1
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Label-free localized surface plasmon resonance (LSPR) biosensor, based on Au-Ag NPs embedded in TiO 2 matrix, for detection of Ochratoxin-A (OTA) in wine. Talanta 2025; 284:127238. [PMID: 39566157 DOI: 10.1016/j.talanta.2024.127238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ochratoxin-A (OTA) is a widespread foodstuff contaminant with potential carcinogenic effects. Innovative sensing technologies that allow on-site and sensitive food screening can have a significant impact on food and environment safety. A novel and quantitative label-free LSPR-based biosensor was specifically designed for OTA detection, employing a portable LSPR spectroscopy sensing system for efficient on-site and cost-effective analysis. This biosensor is comprised of monoclonal anti-OTA antibodies immobilized on the surface of sputtered Au-Ag nanoparticles embedded in a TiO2 matrix. Under optimized conditions, the LSPR-based biosensor demonstrated a linear dynamic response from 0.05 to 2 ng mL-1, with an estimated limit of detection at 7 pg mL-1, using 55 μL of sample, outperforming commercial ELISA technique in relevant bioanalytical parameters. Sensitivity in OTA detection is crucial because it ensures the accurate identification of low concentrations, which is essential for preventing health risks associated to cumulative ingestion of contaminated food products. The robustness and feasibility of the presented LSPR-based biosensing was tested using spiked white wine, exhibiting a satisfactory recovery of 93 %-113 %, confirming its efficacy in a complex matrix.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Ana I Barbosa
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Rui L Reis
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Vitor M Correlo
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
2
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Mohammadi F, Zahraee H, Izadpanah Kazemi M, Habibi ZS, Taghdisi SM, Abnous K, Khoshbin Z, Chen CH. Recent advances in aptamer-based platforms for cortisol hormone monitoring. Talanta 2024; 266:125010. [PMID: 37541008 DOI: 10.1016/j.talanta.2023.125010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
The stressful conditions of today-life make it urgent the timely prevention and treatment of many physiological and psychological disorders related to stress. According to the significant progress made in the near future, rapid, accurate, and on-spot measurement of cortisol hormone as a dominant stress biomarker using miniaturized digital devices is not far from expected. With a special potency in the fields of diagnosis and healthcare monitoring, aptamer-mediated biosensors (aptasensors) are promising for the quantitative monitoring of cortisol levels in the different matrices (sweat, saliva, urine, cerebrospinal fluid, blood serum, etc.). Accordingly, this in-depth study reviews the superior achievements in the aptasensing strategies to detect cortisol hormone with the synergism of diverse two/three dimensional nanostructured materials, enzymatic amplification components, and antibody motifs. The represented discussions offer a universal perspective to achieve lab-on-chip aptasensing arrays as future user-friendly skin-patchable electronic gadgets for on-site and real-time quantification of cortisol levels.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zahraee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zahra Sadat Habibi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan.
| |
Collapse
|
4
|
Yu H, Zhao Q. Sensitive microscale thermophoresis assay for rapid ochratoxin A detection with fluorescently labeled engineered aptamer. Analyst 2023. [PMID: 37439690 DOI: 10.1039/d3an00867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin that causes contamination in a variety of foodstuffs and environments, inducing great health risks to humans and animals. Rapid and sensitive detection of OTA is necessary for food safety, environmental health, and risk assessment. Herein, we report an aptamer microscale thermophoresis (MST) assay for OTA, with the unique merits of ratiometric analysis, rapid measurement, simple operation, high sensitivity, low sample consumption, and high throughput. A fluorescein (FAM)-labeled high-affinity DNA aptamer with a G-quadruplex and duplex structure was used as the recognition element for OTA, and MST, which measures the fluorescence responses of the sample solution inside capillaries to a mild temperature increase generated by infrared laser heating, was employed for signal generation. Upon OTA binding, the FAM-labeled aptamer probe underwent changes in conformation and stability, and the bound and unbound aptamer probes showed significant differences in their MST signals. To achieve sensitive detection of OTA with a large signal change, we systematically characterized aptamers with different stem lengths, which had large effects on the MST responses of the aptamer probes to OTA. We found that a 32-mer aptamer with FAM label at the 3' end gave a sensitive MST response to OTA, allowing OTA detection within seconds with a detection limit of 0.98 nM under optimal experimental conditions. This aptamer MST assay shows potential in real sample analysis and broad applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
5
|
Zhang W, Zi X, Bi J, Liu G, Cheng H, Bao K, Qin L, Wang W. Plasmonic Nanomaterials in Dark Field Sensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2027. [PMID: 37446543 DOI: 10.3390/nano13132027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Plasma nanoparticles offer promise in data storage, biosensing, optical imaging, photoelectric integration, etc. This review highlights the local surface plasmon resonance (LSPR) excitation mechanism of plasmonic nanoprobes and its critical significance in the control of dark-field sensing, as well as three main sensing strategies based on plasmonic nanomaterial dielectric environment modification, electromagnetic coupling, and charge transfer. This review then describes the component materials of plasmonic nanoprobes based on gold, silver, and other noble metals, as well as their applications. According to this summary, researchers raised the LSPR performance of composite plasmonic nanomaterials by combining noble metals with other metals or oxides and using them in process analysis and quantitative detection.
Collapse
Affiliation(s)
- Wenjia Zhang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Xingyu Zi
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Jinqiang Bi
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Guohua Liu
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Hongen Cheng
- College of Microelectronics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Kexin Bao
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300192, China
| | - Liu Qin
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| | - Wei Wang
- Tianjin Research Institute of Water Transport Engineering, M.O.T., Tianjin 300456, China
- National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin 300456, China
| |
Collapse
|
6
|
Fan L, Du B, Pei F, Hu W, Feng S, Liu B, Tong Z, Tan W, Mu X. A Novel SPR Immunosensor Based on Dual Signal Amplification Strategy for Detection of SARS-CoV-2 Nucleocapsid Protein. BIOSENSORS 2023; 13:bios13050549. [PMID: 37232910 DOI: 10.3390/bios13050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research. Here, we developed a surface plasmon resonance (SPR) biosensor based on the dual signal-amplification strategy of Au@Ag@Au nanoparticles (NPs) and graphene oxide (GO). Additionally, a sandwich immunoassay was utilized to sensitively and efficiently detect SARS-CoV-2 N protein. On the one hand, Au@Ag@Au NPs have a high refractive index and the capability to electromagnetically couple with the plasma waves propagating on the surface of gold film, which are harnessed for amplifying the SPR response signal. On the other hand, GO, which has the large specific surface area and the abundant oxygen-containing functional groups, could provide unique light absorption bands that can enhance plasmonic coupling to further amplify the SPR response signal. The proposed biosensor could efficiently detect SARS-CoV-2 N protein for 15 min and the detection limit for SARS-CoV-2 N protein was 0.083 ng/mL, with a linear range of 0.1 ng/mL~1000 ng/mL. This novel method can meet the analytical requirements of artificial saliva simulated samples, and the developed biosensor had a good anti-interference capability.
Collapse
Affiliation(s)
- Lirui Fan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shasha Feng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenyuan Tan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
7
|
Al-Yahmadi K, Kyaw HH, Myint MTZ, Al-Mamari R, Dobretsov S, Al-Abri M. Development of portable sensor for the detection of bacteria: effect of gold nanoparticle size, effective surface area, and interparticle spacing upon sensing interface. DISCOVER NANO 2023; 18:45. [PMID: 37382758 DOI: 10.1186/s11671-023-03826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 06/30/2023]
Abstract
In this study, systematic development of a portable sensor for the rapid detection of Escherichia coli (E. coli) and Exiguobacterium aurantiacum (E. aurantiacum) was reported. A conductive glass was utilized as a substrate and developed the electrode patterns on it. Trisodium citrate (TSC) and chitosan-stabilized gold nanoparticles (AuNPs) (CHI-AuNP-TSC) and chitosan-stabilized AuNPs (CHI-AuNP) were synthesized and utilized as a sensing interface. The morphology, crystallinity, optical properties, chemical structures, and surface properties of immobilized AuNPs on the sensing electrodes were investigated. The sensing performance of the fabricated sensor was evaluated by using an electrochemical method to observe the current changes in cyclic voltammetric responses. The CHI-AuNP-TSC electrode has higher sensitivity toward E. coli than CHI-AuNP with a limit of detection (LOD) of 1.07 CFU/mL. TSC in the AuNPs synthesis process played a vital role in the particle size, the interparticle spacing, the sensor's effective surface area, and the presence of CHI around AuNPs, thus enhancing the sensing performance. Moreover, post-analysis of the fabricated sensor surface exhibited the sensor stability and the interaction between bacteria and the sensor surface. The sensing results showed a promising potential for rapid detection using a portable sensor for various water and food-borne pathogenic diseases.
Collapse
Affiliation(s)
- Khadija Al-Yahmadi
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman
| | - Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, 123, Muscat, Oman
| | - Rahma Al-Mamari
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Sergey Dobretsov
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| |
Collapse
|
8
|
Karachaliou CE, Koukouvinos G, Zisis G, Kizis D, Krystalli E, Siragakis G, Goustouridis D, Kakabakos S, Petrou P, Livaniou E, Raptis I. Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. BIOSENSORS 2022; 12:877. [PMID: 36291014 PMCID: PMC9599867 DOI: 10.3390/bios12100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is one of the most toxic naturally encountered contaminants and is found in a variety of foods and beverages, including cereals and wine. Driven by the strict regulations regarding the maximum allowable OTA concentration in foodstuff and the necessity for on-site determination, the development of fast and sensitive methods for the OTA determination in cereal flours and wine samples, based on white light reflectance spectroscopy, is presented. The method relied on appropriately engineered silicon chips, on top of which an OTA-protein conjugate was immobilized. A polyclonal antibody against OTA was then employed to detect the analyte in the framework of a competitive immunoassay; followed by the subsequent addition of a biotinylated secondary antibody and streptavidin for signal enhancement. A small size instrument performed all assay steps automatically and the bioreactions were monitored in real time as the software converted the spectral shifts into effective biomolecular adlayer thickness increase. The assay developed had a detection limit of 0.03 ng/mL and a working range up to 200 ng/mL. The assay lasted 25 min (less than 1h, including calibrators/antibody pre-incubation) and was accomplished following a simple sample preparation protocol. The method was applied to corn and wheat flour samples and white and red wines with recovery values ranging from 87.2 to 111%. The simplicity of the overall assay protocol and convenient instrumentation demonstrates the potential of the immunosensor developed for OTA detection at the point of need.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Georgios Koukouvinos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Grigoris Zisis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece or
| | - Dimosthenis Kizis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 14561 Kifissia, Greece
| | | | - George Siragakis
- Tuv Austria Food Allergens Labs Ltd., Kalopsidas 38, 7060 Livadia, Cyprus
| | | | - Sotirios Kakabakos
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Panagiota Petrou
- Immunoassay/Immunosensors Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece
| | - Ioannis Raptis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 15310 Agia Paraskevi, Greece or
- ThetaMetrisis S.A., Christou Lada 40, 12132 Athens, Greece
| |
Collapse
|
9
|
Na HK, Yoo CH, Choi JK, Ok JG, Chung CH, Wi JS. Nanoplasmonic Sensor Chip Readable in a Conventional Plate Reader. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Bashir O, Bhat SA, Basharat A, Qamar M, Qamar SA, Bilal M, Iqbal HMN. Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues. CHEMOSPHERE 2022; 292:133320. [PMID: 34952020 DOI: 10.1016/j.chemosphere.2021.133320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
Food spoilage and safety are key concerns of the modern food sector. Among them, several types of polluting agents are the prime grounds of food deterioration. In this context, nanotechnology-based measures are setting new frontiers to strengthen food applications. Herein, we summarize the nanotechnological dimension of the food industry for both processing and packaging applications. Active bioseparation, smart delivery, nanoencapsulation, nutraceuticals, and nanosensors for biological detection are a few emerging topics of nanobiotechnology in the food sector. The development of functional foods is another milestone set by food nanotechnology by building the link between humans and diet. However, the establishment of optimal intake, product formulations, and delivery matrices, the discovery of beneficial compounds are a few of the key challenges that need to be addressed. Nanotechnology provides effective solutions for the aforementioned problem giving various novel nanomaterials and methodologies. Various nanodelivery systems have been designed, e.g., cochleate, liposomes, multiple emulsions, and polysaccharide-protein coacervates. However, their real applications in food sciences are very limited. This review also provides the status and outlook of nanotechnological systems for future food applications.
Collapse
Affiliation(s)
- Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, 144402, Punjab, India
| | - Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
11
|
Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem 2022; 414:2953-2969. [PMID: 35296913 DOI: 10.1007/s00216-022-03960-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
Ochratoxin A (OTA) is a widely distributed mycotoxin that often contaminates food, grains and animal feed. It poses a serious threat to human health because of its high toxicity and persistence. Therefore, the development of an inexpensive, highly sensitive, accurate and rapid method for OTA detection is imperative. In recent years, various nanomaterials used in the establishment of aptasensors have attracted great attention due to their large surface-to-volume ratio, good stability and facile preparation. This review summarizes the development of nanomaterial-based aptasensors for OTA determination and sample treatment over the past 5 years. The nanomaterials used in OTA aptasensors include metal, carbon, luminescent, magnetic and other nanomaterials. Finally, the limitations and future challenges in the development of nanomaterial-based OTA aptasensors are reviewed and discussed.
Collapse
|
12
|
Li Y, Wang X, Ning W, Yang E, Li Y, Luo Z, Duan Y. Sandwich method-based sensitivity enhancement of Ω-shaped fiber optic LSPR for time-flexible bacterial detection. Biosens Bioelectron 2021; 201:113911. [PMID: 35007995 DOI: 10.1016/j.bios.2021.113911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
The development of rapid and sensitive detection methods for pathogenic bacteria is crucial for the therapy and prevention of related diseases. However, the rapid and ultrasensitive assays are difficult to be realized simultaneously. To solve the problem, a sandwich method based on Ω-shaped fiber optic localized surface resonance (Ω-FOLSPR) was constructed, where poly adenine-tailed aptamer (PolyA-apt) and SH modified gold nanoparticles tags (AuNPs tags) were chosen as the capturing aptamer and amplifying tags, respectively. The small AuNPs were modified on the surface of fiber-optic (FO) rapidly, which saved the preparation time. Then, the PolyA-apt was modified on the AuNPs surface to capture the bacteria effectively due to its ability to adjust the density and conformation of aptamer on the AuNPs surface. Finally, the large AuNPs tags were used to generate intense signal enhancement. It is found that the sandwich method enables the unique characteristic of a time-dependent sensitivity enhancement. Specifically, the LOD of 108.0 CFU/mL and 7.4 CFU/mL was achieved with the analysis time of 10 min and 100 min, respectively. Besides, the Ω-FOLSPR sensor exhibits excellent selectivity against the other bacteria and good performance for detecting the spiked and natural samples. This sandwich method provides a time-flexible strategy due to the combination of effective signal amplification and real-time analysis for bacterial detection, displaying great potential for practical bacterial detection.
Collapse
Affiliation(s)
- Yu Li
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xu Wang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Ning
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Enlai Yang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, PR China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
A replacement-type electrochemiluminescent aptasensor for lysozyme based on full-electric modification electrode coupled to silica-coated Ru(bpy) 32+/silver nanospheres. Anal Bioanal Chem 2021; 413:7411-7419. [PMID: 34731261 DOI: 10.1007/s00216-021-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
This research proposed a replacement-type electrochemiluminescent (ECL) aptasensor for lysozyme (LYZ) detection at trace levels based on a full-electric modification electrode (FEMG) coupled to silica-coated Ru(bpy)32+/silver nanospheres (Ru/SNs@SiO2). The multi-walled carbon nanotubes-doped-thionine (MWCNTs/PTn) electropolymerized modified electrode was decorated with electrodeposited gold nanoparticles (GNs) to form the FEMG. Then, the FEMG was utilized as sensing substrates for the immobilization of the anti-lysozyme aptamer (LA); the stability and number of LA attaching onto the FEMG were dramatically increased. The ECL measurement was used to evaluate the hybridization reaction of LA and the Ru/SNs@SiO2 marked DNA probe, and it was noted as Ia. After the combination of the LA with the LYZ, the target-triggered replacement of the DNA probe was actualized and the ECL measurement descended to Ib. The ECL difference (ΔIECL = Ia - Ib) before and after the replacement event was utilized for quantitation of LYZ. As a result, the fabricated aptasensor with great sensitivity and specificity achieved a wide linear range (10 fM-10 pM) and a low limit of detection (5 fM). It obtained satisfactory recovery for the detection of LYZ in human serum, and the results were identified with the LYZ ELISA kit. Therefore, the proposed ECL sensor is expected to become a promising approach in the field of biomolecule detection.
Collapse
|
15
|
Vakili S, Samare-Najaf M, Dehghanian A, Tajbakhsh A, Askari H, Tabrizi R, Iravani Saadi M, Movahedpour A, Alizadeh M, Samareh A, Taghizadeh S, Noroozi S. Gold Nanobiosensor Based on the Localized Surface Plasmon Resonance is Able to Diagnose Human Brucellosis, Introducing a Rapid and Affordable Method. NANOSCALE RESEARCH LETTERS 2021; 16:144. [PMID: 34529188 PMCID: PMC8446120 DOI: 10.1186/s11671-021-03600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/04/2021] [Indexed: 05/03/2023]
Abstract
Brucellosis is considered as the most common bacterial zoonosis in the world. Although the laboratory findings are the most reliable diagnosis today, the current laboratory methods have many limitations. This research aimed to design and evaluate the performance of a novel technique based on the localized surface plasmon resonance (LSPR) to eliminate or reduce existing shortcomings. For this purpose, smooth lipopolysaccharides were extracted from Brucella melitensis and Brucella abortus and fixed on the surface of the gold nanoparticles through covalent interactions. After some optimizing processes, dynamic light scattering was used to characterize the probe. The detection of captured anti-Brucella antibody was performed by measuring the redshift on LSPR peak followed by the determination of cutoff value, which indicated a significant difference between controls and true positive patients (P value < 0.01). Furthermore, 40 sera from true negative samples and positive patients were used to evaluate the performance of this method by comparing its outcomes with the gold standard (culture), standard tube agglutination test, and anti-brucellosis IgM and IgG levels (ELISA). The sensitivity, specificity, positive predictive value, and negative predictive value showed an appropriate performance of the LSPR-based method (85%, 100%, 100%, and 86%, respectively). The current research results provide a promising fast, convenient, and inexpensive method for detecting the anti-Brucella antibodies in human sera, which can be widely used in medical laboratories to diagnose brucellosis quickly and effectively.
Collapse
Affiliation(s)
- Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Samare-Najaf
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Molecular Pathology and Cytogenetics Division, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saam Noroozi
- Department of Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
16
|
Bereli N, Bakhshpour M, Topçu AA, Denizli A. Surface Plasmon Resonance-Based Immunosensor for Igm Detection with Gold Nanoparticles. MICROMACHINES 2021; 12:mi12091092. [PMID: 34577735 PMCID: PMC8468630 DOI: 10.3390/mi12091092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/02/2023]
Abstract
In this work, a surface plasmon resonance (SPR) based immunosensor was prepared by the immobilization of the amine-functionalized gold nanoparticles (N-AuNPs) on the sensing surface to sense immunoglobulin M (IgM) antibodies in the aqueous solution and artificial plasma. The characterization studies of SPR based immunosensor for IgM detection were performed with scanning electron microscope (SEM), contact angle measurements, and ellipsometry. Kinetic studies for the IgM immunosensor were carried out in the range of 1.0 to 200 ng/mL IgM concentrations in an aqueous solution. The total IgM analysis time including adsorption, desorption, and regeneration cycles was nearly 10 min for the prepared immunosensor. The limit of detection (LOD) and limit of quantification (LOQ) were found as 0.08 and 0.26 ng/mL, respectively. The reusability of the proposed immunosensor was tested with 6 consecutive adsorption-desorption, and regeneration cycles. Also, enzyme-linked immunosorbent assay (ELISA) method was utilized in the validation of the immunosensor.
Collapse
Affiliation(s)
- Nilay Bereli
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (N.B.); (M.B.)
| | - Monireh Bakhshpour
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (N.B.); (M.B.)
| | - Aykut Arif Topçu
- Medical Laboratory Program, Vocational School of Health Services, Aksaray University, 68100 Aksaray, Turkey;
| | - Adil Denizli
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey; (N.B.); (M.B.)
- Correspondence: ; Tel.: +90-31-297-7983; Fax: +90-312-299-2163
| |
Collapse
|
17
|
Pereira RHA, Keijok WJ, Prado AR, de Oliveira JP, Guimarães MCC. Rapid and sensitive detection of ochratoxin A using antibody-conjugated gold nanoparticles based on Localized Surface Plasmon Resonance. Toxicon 2021; 199:139-144. [PMID: 34153309 DOI: 10.1016/j.toxicon.2021.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
The regulation of tolerable levels of ochratoxin A in food for human and animal consumption has been defined in some countries. To meet these levels, simpler, more efficient, and faster analytical methods are being developed to facilitate the identification of this dangerous contaminant in food. Here, we combined gold nanoparticles (AuNPs) with anti-ochratoxin A (OTA) IgG to detect elementary levels of OTA based on Localized Surface Plasmon Resonance. AuNPs were prepared with trisodium citrate and characterized by UV-visible spectroscopy, X-ray, dynamic light scattering, and transmission electron microscopy. The conjugation of AuNPs to IgG anti-OTA was confirmed by bathochromic shift (UV-vis) and RAMAN spectroscopy. The sensitivity of the nanosensor was investigated by measuring LSPR band λmax shifts. Our results suggest this assay is highly sensitive, with a lower detection limit of about 0.001 pg mL-1. The LSPR nanosensor reduced detection limits by roughly 10 times compared to other methods. We demonstrated that the approach investigated here is a rapid and sensitive method for OTA detection.
Collapse
Affiliation(s)
| | | | | | - Jairo Pinto de Oliveira
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitoria, ES, 29.040-090, Brazil
| | | |
Collapse
|
18
|
Abstract
Mycotoxins are toxic secondary metabolites naturally produced by fungi. They can cause various kinds of acute and chronic diseases in both humans and animals since food usually contains trace amounts of mycotoxins. Thus, it is important to develop a rapid and sensitive technique for mycotoxin detection. Except for the original and classical enzyme-linked immunosorbent assays (ELISA), a series of biosensors has been developed to analyze mycotoxins in food in the last decade with the advantages of rapid analysis, simplicity, portability, reproducibility, stability, accuracy, and low cost. Nanomaterials have been incorporated into biosensors for the purpose of achieving better analytical performance in terms of limit of detection, linear range, analytical stability, low production cost, etc. Gold nanoparticles (AuNPs) are one of the most extensively studied and commonly used nanomaterials, which can be employed as an immobilization carrier, signal amplifier, mediator and mimic enzyme label. This paper aims to present an extensive overview of the recent progress in AuNPs in mycotoxin detection through ELISA and biosensors. The details of the detection methods and their application principles are described, and current challenges and future prospects are discussed as well.
Collapse
Affiliation(s)
- Linxia Wu
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist., Beijing, 100097, China.
| | | | | |
Collapse
|
19
|
Phosphorescent palladium-tetrabenzoporphyrin indicators for immunosensing of small molecules with a novel optical device. Talanta 2020; 224:121927. [PMID: 33379126 DOI: 10.1016/j.talanta.2020.121927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Small-molecule detection is important for many applications including clinical diagnostics, drug discovery, environmental screening, and food technology. Current techniques suffer from various limitations including cost, complex sample processing, massive instrumentation, and need for expertise. To overcome these limitations, a new optical immunosensing assay for the detection of small molecules was developed and assessed with the targets estrone (E1) and estradiol (E2). For this purpose, phosphorescent indicators were designed based on the tetrabenzoporphyrin skeleton directly linked to E1 or E2, or attached through a linker, with phosphorescence lifetimes in the range of ~100-~300 μs. The assay is an indicator displacement assay (IDA). The best performances of our optical immunosensor were obtained with the indicators E1-L-Por and E2-L-Por. As they bound to specific polyclonal antibodies, their phosphorescence (τ ~200 μs) was quenched. When an endogenous competitor was added, the indicator was displaced, and the phosphorescence was immediately recovered. These effects were measured with a new optical device, described here, and able to detect picograms of luminescent molecules emitting in the NIR range, simply by measuring phosphorescence decay. This radical switch-off/switch on process demonstrates that E1-L-Por and E2-L-Por are good candidates for in vivo and in vitro immunosensing of E1 and E2. Importantly, the present immunosensing assay can be easily adapted to other small molecules such as other hormones and drugs.
Collapse
|
20
|
Pellas V, Hu D, Mazouzi Y, Mimoun Y, Blanchard J, Guibert C, Salmain M, Boujday S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. BIOSENSORS 2020; 10:E146. [PMID: 33080925 PMCID: PMC7603250 DOI: 10.3390/bios10100146] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.
Collapse
Affiliation(s)
- Vincent Pellas
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - David Hu
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yacine Mazouzi
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Yoan Mimoun
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Juliette Blanchard
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Clément Guibert
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 Place Jussieu, F-75005 Paris, France
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 Place Jussieu, F-75005 Paris, France; (V.P.); (D.H.); (Y.M.); (Y.M.); (J.B.); (C.G.)
| |
Collapse
|
21
|
Hitabatuma A, Pang YH, Yu LH, Shen XF. A competitive fluorescence assay based on free-complementary DNA for ochratoxin A detection. Food Chem 2020; 342:128303. [PMID: 33158674 DOI: 10.1016/j.foodchem.2020.128303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 01/16/2023]
Abstract
An ultrasensitive, rapid, and specific method for Ochratoxin A (OTA) detection was designed using complementary sequence to aptamer as a target of molecular beacon (MB). The designed loop structure of the MB has the same sequence as the aptamer with a complementary DNA (cDNA) which translates the level of the target into a measurable response. The presence of the target holds aptamer at the corresponding amount and the additional cDNAs are consumed by unbound aptamers which avails free cDNAs that resulting in fluorescence rising due to unfolding of MBs. Under the optimized conditions, the fluorescence intensity increased linearly with OTA concentration over the range of 10 pg mL-1-1 µg mL-1 with the detection limit of 0.247 pg mL-1. The application of this assay in wheat sample in comparison with HPLC-MS/MS method, demonstrated that the new assay could be a potential sensing platform for OTA detection.
Collapse
Affiliation(s)
- Aloys Hitabatuma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Li-Hong Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; International Joint Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
22
|
Zinoubi K, Chrouda A, Soltane R, Al‐Ghamdi YO, Garallah Almalki S, Osman G, Barhoumi H, Jaffrezic Renault N. Highly Sensitive Impedimetric Biosensor Based on Thermolysin Immobilized on a GCE Modified with AuNP‐decorated Graphene for the Detection of Ochratoxin A. ELECTROANAL 2020. [DOI: 10.1002/elan.202060247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Khaoula Zinoubi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
| | - Amani Chrouda
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Raya Soltane
- Department Faculty of Sciences of Tunis Tunis El Manar University Tunisia
- Department of Basic Sciences, Adham University college Umm Al-Qura University Adham 21971 Saudi Arabia
| | - Youssef O. Al‐Ghamdi
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
| | - Sami Garallah Almalki
- Department of Biology, College of Science Al-zulfi Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Gamal Osman
- Department of Biology, Faculty of Applied Sciences Umm Al-Qura University Makkah Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science Umm Al-Qura University Mecca Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), ARC 12619 Giza Egypt
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Nicole Jaffrezic Renault
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| |
Collapse
|
23
|
Nao SC, Wu KJ, Wang W, Leung CH, Ma DL. Recent Progress and Development of G-Quadruplex-Based Luminescent Assays for Ochratoxin A Detection. Front Chem 2020; 8:767. [PMID: 33088800 PMCID: PMC7490745 DOI: 10.3389/fchem.2020.00767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is widespread throughout the world. It contaminates foods such as vegetables, fruits, and rice. It harms human health and has potential carcinogenic effects. The G-quadruplex (G4) is a tetraplexed DNA structure generated from guanine-rich DNA that has found emerging use in aptamer-based sensing systems. This review outlines the status of OTA contamination and conventional detection methods for OTA. Various G4-based methods to detect OTA developed in recent years are summarized along with their advantages and disadvantages compared to existing approaches.
Collapse
Affiliation(s)
- Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| |
Collapse
|
24
|
Hernández Y, Lagos LK, Galarreta BC. Development of a label-free-SERS gold nanoaptasensor for the accessible determination of ochratoxin A. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Pan M, Ma T, Yang J, Li S, Liu S, Wang S. Development of Lateral Flow Immunochromatographic Assays Using Colloidal Au Sphere and Nanorods as Signal Marker for the Determination of Zearalenone in Cereals. Foods 2020; 9:foods9030281. [PMID: 32143348 PMCID: PMC7143912 DOI: 10.3390/foods9030281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
Abstract
This paper describes the development of lateral flow immunochromatographic assays (ICAs) using colloidal Au sphere (SP) and nanorods (NRs) as signal markers for the determination of zearalenone (ZEN) in cereals. The developed ICAs can detect the analyte ZEN within a short time (10 min), and achieve lower limit of detection (LOD). This is the first time that the AuNRs are used as signal probe in immune test strip for ZEN detection. For colloidal AuSP immunochromatographic analysis (AuSP-ICA), the LODs in solution and spiked cereal sample were 5.0 μg L−1 and 60 μg kg−1, and for AuNRs immunochromatographic analysis (AuNRs-ICA) the two LODs achieved 3.0 μg L−1 and 40 μg kg−1, respectively. These two proposed ICAs have minor cross-reaction to the structural analogs of ZEN, and no cross-reactivity with aflatoxin B1, T-2 toxin, ochratoxin A, deoxynivalenol, fumonisin B1. Both of the developed ICAs can specifically and sensitively detect ZEN in cereals, providing an effective strategy for rapid screening and detection of ZEN in a large number of food samples.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shijie Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (T.M.); (J.Y.); (S.L.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-022-6091-2493
| |
Collapse
|
26
|
Zhu C, Luo X, Espulgar WV, Koyama S, Kumanogoh A, Saito M, Takamatsu H, Tamiya E. Real-Time Monitoring and Detection of Single-Cell Level Cytokine Secretion Using LSPR Technology. MICROMACHINES 2020; 11:E107. [PMID: 31963848 PMCID: PMC7019717 DOI: 10.3390/mi11010107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/14/2023]
Abstract
Cytokine secretion researches have been a main focus of studies among the scientists in the recent decades for its outstanding contribution to clinical diagnostics. Localized surface plasmon resonance (LSPR) technology is one of the conventional methods utilized to analyze these issues, as it could provide fast, label-free and real-time monitoring of biomolecule binding events. However, numerous LSPR-based biosensors in the past are usually utilized to monitor the average performance of cell groups rather than single cells. Meanwhile, the complicated sensor structures will lead to the fabrication and economic budget problems. Thus, in this paper, we report a simple synergistic integration of the cell trapping of microwell chip and gold-capped nanopillar-structured cyclo-olefin-polymer (COP) film for single cell level Interleukin 6 (IL-6) detection. Here, in-situ cytokine secreted from the trapped cell can be directly observed and analyzed through the peak red-shift in the transmittance spectrum. The fabricated device also shows the potential to conduct the real-time monitoring which would greatly help us identify the viability and biological variation of the tested single cell.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
| | - Xi Luo
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wilfred Villariza Espulgar
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
| | - Shohei Koyama
- Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.K.); (A.K.); (H.T.)
| | - Atsushi Kumanogoh
- Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.K.); (A.K.); (H.T.)
| | - Masato Saito
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hyota Takamatsu
- Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (S.K.); (A.K.); (H.T.)
| | - Eiichi Tamiya
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; (C.Z.); (W.V.E.); (M.S.)
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Zhang S, Chai H, Cheng K, Song L, Chen W, Yu L, Lu Z, Liu B, Zhao YD. Ultrasensitive and regenerable nanopore sensing based on target induced aptamer dissociation. Biosens Bioelectron 2020; 152:112011. [PMID: 32056734 DOI: 10.1016/j.bios.2020.112011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 02/05/2023]
Abstract
For ionic current rectification (ICR) based sensing, nanopore functionalizations are mostly designed for directly binding target molecules to generate detectable signals from surface charge variation. However, this strategy is highly dependent on the charge difference between the captured molecules and surface functionalization layers, which will increase the nanopore design difficulty and subsequently limit the nanopore applicability. Another key challenge for ICR based sensing is the nanopore regenerability that is critical if online monitoring or repeated determination needs to be performed with one sensor. Though some types of nanopore regeneration have been realized on some specific targets or with harsh conditions, it is still highly favored to develop a regenerability using mild conditions for various targets. To address these two challenges, we developed a novel and universal sensing strategy for aptamer-functionalized nanopore that can be easily regenerated after each usage without any harsh conditions and independent of target molecule charge or size for ICR based nanopore sensing. Ochratoxin A (OTA) was used as a model analyte and its corresponding aptamer partially hybridized with the pre-immobilized complementary DNA (cDNA) onto the nanopore inner surface. We demonstrated that the recognition and conjugation of OTA with its aptamer resulted in rectified ionic current variations due to the dissociation between the OTA aptamer and its partially paired cDNA. The performance of this nanopore sensor including sensitivity, selectivity, regenerability, and applicability was characterized using rectified ionic current. This nanopore sensing strategy will provide a promising platform for extensive targets and online sensing applications.
Collapse
Affiliation(s)
- Shujie Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Huihui Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Laibo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China.
| | - Zhisong Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
28
|
Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochim Acta 2019; 187:29. [PMID: 31813061 DOI: 10.1007/s00604-019-4034-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
This review (with 163 refs) covers the recent developments of nanomaterial-based optical and electrochemical sensors for mycotoxins. The review starts with a brief discussion on occurrence, distribution, toxicity of mycotoxins and the legislations in monitoring their levels. It further outlines the research methods, various recognition matrices and the strategies involved in the development of highly sensitive and selective sensor systems. It also points out the salient features and importance of aptasensors in the detection of mycotoxins along with the different immobilization methods of aptamers. The review meticulously discusses the performance of different optical and electrochemical sensors fabricated using aptamers coupled with nanomaterials (CNT, graphene, metal nanoparticles and metal oxide nanoparticles). The review addresses the limitations in the current developments as well as the future challenges involved in the successful construction of aptasensors with the functionalized nanomaterials. Graphical abstract Recent developments in nanomaterial based aptasensors for mycotoxins are summarized. Specifically, the efficiency of the nanomaterial coupled aptasensors (such as CNT, graphene, metal nanoparticles and metal oxide nanoparticles) in optical and electrochemical methods are discussed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - M Satyanarayana
- Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
29
|
Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 2019; 300:125176. [DOI: 10.1016/j.foodchem.2019.125176] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022]
|
30
|
Kim K, Jo EJ, Lee KJ, Park J, Jung GY, Shin YB, Lee LP, Kim MG. Gold nanocap-supported upconversion nanoparticles for fabrication of a solid-phase aptasensor to detect ochratoxin A. Biosens Bioelectron 2019; 150:111885. [PMID: 31759762 DOI: 10.1016/j.bios.2019.111885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Solid-phase, single-step biosensors are crucial for the development of portable, reusable, and convenient biosensors, otherwise known as point-of-care (POC) testing. Although high-performance single-step biosensors based on the principle of Förster resonance energy transfer (FRET) and using upconversion nanoparticles (UCNPs) functionalized with aptamers have been suggested as easy-to-use platforms, they lack portability and reusability when used for solution-phase biosensing. In this study, we describe a solid-phase, single-step aptasensor that showed higher performance than those of solution-phase aptasensors, as well as promising reusability. The solid-phase, single-step aptasensor was developed based on Au nanocap-supported UCNPs (Au/UCNPs), which were partially embedded in a solid substrate (e.g. polydimethylsiloxane, PDMS). The Au nanocaps allowed the UCNPs to emit upconverted light only from the restricted areas of the UCNPs, i.e., where they were not covered by the nanocaps and PDMS. Functionalization of an aptamer labeled with a quencher on the restricted area enabled the effective quenching of upconverted light from Au/UCNP via FRET after target (ochratoxin A, OTA) detection. The solid-phase, single-step aptasensor showed a linear range of 0.1-1000 ng mL-1 and limit of detection of 0.022 ng mL-1 within 30 min toward OTA. Furthermore, reusability of the solid-phase aptasensor was evaluated for three cycles of detection and regeneration, establishing its apparent reusability via heat treatment. Hence, such solid-phase, single-step aptasensors pave the path to the development of a portable and reusable biosensor platform for POC testing.
Collapse
Affiliation(s)
- Kihyeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ki Joong Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiyoon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Gun Young Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yong-Beom Shin
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Luke P Lee
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California, Berkeley, CA, 94720, United States.
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
31
|
A disposable fiber optic SPR probe for immunoassay. Biosens Bioelectron 2019; 144:111621. [DOI: 10.1016/j.bios.2019.111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022]
|
32
|
Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosens Bioelectron 2019; 143:111603. [DOI: 10.1016/j.bios.2019.111603] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/04/2023]
|
33
|
Kang TY, Song H, Ahn H, Lee H, Kim S, Kim D, Kim K. Experimental confirmation of plasmonic field cancellation under specific conditions of trapezoidal nanopatterns. OPTICS EXPRESS 2019; 27:29168-29177. [PMID: 31684655 DOI: 10.1364/oe.27.029168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, we investigated plasmonic field localization with trapezoidal nanopatterns under normal incident light excitation to find optimum structures for sensing and imaging. A finite element method was used to calculate the fundamental characteristics of the localized surface plasmon with varied trapezoidal nanopatterns. First, we describe how to localize the plasmonic fields on the trapezoidal patterns and then report our results from the investigation of the optimum properties of the nanopatterns for maximized field intensity. Initially, we expected that maximized field localization would lead to enhancement of the sensing sensitivity or imaging resolution in plasmon-based sensing and imaging systems. However, more interestingly, we found a field cancellation effect under specific modality conditions through the simulation. Thus, we thoroughly investigated the principle of the effect and extracted the modality conditions that induced field cancellation. In addition, specific modality conditions of nanopatterns that could be fabricated with conventional lithographic methods were numerically determined. Then, the field cancellation effect was experimentally verified using scanning nearfield optical microscopy. The results indicate that trapezoidal nanopatterns bring about enhanced field localization at the shaper edge of nanopatterns than do conventional rectangular nanopatterns and that plasmonic field cancellation can be observed under specific modality conditions of nanopatterns, even for conventional rectangular nanopatterns. Thus, it is suggested that careful fabrication and maintenance are needed to obtain strong plasmonic localization. Finally, the feasibility of providing a novel sensing platform using the field cancellation effect is suggested.
Collapse
|
34
|
Kim HM, Park JH, Lee SK. Fabrication and measurement of optical waveguide sensor based on localized surface plasmon resonance. MICRO AND NANO SYSTEMS LETTERS 2019. [DOI: 10.1186/s40486-019-0086-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
36
|
Label-Free Direct Detection of Saxitoxin Based on a Localized Surface Plasmon Resonance Aptasensor. Toxins (Basel) 2019; 11:toxins11050274. [PMID: 31096619 PMCID: PMC6563244 DOI: 10.3390/toxins11050274] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Seafood is an emerging health food, and interest in improving the quality of seafood is increasing. Saxitoxin (STX) is a neurotoxin produced by marine dinoflagellates that is accumulated in seafood. It can block the neuronal transmission between nerves and muscle cell membranes, resulting in the disturbance of neuromuscular transmission and subsequent voluntary muscle paralysis. Here, we developed a new aptamer for the detection of STX using graphene oxide–systematic evolution of ligands by exponential enrichment (GO-SELEX). Furthermore, we confirmed sensitivity and selectivity of the developed aptamer specific to STX using a localized surface plasmon resonance (LSPR) sensor. The sensing chip was fabricated by fixing the new STX aptamer immobilized on the gold nanorod (GNR) substrate. The STX LSPR aptasensor showed a broad, linear detection range from 5 to 10,000 μg/L, with a limit of detection (LOD) of 2.46 μg/L (3σ). Moreover, it was suitable for the detection of STX (10, 100, and 2000 μg/L) in spiked mussel samples and showed a good recovery rate (96.13–116.05%). The results demonstrated that the new STX aptamer-modified GNR chip was sufficiently sensitive and selective to detect STX and can be applied to real samples as well. This LSPR aptasensor is a simple, label-free, cost-effective sensing system with a wide detectable range.
Collapse
|
37
|
A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnology 2019; 17:43. [PMID: 30914053 PMCID: PMC6434641 DOI: 10.1186/s12951-019-0476-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Campylobacteriosis is a zoonotic infectious disease that can be mostly undiagnosed or unreported due to fastidious Campylobacter species. The aim of this study was to develop a simple, sensitive, and quick assay for the detection of Campylobacter spp. and taking advantage of the great sensitivity of gold nanorods (GNRs) to trace changes in the local environment and interparticle distance. METHODS Characterized GNRs were modified by specific ssDNA probes of cadF gene. First, the biosensor was evaluated using recombinant plasmid (pTG19-T/cadF) and synthetic single-stranded 95 bp gene, followed by a collection of the extracted DNAs of the stool samples. The sensing strategy was compared by culture, PCR, and real-time PCR. RESULTS AND DISCUSSION Analysis of 283 specimens showed successful detection of Campylobacter spp. in 44 cases (16%), which was comparable to culture (7%), PCR (15%), and real-time PCR (18%). In comparison with real-time PCR, the sensitivity of the biosensor was reported 88%, while the specificity test for all assays was the same (100%). However, it was not able to detect Campylobacter in 6 positive clinical samples, as compared to real-time PCR. The limit of detection was calculated to be the same for the biosensor and real-time PCR (102 copy number/mL). CONCLUSIONS Taking high speed and simplicity of this assay into consideration, the plasmonic nanobiosensor could pave the way in designing a new generation of diagnostic kits for detection of C. jejuni and C. coli species in clinical laboratories.
Collapse
|
38
|
Kaur N, Bharti A, Batra S, Rana S, Rana S, Bhalla A, Prabhakar N. An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Koneti S, Borges J, Roiban L, Rodrigues MS, Martin N, Epicier T, Vaz F, Steyer P. Electron Tomography of Plasmonic Au Nanoparticles Dispersed in a TiO 2 Dielectric Matrix. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42882-42890. [PMID: 30457319 DOI: 10.1021/acsami.8b16436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic Au nanoparticles (AuNPs) embedded into a TiO2 dielectric matrix were analyzed by combining two-dimensional and three-dimensional electron microscopy techniques. The preparation method was reactive magnetron sputtering, followed by thermal annealing treatments at 400 and 600 °C. The goal was to assess the nanostructural characteristics and correlate them with the optical properties of the AuNPs, particularly the localized surface plasmon resonance (LSPR) behavior. High-angle annular dark field-scanning transmission electron microscopy results showed the presence of small-sized AuNPs (quantum size regime) in the as-deposited Au-TiO2 film, resulting in a negligible LSPR response. The in-vacuum thermal annealing at 400 °C induced the formation of intermediate-sized nanoparticles (NPs), in the range of 10-40 nm, which led to the appearance of a well-defined LSPR band, positioned at 636 nm. Electron tomography revealed that most of the NPs are small-sized and are embedded into the TiO2 matrix, whereas the larger NPs are located at the surface. Annealing at 600 °C promotes a bimodal size distribution with intermediate-sized NPs embedded in the matrix and big-sized NPs, up to 100 nm, appearing at the surface. The latter are responsible for a broadening and a redshift, to 645 nm, in the LSPR band because of increase of scattering-to-absorption ratio. Beyond differentiating and quantifying the surface and embedded NPs, electron tomography also provided the identification of "hot-spots". The presence of NPs at the surface, individual or in dimers, permits adsorption sites for LSPR sensing and for surface-enhanced spectroscopies, such as surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Siddardha Koneti
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Joel Borges
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Lucian Roiban
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Marco S Rodrigues
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Nicolas Martin
- Institut FEMTO-ST, UMR 6174 CNRS, Université Bourgogne Franche-Comté , 15B, Avenue des Montboucons , 25030 Besançon Cedex , France
| | - Thierry Epicier
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| | - Filipe Vaz
- Centro de Física , Universidade do Minho , Campus de Gualtar , 4710 057 Braga , Portugal
| | - Philippe Steyer
- Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510 , 21 Avenue Jean Capelle , 69621 Villeurbanne Cedex , France
| |
Collapse
|
40
|
Lin KC, Jagannath B, Muthukumar S, Prasad S. Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS 2. Analyst 2018. [PMID: 28650005 DOI: 10.1039/c7an00548b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An ultrasensitive aptasensor for the label free non-faradaic detection of thrombin has been demonstrated on molybdenum disulphide (MoS2) nanosheets. These nanosheets were physiochemically immobilized onto a silicon micro-electrode platform. Thrombin detection was achieved through the charge modulation of the electrical double layer due to the specific and dose dependent binding of thrombin to the surface of thiol terminated ssDNA aptamer functionalized MoS2 nanosheets. Electrical double layer charge modulation associated with thrombin binding was characterized using electrochemical impedance spectroscopy. Dynamic light scattering was also used to confirm the dose dependent behavior. ATR-FTIR spectroscopy and XPS analysis were independently used to validate the functionalization of the ssDNA aptamer onto MoS2 nanosheets. ssDNA aptamer functionalized molybdenum disulfide (MoS2) for selective and specific capture of thrombin was demonstrated both in phosphate buffered saline (PBS) and human serum. The optimized immunoassay enabled the detection of thrombin ranging from 267 fM to 267 pM in phosphate buffer. The limit of detection of 53 pM and the linear dynamic range of detection of thrombin ranged from 53 to 854 pM in human serum. The rapid response time for the electrochemical impedance spectroscopy signal makes it an attractive option for the real-time detection of thrombin based point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Kai-Chun Lin
- Department of Bioengineering, University of Texas, Dallas, Richardson, TX 75080, USA.
| | - Badrinath Jagannath
- Department of Bioengineering, University of Texas, Dallas, Richardson, TX 75080, USA.
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas, Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
41
|
Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC. Optical Biosensors for Label-Free Detection of Small Molecules. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4126. [PMID: 30477248 PMCID: PMC6308632 DOI: 10.3390/s18124126] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Label-free optical biosensors are an intriguing option for the analyses of many analytes, as they offer several advantages such as high sensitivity, direct and real-time measurement in addition to multiplexing capabilities. However, development of label-free optical biosensors for small molecules can be challenging as most of them are not naturally chromogenic or fluorescent, and in some cases, the sensor response is related to the size of the analyte. To overcome some of the limitations associated with the analysis of biologically, pharmacologically, or environmentally relevant compounds of low molecular weight, recent advances in the field have improved the detection of these analytes using outstanding methodology, instrumentation, recognition elements, or immobilization strategies. In this review, we aim to introduce some of the latest developments in the field of label-free optical biosensors with the focus on applications with novel innovations to overcome the challenges related to small molecule detection. Optical label-free methods with different transduction schemes, including evanescent wave and optical fiber sensors, surface plasmon resonance, surface-enhanced Raman spectroscopy, and interferometry, using various biorecognition elements, such as antibodies, aptamers, enzymes, and bioinspired molecularly imprinted polymers, are reviewed.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Bettina Glahn-Martínez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María C Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
42
|
Li Y, Sun M, Mao X, You Y, Gao Y, Yang J, Wu Y. Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway. Toxins (Basel) 2018; 10:E481. [PMID: 30463254 PMCID: PMC6266055 DOI: 10.3390/toxins10110481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
In order to investigated current occurrence of major mycotoxins in dietary kelp in Shandong Province in Northern China, a reliable, sensitive, and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous determination of the 7 most frequent mycotoxins, including 3-acetoxy deoxynivalenol (3AcDON), 15-acetoxy deoxynivalenol (15AcDON), Deoxynivalenol (DON), Fusarenon-X (F-X), Nivalenol (NIV), T-2 toxin (T-2), and Zearalenone (ZEA). Based on optimized pretreatment and chromatographic and mass spectrometry conditions, these target analytes could be monitored with mean recoveries from 72.59~107.34%, with intra⁻day RSD < 9.21%, inter⁻day RSD < 9.09%, LOD < 5.55 μg kg-1, and LOQ < 18.5 μg kg-1. Approximately 43 kelp samples were detected, 3AcDON/15AcDON ranged from 15.3 to 162.5 μg kg-1 with positive rate of 86% in Shandong Province in Northern China. Considering there were no related investigations about mycotoxin contamination in kelp, the high contamination rate of 3AcDON/15AcDON in kelp showed a neglected mycotoxin exposure pathway, which might lead to high dietary exposure risk to consumers.
Collapse
Affiliation(s)
- Yanshen Li
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Mingxue Sun
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Xin Mao
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yanli You
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yonglin Gao
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Jianrong Yang
- Marine Product Quality and Safety Inspection Key Laboratory in Shandong Province, College of Life Science, Yantai University, Yantai 264005, China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
43
|
Zhang Y, Wang G, Yang L, Wang F, Liu A. Recent advances in gold nanostructures based biosensing and bioimaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Shen P, Li W, Ding Z, Deng Y, Liu Y, Zhu X, Cai T, Li J, Zheng T. A competitive aptamer chemiluminescence assay for ochratoxin A using a single silica photonic crystal microsphere. Anal Biochem 2018; 554:28-33. [PMID: 29860095 DOI: 10.1016/j.ab.2018.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
We designed a competitive aptamer chemiluminescence assay for ochratoxin A (OTA) on the surface of a single silica photonic crystal microsphere (SPCM) in cereal samples. The structural color of SPCMs is used to recognize and trace the microspheres during process of detection. Anti-aptamer was immobilized on the surface of SPCM. OTA and anti-aptamer competed to bind to aptamer when OTA and its aptamer (labeled by biotin at 5'end) were added in the system. The chemiluminescence signal was developed by the horseradish peroxidase (HRP), luminol and H2O2. The molecules on the single SPCM can produce enough chemiluminescence signal intensity for quantitative detection for OTA. The linear detection range for OTA was from 1 pg/mL to 1 ng/mL and recovery rates were 89%-95%, 81%-92% and 94%-105% in rice, wheat and corn, respectively. The results showed that the developed method for OTA using a single SPCM has a great application potential in cereal samples.
Collapse
Affiliation(s)
- Peng Shen
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, S3 7HQ, United Kingdom
| | - Zhi Ding
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Yang Deng
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Yan Liu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Xuerui Zhu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Tingting Cai
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Jianlin Li
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China.
| | - Tiesong Zheng
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| |
Collapse
|
45
|
Phanchai W, Srikulwong U, Chompoosor A, Sakonsinsiri C, Puangmali T. Insight into the Molecular Mechanisms of AuNP-Based Aptasensor for Colorimetric Detection: A Molecular Dynamics Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6161-6169. [PMID: 29724100 DOI: 10.1021/acs.langmuir.8b00701] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Colorimetric aptasensor based on assembly of salt-induced gold nanoparticles (AuNPs) is a promising biosensor. However, the molecular mechanism of the aptasensor is far from being fully understood. Herein, molecular dynamics (MD) simulation was used to investigate molecular interactions in the detection of ochratoxin A (OTA) including the following: (i) the molecular recognition of the anti-OTA aptamer, (ii) OTA-aptamer interactions in monovalent (Na+) and divalent (Mg2+) electrolytes, (iii) the binding mode of citrate on the AuNP surface, (iv) interactions of the aptamer with citrate-capped AuNPs, and (v) a detailed mechanism of the aptasensor. Our MD simulations revealed a specific binding of the OTA-aptamer complex, compared with OTB and warfarin. Compared with Na+, Mg2+ ions exerted a more effective attractive force between OTA and anti-OTA aptamer. Three different binding modes of citrate on AuNP surfaces were found. The kinetics of the adsorption of unfolded aptamers onto the citrate-capped AuNP was also elucidated. Most importantly, our MD simulation revealed an insightful analysis of the molecular mechanisms in the AuNP-based aptasensor and paved the way for the design of a novel colorimetric aptasensor for other target molecules, which is not limited to OTA detection.
Collapse
Affiliation(s)
- Witthawat Phanchai
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Unnop Srikulwong
- Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science , Ramkhamhaeng University , Bangkok 10240 , Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Theerapong Puangmali
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
- Department of Physics, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Thailand
| |
Collapse
|
46
|
Soares RRG, Santos DR, Pinto IF, Azevedo AM, Aires-Barros MR, Chu V, Conde JP. Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. LAB ON A CHIP 2018; 18:1569-1580. [PMID: 29736505 DOI: 10.1039/c8lc00259b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Portable, rapid, cost effective and simple analytical tools are in increasing demand to facilitate the routine monitoring of target chemical/biological compounds at the point-of-need. Such devices are highly relevant within the context of food safety, particularly concerning the screening of highly toxic and strictly regulated mycotoxins. To achieve ultrarapid detection of mycotoxins, namely aflatoxin B1, ochratoxin A and deoxynivalenol, at the point-of-need, a novel multiplexed bead-based microfluidic competitive immunosensor, coupled with an array of a-Si:H thin-film photodiodes for integrated fluorescence signal acquisition, is reported. Simultaneously measuring the initial binding rate for each analyte of the sample under analysis against an internal reference, this device provided limits of detection below 1 ng mL-1 for all mycotoxins in a single-step assay and within 1 minute after mixing the sample under analysis with a fluorescent conjugate. The compatibility of the device with the analysis of mycotoxins spiked in corn samples was further demonstrated after performing a sample preparation procedure based on aqueous two-phase extraction. The short times of analysis and sensitivities in the low ng mL-1 range make these devices potentially competitive with the lateral flow devices that are currently the standard for this application. Furthermore, this device architecture and concept is amenable of being expanded to other analytes in food safety, biomedical and other applications.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.
| | | | | | | | | | | | | |
Collapse
|
47
|
Evtugyn G, Subjakova V, Melikishvili S, Hianik T. Affinity Biosensors for Detection of Mycotoxins in Food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:263-310. [PMID: 29860976 DOI: 10.1016/bs.afnr.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry.
Collapse
Affiliation(s)
- Gennady Evtugyn
- Analytical Chemistry Department, Chemistry Institute of Kazan Federal University, Kazan, Russian Federation
| | - Veronika Subjakova
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
48
|
Wu W, Zhu Z, Li B, Liu Z, Jia L, Zuo L, Chen L, Zhu Z, Shan G, Luo SZ. A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor. Toxicon 2018; 146:24-30. [DOI: 10.1016/j.toxicon.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 01/15/2023]
|
49
|
Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Park KS. Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 2018; 102:179-188. [PMID: 29136589 PMCID: PMC7125563 DOI: 10.1016/j.bios.2017.11.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a serious global problem, which not only take an enormous human toll but also incur tremendous economic losses. In combating infectious diseases, rapid and accurate diagnostic tests are required for pathogen identification at the point of care (POC). In this review, investigations of diagnostic strategies for infectious diseases that are based on aptamers, especially nucleic acid aptamers, oligonucleotides that have high affinities and specificities toward their targets, are described. Owing to their unique features including low cost of production, easy chemical modification, high chemical stability, reproducibility, and low levels of immunogenicity and toxicity, aptamers have been widely utilized as bio-recognition elements (bio-receptors) for the development of infection diagnostic systems. We discuss nucleic acid aptamer-based methods that have been developed for diagnosis of infections using a format that organizes discussion according to the target pathogenic analytes including toxins or proteins, whole cells and nucleic acids. Also included is, a summary of recent advances made in the sensitive detection of pathogenic bacteria utilizing the isothermal nucleic acid amplification method. Lastly, a nucleic acid aptamer-based POC system is described and future directions of studies in this area are discussed.
Collapse
Affiliation(s)
- Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|