1
|
Huang P, Lan H, Liu B, Mo Y, Gao Z, Ye H, Pan T. Transformative laboratory medicine enabled by microfluidic automation and artificial intelligence. Biosens Bioelectron 2025; 271:117046. [PMID: 39671961 DOI: 10.1016/j.bios.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Laboratory medicine provides pivotal medical information through analyses of body fluids and tissues, and thus, it is essential for diagnosis of diseases as well as monitoring of disease progression. Despite its universal importance, the field is currently suffering from the limited workforce and analytical capabilities due to the increasing pressure from expanding global population and unexpected rise of noncommunicable diseases. The emerging technologies of microfluidic automation and artificial intelligence (AI) has led to the development of advanced diagnostic platforms, positioning themselves as adaptable solutions to enable highly efficient and accessible laboratory medicine. In this review, we will provide a comprehensive review of microfluidic automation, focusing on the microstructure design and automation principles, along with its intended functionalities for diagnostic purposes. Subsequently, we exemplify the integration of AI with microfluidics and illustrating how their combination benefits for the applications and what the challenges are in this rapidly evolving field. Finally, the review offers a balanced perspective on the microfluidics and AI, discussing their promising role in advancing laboratory medicine.
Collapse
Affiliation(s)
- Pijiang Huang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Huaize Lan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Binyao Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Yuhao Mo
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Zhuangqiang Gao
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| | - Haihang Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China; Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Tingrui Pan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026 PR China.
| |
Collapse
|
2
|
Wu M, Liu X, Wang R, Lin X, Liu Y. A high-performance surface acoustic wave sensing technique. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:054903. [PMID: 38809113 DOI: 10.1063/5.0186613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
We present a superheterodyne-scheme demodulation system that can detect the amplitude and phase shift of weak radio frequency signals with extraordinarily high stability and resolution. As a demonstration, we introduce a process to measure the velocity of the surface acoustic wave using a delay-line device from 30 K to room temperature, which can resolve <0.1 ppm velocity shift. Furthermore, we investigate the possibility of using this surface acoustic wave device as a calibration-free, high sensitivity, and fast response thermometer.
Collapse
Affiliation(s)
- Mengmeng Wu
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| | - Xiao Liu
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| | - Renfei Wang
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| | - Xi Lin
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Haidian, Beijing 100871, China
| | - Yang Liu
- International Center for Quantum Materials, Peking University, Haidian, Beijing 100871, China
| |
Collapse
|
3
|
Bai C, Tang X, Li Y, Arai T, Huang Q, Liu X. Acoustohydrodynamic micromixers: Basic mixing principles, programmable mixing prospectives, and biomedical applications. BIOMICROFLUIDICS 2024; 18:021505. [PMID: 38659428 PMCID: PMC11037935 DOI: 10.1063/5.0179750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
Acoustohydrodynamic micromixers offer excellent mixing efficiency, cost-effectiveness, and flexible controllability compared with conventional micromixers. There are two mechanisms in acoustic micromixers: indirect influence by induced streamlines, exemplified by sharp-edge micromixers, and direct influence by acoustic waves, represented by surface acoustic wave micromixers. The former utilizes sharp-edge structures, while the latter employs acoustic wave action to affect both the fluid and its particles. However, traditional micromixers with acoustic bubbles achieve significant mixing performance and numerous programmable mixing platforms provide excellent solutions with wide applicability. This review offers a comprehensive overview of various micromixers, elucidates their underlying principles, and explores their biomedical applications. In addition, advanced programmable micromixing with impressive versatility, convenience, and ability of cross-scale operations is introduced in detail. We believe this review will benefit the researchers in the biomedical field to know the micromixers and find a suitable micromixing method for their various applications.
Collapse
Affiliation(s)
- Chenhao Bai
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqing Tang
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuyang Li
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China
| | - Tatsuo Arai
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- The Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Pelenis D, Barauskas D, Dzikaras M, Viržonis D. Four-Channel Ultrasonic Sensor for Bulk Liquid and Biochemical Surface Interrogation. BIOSENSORS 2024; 14:66. [PMID: 38391985 PMCID: PMC10887170 DOI: 10.3390/bios14020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Custom electronics tailored for ultrasonic applications with four ultrasonic transmit-receive channels and a nominal 25 MHz single channel frequency were developed for ultrasound BAW and SAW biosensor uses. The designed integrated microcontroller, supported by Python with a SciPy library, and the developed system measured the time of flight (TOF) and other wave properties to characterize the acoustic properties of a bulk of the liquid in a microchannel or acoustic properties of biological species attached to an analytic surface in real time. The system can utilize both piezoelectric and capacitive micromachined ultrasound transducers. The device demonstrated a linear response to changes in water salinity. This response was primarily attributed to the time-of-flight (TOF) changes related to the varying solution density. Furthermore, real-time DNA oligonucleotide-based interactions between oligonucleotides immobilized on the device's analytical area and oligonucleotides attached to gold nanoparticles (Au NPs) in the solution were demonstrated. The biological interaction led to an exponential decrease in the acoustic interfacial wave propagating across the interface between the solution and the solid surface of the sensor, the TOF signal. This decrease was attributed to the increase in the effective density of the solution in the vicinity of the sensor's analytical area, as Au NPs modified by oligonucleotides were binding to the analytical area. The utilization of Au NPs in oligonucleotide surface binding yields a considerably stronger sensor signal than previously observed in earlier CMUT-based TOF biosensor prototypes.
Collapse
Affiliation(s)
| | | | | | - Darius Viržonis
- Panevėžys Faculty of Technology and Business, Kaunas University of Technology, 37164 Panevėžys, Lithuania; (D.P.); (D.B.); (M.D.)
| |
Collapse
|
5
|
Chou TH, Cheng CH, Lo CJ, Young GH, Liu SH, Wang RYL. New Advances in Rapid Pretreatment for Small Dense LDL Cholesterol Measurement Using Shear Horizontal Surface Acoustic Wave (SH-SAW) Technology. Int J Mol Sci 2024; 25:1044. [PMID: 38256117 PMCID: PMC10816817 DOI: 10.3390/ijms25021044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Atherosclerosis is an inflammatory disease of the arteries associated with alterations in lipid and other metabolism and is a major cause of cardiovascular disease (CVD). LDL consists of several subclasses with different sizes, densities, and physicochemical compositions. Small dense LDL (sd-LDL) is a subclass of LDL. There is growing evidence that sd-LDL-C is associated with CVD risk, metabolic dysregulation, and several pathophysiological processes. In this study, we present a straightforward membrane device filtration method that can be performed with simple laboratory methods to directly determine sd-LDL in serum without the need for specialized equipment. The method consists of three steps: first, the precipitation of lipoproteins with magnesium harpin; second, the collection of effluent from a 100 nm filter; and third, the quantification of sd-LDL-ApoB in the effluent with an SH-SAW biosensor. There was a good correlation between ApoB values obtained using the centrifugation (y = 1.0411x + 12.96, r = 0.82, n = 20) and filtration (y = 1.0633x + 15.13, r = 0.88, n = 20) methods and commercially available sd-LDL-C assay values. In addition to the filtrate method, there was also a close correlation between sd-LDL-C and ELISA assay values (y = 1.0483x - 4489, r = 0.88, n = 20). The filtration treatment method also showed a high correlation with LDL subfractions and NMR spectra ApoB measurements (y = 2.4846x + 4.637, r = 0.89, n = 20). The presence of sd-LDL-ApoB in the effluent was also confirmed by ELISA assay. These results suggest that this filtration method is a simple and promising pretreatment for use with the SH-SAW biosensor as a rapid in vitro diagnostic (IVD) method for predicting sd-LDL concentrations. Overall, we propose a very sensitive and specific SH-SAW biosensor with the ApoB antibody in its sensitive region to monitor sd-LDL levels by employing a simple delay-time phase shifted SH-SAW device. In conclusion, based on the demonstration of our study, the SH-SAW biosensor could be a strong candidate for the future measurement of sd-LDL.
Collapse
Affiliation(s)
- Tai-Hua Chou
- Biotechnology Industry Master and PhD Program, Chang Gung University, Taoyuan 33302, Taiwan; (T.-H.C.); (G.-H.Y.)
| | - Chia-Hsuan Cheng
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi 432-8561, Japan;
- tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan;
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Guang-Huar Young
- Biotechnology Industry Master and PhD Program, Chang Gung University, Taoyuan 33302, Taiwan; (T.-H.C.); (G.-H.Y.)
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Szu-Heng Liu
- Biotechnology Industry Master and PhD Program, Chang Gung University, Taoyuan 33302, Taiwan; (T.-H.C.); (G.-H.Y.)
- tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
| | - Robert Y-L Wang
- Biotechnology Industry Master and PhD Program, Chang Gung University, Taoyuan 33302, Taiwan; (T.-H.C.); (G.-H.Y.)
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children’s Hospital, Linkou 33305, Taiwan
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| |
Collapse
|
6
|
Ward SJ, Cao T, Zhou X, Chang C, Weiss SM. Protein Identification and Quantification Using Porous Silicon Arrays, Optical Measurements, and Machine Learning. BIOSENSORS 2023; 13:879. [PMID: 37754113 PMCID: PMC10526835 DOI: 10.3390/bios13090879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
We report a versatile platform based on an array of porous silicon (PSi) thin films that can identify analytes based on their physical and chemical properties without the use of specific capture agents. The ability of this system to reproducibly classify, quantify, and discriminate three proteins separately is demonstrated by probing the reflectance of PSi array elements with a unique combination of pore size and buffer pH, and by analyzing the optical signals using machine learning. Protein identification and discrimination are reported over a concentration range of two orders of magnitude. This work represents a significant first step towards a low-cost, simple, versatile, and robust sensor platform that is able to detect biomolecules without the added expense and limitations of using capture agents.
Collapse
Affiliation(s)
- Simon J. Ward
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA; (S.J.W.)
| | - Tengfei Cao
- Interdisciplinary Material Science Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiang Zhou
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Catie Chang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA; (S.J.W.)
| | - Sharon M. Weiss
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA; (S.J.W.)
- Interdisciplinary Material Science Program, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Rosa BMG, Anastasova S, Yang GZ. NFC-Powered Implantable Device for On-Body Parameters Monitoring With Secure Data Exchange Link to a Medical Blockchain Type of Network. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:31-43. [PMID: 34197334 DOI: 10.1109/tcyb.2021.3088711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Implantable devices represent the future of remote medical monitoring and administration of both chemical and physical therapies to the patients. Although some of these devices are already in the market, the security mechanisms deployed inside them to withstand deliberate external influence are still decades away from the robust digital data security schemes employed in modern distributed networks these days. Medical data theft, spoofing, and disclosure pose serious threats that can ultimately lead to individual and social stigmas or even death. In this article, we present a small-form and batteryless implantable device with acquisition channels for biopotential (30-dB gain and 16-Hz bandwidth), arterial pulse oximetry, and temperature (0.12°C accuracy) recordings, suitable for cardiovascular, neuronal, and endocrine parameters assessment. The proposed device is powered by the near-field communication (NFC) interface with an external mobile phone, with a power consumption of 0.9 mW and achieving the full operation for distances close to 1 cm under the skin. In situ encryption of the acquired physiological signals is performed by a lightweight and short-term symmetric-key distribution scheme with data stream hopping, in order to ensure secure data transference over the air between the patient and trusted entities only, complemented by data storage, processing, and recovery through a medical blockchain type of network that involves the main stakeholders inside a medical community.
Collapse
|
8
|
Luo T, Liu W, Wen Z, Xie Y, Tong X, Cai Y, Liu Y, Sun C. A High-Sensitivity Gravimetric Biosensor Based on S 1 Mode Lamb Wave Resonator. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155912. [PMID: 35957469 PMCID: PMC9371384 DOI: 10.3390/s22155912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 05/30/2023]
Abstract
The development of MEMS acoustic resonators meets the increasing demand for in situ detection with a higher performance and smaller size. In this paper, a lithium niobate film-based S1 mode Lamb wave resonator (HF-LWR) for high-sensitivity gravimetric biosensing is proposed. The fabricated resonators, based on a 400-nm X-cut lithium niobate film, showed a resonance frequency over 8 GHz. Moreover, a PMMA layer was used as the mass-sensing layer, to study the performance of the biosensors based on HF-LWRs. Through optimizing the thickness of the lithium niobate film and the electrode configuration, the mass sensitivity of the biosensor could reach up to 74,000 Hz/(ng/cm2), and the maximum value of figure of merit (FOM) was 5.52 × 107, which shows great potential for pushing the performance boundaries of gravimetric-sensitive acoustic biosensors.
Collapse
Affiliation(s)
- Tiancheng Luo
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Wenjuan Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Zhiwei Wen
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Xie
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Tong
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Cai
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Yan Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Chengliang Sun
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
9
|
Cammarata A, Maddìo PD, Sinatra R, Rossi A, Belfiore NP. Dynamic Model of a Conjugate-Surface Flexure Hinge Considering Impacts between Cylinders. MICROMACHINES 2022; 13:mi13060957. [PMID: 35744570 PMCID: PMC9230761 DOI: 10.3390/mi13060957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
A dynamic model of a Conjugate-Surface Flexure Hinge (CSFH) has been proposed as a component for MEMS/NEMS Technology-based devices with lumped compliance. However, impacts between the conjugate surfaces have not been studied yet and, therefore, this paper attempts to fill this gap by proposing a detailed multibody system (MBS) model that includes not only rigid-body dynamics but also elastic forces, friction, and impacts. Two models based on the Lankarani-Nikravesh constitutive law are first recalled and a new model based on the contact of cylinders is proposed. All three models are complemented by the friction model proposed by Ambrosìo. Then, the non-smooth Moreau time-stepping scheme with Coulomb friction is described. The four models are compared in different scenarios and the results confirm that the proposed model outcomes comply with the most reliable models.
Collapse
Affiliation(s)
- Alessandro Cammarata
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy; (P.D.M.); (R.S.)
- Correspondence: ; Tel.: +39-095-738-2403
| | - Pietro Davide Maddìo
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy; (P.D.M.); (R.S.)
| | - Rosario Sinatra
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy; (P.D.M.); (R.S.)
| | - Andrea Rossi
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, Via Vito Volterra 62, 00154 Rome, Italy; (A.R.); (N.P.B.)
| | - Nicola Pio Belfiore
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, Via Vito Volterra 62, 00154 Rome, Italy; (A.R.); (N.P.B.)
| |
Collapse
|
10
|
A Biosensor Based on Bound States in the Continuum and Fano Resonances in a Solid–Liquid–Solid Triple Layer. CRYSTALS 2022. [DOI: 10.3390/cryst12050707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We propose a simple solid–liquid–solid triple layer biosensor platform based on bound states in the continuum (BICs) and Fano resonances to detect the acoustic properties of liquids and apply the method to a mixture of water and albumin with various concentrations. The solid–liquid–solid triple layer is composed of an epoxy as a solid layer and an albumin–water mixture as a liquid layer, and the entire system is immersed in water. In this work, we show that the structure exhibits a high sensitivity (S), quality factor (Q), and figure of merit (FOM) with a better detection limit (DL) in the vicinity of the BICs where the transmission spectra exhibit Fano resonances. The Fano resonances shift towards high frequencies as the concentration increases. The detection limit can reach very small values for a small albumin concentration (4.7%). In addition, for a given concentration and layer thickness of the sensing material, we show the effect of the incidence angle on the efficiency of the sensor in terms of the sensitivity and quality factor. The proposed structure can be designed from low-cost material and can be used as a sensor to detect different types of liquids and gases as well.
Collapse
|
11
|
Chen J, Zeng Y, Zhou J, Wang X, Jia B, Miyan R, Zhang T, Sang W, Wang Y, Qiu H, Qu J, Ho HP, Gao BZ, Shao Y, Gu Y. Optothermophoretic flipping method for biomolecule interaction enhancement. Biosens Bioelectron 2022; 204:114084. [DOI: 10.1016/j.bios.2022.114084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/04/2022] [Accepted: 02/06/2022] [Indexed: 12/01/2022]
|
12
|
Filtering Properties of Discrete and Continuous Elastic Systems in Series and Parallel. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Filtering properties and local energy distribution in different classes of periodic micro-structured elastic systems are analysed in this work. Out-of-plane wave propagation is considered in continuous and discrete elastic systems arranged in series and parallel. Filtering properties are determined from the analysis of dispersion diagrams and energy distribution within different phases in the representative unit cell. These are determined analytically by implementing a transfer matrix formalism. The analysis given in the work indicates quantitatively how to couple phases, having discrete and continuous nature, in order to tune wave propagation and energy localisation.
Collapse
|
13
|
Quelennec A, Gorman JJ, Reyes DR. Amontons-Coulomb-like slip dynamics in acousto-microfluidics. Nat Commun 2022; 13:1429. [PMID: 35318314 PMCID: PMC8941090 DOI: 10.1038/s41467-022-28823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Acousto-microfluidics uses acoustic waves to manipulate and sense particles and fluids, and its integration into biomedical technologies has grown substantially in recent years. Fluid manipulation and measurement with surface acoustic waves rely on the efficient transmission of acoustic energy from the device to the fluid. Acoustic transmission into the fluid can be reduced significantly by slip at the fluid-solid interface, but, up until now, this phenomenon has been widely neglected during the design of acousto-microfluidic devices. Here our interpretation supports that the slip dynamics at the liquid-solid interface in acousto-microfluidics are highly analogous to the Amontons-Coulomb laws for dry friction between solids. In particular, there is a relationship between the local fluid pressure and shear stress, where we show that pressure-shear stress conditions can be divided into slip and no-slip regions, similar to the cone of friction found in dry friction. This improved understanding of slip will enable more reliable and predictable acousto-microfluidic technologies, thus expanding their use in new applications in biology and medicine. Acoustic waves can be used to manipulate particles and fluids in biomedical applications. The authors show that slip at the fluid-solid interface, characterized by a lower acoustic transmission into the fluid, is similar to Amontons-Coulomb friction, as found between solids.
Collapse
Affiliation(s)
- Aurore Quelennec
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jason J Gorman
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Darwin R Reyes
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
14
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
15
|
Wang X, Ji J, Yang P, Li X, Pang Y, Lu P. A love-mode surface acoustic wave aptasensor with dummy fingers based on monolayer MoS 2/Au NPs nanocomposites for alpha-fetoprotein detection. Talanta 2022; 243:123328. [PMID: 35217272 DOI: 10.1016/j.talanta.2022.123328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
The detection of cancer markers still has shortages of low sensitivity, time-consuming operation, the use of unstable and expensive antibodies. In this work, a novel Love-mode surface acoustic wave (LSAW) aptasensor with dummy fingers based on the monolayer molybdenum disulfide/gold nanoparticles (monolayer MoS2/Au NPs) was developed for the highly sensitive and rapid determination of alpha-fetoprotein (AFP) in serum. Interdigital electrodes (IDTs) with dummy fingers were designed and applied to improve the acoustic characteristic of the LSAW aptasensor. The less energy dissipation and wave-front distortion of the LSAW aptasensor were confirmed by COMSOL simulation and test results. The newly-developed sensing film monolayer MoS2/Au NPs/Apt/6-mercaptohexanol (MCH) was applied for the specific detection of AFP and significantly improved the sensitivity of the LSAW aptasensor. The excellent performance of the LSAW aptasensor allowed the sensitive and rapid detection of AFP in serum in the range of 0.01 ⁓ 100 ng/mL with a low detection limit of 4.79 pg/mL. Additionally, the proposed LSAW aptasensor exhibited excellent selectivity, long-term stability, and reproducibility, and could be used to detect other cancer biomarkers.
Collapse
Affiliation(s)
- Xiaoli Wang
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Junwang Ji
- Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; School of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Pengfei Yang
- Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Xinyu Li
- School of Optoelectronics Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Yiquan Pang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
16
|
Mandal D, Banerjee S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:820. [PMID: 35161565 PMCID: PMC8839725 DOI: 10.3390/s22030820] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology.
Collapse
Affiliation(s)
| | - Sourav Banerjee
- Integrated Material Assessment and Predictive Simulation Laboratory, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
17
|
Dong Z, Wang Y, Yin D, Hang X, Pu L, Zhang J, Geng J, Chang L. Advanced techniques for gene heterogeneity research: Single‐cell sequencing and on‐chip gene analysis systems. VIEW 2022. [DOI: 10.1002/viw.20210011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Zaizai Dong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Yu Wang
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Dedong Yin
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Xinxin Hang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Lei Pu
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Jianfu Zhang
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Jia Geng
- Department of Laboratory Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University/Collaborative Innovation Center Chengdu China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| |
Collapse
|
18
|
Matatagui D, Bastida Á, Horrillo MC. Novel SH-SAW Biosensors for Ultra-Fast Recognition of Growth Factors. BIOSENSORS 2021; 12:bios12010017. [PMID: 35049645 PMCID: PMC8773814 DOI: 10.3390/bios12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022]
Abstract
In this study, we investigated a label-free time efficient biosensor to recognize growth factors (GF) in real time, which are of gran interesting in the regulation of cell division and tissue proliferation. The sensor is based on a system of shear horizontal surface acoustic wave (SH-SAW) immunosensor combined with a microfluidic chip, which detects GF samples in a dynamic mode. In order to prove this method, to our knowledge not previously used for this type of compounds, two different GFs were tested by two immunoreactions: neurotrophin-3 and fibroblast growth factor-2 using its polyclonal antibodies. GF detection was conducted via an enhanced sequential workflow to improve total test time of the immunoassay, which shows that this type of biosensor is a very promising method for ultra-fast recognition of these biomolecules due to its great advantages: portability, simplicity of use, reusability, low cost, and detection within a relatively short period of time. Finally, the biosensor is able to detect FGF-2 growth factor in a concentration wide range, from 1–25 µg/mL, for a total test time of ~15 min with a LOD of 130 ng/mL.
Collapse
Affiliation(s)
- Daniel Matatagui
- Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
| | - Ágatha Bastida
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
- Correspondence: (M.C.H.); (Á.B.)
| | - M. Carmen Horrillo
- Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain;
- Correspondence: (M.C.H.); (Á.B.)
| |
Collapse
|
19
|
Jokić I, Djurić Z, Radulović K, Frantlović M, Milovanović GV, Krstajić PM. Stochastic Time Response and Ultimate Noise Performance of Adsorption-Based Microfluidic Biosensors. BIOSENSORS 2021; 11:bios11060194. [PMID: 34204823 PMCID: PMC8231490 DOI: 10.3390/bios11060194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the interpretation of measurement results and to achieve the optimal performance of microfluidic biosensors, advanced mathematical models of their time response and noise are needed. The random nature of adsorption-desorption and mass transfer (MT) processes that generate the sensor response makes the sensor output signal inherently stochastic and necessitates the use of a stochastic approach in sensor response analysis. We present a stochastic model of the sensor time response, which takes into account the coupling of adsorption-desorption and MT processes. It is used for the analysis of response kinetics and ultimate noise performance of protein biosensors. We show that slow MT not only decelerates the response kinetics, but also increases the noise and decreases the sensor's maximal achievable signal-to-noise ratio, thus degrading the ultimate sensor performance, including the minimal detectable/quantifiable analyte concentration. The results illustrate the significance of the presented model for the correct interpretation of measurement data, for the estimation of sensors' noise performance metrics important for reliable analyte detection/quantification, as well as for sensor optimization in terms of the lower detection/quantification limit. They are also incentives for the further investigation of the MT influence in nanoscale sensors, as a possible cause of false-negative results in analyte detection experiments.
Collapse
Affiliation(s)
- Ivana Jokić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (K.R.); (M.F.); (P.M.K.)
| | - Zoran Djurić
- Institute of Technical Sciences of SASA, Knez Mihailova 35, 11000 Belgrade, Serbia;
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia;
| | - Katarina Radulović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (K.R.); (M.F.); (P.M.K.)
| | - Miloš Frantlović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (K.R.); (M.F.); (P.M.K.)
| | - Gradimir V. Milovanović
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia;
- Mathematical Institute of SASA, Knez Mihailova 36, 11000 Belgrade, Serbia
| | - Predrag M. Krstajić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (K.R.); (M.F.); (P.M.K.)
| |
Collapse
|
20
|
Low-powered implantable devices activated by ultrasonic energy transfer for physiological monitoring in soft tissue via functionalized electrochemical electrodes. Biosens Bioelectron 2021; 182:113175. [DOI: 10.1016/j.bios.2021.113175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
|
21
|
Agostini M, Cecchini M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. NANOTECHNOLOGY 2021; 32:312001. [PMID: 33887716 DOI: 10.1088/1361-6528/abfaba] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/22/2021] [Indexed: 05/20/2023]
Abstract
Surface acoustic waves (SAWs) have the potential to become the basis for a wide gamut of lab-on-a-chips (LoCs). These mechanical waves are among the most promising physics that can be exploited for fulfilling all the requirements of commercially appealing devices that aim to replace-or help-laboratory facilities. These requirements are low processing cost of the devices, scalable production, controllable physics, large flexibility of tasks to perform, easy device miniaturization. To date, SAWs are among the small set of technologies able to both manipulate and analyze biological liquids with high performance. Therefore, they address the main needs of microfluidics and biosensing. To this purpose, the use of high-frequency SAWs is key. In the ultra-high-frequency regime (UHF, 300 MHz-3 GHz) SAWs exhibit large sensitivities to molecule adsorption and unparalleled fluid manipulation capabilities, together with overall device miniaturization. The UHF-SAW technology is expected to be the realm for the development of complex, reliable, fully automated, high-performance LoCs. In this review, we present the most recent works on UHF-SAWs for microfluidics and biosensing, with a particular focus on the LoC application. We derive the relevant scale laws, useful formulas, fabrication guidelines, current limitations of the technology, and future developments.
Collapse
Affiliation(s)
- Matteo Agostini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - Marco Cecchini
- INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, I-56122 Pisa, Italy
| |
Collapse
|
22
|
Regenerable ZnO/GaAs Bulk Acoustic Wave Biosensor for Detection of Escherichia coli in "Complex" Biological Medium. BIOSENSORS-BASEL 2021; 11:bios11050145. [PMID: 34067116 PMCID: PMC8151011 DOI: 10.3390/bios11050145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
A regenerable bulk acoustic wave (BAW) biosensor is developed for the rapid, label-free and selective detection of Escherichia coli in liquid media. The geometry of the biosensor consists of a GaAs membrane coated with a thin film of piezoelectric ZnO on its top surface. A pair of electrodes deposited on the ZnO film allows the generation of BAWs by lateral field excitation. The back surface of the membrane is functionalized with alkanethiol self-assembled monolayers and antibodies against E. coli. The antibody immobilization was investigated as a function of the concentration of antibody suspensions, their pH and incubation time, designed to optimize the immunocapture of bacteria. The performance of the biosensor was evaluated by detection tests in different environments for bacterial suspensions ranging between 103 and 108 CFU/mL. A linear dependence between the frequency response and the logarithm of E. coli concentration was observed for suspensions ranging between 103 and 107 CFU/mL, with the limit of detection of the biosensor estimated at 103 CFU/mL. The 5-fold regeneration and excellent selectivity towards E. coli detected at 104 CFU/mL in a suspension tinted with Bacillus subtilis at 106 CFU/mL illustrate the biosensor potential for the attractive operation in complex biological media.
Collapse
|
23
|
Noise as Diagnostic Tool for Quality and Reliability of MEMS. SENSORS 2021; 21:s21041510. [PMID: 33671582 PMCID: PMC7926468 DOI: 10.3390/s21041510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
This perspective explores future research approaches on the use of noise characteristics of microelectromechanical systems (MEMS) devices as a diagnostic tool to assess their quality and reliability. Such a technique has been applied to electronic devices. In comparison to these, however, MEMS have much more diverse materials, structures, and transduction mechanisms. Correspondingly, we must deal with various types of noise sources and a means to separate their contributions. In this paper, we first provide an overview of reliability and noise in MEMS and then suggest a framework to link noise data of specific devices to their quality or reliability. After this, we analyze 13 classes of MEMS and recommend four that are most amenable to this approach. Finally, we propose a noise measurement system to separate the contribution of electrical and mechanical noise sources. Through this perspective, our hope is for current and future designers of MEMS to see the potential benefits of noise in their devices.
Collapse
|
24
|
Fu YQ, Pang HF, Torun H, Tao R, McHale G, Reboud J, Tao K, Zhou J, Luo J, Gibson D, Luo J, Hu P. Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments. LAB ON A CHIP 2021; 21:254-271. [PMID: 33337457 DOI: 10.1039/d0lc00887g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed.
Collapse
Affiliation(s)
- Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gao F, Bermak A, Benchabane S, Robert L, Khelif A. Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection. MICROSYSTEMS & NANOENGINEERING 2021; 7:8. [PMID: 33489307 PMCID: PMC7812345 DOI: 10.1038/s41378-020-00236-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 05/05/2023]
Abstract
Acoustic wave resonators are promising candidates for gravimetric biosensing. However, they generally suffer from strong acoustic radiation in liquid, which limits their quality factor and increases their frequency noise. This article presents an acoustic radiation-free gravimetric biosensor based on a locally resonant surface phononic crystal (SPC) consisting of periodic high aspect ratio electrodes to address the above issue. The acoustic wave generated in the SPC is slower than the sound wave in water, hence it prevents acoustic propagation in the fluid and results in energy confinement near the electrode surface. This energy confinement results in a significant quality factor improvement and reduces frequency noise. The proposed SPC resonator is numerically studied by finite element analysis and experimentally implemented by an electroplating-based fabrication process. Experimental results show that the SPC resonator exhibits an in-liquid quality factor 15 times higher than a conventional Rayleigh wave resonator at a similar operating frequency. The proposed radiation suppression method using SPC can also be applied in other types of acoustic wave resonators. Thus, this method can serve as a general technique for boosting the in-liquid quality factor and sensing performance of many acoustic biosensors.
Collapse
Affiliation(s)
- Feng Gao
- College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Amine Bermak
- College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Sarah Benchabane
- Institut FEMTO-ST, CNRS, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Laurent Robert
- Institut FEMTO-ST, CNRS, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Abdelkrim Khelif
- Institut FEMTO-ST, CNRS, Université de Bourgogne-Franche-Comté, Besançon, France
| |
Collapse
|
26
|
Lee SH, Kang BS, Kim GM, Roh YR, Kwak MK. Fabrication and Performance Evaluation of the Helmholtz Resonator Inspired Acoustic Absorber Using Various Materials. MICROMACHINES 2020; 11:mi11110983. [PMID: 33142730 PMCID: PMC7692332 DOI: 10.3390/mi11110983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/05/2022]
Abstract
A soundwave is transmitted by adjacent molecules in the medium, and depending on the type of sound, it exhibits various characteristics such as frequency, sound pressure, etc. If the acoustic wavelength of the soundwave is sufficiently long compared with the size of an acoustic element, physical analysis within the sound element could be simplified regardless of the shape of the acoustic element: this is called “long wavelength approximation”. A Helmholtz resonator, a representative acoustic element which satisfies the “long wavelength theory”, consists of a neck part and a cavity part. The Helmholtz resonators can absorb certain frequencies of sound through resonance. To exhibit attenuation properties at ultrasound range, the Helmholtz resonator should be made into a microscale since Helmholtz resonators should satisfy the “long wavelength approximation”. In this study, Helmholtz resonator inspired acoustic elements were fabricated using MEMS technology, and acoustic attenuation experiments in a water bath were conducted using various shapes and materials. As a result, the fabricated samples showed admirable attenuation properties up to ~13 dB mm−1 at 1 MHz. The results were analyzed to derive the necessary conditions for the fabrication of acoustic elements with acoustic attenuation properties in ultrasound range.
Collapse
|
27
|
Liu C, Pang W, Duan X, Wang Y. Dual Functions of Ghz Frequency Acoustic Resonator System for Biosamples Capture and Sensing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3994-3997. [PMID: 33018875 DOI: 10.1109/embc44109.2020.9176604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work reports a novel acoustic resonator system integrated dual functions of biological samples capture and amount monitoring on a single chip. The system could capture samples from nano-sized proteins to micro-sized cells on micro-sized chip precisely with controllable concentration, meanwhile the high sensitivity mass sensing was achieved during the capture process. The devices were further applied to study the cell growth and cytotoxicity. Results indicated that it was possible to capture and monitor the physiological changes in a single cell level. This work explores a new opportunity on the development of miniaturized multiplex biosensing devices on a single chip.
Collapse
|
28
|
Frequency Shift of a SH-SAW Biosensor with Glutaraldehyde and 3-Aminopropyltriethoxysilane Functionalized Films for Detection of Epidermal Growth Factor. BIOSENSORS-BASEL 2020; 10:bios10080092. [PMID: 32764513 PMCID: PMC7459952 DOI: 10.3390/bios10080092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/29/2023]
Abstract
The frequency shift of a shear-horizontal surface-acoustic-wave (SH-SAW) biosensor in which the concentration of biomolecule is determined by the amount of its adsorption on the sensing film was studied. Simulation results were compared with experimental results to investigate its sensitivity and to develop a model to estimate the concentration of a cancer-related biomarker antigen epidermal growth factor (EGF) in the sample, with two types of sensing films, 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde. With the concentration of the targeted biomarker varying from 0.2 to 5 ng/mL, a typical exponential relationship was found between the concentration and the frequency shift of the SH-SAW sensor. Measurement results showed a clear response of this immunosensor to the mass-loading effects of the antibody–antigen. The sensitivity of the glutaraldehyde film is greater than that of the APTES film owing to the chemisorption of the antibody. In the simulation, a shift of the SH-SAW resonant frequency due to added mass occurred on applying an incremental surface mass density on the sensing film, while in real applications, the concentration of the targeted biomarker to be absorbed in the sensing film is demanded. An empirical model was proposed to calculate the frequency shift in the simulation of the SH-SAW biosensor, corresponding to the concentration of specific biomolecules absorbed on a specific film. From the semi-empirical model, the sensitivity level is found to be 0.641 and 1.709 kHz/(ng/mL) for APTES and glutaraldehyde sensing films, respectively, at a biomarker concentration of less than 1 ng/mL. The developed method is useful for quickly estimating the frequency shift with respect to the concentration of the target molecules in the simulation for SH-SAW sensors.
Collapse
|
29
|
Khan D, Li H, Bayram F, Gajula D, Koley G. Photoacoustic Detection of H 2 and NH 3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. MICROMACHINES 2020; 11:mi11070680. [PMID: 32668600 PMCID: PMC7407488 DOI: 10.3390/mi11070680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic (PA) detection of H2 and NH3 using plasmonic excitation in Pt- and Pd-decorated GaN piezotransistive microcantilevers were investigated using pulsed 520-nm laser illumination. The sensing performances of 1-nm Pt and Pd nanoparticle (NP) deposited cantilever devices were compared, of which the Pd-coated sensor devices exhibited consistently better sensing performance, with lower limit of detection and superior signal-to-noise ratio (SNR) values, compared to the Pt-coated devices. Among the two functionalization layers, Pd-coated devices were found to respond only to H2 exposure and not to NH3, while Pt-coated devices exhibited repeatable response to both H2 and NH3 exposures, highlighting the potential of the former in performing selective detection between these reducing gases. Optimization of the device-biasing conditions were found to enhance the detection sensitivity of the sensors.
Collapse
Affiliation(s)
- Digangana Khan
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| | - Hongmei Li
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| | - Ferhat Bayram
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| | - Durga Gajula
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Goutam Koley
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (H.L.); (F.B.); (G.K.)
| |
Collapse
|
30
|
Abstract
Gravimetric transducers produce a signal based on a change in mass. These transducers can be used to construct gas sensors or biosensors using odorant binding proteins (OBPs) as recognition elements for small volatile organic compounds. The methods described in this chapter are based on the immobilization of the OBPs onto functionalized (activated) self-assembled monolayer (SAMs) on gold and on nanocrystalline diamond surfaces. Depending on the surface immobilization methods used to fabricate the biosensor, recombinant proteins can be engineered to express six histidine tags either on the N-terminal or C-terminal of the proteins and these can also be used to facilitate protein immobilization. These methods are used to produce functional sensors based on quartz crystal microbalances or surface acoustic wave devices and are also applicable to other types of gravimetric transducers.
Collapse
Affiliation(s)
- Khasim Cali
- Department of Instrumentation and Analytical Science, The University of Manchester, Manchester, United Kingdom
| | | | - Krishna C Persaud
- Department of Instrumentation and Analytical Science, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
31
|
Shehata N, Hassanin AH, Elnabawy E, Nair R, Bhat SA, Kandas I. Acoustic Energy Harvesting and Sensing via Electrospun PVDF Nanofiber Membrane. SENSORS 2020; 20:s20113111. [PMID: 32486397 PMCID: PMC7308867 DOI: 10.3390/s20113111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/22/2023]
Abstract
This paper introduces a new usage of piezoelectric poly (vinylidene fluoride) (PVDF) electrospun nanofiber (NF) membrane as a sensing unit for acoustic signals. In this work, an NF mat has been used as a transducer to convert acoustic signals into electric voltage outcomes. The detected voltage has been analyzed as a function of both frequency and amplitude of the excitation acoustic signal. Additionally, the detected AC signal can be retraced as a function of both frequency and amplitude with some wave distortion at relatively higher amplitudes and within a certain acoustic spectrum region. Meanwhile, the NFs have been characterized through piezoelectric responses, beta sheet calculations and surface morphology. This work is promising as a low-cost and innovative solution to harvest acoustic signals coming from wide resources of sound and noise.
Collapse
Affiliation(s)
- Nader Shehata
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
- Faculty of Science, Utah State University, Logan, UT 84341, USA
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +20-1091-165-300
| | - Ahmed H. Hassanin
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (E.E.)
- Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Eman Elnabawy
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (E.E.)
| | - Remya Nair
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
| | - Sameer A. Bhat
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
| | - Ishac Kandas
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (E.E.)
| |
Collapse
|
32
|
Rosa BMG, Yang GZ. Ultrasound Powered Implants: Design, Performance Considerations and Simulation Results. Sci Rep 2020; 10:6537. [PMID: 32300180 PMCID: PMC7162879 DOI: 10.1038/s41598-020-63097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/25/2020] [Indexed: 02/04/2023] Open
Abstract
Ultrasounds (US) has been used in the past decades as a non-invasive imaging modality. Although employed extensively in clinical applications for soft tissue imaging, the acoustic beams can also be used for sensing and actuation for biological implants. In this paper we present a unified three dimensional (3D) computational framework to simulate the performance and response of deeply implanted devices to US stimulation and composed by a double piezoelectric layer with different material composition and configurations. The model combines the temporally-invariant distribution of the scattered pressure field arising from the presence of scatterers and attenuators in the domain of simulation, with the time-delay propagation of waves caused by refraction, to solve the Forward Problem in US within the breast and lower abdominal regions. It was found that a lens-shaped implant produces higher peak echoes in the breast for frequencies ≤ 6 MHz whereas, in the liver, similar strengths are obtained for the lens and disk-shaped implants in the higher spectrum. Regarding material composition, a combination of LiNbO3 with PZT-5A yielded higher amplitude signals, when the double layer thickness is comparable to the wavelength of excitation. Experimental validation of the proposed model was carried out in the presence of a synthetic anatomical phantom of the breast and water tank to investigate the acoustic signals generated by disk-shaped implants when stimulated by external US sources in the harmonic and impulsive regimes of wave propagation. The implantation of a double piezoelectric layer inside the human body can, in the future, provide a high resolution system for the detection of surgical site infection as well as tumour growth and other systemic inflammatory responses originating deeply in soft tissues.
Collapse
Affiliation(s)
| | - Guang-Zhong Yang
- The Hamlyn Centre, Imperial College London, London, SW7 2AZ, UK
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
33
|
Nayeem MOG, Lee S, Jin H, Matsuhisa N, Jinno H, Miyamoto A, Yokota T, Someya T. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc Natl Acad Sci U S A 2020; 117:7063-7070. [PMID: 32188781 PMCID: PMC7132136 DOI: 10.1073/pnas.1920911117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The prolonged and continuous monitoring of mechanoacoustic heart signals is essential for the early diagnosis of cardiovascular diseases. These bodily acoustics have low intensity and low frequency, and measuring them continuously for long periods requires ultrasensitive, lightweight, gas-permeable mechanoacoustic sensors. Here, we present an all-nanofiber mechanoacoustic sensor, which exhibits a sensitivity as high as 10,050.6 mV Pa-1 in the low-frequency region (<500 Hz). The high sensitivity is achieved by the use of durable and ultrathin (2.5 µm) nanofiber electrode layers enabling a large vibration of the sensor during the application of sound waves. The sensor is ultralightweight, and the overall weight is as small as 5 mg or less. The devices are mechanically robust against bending, and show no degradation in performance even after 1,000-cycle bending. Finally, we demonstrate a continuous long-term (10 h) measurement of heart signals with a signal-to-noise ratio as high as 40.9 decibels (dB).
Collapse
Affiliation(s)
- Md Osman Goni Nayeem
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan
| | - Sunghoon Lee
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan
| | - Hanbit Jin
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan
| | - Naoji Matsuhisa
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Jinno
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan
- Center for Emergent Matter Science, RIKEN, 351-0198 Wako, Saitama, Japan
| | - Akihito Miyamoto
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 113-8656 Bunkyo-ku, Tokyo, Japan;
- Center for Emergent Matter Science, RIKEN, 351-0198 Wako, Saitama, Japan
- Thin-Film Device Laboratory, RIKEN, 351-0198 Wako, Saitama, Japan
| |
Collapse
|
34
|
Recent Progress of Miniature MEMS Pressure Sensors. MICROMACHINES 2020; 11:mi11010056. [PMID: 31906297 PMCID: PMC7020044 DOI: 10.3390/mi11010056] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022]
Abstract
Miniature Microelectromechanical Systems (MEMS) pressure sensors possess various merits, such as low power consumption, being lightweight, having a small volume, accurate measurement in a space-limited region, low cost, little influence on the objects being detected. Accurate blood pressure has been frequently required for medical diagnosis. Miniature pressure sensors could directly measure the blood pressure and fluctuation in blood vessels with an inner diameter from 200 to 1000 m. Glaucoma is a group of eye diseases usually resulting from abnormal intraocular pressure. The implantable pressure sensor for real-time inspection would keep the disease from worsening; meanwhile, these small devices could alleviate the discomfort of patients. In addition to medical applications, miniature pressure sensors have also been used in the aerospace, industrial, and consumer electronics fields. To clearly illustrate the "miniature size", this paper focuses on miniature pressure sensors with an overall size of less than 2 mm × 2 mm or a pressure sensitive diaphragm area of less than 1 mm × 1 mm. In this paper, firstly, the working principles of several types of pressure sensors are briefly introduced. Secondly, the miniaturization with the development of the semiconductor processing technology is discussed. Thirdly, the sizes, performances, manufacturing processes, structures, and materials of small pressure sensors used in the different fields are explained in detail, especially in the medical field. Fourthly, problems encountered in the miniaturization of miniature pressure sensors are analyzed and possible solutions proposed. Finally, the probable development directions of miniature pressure sensors in the future are discussed.
Collapse
|
35
|
Zhang F, Wang X, Chen C, Zhou H, Yang J, Bai L, Xu Y, Cheng Y, Zhang S, Mu X. Temperature Monitorable Kinetics Study of Human Blood Coagulation by Utilizing a Dual-Mode AlN-Based Acoustic Wave Resonator. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:131-135. [PMID: 31494547 DOI: 10.1109/tuffc.2019.2939190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we reported an acoustic wave resonator for temperature monitorable kinetic analysis of human blood coagulation. The resonator is operated in both Lamb wave mode at 860 MHz and Rayleigh wave mode at 444 MHz. The electrical parameter variation of the resonator induced by the increased plasma viscosity can be used to monitor the coagulation process. The Lamb mode of the resonator is sensitive to both plasma viscosity and plasma temperature, while the Rayleigh mode responds only to the temperature which is not affected by viscosity. These unique characteristics of the two modes are due to different spatial distributions of the acoustic energy. Taking advantage of the aforementioned features, an acoustic wave resonator to study the human blood coagulation is designed to simultaneously monitor the temperature and plasma viscosity. The coagulation time and plasma temperature were provided by fitting the time-frequency curves. Our design holds great promise for biological reaction monitoring with possible temperature changes.
Collapse
|
36
|
Geng Z, Gu Y, Li S, Lin B, Liu P. A Fully Integrated In Vitro Diagnostic Microsystem for Pathogen Detection Developed Using a "3D Extensible" Microfluidic Design Paradigm. MICROMACHINES 2019; 10:E873. [PMID: 31842384 PMCID: PMC6953088 DOI: 10.3390/mi10120873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023]
Abstract
Microfluidics is facing critical challenges in the quest of miniaturizing, integrating, and automating in vitro diagnostics, including the increasing complexity of assays, the gap between the macroscale world and the microscale devices, and the diverse throughput demands in various clinical settings. Here, a "3D extensible" microfluidic design paradigm that consists of a set of basic structures and unit operations was developed for constructing any application-specific assay. Four basic structures-check valve (in), check valve (out), double-check valve (in and out), and on-off valve-were designed to mimic basic acts in biochemical assays. By combining these structures linearly, a series of unit operations can be readily formed. We then proposed a "3D extensible" architecture to fulfill the needs of the function integration, the adaptive "world-to-chip" interface, and the adjustable throughput in the X, Y, and Z directions, respectively. To verify this design paradigm, we developed a fully integrated loop-mediated isothermal amplification microsystem that can directly accept swab samples and detect Chlamydia trachomatis automatically with a sensitivity one order higher than that of the conventional kit. This demonstration validated the feasibility of using this paradigm to develop integrated and automated microsystems in a less risky and more consistent manner.
Collapse
Affiliation(s)
- Zhi Geng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
| | - Yin Gu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
- FengteBio Corporation, Beijing 100079, China
| | - Shanglin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
- FengteBio Corporation, Beijing 100079, China
| | - Baobao Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Z.G.); (Y.G.); (S.L.); (B.L.)
| |
Collapse
|
37
|
Azzopardi CL, Chollet F, Manceau JF, Boireau W. Analyte capture in an array of functionalized droplets for a regenerable biosensor. BIOMICROFLUIDICS 2019; 13:054105. [PMID: 31592056 PMCID: PMC6768797 DOI: 10.1063/1.5115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We describe in this work an advanced microfluidic chip for the capture of bioanalyte on the surface of droplets arranged in a dense array. We show the procedure for generating, functionalizing, and arranging the droplets inside the device for capturing a specific bioanalyte. Then, we demonstrate the capacity of the array to capture analyte from a cross-flowing liquid, using a biotin/streptavidin model. The paper also proposes to use the droplets array, after integration with acoustic detection, as a regenerable detection interface for bioanalyte sensing. We model the arrangement of droplet in dense array and show that they present a larger effective capture surface and shorter capture distance than standard flat surface biosensor of the same footprint. As the droplets can be easily evacuated and replaced inside the device analysis chamber, the proposed biosensor would allow biointerface regeneration and chain measurement without dismounting the device.
Collapse
Affiliation(s)
- C-L Azzopardi
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| | - F Chollet
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| | - J-F Manceau
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| | - W Boireau
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| |
Collapse
|
38
|
Müller GA, Herling AW, Stemmer K, Lechner A, Tschöp MH. Chip-based sensing for release of unprocessed cell surface proteins in vitro and in serum and its (patho)physiological relevance. Am J Physiol Endocrinol Metab 2019; 317:E212-E233. [PMID: 31039006 DOI: 10.1152/ajpendo.00079.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To study the possibility that certain components of eukaryotic plasma membranes are released under certain (patho)physiological conditions, a chip-based sensor was developed for the detection of cell surface proteins, which are anchored at the outer leaflet of eukaryotic plasma membranes by a covalently attached glycolipid, exclusively, and might be prone to spontaneous or regulated release on the basis of their amphiphilic character. For this, unprocessed, full-length glycosylphosphatidylinositol-anchored proteins (GPI-AP), together with associated phospholipids, were specifically captured and detected by a chip- and microfluidic channel-based sensor, leading to changes in phase and amplitude of surface acoustic waves (SAW) propagating over the chip surface. Unprocessed GPI-AP in complex with lipids were found to be released from rat adipocyte plasma membranes immobilized on the chip, which was dependent on the flow rate and composition of the buffer stream. The complexes were identified in the incubation medium of primary rat adipocytes, in correlation to the cell size, and in rat as well as human serum. With rats, the measured changes in SAW phase shift, reflecting specific mass/size or amount of the unprocessed GPI-AP in complex with lipids, and SAW amplitude, reflecting their viscoelasticity, enabled the differentiation between the lean and obese (high-fat diet) state, and the normal (Wistar) and hyperinsulinemic (Zucker fatty) as well as hyperinsulinemic hyperglycemic (Zucker diabetic fatty) state. Thus chip-based sensing for complexes of unprocessed GPI-AP and lipids reveals the inherently labile anchorage of GPI-AP at plasma membranes and their susceptibility for release in response to (intrinsic/extrinsic) cues of metabolic relevance and may, therefore, be useful for monitoring of (pre-)diabetic disease states.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas W Herling
- Sanofi Deutschland GmbH, Diabetes Research Division , Frankfurt am Main , Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik IV, Medical Center, Ludwig-Maximilians-Universität München (Klinikum der Universität München) , München , Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Oberschleissheim/Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München , Neuherberg , Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München , München , Germany
- German Center for Diabetes Research, Oberschleissheim/Neuherberg, Germany
| |
Collapse
|
39
|
Han C, Wang X, Zhao Q, Teng L, Zhang S, Lv H, Liu J, Ma H, Wang Y. Solidly mounted resonator sensor for biomolecule detections. RSC Adv 2019; 9:21323-21328. [PMID: 35521317 PMCID: PMC9065989 DOI: 10.1039/c9ra01695c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/30/2019] [Indexed: 11/21/2022] Open
Abstract
We report the fabrication of a solidly mounted resonator (SMR) that can also function as a sensor for biological molecules. The SMR, consisting of a Au electrode, aluminum nitride (AlN) piezoelectric thin film and Bragg acoustic reflector, was fabricated on a Si substrate by radio frequency (RF) magnetron sputtering. The Bragg acoustic reflector, made entirely of metal, has small internal stress and good heat conduction. Human immunoglobulin G (IgG) antibody was immobilized on the modified (by self-assembled monolayer method) Au electrode surface of the SMR and goat anti-human IgG antigen was captured through the specificity of bond between the antibody and antigen on the electrode surface. We found a linear relationship between the resonant frequency shift and the concentration of goat anti-human IgG antigen for concentrations smaller than 0.4 mg ml−1 and a relatively constant frequency shift for concentrations greater than 0.5 mg ml−1. A series of interference experiments can prove that the selectivity of the sensor is satisfactory. Our findings suggest that the SMR sensor is an attractive alternative for biomolecule detection. We report the fabrication of a solidly mounted resonator (SMR) that can also function as a sensor for biological molecules.![]()
Collapse
Affiliation(s)
- Chengzhang Han
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China .,College of Mechanical and Electronic Engineering, Qingdao Binhai University Qingdao 266555 China
| | - Xia Wang
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| | - Qiuling Zhao
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| | - Lihua Teng
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| | - Shuaiyi Zhang
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| | - Hao Lv
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jing Liu
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| | - Haoran Ma
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yanping Wang
- Optoelectronic Materials and Technologies Engineering Laboratory, Shandong, Physics Department, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
40
|
Olivares J, Mirea T, Gordillo-Dagallier L, Marco B, Escolano JM, Clement M, Iborra E. Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:975-984. [PMID: 31165024 PMCID: PMC6541337 DOI: 10.3762/bjnano.10.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
We present the successful growth of few-layer graphene on top of AlN-based solidly mounted resonators (SMR) using a low-temperature chemical vapour deposition (CVD) process assisted by Ni catalysts, and its effective bio-functionalization with antibodies. The SMRs are manufactured on top of fully insulating AlN/SiO2 acoustic mirrors able to withstand the temperatures reached during the CVD growth of graphene (up to 650 °C). The active AlN films, purposely grown with the c-axis tilted, effectively excite shear modes displaying excellent in-liquid performance, with electromechanical coupling and quality factors of around 3% and 150, respectively, which barely vary after graphene integration. Raman spectra reveal that the as-grown graphene is composed of less than five weakly coupled layers with a low density of defects. Two functionalization protocols of the graphene are proposed. The first one, based on a covalent binding approach, starts with a low-damage O2 plasma treatment that introduces a controlled density of defects in graphene, including carboxylic groups. After that, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry is used to covalently bind streptavidin molecules to the surface of the sensors. The second functionalization protocol is based on the non-covalent bonding of streptavidin on hydrophobic graphene surfaces. The two protocols end with the effective bonding of biotinylated anti-IgG antibodies to the streptavidin, which leaves the surface of the devices ready for possible IgG detection.
Collapse
Affiliation(s)
- Jimena Olivares
- GMME-CEMDATIC, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain
| | - Teona Mirea
- GMME-CEMDATIC, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain
| | | | - Bruno Marco
- GMME-CEMDATIC, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain
| | - José Miguel Escolano
- GMME-CEMDATIC, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain
| | - Marta Clement
- GMME-CEMDATIC, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain
| | - Enrique Iborra
- GMME-CEMDATIC, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Spain
| |
Collapse
|
41
|
Del Rosso M, Brodie CH, Ramalingam S, Cabral DM, Pensini E, Singh A, Collier CM. Characterisation of graphene electrodes for microsystems and microfluidic devices. Sci Rep 2019; 9:5773. [PMID: 30962471 PMCID: PMC6453975 DOI: 10.1038/s41598-019-42108-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 11/12/2022] Open
Abstract
Fabrication of microsystems is traditionally achieved with photolithography. However, this fabrication technique can be expensive and non-ideal for integration with microfluidic systems. As such, graphene fabrication is explored as an alternative. This graphene fabrication can be achieved with graphite oxide undergoing optical exposure, using optical disc drives, to impose specified patterns and convert to graphene. This work characterises such a graphene fabrication, and provides fabrication, electrical, microfluidic, and scanning electron microscopy (SEM) characterisations. In the fabrication characterisation, a comparison is performed between traditional photolithography fabrication and the new graphene fabrication. (Graphene fabrication details are also provided.) Here, the minimum achievable feature size is identified and graphene fabrication is found to compare favourably with traditional photolithography fabrication. In the electrical characterisation, the resistivity of graphene is measured as a function of fabrication dose in the optical disc drive and saturation effects are noted. In the microfluidic characterisation, the wetting properties of graphene are shown through an investigation of the contact angle of a microdroplet positioned on a surface that is treated with varying fabrication dose. In the SEM characterisation, the observed effects in the previous characterisations are attributed to chemical or physical effects through measurement of SEM energy dispersive X-ray spectra and SEM images, respectively. Overall, graphene fabrication is revealed to be a viable option for development of microsystems and microfluidics.
Collapse
Affiliation(s)
- Michelle Del Rosso
- Applied Optics and Microsystems Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - C Harrison Brodie
- Applied Optics and Microsystems Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Saipriya Ramalingam
- Applied Optics and Microsystems Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - David M Cabral
- Applied Optics and Microsystems Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Erica Pensini
- Applied Optics and Microsystems Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ashutosh Singh
- Applied Optics and Microsystems Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Christopher M Collier
- Applied Optics and Microsystems Laboratory, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
42
|
Basoli F, Giannitelli SM, Gori M, Mozetic P, Bonfanti A, Trombetta M, Rainer A. Biomechanical Characterization at the Cell Scale: Present and Prospects. Front Physiol 2018; 9:1449. [PMID: 30498449 PMCID: PMC6249385 DOI: 10.3389/fphys.2018.01449] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico–chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.
Collapse
Affiliation(s)
- Francesco Basoli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Manuele Gori
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Alessandra Bonfanti
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.,Institute for Photonics and Nanotechnologies, National Research Council, Rome, Italy
| |
Collapse
|
43
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
44
|
Müller GA. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Arch Biochem Biophys 2018; 656:1-18. [DOI: 10.1016/j.abb.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
|
45
|
Film bulk acoustic resonators (FBARs) as biosensors: A review. Biosens Bioelectron 2018; 116:1-15. [DOI: 10.1016/j.bios.2018.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
|
46
|
Cesewski E, Haring AP, Tong Y, Singh M, Thakur R, Laheri S, Read KA, Powell MD, Oestreich KJ, Johnson BN. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications. LAB ON A CHIP 2018; 18:2087-2098. [PMID: 29897358 PMCID: PMC6077993 DOI: 10.1039/c8lc00427g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Steil D, Pohlentz G, Legros N, Mormann M, Mellmann A, Karch H, Müthing J. Combining Mass Spectrometry, Surface Acoustic Wave Interaction Analysis, and Cell Viability Assays for Characterization of Shiga Toxin Subtypes of Pathogenic Escherichia coli Bacteria. Anal Chem 2018; 90:8989-8997. [PMID: 29939014 DOI: 10.1021/acs.analchem.8b01189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) as a human pathogenic subgroup of STEC are characterized by releasing Stx AB5-toxin as the major virulence factor. Worldwide disseminated EHEC strains cause sporadic infections and outbreaks in the human population and swine pathogenic STEC strains represent greatly feared pathogens in pig breeding and fattening plants. Among the various Stx subtypes, Stx1a and Stx2a are of eminent clinical importance in human infections being associated with life-threatening hemorrhagic colitis and hemolytic uremic syndrome, whereas Stx2e subtype is associated with porcine edema disease with a generalized fatal outcome for the animals. Binding toward the glycosphingolipid globotriaosylceramide (Gb3Cer) is a common feature of all Stx subtypes analyzed so far. Here, we report on the development of a matched strategy combining (i) miniaturized one-step affinity purification of native Stx subtypes from culture supernatant of bacterial wild-type strains using Gb3-functionalized magnetic beads, (ii) structural analysis and identification of Stx holotoxins by electrospray ionization ion mobility mass spectrometry (ESI MS), (iii) functional Stx-receptor real-time interaction analysis employing the surface acoustic wave (SAW) technology, and (iv) Vero cell culture assays for determining Stx-caused cytotoxic effects. Structural investigations revealed diagnostic tryptic peptide ions for purified Stx1a, Stx2a, and Stx2e, respectively, and functional analysis resulted in characteristic binding kinetics of each Stx subtype. Cytotoxicity studies revealed differing toxin-mediated cell damage ranked with Stx1a > Stx2a > Stx2e. Collectively, this matched procedure represents a promising clinical application for the characterization of life-endangering Stx subtypes at the protein level.
Collapse
Affiliation(s)
- Daniel Steil
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Gottfried Pohlentz
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Nadine Legros
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Michael Mormann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Alexander Mellmann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Helge Karch
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Johannes Müthing
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| |
Collapse
|
48
|
Hussain M, Rupp F, Wendel HP, Gehring FK. Bioapplications of acoustic crystals, a review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Chen D, Yang L, Yu W, Wu M, Wang W, Wang H. Micro-Electromechanical Acoustic Resonator Coated with Polyethyleneimine Nanofibers for the Detection of Formaldehyde Vapor. MICROMACHINES 2018; 9:mi9020062. [PMID: 30393338 PMCID: PMC6187669 DOI: 10.3390/mi9020062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
We demonstrate a promising strategy to combine the micro-electromechanical film bulk acoustic resonator and the nanostructured sensitive fibers for the detection of low-concentration formaldehyde vapor. The polyethyleneimine nanofibers were directly deposited on the resonator surface by a simple electrospinning method. The film bulk acoustic resonator working at 4.4 GHz acted as a sensitive mass loading platform and the three-dimensional structure of nanofibers provided a large specific surface area for vapor adsorption and diffusion. The ultra-small mass change induced by the absorption of formaldehyde molecules onto the amine groups in polyethyleneimine was detected by measuring the frequency downshift of the film bulk acoustic resonator. The proposed sensor exhibits a fast, reversible and linear response towards formaldehyde vapor with an excellent selectivity. The gas sensitivity and the detection limit were 1.216 kHz/ppb and 37 ppb, respectively. The study offers a great potential for developing sensitive, fast-response and portable sensors for the detection of indoor air pollutions.
Collapse
Affiliation(s)
- Da Chen
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
- College of Electronics, Communications, and Physics, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lei Yang
- College of Electronics, Communications, and Physics, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wenhua Yu
- College of Electronics, Communications, and Physics, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Maozeng Wu
- College of Electronics, Communications, and Physics, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wei Wang
- College of Electronics, Communications, and Physics, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Hongfei Wang
- College of Electronics, Communications, and Physics, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
50
|
Wang YH, Song P, Li X, Ru C, Ferrari G, Balasubramanian P, Amabili M, Sun Y, Liu X. A Paper-Based Piezoelectric Accelerometer. MICROMACHINES 2018; 9:E19. [PMID: 30393296 PMCID: PMC6187314 DOI: 10.3390/mi9010019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 11/16/2022]
Abstract
This paper presents the design and testing of a one-axis piezoelectric accelerometer made from cellulose paper and piezoelectric zinc oxide nanowires (ZnO NWs) hydrothermally grown on paper. The accelerometer adopts a cantilever-based configuration with two parallel cantilever beams attached with a paper proof mass. A piece of U-shaped, ZnO-NW-coated paper is attached on top of the parallel beams, serving as the strain sensing element for acceleration measurement. The electric charges produced from the ZnO-NW-coated paper are converted into a voltage output using a custom-made charge amplifier circuit. The device fabrication only involves cutting of paper and hydrothermal growth of ZnO NWs, and does not require the access to expensive and sophisticated equipment. The performance of the devices with different weight growth percentages of the ZnO NWs was characterized.
Collapse
Affiliation(s)
- Yu-Hsuan Wang
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Pengfei Song
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Xiao Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
- Current address: Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Changhai Ru
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou NanoScience and Technology, Soochow University, Suzhou 215021, China.
| | - Giovanni Ferrari
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
| | | | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|