Nafion coating. The non-enzymatic PAN NFs/Cu NPs sensor was chosen for the detection of glucose in real blood serum samples whilst the PAN NFs/Cu NPs/GOD sensor was applied for glucose detection in fruit juices, both proving recovery results close to 100%.
Collapse
Affiliation(s)
- Roxana-Mihaela Apetrei
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey; 'Dunarea de Jos' University of Galati, Domneasca Street, 47, Galati RO-800008, Romania
| | - Pinar Camurlu
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey.
| |
Collapse
|
24
|
Jiang C, Zheng L, Liu Y. Aligned Carbon Nanotube Films for Immobilization of Glucose Oxidase and its Application in Glucose Biosensor. Aust J Chem 2021. [DOI: 10.1071/ch21075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Kim SG, Lee JS. Multiscale pore contained carbon nanofiber-based field-effect transistor biosensors for nesfatin-1 detection. J Mater Chem B 2021; 9:6076-6083. [PMID: 34286811 DOI: 10.1039/d1tb00582k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 (NES1) is a potential biomarker found in serum and saliva that indicates hyperpolarization and depolarization in the hypothalamic ventricle nucleus as well as an increase in epileptic conditions. However, real-time investigations have not been carried out to detect changes in the concentration of NES1. In this study, we develop a multiscale pore contained carbon nanofiber-based field-effect transistor (FET) biosensor to detect NES1. The activated multiscale pore contained carbon nanofiber (a-MPCNF) is generated using a single-nozzle co-electrospinning method and a subsequent steam-activation process to obtain a signal transducer and template for immobilization of bioreceptors. The prepared biosensor exhibits a high sensitivity to NES1. It can detect levels as low as 0.1 fM of NES1, even in the presence of other interfering biomolecules. Furthermore, the a-MPCNF-based FET sensor has significant potential for practical applications in non-invasive real-time diagnosis, as indicated by its sensing performance in artificial saliva.
Collapse
Affiliation(s)
- Sung Gun Kim
- Samsung Electronics, San #16 Banwol-Dong, Hwasung, Gyeonggi-Do18448, South Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
26
|
Fernández I, González-Mora JL, Lorenzo-Luis P, Villalonga R, Salazar-Carballo PA. Nickel oxide nanoparticles-modified glassy carbon electrodes for non-enzymatic determination of total sugars in commercial beverages. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Chandrasekaran N, Matheswaran M. Unique Nonenzymatic Glucose Sensor Using a Hollow-Shelled Triple Oxide Mn-Cu-Al Nanocomposite. ACS OMEGA 2020; 5:23502-23509. [PMID: 32984668 PMCID: PMC7512457 DOI: 10.1021/acsomega.0c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Glucose monitoring devices for diabetes mellitus, which is a worldwide significant health issue, have attracted attention of many researchers. Herein, we report a hollow Mn-Cu-Al oxide nanocomposite (HMCA) by a microwave-assisted technique showing excellent sensing abilities toward glucose. Also, it possesses a superb supercapacitor activity described in our previous paper. The sensitivity value of the nanocomposite is 2.194 mA mM-1 cm-2 with a low detection limit of 0.43 μM (S/N = 3). The high sensitivity and low detection limit were the results of the large surface area of the nanocomposite and the redox nature of CuO and MnO2. It shows a selective detection of glucose levels in blood serum. The hollow nanocomposite has been useful for monitoring the glucose level in blood serum and holds great potential for diabetes mellitus and clinical diagnosis.
Collapse
Affiliation(s)
| | - Manickam Matheswaran
- Department
of Chemical Engineering, National Institute
of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| |
Collapse
|
28
|
Simsek M, Hoecherl K, Schlosser M, Baeumner AJ, Wongkaew N. Printable 3D Carbon Nanofiber Networks with Embedded Metal Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39533-39540. [PMID: 32805926 DOI: 10.1021/acsami.0c08926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanofiber (CNF) nanocatalyst hybrids hold great promise in fields such as energy storage, synthetic chemistry, and sensors. Current strategies to generate such hybrids are laborious and utterly incompatible with miniaturization and large-scale production. Instead, this work demonstrates that Ni nanoparticles embedded in three-dimensional (3D) CNFs of any shape and design can be easily prepared using electrospinning, followed by laser carbonization under ambient conditions. Specifically, a solution of nickel acetylacetonate /polyimide is electrospun and subsequently a design is printed via CO2 laser (Ni-laser-induced carbon nanofiber (LCNFs)). This creates uniformly distributed small Ni nanoparticles (∼8 nm) very tightly adhered to the CNF network. Morphological and performance characteristics can be directly influenced by metal content and lasing power and hence adapted for the desired application. Here, Ni-LCNFs are optimized for nonenzymatic electrochemical sensing of glucose with great sensitivity of 2092 μA mM-1 cm-2 and a detection limit down to 0.3 μM. Its selectivity for glucose vs interfering species (ascorbic and uric acid) is essentially governed by the Ni content. Most importantly, this strategy can be adapted to a whole range of metal precursors and hence provide opportunities for such 3D CNF-nanocatalyst hybrids in point-of-care applications where high-performance but also sustainable and low-cost fabrications are of utmost importance.
Collapse
Affiliation(s)
- Marcel Simsek
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Kilian Hoecherl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Marc Schlosser
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
29
|
Liao L, Xing Y, Xiong X, Gan L, Hu L, Zhao F, Tong Y, Deng S. An electrochemical biosensor for hypoxanthine detection in vitreous humor: A potential tool for estimating the post-mortem interval in forensic cases. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Dilmac Y, Guler M. Fabrication of non-enzymatic glucose sensor dependent upon Au nanoparticles deposited on carboxylated graphene oxide. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114091] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor. J Colloid Interface Sci 2020; 566:473-484. [DOI: 10.1016/j.jcis.2020.01.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
|
32
|
Barhoum A, El-Maghrabi HH, Iatsunskyi I, Coy E, Renard A, Salameh C, Weber M, Sayegh S, Nada AA, Roualdes S, Bechelany M. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions. J Colloid Interface Sci 2020; 569:286-297. [PMID: 32114107 DOI: 10.1016/j.jcis.2020.02.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
The most critical challenge in hydrogen fuel production is to develop efficient, eco-friendly, low-cost electrocatalysts for water splitting. In this study, self-supported carbon nanofiber (CNF) electrodes decorated with nickel/nickel oxide (Ni/NiO) and palladium (Pd) nanoparticles (NPs) were prepared by combining electrospinning, peroxidation, and thermal carbonation with atomic layer deposition (ALD), and then employed for hydrogen evolution and oxygen evolution reactions (HER/OER). The best CNF-Ni/NiO-Pd electrode displayed the lowest overpotential (63 mV and 1.6 V at j = 10 mA cm-2), a remarkably small Tafel slope (72 and 272 mV dec-1), and consequent exchange current density (1.15 and 22.4 mA cm-2) during HER and OER, respectively. The high chemical stability and improved electrocatalytic performance of the prepared electrodes can be explained by CNF functionalization via Ni/NiO NP encapsulation, the formation of graphitic layers that cover and protect the Ni/NiO NPs from corrosion, and ALD of Pd NPs at the surface of the self-supported CNF-Ni/NiO electrodes.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt; Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| | - Heba H El-Maghrabi
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Refining, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Aurélien Renard
- LCPME - UMR 7564 - CNRS - Université de Lorraine, 405, rue de Vandoeuvre, 54600 Villers-Les-Nancy, France
| | - Chrystelle Salameh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Matthieu Weber
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Syreina Sayegh
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Amr A Nada
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France; Dept. of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, Nasr City P.B. 11727, Egypt
| | - Stéphanie Roualdes
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, Univ Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
33
|
Zeng S, Wei Q, Long H, Meng L, Ma L, Cao J, Li H, Yu Z, Lin CT, Zhou K, Sharel Pei E. Annealing temperature regulating the dispersity and composition of nickel-carbon nanoparticles for enhanced glucose sensing. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Gao X, Du X, Liu D, Gao H, Wang P, Yang J. Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci Rep 2020; 10:1365. [PMID: 31992829 PMCID: PMC6987199 DOI: 10.1038/s41598-020-58403-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Non-enzymatic electrodes based on noble metals have excellent selectivity and high sensitivity in glucose detection but no such shortcomings as easy to be affected by pH, temperature, and toxic chemicals. Herein, spherical gold-nickel nanoparticles with a core-shell construction (Au@Ni) are prepared by oleylamine reduction of their metal precursors. At an appropriate Au/Ni ratio, the core-shell Au@Ni nanoparticles as a sensor for glucose detection combine the high electrocatalytic activity, good selectivity and biological compatibility of Au with the remarkable tolerance of Ni for chlorine ions (Cl-) and poisoning intermediates in catalytic oxidation of glucose. This electrode exhibits a low operating voltage of 0.10 V vs. SCE for glucose oxidation, leading to higher selectivity compared with other Au- and Ni-based sensors. The linear range for the glucose detection is from 0.5 mmol L-1 to 10 mmol L-1 with a rapid response time of ca. 3 s, good stability, sensitivity estimated to be 23.17 μA cm-2 mM-1, and a detection limit of 0.0157 mM. The sensor displays high anti-toxicity, and is not easily poisoned by the adsorption of Cl- in solution.
Collapse
Affiliation(s)
- Xuejin Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xinzhao Du
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Danye Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Pu Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
35
|
Chiu WT, Chang TFM, Sone M, Tixier-Mita A, Toshiyoshi H. Roles of TiO 2 in the highly robust Au nanoparticles-TiO 2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta 2020; 212:120780. [PMID: 32113543 DOI: 10.1016/j.talanta.2020.120780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023]
Abstract
Along with the rise of diabetes mellitus issue, glucose sensor has become an imperative tool for healthcare. Studies have been widely conducted on electrode materials for glucose sensors; metal nanoparticles and/or oxide particles in its nano-size are reported to exhibit remarkable electrocatalytic activities in the non-enzymatic glucose sensors. However, the decoration processes of metal nanoparticles or nano-sized oxides are known to be tedious and time-consuming. In addition, the processes usually result in great amount of waste solution emission. In this study, therefore, an Au nanoparticles (NPs)-TiO2 modified polyaniline (PANI) composite is practiced towards the applications of non-enzymatic glucose sensors, by using a facile and time-saving thermal reduction and by electrodeposition techniques with low waste solution emission. Au NPs, which is modified with TiO2 nanoparticles in its optimized amount, performs the highest electrocatalytic activity to the oxidation of glucose in alkaline solution. The stability of Au NPs-TiO2/PANI is superior to those of most reported results over 70 days. The sensitivity and detection limit are 379.8 μA mM-1 cm-2 and 0.15 μM, respectively. High selectivity of Au NPs-TiO2/PANI is also confirmed by the interference test. Spill-over effect of OH- between Au NPs and TiO2, which is the main reason for the improved catalytic activity, is described in this study.
Collapse
Affiliation(s)
- Wan-Ting Chiu
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Tso-Fu Mark Chang
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Masato Sone
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Agnès Tixier-Mita
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroshi Toshiyoshi
- Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
36
|
Ding J, Li X, Zhou L, Yang R, Yan F, Su B. Electrodeposition of nickel nanostructures using silica nanochannels as confinement for low-fouling enzyme-free glucose detection. J Mater Chem B 2020; 8:3616-3622. [DOI: 10.1039/c9tb02472g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work reports an enzyme-free glucose sensor based on nickel nanostructures electrodeposited on a fluorine-doped tin oxide (FTO) electrode modified with a silica nanochannel membrane (SNM).
Collapse
Affiliation(s)
- Jialian Ding
- Institute of Analytical Chemistry
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| | - Xinru Li
- Institute of Analytical Chemistry
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| | - Lin Zhou
- Institute of Analytical Chemistry
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| | - Rongjie Yang
- Institute of Analytical Chemistry
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| | - Fei Yan
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Bin Su
- Institute of Analytical Chemistry
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
37
|
Rosenberger AG, Dragunski DC, Muniz EC, Módenes AN, Alves HJ, Tarley CRT, Machado SAS, Caetano J. Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
A novel non-enzymatic glucose electrochemical sensor based on CNF@Ni-Co layered double hydroxide modified glassy carbon electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Hou L, Bi S, Lan B, Zhao H, Zhu L, Xu Y, Lu Y. A novel and ultrasensitive nonenzymatic glucose sensor based on pulsed laser scribed carbon paper decorated with nanoporous nickel network. Anal Chim Acta 2019; 1082:165-175. [DOI: 10.1016/j.aca.2019.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
|
40
|
Nathani A, Sharma CS. Electrospun Mesoporous Poly(Styrene‐Block‐Methyl‐ Methacrylate) Nanofibers as Biosensing Platform: Effect of Fibers Porosity on Sensitivity. ELECTROANAL 2019. [DOI: 10.1002/elan.201800796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Akash Nathani
- Creative & Advanced Research Based On Nanomaterials (CARBON) LaboratoryDepartment of Chemical EngineeringIndian Institute of Technology, Hyderabad Kandi, Telangana 502285 India
| | - Chandra S. Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) LaboratoryDepartment of Chemical EngineeringIndian Institute of Technology, Hyderabad Kandi, Telangana 502285 India
| |
Collapse
|
41
|
Adabi M, Adabi M. Electrodeposition of nickel on electrospun carbon nanofiber mat electrode for electrochemical sensing of glucose. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1678483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mohsen Adabi
- Department of Metallurgy and Materials Engineering, Faculty of Engineering, Roudehen Branch, Islamic Azad University , Roudehen , Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
42
|
Aliheidari N, Aliahmad N, Agarwal M, Dalir H. Electrospun Nanofibers for Label-Free Sensor Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3587. [PMID: 31426538 PMCID: PMC6720643 DOI: 10.3390/s19163587] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Electrospinning is a simple, low-cost and versatile method for fabricating submicron and nano size fibers. Due to their large surface area, high aspect ratio and porous structure, electrospun nanofibers can be employed in wide range of applications. Biomedical, environmental, protective clothing and sensors are just few. The latter has attracted a great deal of attention, because for biosensor application, nanofibers have several advantages over traditional sensors, including a high surface-to-volume ratio and ease of functionalization. This review provides a short overview of several electrospun nanofibers applications, with an emphasis on biosensor applications. With respect to this area, focus is placed on label-free sensors, pertaining to both recent advances and fundamental research. Here, label-free sensor properties of sensitivity, selectivity, and detection are critically evaluated. Current challenges in this area and prospective future work is also discussed.
Collapse
Affiliation(s)
- Nahal Aliheidari
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Nojan Aliahmad
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| | - Hamid Dalir
- Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
Wang Z, Wu S, Wang J, Yu A, Wei G. Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications. NANOMATERIALS 2019; 9:nano9071045. [PMID: 31336563 PMCID: PMC6669495 DOI: 10.3390/nano9071045] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Carbon nanofibers (CNFs) exhibit great potentials in the fields of materials science, biomedicine, tissue engineering, catalysis, energy, environmental science, and analytical science due to their unique physical and chemical properties. Usually, CNFs with flat, mesoporous, and porous surfaces can be synthesized by chemical vapor deposition and electrospinning techniques with subsequent chemical treatment. Meanwhile, the surfaces of CNFs are easy to modify with various materials to extend the applications of CNF-based hybrid nanomaterials in multiple fields. In this review, we focus on the design, synthesis, and sensor applications of CNF-based functional nanomaterials. The fabrication strategies of CNF-based functional nanomaterials by adding metallic nanoparticles (NPs), metal oxide NPs, alloy, silica, polymers, and others into CNFs are introduced and discussed. In addition, the sensor applications of CNF-based nanomaterials for detecting gas, strain, pressure, small molecule, and biomacromolecules are demonstrated in detail. This work will be beneficial for the readers to understand the strategies for fabricating various CNF-based nanomaterials, and explore new applications in energy, catalysis, and environmental science.
Collapse
Affiliation(s)
- Zhuqing Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Shasha Wu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Jian Wang
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Along Yu
- AnHui Provice Key Laboratory of Optoelectronic and Magnetism Functional Materials, Anqing Normal University, Anqing 246011, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266077, China.
- Hybrid Materials Interfaces Group, Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
44
|
Li N, Li Q, Yuan M, Guo X, Zheng S, Pang H. Synthesis of Co 0.5 Mn 0.1 Ni 0.4 C 2 O 4 ⋅n H 2 O Micropolyhedrons: Multimetal Synergy for High-Performance Glucose Oxidation Catalysis. Chem Asian J 2019; 14:2259-2265. [PMID: 30977269 DOI: 10.1002/asia.201900361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/09/2019] [Indexed: 01/21/2023]
Abstract
Owing to the synergy between metals, trimetal oxalate micropolyhedrons have been synthesized by means of a room-temperature coprecipitation strategy. The effect of their nanoscale size on their electrochemical performance toward glucose oxidation was investigated. In particular, the Co0.5 Mn0.1 Ni0.4 C2 O4 ⋅n H2 O micropolyhedrons illustrated prominent electrocatalytic activity for the glucose oxidation reaction. Additionally, the Co0.5 Mn0.1 Ni0.4 C2 O4 ⋅n H2 O micropolyhedrons, when used as an electrode material, illustrated an excellent lower limit of detection (1.5 μm), a wide detection concentration range (0.5-5065.5 μm), and a high sensitivity (493.5 μA mm-1 cm-2 ). Further analysis indicated that the effectively improved conductivity may have been due to the small size of the materials, and it was easier to form a flat film when Nafion was coated onto the glassy carbon electrode.
Collapse
Affiliation(s)
- Nan Li
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Meijuan Yuan
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guanglin College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
45
|
High-performance non-enzymatic glucose sensor based on Ni/Cu/boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Nonenzymatic sensor for determination of glucose in blood plasma based on nickel oxyhydroxide in a microfluidic system of cotton thread. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Wu X, Bao C, Niu Q, Lu W. A novel method to construct a 3D FeWO 4 microsphere-array electrode as a non-enzymatic glucose sensor. NANOTECHNOLOGY 2019; 30:165501. [PMID: 30641504 DOI: 10.1088/1361-6528/aafe53] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the special sensor for glucose detection, a non-noble-metal nanoarray architecture is extremely attractive due to its easy accessibility to target molecules and more exposed surface area. In this communication, we report the first synthesis of FeWO4 microsphere-array on the three-dimensional (3D) Ni foam (FeWO4 microspheres/NF) as the mimetic electrode for efficient catalytic oxidation of glucose in an alkaline medium. When used as an artificial analog glucose sensor, the result of the present sensing system can also be calculated with a sensitivity of 2810 μA mM cm-2, a linear range from 0.04 mM to 2 mM and a detection limit up to 1.4 μM (S/N = 3). This glucose sensor with satisfactory stability and reproducibility can also be applied to the detection of glucose in human serum. As a promising sensing platform, this proposed 3D FeWO4 microspheres/NF may open a new strategy for pursuing electrochemical detection of biomolecules.
Collapse
Affiliation(s)
- Xiufeng Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | | | | | | |
Collapse
|
48
|
A new glucose biosensor based on Nickel/KH550 nanocomposite deposited on the GCE: An electrochemical study. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Hierarchical nanosheets based on zinc-doped nickel hydroxide attached 3D framework as free-standing nonenzymatic sensor for sensitive glucose detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Nguyen THV, Wu CH, Lin SY, Lin CY. CoOx nanoparticles modified CuBi2O4 submicron-sized square columns as a sensitive and selective sensing material for amperometric detection of glucose. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|