1
|
Teertam SK, Setaluri V, Ayuso JM. Advances in Microengineered Platforms for Skin Research. JID INNOVATIONS 2025; 5:100315. [PMID: 39525704 PMCID: PMC11550131 DOI: 10.1016/j.xjidi.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
The skin plays a critical role in human physiology, acting both as a barrier to environmental insults and as a window to environmental stimuli. Disruption of this homeostasis leads to numerous skin disorders. Human and animal skin differ significantly, limiting the translational potential of animal-based investigations to advance therapeutics to human skin diseases. Hence, there is a critical need for physiologically relevant human skin models to explore novel treatment strategies. Recent advances in microfluidic technologies now allow design and generation of organ-on-chip devices that mimic critical features of tissue architecture. Skin-on-a-chip and microfluidic platforms hold promise as useful models for diverse dermatology applications. Compared with traditional in vitro models, microfluidic platforms offer improved control of fluid flow, which in turn allows precise manipulation of cell and molecular distribution. These properties enable the generation of multilayered in vitro models that mimic human skin structure while simultaneously offering superior control over nutrient and drug distribution. Researchers have used microfluidic platforms for a variety of applications in skin research, including epidermal-dermal cellular crosstalk, cell migration, mechanobiology, microbiome-immune response interactions, vascular biology, and wound healing. In this review, we comprehensively review state-of-the-art microfluidic models for skin research. We discuss the challenges and promise of current skin-on-a-chip technologies and provide a roadmap for future research in this active field.
Collapse
Affiliation(s)
- Sireesh Kumar Teertam
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- William S. Middleton Memorial VA Hospital. Madison, Wisconsin, USA
| | - Jose M. Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
2
|
Nandre RM, Terse PS. An overview of immunotoxicity in drug discovery and development. Toxicol Lett 2025; 403:66-75. [PMID: 39603571 PMCID: PMC11734732 DOI: 10.1016/j.toxlet.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/20/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
The immune system is one of the common targets of drugs' toxicity (Immunotoxicity) and/or efficacy (Immunotherapy). Immunotoxicity leads to adverse effects on human health, which raises serious concerns for the regulatory agencies. Currently, immunotoxicity assessment is conducted using different in vitro and in vivo assays. In silico and in vitro human cell-based immunotoxicity assays should also be explored for screening purposes as these are time and cost effective as well as for ethical reasons. For in vivo studies, tier 1-3 assessments (Tier 1: hematology, serum globulin levels, lymphoid organ's weight and histopathology; Tier 2: immunophenotyping, TDAR and cell mediated immunity; and Tier 3: host resistance) should be used. These non-clinical in vivo assessments are useful to select immunological endpoints for clinical trials as well as for precautionary labeling. As per regulatory guidelines, adverse immunogenicity information of drug should be included in product's labeling to make health care practitioner aware of safety concerns before prescribing medicines and patient management (USFDA, 2022a, 2022b). This review mainly focuses on the importance of immunotoxicity assessment during drug discovery and development.
Collapse
Affiliation(s)
- Rahul M Nandre
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States.
| | - Pramod S Terse
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States.
| |
Collapse
|
3
|
Roehm KD, Chiesa I, Haithcock D, Gottardi R, Prabhakarpandian B. A vascularized microfluidic model of the osteochondral unit for modeling inflammatory response and therapeutic screening. LAB ON A CHIP 2024. [PMID: 39715348 DOI: 10.1039/d4lc00651h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types. We have characterized the model in terms of differentiation by molecule and matrix secretion and shown that it demonstrates morphology and functionality that mimic the native characteristic of the joint space. Finally, we induced inflammation and subsequently rescued the model constructs by a known compound as proof of concept for anti-inflammatory drug screening applications.
Collapse
Affiliation(s)
- Kevin D Roehm
- CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
| | - Irene Chiesa
- Department of Information Engineering and Research Center "Enrico Piaggio", University of Pisa, Italy
- Division of Otolaryngology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dustin Haithcock
- CFD Research Corporation, 6820 Moquin Dr. N.W., Huntsville, AL 35806, USA.
| | - Riccardo Gottardi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Division of Otolaryngology, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Ri.MED Foundation, Palermo, Italy
| | | |
Collapse
|
4
|
McDonough E, Barroso M, Ginty F, Corr DT. Modeling intratumor heterogeneity in breast cancer. Biofabrication 2024; 17:012009. [PMID: 39642392 PMCID: PMC11740194 DOI: 10.1088/1758-5090/ad9b50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Reduced therapy response in breast cancer has been correlated with heterogeneity in biomarker composition, expression level, and spatial distribution of cancer cells within a patient tumor. Thus, there is a need for models to replicate cell-cell, cell-stromal, and cell-microenvironment interactions during cancer progression. Traditional two-dimensional (2D) cell culture models are convenient but cannot adequately represent tumor microenvironment histological organization,in vivo3D spatial/cellular context, and physiological relevance. Recently, three-dimensional (3D)in vitrotumor models have been shown to provide an improved platform for incorporating compositional and spatial heterogeneity and to better mimic the biological characteristics of patient tumors to assess drug response. Advances in 3D bioprinting have allowed the creation of more complex models with improved physiologic representation while controlling for reproducibility and accuracy. This review aims to summarize the advantages and challenges of current 3Din vitromodels for evaluating therapy response in breast cancer, with a particular emphasis on 3D bioprinting, and addresses several key issues for future model development as well as their application to other cancers.
Collapse
Affiliation(s)
- Elizabeth McDonough
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
- GE HealthCare Technology & Innovation Center, 1 Research Circle, Niskayuna, NY 12309, United States of America
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| | - Fiona Ginty
- GE HealthCare Technology & Innovation Center, 1 Research Circle, Niskayuna, NY 12309, United States of America
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States of America
| |
Collapse
|
5
|
Lim MC, Kim TY, Ok G, Kim HJ, Choi YS, Kim YR. Concave Microwell Formation Induced by PDMS Water Vapor Permeability for Spheroid Generation. MICROMACHINES 2024; 15:1496. [PMID: 39770249 PMCID: PMC11679915 DOI: 10.3390/mi15121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells. Smooth-sloped concave microwells are formed by depositing droplets of 10% ethylene glycol on a PDMS substrate followed by curing at 70 °C and evaporation of water vapor. These microwells exhibit a unique structural gradient that is highly conducive for biological applications. Concave microwells were further used as a platform to generate animal cell spheroids, demonstrating their potential for three-dimensional cell culture. Unlike conventional methods, this approach allows precise control over microwell morphology by simply adjusting droplet size and curing conditions, offering enhanced tunability and reproducibility. The formation yield of these microwells is dependent on the volume of the water droplets, demonstrating the importance of droplet size in controlling microwell morphology. This approach provides a simple and effective method for creating microwells without complex lithographic processes, making it a highly promising tool for a range of biomedical applications, including tissue engineering, cancer research, and high-throughput drug screening.
Collapse
Affiliation(s)
- Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Gyeongsik Ok
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hyun Jung Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
6
|
Palaniyandi T, Ravi M, Sivaji A, Baskar G, Viswanathan S, Wahab MRA, Surendran H, Nedunchezhian S, Ahmad I, Veettil VN. Recent advances in microfluidic chip technologies for applications as preclinical testing devices for the diagnosis and treatment of triple-negative breast cancers. Pathol Res Pract 2024; 264:155711. [PMID: 39536540 DOI: 10.1016/j.prp.2024.155711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The leading cause of cancer-related death among female patients is breast cancer. Among all the types of breast cancer, triple-negative breast cancer (TNBC) is the most dangerous molecular subtype of breast cancer characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression. Since there is no particular therapeutic strategy for TNBC that has been shown to worsen the disease prognosis, 3D models are superior to 2D models as a predictive tool for drug discovery because they more accurately reflect the in vivo biological components of humans. Importantly, all 3D models struggle to gather many high-quality tumour cells from clinical tumours. Physicians may not get huge tumour tissues from patients, and clinical tumours may have necrosis, fat, and blood vessel components. Therefore, there is an immediate need to find an efficient method to consistently and quickly produce a large number of homogeneous tumour models for individual treatment without cell wastage. Microfluidic technologies, which are specifically engineered to manipulate small quantities of fluids, have been utilised to produce particles for drug delivery applications. This development is indicative of a recent trend, as it provides the ability to regulate particle size and material composition. This review focuses on the topic of tumor-on-a-chip, microfluidic chip manufacturing, and drug screening for triple-negative breast cancer. Particular emphasis is placed on cancer biomarker diagnostics, 3D preclinical model development, and treatment strategies for triple-negative breast cancer.
Collapse
Affiliation(s)
- Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Maduravoyal, Chennai 600095, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600 116, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Sandhya Nedunchezhian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Health and Medical Research Center, King Khalid University, AlQura'a, Abha, Saudi Arabia
| | - Vajid Nettoor Veettil
- Iqraa Centre for Research and Development, IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India
| |
Collapse
|
7
|
Zeniou A, Kefallinou D, Dimitrakellis P, Xenogiannopoulou E, Grigoriou M, Dimoulas A, Boumpas DT, Tserepi A, Gogolides E. Atmospheric Pressure Plasma Functionalization of Sealed PDMS Microfluidics: Application to Capillary Pumping and Enhanced Cell Growth. Chempluschem 2024; 89:e202400290. [PMID: 39085045 PMCID: PMC11639632 DOI: 10.1002/cplu.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Microfluidic devices serve as essential tools across diverse fields like medicine, biotechnology, and chemistry, enabling advancements in analytical techniques, point-of-care diagnostics, microfluidic cell cultures, and organ-on-chip models. While polymeric microfluidics are favoured for their cost-effectiveness and ease of fabrication, their inherent hydrophobic properties necessitate surface functionalization, often post-sealing. Here, we introduce a versatile apparatus for functionalizing sealed microfluidic devices using atmospheric plasma processing, with a focus on PDMS (polydimethylsiloxane) microfluidics. Through meticulous analysis of surface properties and capillary speed, before and after plasma treatment, along with a comparison between vacuum and atmospheric plasma functionalization methods, we demonstrate the efficacy of our approach. Subsequent experimentation within 3D PDMS microfluidic chambers, combining atmospheric pressure plasma treatment with collagen coating to facilitate mesenchymal stem cells (MSCs) growth over five days, reveals enhanced initial cell adhesion and proliferation, highlighting the potential of our method for improving cell-based applications within microfluidic systems.
Collapse
Affiliation(s)
- A. Zeniou
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - D. Kefallinou
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - P. Dimitrakellis
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - E. Xenogiannopoulou
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - M. Grigoriou
- Laboratory of Inflammation and AutoimmunityBiomedical Research Foundation, Academy of AthensAthens11527Greece
| | - A. Dimoulas
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - D. T. Boumpas
- Laboratory of Inflammation and AutoimmunityBiomedical Research Foundation, Academy of AthensAthens11527Greece
- 4th Department of Internal MedicineAttikon University Hospital and Joint Rheumatology ProgramNational and Kapodistrian University of AthensAthensGreece
| | - A. Tserepi
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| | - E. Gogolides
- Institute of Nanoscience and NanotechnologyNational Center for Scientific Research “Demokritos”Patr. Gregoriou Ε' and 27 Neapoleos str.15341Aghia Paraskevi, AttikiGreece
- Current addressChemical Process and Energy Resources Institute (CPERI)Centre for Research & Technology Hellas, 6th km Charilaou - Thermi, Thermi57001ThessalonikiGreece
| |
Collapse
|
8
|
Jiang Y, Harberts J, Assadi A, Chen Y, Spatz JP, Duan W, Nisbet DR, Voelcker NH, Elnathan R. The Roles of Micro- and Nanoscale Materials in Cell-Engineering Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410908. [PMID: 39401098 DOI: 10.1002/adma.202410908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Indexed: 11/29/2024]
Abstract
Customizable manufacturing of ex vivo cell engineering is driven by the need for innovations in the biomedical field and holds substantial potential for addressing current therapeutic challenges; but it is still only in its infancy. Micro- and nanoscale-engineered materials are increasingly used to control core cell-level functions in cellular engineering. By reprogramming or redirecting targeted cells for extremely precise functions, these advanced materials offer new possibilities. This influences the modularity of cell reprogramming and reengineering, making these materials part of versatile and emerging technologies. Here, the roles of micro- and nanoscale materials in cell engineering are highlighted, demonstrating how they can be adaptively controlled to regulate cellular reprogramming and core cell-level functions, including differentiation, proliferation, adhesion, user-defined gene expression, and epigenetic changes. The current reprogramming routes used to achieve pluripotency from somatic cells and the significant potential of induced pluripotent stem cell technology for translational biomedical research are covered. Recent advances in nonviral intracellular delivery modalities for cell reprogramming and their constraints are evaluated. This paper focuses on emerging physical and combinatorial approaches of intracellular delivery for cell engineering, revealing the capabilities and limitations of these routes. It is showcased how these programmable materials are continually being explored as customizable tools for inducing biophysical stimulation. Harnessing the power of micro- and nanoscale-engineered materials will be a step change in the design of cell engineering, producing a suite of powerful tools for addressing potential future challenges in therapeutic cell engineering.
Collapse
Affiliation(s)
- Yuan Jiang
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jann Harberts
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Artin Assadi
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Zhejiang, 325000, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Max Planck Schools, 69120, Heidelberg, Germany
| | - Wei Duan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David R Nisbet
- The Graeme Clark Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Parkville, VIC, 3010, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Roey Elnathan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
9
|
Souza A, Nobrega G, Neves LB, Barbosa F, Ribeiro J, Ferrera C, Lima RA. Recent Advances of PDMS In Vitro Biomodels for Flow Visualizations and Measurements: From Macro to Nanoscale Applications. MICROMACHINES 2024; 15:1317. [PMID: 39597128 PMCID: PMC11596077 DOI: 10.3390/mi15111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological environments. PDMS microchannels are used in studies of blood cell deformation under confined conditions, demonstrating the potential to distinguish between healthy and diseased cells. PDMS also plays a critical role in fabricating arterial models from real medical images, including pathological conditions such as aneurysms. Cutting-edge applications, such as nanofluid hemodynamic studies and nanoparticle drug delivery in organ-on-a-chip platforms, represent the latest developments in PDMS research. In addition to these applications, this review critically discusses PDMS properties, fabrication methods, and its expanding role in micro- and nanoscale flow studies.
Collapse
Affiliation(s)
- Andrews Souza
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CMEMS-Uminho—Center for Microelectromechanical Systems, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Glauco Nobrega
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Lucas B. Neves
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Filipe Barbosa
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
| | - João Ribeiro
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Conrado Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain;
- Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Rui A. Lima
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CEFT—Transport Phenomena Research Center, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Seo J, Ha G, Lee G, Nasiri R, Lee J. Modeling tumor-immune interactions using hybrid spheroids and microfluidic platforms for studying tumor-associated macrophage polarization in melanoma. Acta Biomater 2024:S1742-7061(24)00629-9. [PMID: 39461691 DOI: 10.1016/j.actbio.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Tumor-associated macrophages (TAMs), as key components of tumor microenvironment (TME), exhibit phenotypic plasticity in response to environmental cues, causing polarization into either pro-inflammatory M1 phenotypes or immunosuppressive M2 phenotypes. Although TAM has been widely studied for its crucial involvement in the initiation, progression, metastasis, and immune regulation of cancer cells, there have been limited attempts to understand how the metastatic potentials of cancer cells influence TAM polarization within TME. Here, we developed a miniaturized TME model using a 3D hybrid system composed of murine melanoma cells and macrophages, aiming to investigate interactions between cancer cells exhibiting various metastatic potentials and macrophages within TME. The increase in spheroid size within this model was associated with a reduction in cancer cell viability. Examining macrophage surface marker expression and cytokine secretion indicated the development of diverse TMEs influenced by both spheroid size and the metastatic potential of cancer cells. Furthermore, a high-throughput microfluidic platform equipped with trapping systems and hybrid spheroids was employed to simulate the tumor-immune system of complex TMEs and for comparative analysis with traditional 3D culture models. This study provides insight into TAM polarization in melanoma with different heterogeneities by modeling cancer-immune systems, which can be potentially employed for immune-oncology research, drug screening, and personalized therapy. STATEMENT OF SIGNIFICANCE: This study presents the development of a 3D hybrid spheroid system designed to model tumor-immune interactions, providing a detailed analysis of how melanoma cell metastatic potential influences tumor-associated macrophage (TAM) polarization. By utilizing a microfluidic platform, we are able to replicate and investigate the complex tumor-immune system of the tumor microenvironments (TMEs) under continuous flow conditions. Our model holds significant potential for high-throughput drug screening and personalized medicine applications, offering a versatile tool for advancing cancer research and treatment strategies.
Collapse
Affiliation(s)
- Junki Seo
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Giheon Ha
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Geonho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Rohollah Nasiri
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States
| | - Junmin Lee
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon 21983, Republic of Korea.
| |
Collapse
|
11
|
Elsemary MT, Maritz MF, Smith LE, Warkiani ME, Thierry B. Enrichment of T-lymphocytes from leukemic blood using inertial microfluidics toward improved chimeric antigen receptor-T cell manufacturing. Cytotherapy 2024; 26:1264-1274. [PMID: 38819362 DOI: 10.1016/j.jcyt.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
Chimeric antigen receptor cell therapy is a successful immunotherapy for the treatment of blood cancers. However, hurdles in their manufacturing remain including efficient isolation and purification of the T-cell starting material. Herein, we describe a one-step separation based on inertial spiral microfluidics for efficient enrichment of T-cells in B-cell acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia patient's samples. In healthy donors used to optimize the process, the lymphocyte purity was enriched from 65% (SD ± 0.2) to 91% (SD ± 0.06) and T-cell purity was enriched from 45% (SD ± 0.1) to 73% (SD ± 0.02). Leukemic samples had higher starting B-cells compared to the healthy donor samples. Efficient enrichment and recovery of lymphocytes and T-cells were achieved in ALL samples with B-cells, monocytes and leukemic blasts depleted by 80% (SD ± 0.09), 89% (SD ± 0.1) and 74% (SD ± 0.09), respectively, and a 70% (SD ± 0.1) T-cell recovery. Chronic lymphocytic leukemia samples had lower T-cell numbers, and the separation process was less efficient compared to the ALL. This study demonstrates the use of inertial microfluidics for T-cell enrichment and depletion of B-cell blasts in ALL, suggesting its potential to address a key bottleneck of the chimeric antigen receptor-T manufacturing workflow.
Collapse
MESH Headings
- Humans
- T-Lymphocytes/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Microfluidics/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Cell Separation/methods
- B-Lymphocytes/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Mona T Elsemary
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Michelle F Maritz
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Louise E Smith
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | | | - Benjamin Thierry
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia.
| |
Collapse
|
12
|
Farahinia A, Khani M, Morhart TA, Wells G, Badea I, Wilson LD, Zhang W. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:6031. [PMID: 39338775 PMCID: PMC11436177 DOI: 10.3390/s24186031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Milad Khani
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler A Morhart
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Ildiko Badea
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
13
|
Jang HJ, Joung HA, Goncharov A, Kanegusuku AG, Chan CW, Yeo KTJ, Zhuang W, Ozcan A, Chen J. Deep Learning-Based Kinetic Analysis in Paper-Based Analytical Cartridges Integrated with Field-Effect Transistors. ACS NANO 2024; 18:24792-24802. [PMID: 39252606 DOI: 10.1021/acsnano.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This study explores the fusion of a field-effect transistor (FET), a paper-based analytical cartridge, and the computational power of deep learning (DL) for quantitative biosensing via kinetic analyses. The FET sensors address the low sensitivity challenge observed in paper analytical devices, enabling electrical measurements with kinetic data. The paper-based cartridge eliminates the need for surface chemistry required in FET sensors, ensuring economical operation (cost < $0.15/test). The DL analysis mitigates chronic challenges of FET biosensors such as sample matrix interference, by leveraging kinetic data from target-specific bioreactions. In our proof-of-concept demonstration, our DL-based analyses showcased a coefficient of variation of <6.46% and a decent concentration measurement correlation with an r2 value of >0.976 for cholesterol testing when blindly compared to results obtained from a CLIA-certified clinical laboratory. These integrated technologies have the potential to advance FET-based biosensors, potentially transforming point-of-care diagnostics and at-home testing through enhanced accessibility, ease-of-use, and accuracy.
Collapse
Affiliation(s)
- Hyun-June Jang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hyou-Arm Joung
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Artem Goncharov
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Anastasia Gant Kanegusuku
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, Illinois 60153, United States
| | - Clarence W Chan
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kiang-Teck Jerry Yeo
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wen Zhuang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aydogan Ozcan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
14
|
Milić L, Zambry NS, Ibrahim FB, Petrović B, Kojić S, Thiha A, Joseph K, Jamaluddin NF, Stojanović GM. Advances in textile-based microfluidics for biomolecule sensing. BIOMICROFLUIDICS 2024; 18:051502. [PMID: 39296324 PMCID: PMC11410389 DOI: 10.1063/5.0222244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Textile-based microfluidic biosensors represent an innovative fusion of various multidisciplinary fields, including bioelectronics, material sciences, and microfluidics. Their potential in biomedicine is significant as they leverage textiles to achieve high demands of biocompatibility with the human body and conform to the irregular surfaces of the body. In the field of microfluidics, fabric coated with hydrophobic materials serves as channels through which liquids are transferred in precise amounts to the sensing element, which in this case is a biosensor. This paper presents a condensed overview of the current developments in textile-based microfluidics and biosensors in biomedical applications over the past 20 years (2005-2024). A literature search was performed using the Scopus database. The fabrication techniques and materials used are discussed in this paper, as these will be key in various modifications and advancements in textile-based microfluidics. Furthermore, we also address the gaps in the application of textile-based microfluidic analytical devices in biomedicine and discuss the potential solutions. Advances in textile-based microfluidics are enabled by various printing and fabric manufacturing techniques, such as screen printing, embroidery, and weaving. Integration of these devices into everyday clothing holds promise for future vital sign monitoring, such as glucose, albumin, lactate, and ion levels, as well as early detection of hereditary diseases through gene detection. Although most testing currently takes place in a laboratory or controlled environment, this field is rapidly evolving and pushing the boundaries of biomedicine, improving the quality of human life.
Collapse
Affiliation(s)
- Lazar Milić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Bojan Petrović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | - Sanja Kojić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Nurul Fauzani Jamaluddin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
15
|
Gopallawa I, Gupta C, Jawa R, Cyril A, Jawa V, Chirmule N, Gujar V. Applications of Organoids in Advancing Drug Discovery and Development. J Pharm Sci 2024; 113:2659-2667. [PMID: 39002723 DOI: 10.1016/j.xphs.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/15/2024]
Abstract
Organoids are small, self-organizing three-dimensional cell cultures that are derived from stem cells or primary organs. These cultures replicate the complexity of an organ, which cannot be achieved by single-cell culture systems. Organoids can be used in testing of new drugs instead of animals. Development and validation of organoids is thus important to reduce the reliance on animals for drug testing. In this review, we have discussed the developmental and regulatory aspects of organoids and highlighted their importance in drug development. We have first summarized different types of culture-based organoid systems such as submerged Matrigel, micro-fluidic 3D cultures, inducible pluripotent stem cells, and air-liquid interface cultures. These systems help us understand the intricate interplay between cells and their surrounding milieu for identifying functions of target receptors, soluble factors, and spatial interactions. Further, we have discussed the advances in humanized severe-combined immunodeficiency mouse models and their applications in the pharmacology of immune-oncology. Since regulatory aspects are important in using organoids for drug development, we have summarized FDA and EMA regulations on organoid research to support pre-clinical studies. Finally, we have included some unique studies highlighting the use of organoids in studying infectious diseases, cancer, and fundamental biology. These studies also exemplify the latest technological advances in organoid development resulting in improved efficiency. Overall, this review comprehensively summarizes the applications of organoids in early drug development during discovery and pre-clinical studies.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | | | - Rayan Jawa
- University of Pennsylvania, Philadelphia, PA, USA
| | - Arya Cyril
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NY, USA.
| | | | - Vikramsingh Gujar
- Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
16
|
Aung HH, Pothipan P, Aswakool J, Santironnarong S, Phatthanakun R, Pinrod V, Jiemsakul T, Chancharoen W, Moonwiriyakit A. Non-invasive measurement of wall shear stress in microfluidic chip for osteoblast cell culture using improved depth estimation of defocus particle tracking method. BIOMICROFLUIDICS 2024; 18:054114. [PMID: 39464242 PMCID: PMC11510738 DOI: 10.1063/5.0226294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The development of a non-invasive method for measuring the internal fluid behavior and dynamics of microchannels in microfluidics poses critical challenges to biological research, such as understanding the impact of wall shear stress (WSS) in the growth of a bone-forming osteoblast. This study used the General Defocus Particle Tracking (GDPT) technique to develop a non-invasive method for quantifying the fluid velocity profile and calculated the WSS within a microfluidic chip. The GDPT estimates particle motion in a three-dimensional space by analyzing two-dimensional images and video captured using a single camera. However, without a lens to introduce aberration, GDPT is prone to error in estimating the displacement direction for out-of-focus particles, and without knowing the exact refractive indices, the scaling from estimated values to physical units is inaccurate. The proposed approach addresses both challenges by using theoretical knowledge on laminar flow and integrating results obtained from multiple analyses. The proposed approach was validated using computational fluid dynamics (CFD) simulations and experimental video of a microfluidic chip that can generate different WSS levels under steady-state flow conditions. By comparing the CFD and GDPT velocity profiles, it was found that the Mean Pearson Correlation Coefficient is 0.77 (max = 0.90) and the Mean Intraclass Correlation Coefficient is 0.66 (max = 0.82). The densitometry analysis of osteoblast cells cultured on the designed microfluidic chip for four days revealed that the cell proliferation rate correlates positively with the measured WSS values. The proposed analysis can be applied to quantify the laminar flow in microfluidic chip experiments without specialized equipment.
Collapse
Affiliation(s)
- Hein Htet Aung
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Phattarin Pothipan
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan 10540, Thailand
| | - Jirasin Aswakool
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Siraphob Santironnarong
- Defence Technology Institute, Office of the Permanent Secretary of Defence (Chaengwattana) 7th Floor, 47/433 Moo 3, Ban Mai, Pak Kret, Nonthaburi 11120, Thailand
| | - Rungrueang Phatthanakun
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Visarute Pinrod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Thanakorn Jiemsakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
| | - Wares Chancharoen
- Laboratory of Artificial Intelligence and Innovation in Medicine (AIIM), Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, 906 Kampangpetch 6 Rd., Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan 10540, Thailand
| |
Collapse
|
17
|
Chen Z, Chen J, Lin D, Kang H, Luo Y, Wang X, Wang L, Liu D. Forming Single-Cell-Derived Colon Cancer Organoid Arrays on a Microfluidic Chip for High Throughput Tumor Heterogeneity Analysis. ACS Biomater Sci Eng 2024; 10:5265-5273. [PMID: 39087916 DOI: 10.1021/acsbiomaterials.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Single-cell-derived tumor organoids (STOs) possess a distinct genetic background, making them valuable tools for demonstrating tumor heterogeneity. In order to fulfill the high throughput demands of STO assays, we have developed a microfluidic chip containing 30 000 microwells, which is dedicated to a single cell culture approach for selective expansion and differential induction of cancer stem cells. The microwells are coated with a hydrophilic copolymer to eliminate cell adhesion, and the cell culture is supported by poly(ethylene glycol) (PEG) to establish a nonadhesive culture environment. By utilizing an input cell density of 7 × 103·mL-1, it is possible to construct a 4000 single cell culture system through stochastic cell occupation. We demonstrate that the addition of 15% PEG10000 in the cell culture medium effectively prevents cell loss while facilitating tumor stem cell expansion. As were demonstrated by HCT116, HT29, and SW480 colon cancer cells, the microfluidic approach achieved a STO formation rate of ∼20%, resulting in over 800 STOs generated from a single culture. Comprehensive analysis through histomorphology, immunohistochemistry, drug response evaluation, assessment of cell invasion, and biomarker detection reveals the heterogeneity among individual STOs. Specifically, the smaller STOs exhibited higher invasion and drug resistance capabilities compared with the larger ones. The developed microfluidic approach effectively facilitates STO formation and offers promising prospects for investigating tumor heterogeneity, as well as conducting personalized therapy-focused drug screening.
Collapse
Affiliation(s)
- Zihe Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jueming Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Dongguo Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanzhang Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xiaogang Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Dayu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou 510180, China
| |
Collapse
|
18
|
Hernández-Hatibi S, Guerrero PE, García-Aznar JM, García-Gareta E. Polydopamine Interfacial Coating for Stable Tumor-on-a-Chip Models: Application for Pancreatic Ductal Adenocarcinoma. Biomacromolecules 2024; 25:5169-5180. [PMID: 39083627 PMCID: PMC11323005 DOI: 10.1021/acs.biomac.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Addressing current challenges in solid tumor research requires advanced in vitro three-dimensional (3D) cellular models that replicate the inherently 3D architecture and microenvironment of tumor tissue, including the extracellular matrix (ECM). However, tumor cells exert mechanical forces that can disrupt the physical integrity of the matrix in long-term 3D culture. Therefore, it is necessary to find the optimal balance between cellular forces and the preservation of matrix integrity. This work proposes using polydopamine (PDA) coating for 3D microfluidic cultures of pancreatic cancer cells to overcome matrix adhesion challenges to sustain representative tumor 3D cultures. Using PDA's distinctive adhesion and biocompatibility, our model uses type I collagen hydrogels seeded with different pancreatic cancer cell lines, prompting distinct levels of matrix deformation and contraction. Optimizing the PDA coating enhances the adhesion and stability of collagen hydrogels within microfluidic devices, achieving a balance between the disruptive forces of tumor cells on matrix integrity and the maintenance of long-term 3D cultures. The findings reveal how this tension appears to be a critical determinant in spheroid morphology and growth dynamics. Stable and prolonged 3D culture platforms are crucial for understanding solid tumor cell behavior, dynamics, and responses within a controlled microenvironment. This advancement ultimately offers a powerful tool for drug screening, personalized medicine, and wider cancer therapeutics strategies.
Collapse
Affiliation(s)
- Soraya Hernández-Hatibi
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Department
of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Aragon, Spain
| | - Pedro Enrique Guerrero
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Department
of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon
Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon
Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division
of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6BT, U.K.
| |
Collapse
|
19
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Calzuola ST, Newman G, Feaugas T, Perrault CM, Blondé JB, Roy E, Porrini C, Stojanovic GM, Vidic J. Membrane-based microfluidic systems for medical and biological applications. LAB ON A CHIP 2024; 24:3579-3603. [PMID: 38954466 DOI: 10.1039/d4lc00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.
Collapse
Affiliation(s)
- Silvia Tea Calzuola
- UMR7646 Laboratoire d'hydrodynamique (LadHyX), Ecole Polytechnique, Palaiseau, France.
- Eden Tech, Paris, France
| | - Gwenyth Newman
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Thomas Feaugas
- Eden Tech, Paris, France
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | | | - Goran M Stojanovic
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovića 6, 21000 Novi Sad, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
21
|
Peng W, Xu Z, Yi C, Zhang Y, Liao Q. Silver coated PS microsphere array SERS microfluidic chip for pesticide detection. Heliyon 2024; 10:e33647. [PMID: 39055796 PMCID: PMC11269829 DOI: 10.1016/j.heliyon.2024.e33647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Carbendazim and acetamidine are pesticides that widely used to control pests and diseases in oilseed rape. In this paper, a rapid, accurate and reliable method was proposed for the detection of carbendazim and acetamidine with SERS microfluidic chip technology. Ag-ps(Polystyrene microspheres) microsphere SERS substrate was prepared by spin coating and magnetron sputtering deposition of Ag. The enhancement factor of prepared SERS substrate was 2.4 × 1010. The SERS detection working curves were well fitted and the linear parameters R2 were 0.987 and 0.994, respectively. The limit of detection was 0.01 mg/mL. The use of SERS microfluidic chip to detect carbendazim and acetamidine is expected to provide a way for the detection of pesticide residues in crops, which has broad application prospects in the field of food safety.
Collapse
Affiliation(s)
- Wang Peng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihan Xu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yi
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuankai Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxi Liao
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|
22
|
Sønstevold L, Koza P, Czerkies M, Andreassen E, McMahon P, Vereshchagina E. Prototyping in Polymethylpentene to Enable Oxygen-Permeable On-a-Chip Cell Culture and Organ-on-a-Chip Devices Suitable for Microscopy. MICROMACHINES 2024; 15:898. [PMID: 39064409 PMCID: PMC11278790 DOI: 10.3390/mi15070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
With the rapid development and commercial interest in the organ-on-a-chip (OoC) field, there is a need for materials addressing key experimental demands and enabling both prototyping and large-scale production. Here, we utilized the gas-permeable, thermoplastic material polymethylpentene (PMP). Three methods were tested to prototype transparent PMP films suitable for transmission light microscopy: hot-press molding, extrusion, and polishing of a commercial, hazy extruded film. The transparent films (thickness 20, 125, 133, 356, and 653 µm) were assembled as the cell-adhering layer in sealed culture chamber devices, to assess resulting oxygen concentration after 4 days of A549 cell culture (cancerous lung epithelial cells). Oxygen concentrations stabilized between 15.6% and 11.6%, where the thicker the film, the lower the oxygen concentration. Cell adherence, proliferation, and viability were comparable to glass for all PMP films (coated with poly-L-lysine), and transparency was adequate for transmission light microscopy of adherent cells. Hot-press molding was concluded as the preferred film prototyping method, due to excellent and reproducible film transparency, the possibility to easily vary film thickness, and the equipment being commonly available. The molecular orientation in the PMP films was characterized by IR dichroism. As expected, the extruded films showed clear orientation, but a novel result was that hot-press molding may also induce some orientation. It has been reported that orientation affects the permeability, but with the films in this study, we conclude that the orientation is not a critical factor. With the obtained results, we find it likely that OoC models with relevant in vivo oxygen concentrations may be facilitated by PMP. Combined with established large-scale production methods for thermoplastics, we foresee a useful role for PMP within the OoC field.
Collapse
Affiliation(s)
- Linda Sønstevold
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373 Oslo, Norway
| | - Paulina Koza
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego St. 5B, 02-106 Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego St. 5B, 02-106 Warsaw, Poland
| | - Erik Andreassen
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway; (E.A.)
| | - Paul McMahon
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway; (E.A.)
| | - Elizaveta Vereshchagina
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373 Oslo, Norway
| |
Collapse
|
23
|
Feng X, Wu Z, Cheng LKW, Xiang Y, Sugimura R, Lin X, Wu AR. Reversibly-bonded microfluidic devices for stable cell culture and rapid, gentle cell extraction. LAB ON A CHIP 2024; 24:3546-3555. [PMID: 38949063 DOI: 10.1039/d3lc01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Microfluidic chips have emerged as significant tools in cell culture due to their capacity for supporting cells to adopt more physiologically relevant morphologies in 3D compared with traditional cell culture in 2D. Currently, irreversible bonding methods, where chips cannot be detached from their substrates without destroying the structure, are commonly used in fabrication, making it challenging to conduct further analysis on cells that have been cultured on-chip. Although some reversible bonding techniques have been developed, they are either restricted to certain materials such as glass, or require complex processing procedures. Here, we demonstrate a simple and reversible polydimethylsiloxane (PDMS)-polystyrene (PS) bonding technique that allows devices to withstand extended operations while pressurized, and supports long-term stable cell cultures. More importantly, it allows rapid and gentle live cell extraction for downstream manipulation and characterization after long-term on-chip culturing, and even further subculturing. Our new approach could greatly facilitate microfluidic chip-based cell and tissue cultures, overcoming current analytical limitations and opening up new avenues for downstream uses of on-chip cultures, including 3D-engineered tissue structures for biomedical applications.
Collapse
Affiliation(s)
- Xiaohan Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Zehaoyu Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Lily Kwan Wai Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| | - Yang Xiang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Ryohichi Sugimura
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Xuyan Lin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- Center for Engineering Material and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR
| |
Collapse
|
24
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
25
|
Sun J, Song S. Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2024; 28:44. [PMID: 39781566 PMCID: PMC11709447 DOI: 10.1007/s10404-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/15/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries. Modern engineering technologies such as microfluidics and fabrication techniques have advanced the development of BBB models to simulate the basic functions of BBB. However, the intrinsic BBB properties are difficult to replicate. Existing in vitro BBB models demonstrate inconsistent BBB permeability and selectivity due to variations in microfluidic design, cell types and arrangement, expression of tight junction (TJ) proteins, and use of shear stress. Specifically, microfluidic designs have flow channels of different sizes, complexity, topology, and modular structure. Different cell types are selected to mimic various physiological conditions. These factors make it challenging to compare results obtained using different experimental setups. This paper highlights key factors that play important roles in influencing microfluidic models and discusses how these factors contribute to permeability and selectivity of the BBB models.
Collapse
Affiliation(s)
- Jindi Sun
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
- Departments of Neuroscience GIDP, Materials Science and Engineering, and BIO5 Institute, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA
| |
Collapse
|
26
|
Fritschen A, Lindner N, Scholpp S, Richthof P, Dietz J, Linke P, Guttenberg Z, Blaeser A. High-Scale 3D-Bioprinting Platform for the Automated Production of Vascularized Organs-on-a-Chip. Adv Healthc Mater 2024; 13:e2304028. [PMID: 38511587 PMCID: PMC11469029 DOI: 10.1002/adhm.202304028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Indexed: 03/22/2024]
Abstract
3D bioprinting possesses the potential to revolutionize contemporary methodologies for fabricating tissue models employed in pharmaceutical research and experimental investigations. This is enhanced by combining bioprinting with advanced organs-on-a-chip (OOCs), which includes a complex arrangement of multiple cell types representing organ-specific cells, connective tissue, and vasculature. However, both OOCs and bioprinting so far demand a high degree of manual intervention, thereby impeding efficiency and inhibiting scalability to meet technological requirements. Through the combination of drop-on-demand bioprinting with robotic handling of microfluidic chips, a print procedure is achieved that is proficient in managing three distinct tissue models on a chip within only a minute, as well as capable of consecutively processing numerous OOCs without manual intervention. This process rests upon the development of a post-printing sealable microfluidic chip, that is compatible with different types of 3D-bioprinters and easily connected to a perfusion system. The capabilities of the automized bioprint process are showcased through the creation of a multicellular and vascularized liver carcinoma model on the chip. The process achieves full vascularization and stable microvascular network formation over 14 days of culture time, with pronounced spheroidal cell growth and albumin secretion of HepG2 serving as a representative cell model.
Collapse
Affiliation(s)
- Anna Fritschen
- BioMedical Printing TechnologyDepartment of Mechanical EngineeringTechnical University of Darmstadt64289DarmstadtGermany
| | - Nils Lindner
- BioMedical Printing TechnologyDepartment of Mechanical EngineeringTechnical University of Darmstadt64289DarmstadtGermany
| | - Sebastian Scholpp
- BioMedical Printing TechnologyDepartment of Mechanical EngineeringTechnical University of Darmstadt64289DarmstadtGermany
| | - Philipp Richthof
- BioMedical Printing TechnologyDepartment of Mechanical EngineeringTechnical University of Darmstadt64289DarmstadtGermany
| | - Jonas Dietz
- BioMedical Printing TechnologyDepartment of Mechanical EngineeringTechnical University of Darmstadt64289DarmstadtGermany
| | | | | | - Andreas Blaeser
- BioMedical Printing TechnologyDepartment of Mechanical EngineeringTechnical University of Darmstadt64289DarmstadtGermany
- Centre for Synthetic BiologyTechnical University of Darmstadt64289DarmstadtGermany
| |
Collapse
|
27
|
Ferreira M, Carvalho V, Ribeiro J, Lima RA, Teixeira S, Pinho D. Advances in Microfluidic Systems and Numerical Modeling in Biomedical Applications: A Review. MICROMACHINES 2024; 15:873. [PMID: 39064385 PMCID: PMC11279158 DOI: 10.3390/mi15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
The evolution in the biomedical engineering field boosts innovative technologies, with microfluidic systems standing out as transformative tools in disease diagnosis, treatment, and monitoring. Numerical simulation has emerged as a tool of increasing importance for better understanding and predicting fluid-flow behavior in microscale devices. This review explores fabrication techniques and common materials of microfluidic devices, focusing on soft lithography and additive manufacturing. Microfluidic systems applications, including nucleic acid amplification and protein synthesis, as well as point-of-care diagnostics, DNA analysis, cell cultures, and organ-on-a-chip models (e.g., lung-, brain-, liver-, and tumor-on-a-chip), are discussed. Recent studies have applied computational tools such as ANSYS Fluent 2024 software to numerically simulate the flow behavior. Outside of the study cases, this work reports fundamental aspects of microfluidic simulations, including fluid flow, mass transport, mixing, and diffusion, and highlights the emergent field of organ-on-a-chip simulations. Additionally, it takes into account the application of geometries to improve the mixing of samples, as well as surface wettability modification. In conclusion, the present review summarizes the most relevant contributions of microfluidic systems and their numerical modeling to biomedical engineering.
Collapse
Affiliation(s)
- Mariana Ferreira
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal; (M.F.); (D.P.)
| | - Violeta Carvalho
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal; (M.F.); (D.P.)
- LABBELS—Associate Laboratory, 4800-058 Guimaraes, Portugal;
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal;
- ALGORITMI Center/LASI, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal
| | - João Ribeiro
- Instituto Politécnico de Bragança, 5300-052 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Campus Santa Apolónia, 5300-253 Bragança, Portugal
- CIMO—Mountain Research Center, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui A. Lima
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal;
- CEFT—Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | | | - Diana Pinho
- Center for Microelectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimaraes, Portugal; (M.F.); (D.P.)
- LABBELS—Associate Laboratory, 4800-058 Guimaraes, Portugal;
| |
Collapse
|
28
|
Schmitz J, Yermakov B, Grünberger A. Protocol for microfluidic single-cell cultivation and live-cell imaging of Chinese hamster ovary suspension cell lines. STAR Protoc 2024; 5:103106. [PMID: 38824641 PMCID: PMC11176845 DOI: 10.1016/j.xpro.2024.103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Microfluidic single-cell cultivation (MSCC) is a powerful tool for investigating the cellular behavior of various cell types at the single-cell level. Here, we present a protocol specifically developed for the reliable and reproducible MSCC of industrially relevant Chinese hamster ovary (CHO) suspension cell lines. We summarize critical experimental steps from the initial seed train up to the final MSCC experiment, with a special focus on pre-culture management and medium preparation, device inoculation, and the establishment of a constant medium perfusion.
Collapse
Affiliation(s)
- Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Boris Yermakov
- Institute of Process Engineering in Life Sciences, Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Alexander Grünberger
- Institute of Process Engineering in Life Sciences, Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
29
|
Chang YN, Huang TR, Yao DJ. A Novel EWOD Platform for Freely Transporting Droplets in Double and Single-Plate Structures. MICROMACHINES 2024; 15:797. [PMID: 38930767 PMCID: PMC11206092 DOI: 10.3390/mi15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
This study developed a novel dielectric wetting microfluidic operation platform combining parallel-plate and coplanar-plate regions with a curved surface structure as the connection structure. With the new electrowetting on dielectric (EWOD) platform, "droplet pull-out" has been successfully achieved and viewed as an essential new operation for microfluidics with the dielectric wetting technique. The EWOD system is divided into a PDMS substrate top plate and an indium tin oxide (ITO) glass substrate as a bottom layer on this chip. In the parallel-plate region, the droplets can be generated and transported through the square parallel electrodes; in the single-plate area, the droplets can be pulled out from the parallel structure, transported and mixed through the common grounded coplanar electrodes. In dielectric wetting performance testing, coplanar electrodes can apply a maximum driving force of 31.22 µN to DI water and 13.38 µN to propylene carbonate (PC). This driving force is sufficient to detach the sample from the top cover and pull the sub-droplet from the parallel plate structure for DI water, PC and polyethylene glycol diacrylate (PEGDA) buffer. The novel EWOD system also possesses the advantage of precise volume control for liquid samples; the volume error of the generated droplet can be controlled within 0.1% to 2%.
Collapse
Affiliation(s)
- Yii-Nuoh Chang
- Institute of Nano Engineering and MicroSystems, College of Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Ting-Rui Huang
- Department of Power Mechanical Engineering, College of Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Da-Jeng Yao
- Institute of Nano Engineering and MicroSystems, College of Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Power Mechanical Engineering, College of Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| |
Collapse
|
30
|
Lim J, Fang HW, Bupphathong S, Sung PC, Yeh CE, Huang W, Lin CH. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models. ACS Biomater Sci Eng 2024; 10:3548-3567. [PMID: 38712543 PMCID: PMC11167599 DOI: 10.1021/acsbiomaterials.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Wei Fang
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Po-Chan Sung
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
31
|
Nishimura Y. Revolutionizing renal research: The future of kidney-on-a-chip in biotechnology. Regen Ther 2024; 26:275-280. [PMID: 38993536 PMCID: PMC11237358 DOI: 10.1016/j.reth.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
In vitro models of kidneys have limited effectiveness owing to the complex structure and functions of the kidney when compared with other organs. Therefore many renal function evaluations are currently being carried out through animal experiments. In contrast, efforts are being made to apply biomimetic systems, such as organ-on-a-chip, which is based on microfluidic device technology, to serve as an in vitro model for the kidney. These systems aimed to recreate a physiological cultivation environment. This review has provided an overview of organ-on-a-chip research focused on glomeruli and tubules as in vitro models for the kidney and discusses future prospects.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, 3-3-4 Tonyamachi, Takasaki-shi, Gunma, 370-0006, Japan
| |
Collapse
|
32
|
AK N, Kumar S. Integration of 2D Nanoporous Membranes in Microfluidic Devices. ACS OMEGA 2024; 9:22305-22312. [PMID: 38799317 PMCID: PMC11112725 DOI: 10.1021/acsomega.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
2D material-based membranes have emerged as promising candidates for next-generation separation technology due to their exceptional permeability and selectivity. Integration of these membranes into microfluidic devices has offered significant potential for improving the efficiency, throughput, and precision. However, designing compact and reliable microfluidic devices with membranes has many challenges, including complexities in membrane integration, analyte measurement, and contamination issues. Addressing these challenges is critical for unlocking the full potential of membrane-integrated devices. This paper proposes a systematic procedure for integrating membranes into a microfluidic device by creating a pore in the middle layer. Furthermore, an ion transport experiment is carried out across various stacked graphene and poly carbonate track etch membranes in an Ostemer-based device. The resulting device is capable of facilitating the concurrent measurement, a task that is cumbersome in standard macroscopic diffusion cells. The transparency and compactness of the microfluidic device allowed for the in situ and real-time optical characterization of analytes. The integration of microfluidic devices with 2D nanoporous membranes has enabled the incorporation of several analytical modalities, resulting in a highly versatile platform with numerous applications.
Collapse
|
33
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
34
|
Lockhart EJ, Horowitz LF, Rodríguez A, Zhu S, Nguyen T, Mehrabi M, Gujral TS, Folch A. Drug testing of monodisperse arrays of live microdissected tumors using a valved multiwell microfluidic platform. LAB ON A CHIP 2024; 24:2683-2699. [PMID: 38651213 DOI: 10.1039/d4lc00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cancer drug testing in animals is an extremely poor predictor of the drug's safety and efficacy observed in humans. Hence there is a pressing need for functional testing platforms that better predict traditional and immunotherapy responses in human, live tumor tissue or tissue constructs, and at the same time are compatible with the use of mouse tumor tissue to facilitate building more accurate disease models. Since many cancer drug actions rely on mechanisms that depend on the tumor microenvironment (TME), such platforms should also retain as much of the native TME as possible. Additionally, platforms based on miniaturization technologies are desirable to reduce animal use and sensitivity to human tissue scarcity. Present high-throughput testing platforms that have some of these features, e.g. based on patient-derived tumor organoids, require a growth step that alters the TME. On the other hand, microdissected tumors (μDTs) or "spheroids" that retain an intact TME have shown promising responses to immunomodulators acting on native immune cells. However, difficult tissue handling after microdissection has reduced the throughput of drug testing on μDTs, thereby constraining the inherent advantages of producing numerous TME-preserving units of tissue for drug testing. Here we demonstrate a microfluidic 96-well platform designed for drug treatment of hundreds of similarly-sized, cuboidal μDTs ("cuboids") produced from a single tumor sample. The platform organizes a monodisperse array of four cuboids per well in 384 hydrodynamic traps. The microfluidic device, entirely fabricated in thermoplastics, features 96 microvalves that fluidically isolate each well after the cuboid loading step for straightforward multi-drug testing. Since our platform makes the most of scarce tumor tissue, it can potentially be applied to human biopsies that preserve the human TME while minimizing animal testing.
Collapse
Affiliation(s)
- Ethan J Lockhart
- Department of Bioengineering, University of Washington, Seattle, USA.
| | - Lisa F Horowitz
- Department of Bioengineering, University of Washington, Seattle, USA.
| | - Adán Rodríguez
- Department of Bioengineering, University of Washington, Seattle, USA.
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Tran Nguyen
- Department of Bioengineering, University of Washington, Seattle, USA.
| | | | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, USA.
| |
Collapse
|
35
|
Addario G, Eussen D, Djudjaj S, Boor P, Moroni L, Mota C. 3D Printed Tubulointerstitium Chip as an In Vitro Testing Platform. Macromol Biosci 2024; 24:e2300440. [PMID: 37997523 DOI: 10.1002/mabi.202300440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Chronic kidney disease (CKD) ranks as the twelfth leading cause of death worldwide with limited treatment options. The development of in vitro models replicating defined segments of the kidney functional units, the nephrons, in a physiologically relevant and reproducible manner can facilitate drug testing. The aim of this study was to produce an in vitro organ-on-a-chip platform with extrusion-based three-dimensional (3D) printing. The manufacturing of the tubular platform was produced by printing sacrificial fibers with varying diameters, providing a suitable structure for cell adhesion and proliferation. The chip platform was seeded with primary murine tubular epithelial cells and human umbilical vein endothelial cells. The effect of channel geometry, its reproducibility, coatings for cell adhesion, and specific cell markers were investigated. The developed chip presents single and dual channels, mimicking segments of a renal tubule and the capillary network, together with an extracellular matrix gel analogue placed in the middle of the two channels, envisioning the renal tubulointerstitium in vitro. The 3D printed platform enables perfusable circular cross-section channels with fully automated, rapid, and reproducible manufacturing processes at low costs. This kidney tubulointerstitium on-a-chip provides the first step toward the production of more complex in vitro models for drug testing.
Collapse
Affiliation(s)
- Gabriele Addario
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Daphne Eussen
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
- Division of Nephrology, RWTH University of Aachen, 52074, Aachen, Germany
- Electron Microscopy Facility, RWTH University of Aachen, 52074, Aachen, Germany
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
36
|
Jalali S, Selvaganapathy PR. A self-assembly and cellular migration based fabrication of high-density 3D tubular constructs of barrier forming membranes. LAB ON A CHIP 2024; 24:2468-2484. [PMID: 38563430 DOI: 10.1039/d4lc00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Three-dimensional (3D) in vitro models, superior in simulating physiological conditions compared to 2D models, offer intricate cell-cell and cell-ECM interactions with diverse signaling cues like fluid shear stress and growth factor gradients. Yet, developing 3D tissue barrier models, specifically perfusable luminal structures with dense, multicellular constructs maintained for extended durations with oxygen and nutrients, remains a technical challenge. Here, we describe a molding-based approach for the fabrication of free-standing, perfusable, high cellular density tissue constructs using a self-assembly and migration process to form functional barriers. This technique utilizes a polytetrafluoroethylene (PTFE)-coated stainless-steel wire, held by stainless steel needles, as a template for a perfusable channel within an elongated PDMS well. Upon adding a bio-ink mix of cells and collagen, it self-assembles into a high cell density layer conformally around the wire. Removing the wire reveals a hollow construct, connectable to an inlet and outlet for perfusion. This scalable method allows creating varied dimensions and multicellular configurations. Notably, post-assembly, cells such as human umbilical vein endothelial cells (HUVECs) migrate to the surface and form functional barriers with adherens junctions. Permeability tests and fluorescence imaging confirm that these constructs closely mimic in vivo endothelial barrier permeability, exhibiting the lowest permeability among all in vitro models in the literature. Unlike traditional methods involving uneven post-seeding of endothelial cells leading to subpar barriers, our approach is a straightforward alternative for fabricating complex perfusable 3D tissue constructs and effective tissue barriers for use in various applications, including tissue engineering, drug screening, and disease modeling.
Collapse
Affiliation(s)
- Seyedaydin Jalali
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
37
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
38
|
Liu Y, Su G, Wang W, Wei H, Dang L. A novel multifunctional SERS microfluidic sensor based on ZnO/Ag nanoflower arrays for label-free ultrasensitive detection of bacteria. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2085-2092. [PMID: 38511545 DOI: 10.1039/d4ay00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
This study proposes a microfluidic platform for rapid enrichment and ultrasensitive SERS detection of bacteria. The platform comprises ZnO nanoflower arrays decorated with silver nanoparticles to enhance the SERS sensitivity. The ZnO nanoflower array substrate with a 3D reticular columnar structure is prepared using the hydrothermal method. SEM analysis depicts the 3.05 μm gap distribution of the substrate array to intercept the most bacteria in the particle sizes range of 0.5 to 3 μm. Then, silver nanoparticles are deposited on the ZnO nano-array surface by liquid evaporation self-assembly. TEM and SEM analysis indicate nanosize of Ag particles, evenly distributed on the substrate, enhancing the SERS efficiency and improving sensing reproducibility. The probe molecules (R6G) are tested to demonstrate the high SERS activity of the proposed microfluidic sensor. Then, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis are selected, demonstrating the sensor's excellent bacterial capture and sensitive recognition capabilities, with a detection limit as low as 102 CFU mL-1. Additionally, the antibacterial properties of ZnO/Ag heterojunction nanostructures are studied, suggesting their ability to inactivate bacteria. Compared with the traditional Au-enhanced chip, the sensor preparation is easy, safe, reliable, and low-cost. Moreover, the ZnO nano-array exhibits a large specific surface area, high interception ability, stronger and uniform SERS performance, and effective and reliable detection of trace pathogens. This work provides potential future ZnO/Ag microfluidic SERS sensor applications for rapid, unlabeled, and trace pathogens detection in clinical and environmental applications, potentially achieving breakthroughs in early detection, prevention, and treatment.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guanwen Su
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hongyuan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Leping Dang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
39
|
Maparu AK, Singh P, Rai B, Sharma A, Sivakumar S. PDMS nanoparticles-decorated PDMS substrate promotes adhesion, proliferation and differentiation of skin cells. J Colloid Interface Sci 2024; 659:629-638. [PMID: 38198940 DOI: 10.1016/j.jcis.2023.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Polydimethylsiloxane (PDMS) is known to be a common substrate for various cell culture-based applications. However, native PDMS is not very conducive for cell culture and hence, surface modification via cell adhesion moieties is generally needed to make it suitable especially for long-term cell culture. To address this issue, we propose to coat PDMS nanoparticles (NPs) on the surface of PDMS film to improve adhesion, proliferation and differentiation of skin cells. The proposed modification strategy introduces necessary nanotopography without altering the surface chemical properties of PDMS. Due to resemblance in the mechanical properties of PDMS with skin, PDMS NPs can recreate the native extracellular nanoenvironment of skin on the PDMS surface and provide anchoring sites for skin cells to adhere and grow. Human keratinocytes, representing 95% of the epidermal skin cells maintained their characteristic well-spread morphology with the formation of interconnected cell-sheets on this coated PDMS surface. Moreover, our in vitro immunofluorescence studies confirmed expression of distinctive epidermal protein markers on the coated surface indicating close resemblance with the native skin epidermis. Conclusively, our findings suggest that introducing nanotopography via PDMS NPs can be an effective strategy for emulating the native cellular functions of keratinocytes on PDMS based cell culture devices.
Collapse
Affiliation(s)
- Auhin Kumar Maparu
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Prerana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54-B, Hadapsar Industrial Estate, Pune, Maharashtra 411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India; Material Science Programme, Thematic Unit of Excellence on Soft Nanofabrication, Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
40
|
Khanna A, Oropeza BP, Huang NF. Cardiovascular human organ-on-a-chip platform for disease modeling, drug development, and personalized therapy. J Biomed Mater Res A 2024; 112:512-523. [PMID: 37668192 PMCID: PMC11089005 DOI: 10.1002/jbm.a.37602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular organ-on-a-chip (OoC) devices are composed of engineered or native functional tissues that are cultured under controlled microenvironments inside microchips. These systems employ microfabrication and tissue engineering techniques to recapitulate human physiology. This review focuses on human OoC systems to model cardiovascular diseases, to perform drug screening, and to advance personalized medicine. We also address the challenges in the generation of organ chips that can revolutionize the large-scale application of these systems for drug development and personalized therapy.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
41
|
Schlünder K, Cipriano M, Zbinden A, Fuchs S, Mayr T, Schenke-Layland K, Loskill P. Microphysiological pancreas-on-chip platform with integrated sensors to model endocrine function and metabolism. LAB ON A CHIP 2024; 24:2080-2093. [PMID: 38441218 DOI: 10.1039/d3lc00838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Pancreatic in vitro research is of major importance to advance mechanistic understanding and development of treatment options for diseases such as diabetes mellitus. We present a thermoplastic-based microphysiological system aiming to model the complex microphysiological structure and function of the endocrine pancreas with concurrent real-time read-out capabilities. The specifically tailored platform enables self-guided trapping of single islets at defined locations: β-cells are assembled to pseudo-islets and injected into the tissue chamber using hydrostatic pressure-driven flow. The pseudo-islets can further be embedded in an ECM-like hydrogel mimicking the native microenvironment of pancreatic islets in vivo. Non-invasive real-time monitoring of the oxygen levels on-chip is realized by the integration of luminescence-based optical sensors to the platform. To monitor insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, an automated cycling of different glucose conditions is implemented. The model's response to glucose stimulation can be monitored via offline analysis of insulin secretion and via specific changes in oxygen consumption due to higher metabolic activity of pseudo-islets at high glucose levels. To demonstrate applicability for drug testing, the effects of antidiabetic medications are assessed and changes in dynamic insulin secretion are observed in line with the respective mechanism of action. Finally, by integrating human pancreatic islet microtissues, we highlight the flexibility of the platform and demonstrate the preservation of long-term functionality of human endocrine pancreatic tissue.
Collapse
Affiliation(s)
- Katharina Schlünder
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madalena Cipriano
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Aline Zbinden
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefanie Fuchs
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Torsten Mayr
- Institute for Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
43
|
Lee Y, Lee H, Kim EJ, Lee SD, Jung CY. Potential use of polydimethylsiloxane phantom in acupuncture manipulation practice. Heliyon 2024; 10:e25428. [PMID: 38322835 PMCID: PMC10845916 DOI: 10.1016/j.heliyon.2024.e25428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Objectives Sufficient trials of acupuncture manipulations should be practiced to obtain proficiency. However, there is not an adequate quantitative methodology for selecting a tissue-mimicking phantom that effectively reproduces the mechanical behavior that occurs during acupuncture. The objective of this study was to determine the proper mixing ratio of polydimethylsiloxane (PDMS) to obtain tissue phantom that is the most similar to porcine phantoms. Design An automatic needle manipulator equipped with a six-degrees-of-freedom force/torque sensor was installed to monitor the interaction force that occurred when the acupuncture needle performed lifting-thrusting and twirling manipulations. Four types of PDMS phantoms, composed of two silicone elastomers with different hardener ratios, were studied alongside four control groups consisting of different porcine sites. A Visual Analog Scale was used to quantify the similarity of the PDMS phantoms to the controls by 11 Korean medical doctors. Results Using the lifting-thrusting method, PDMS D (mixing ratio of 1:4.5) and control 2 (porcine blade shoulder) revealed no significant difference in the dynamic friction coefficients or maximum and minimum friction force values (P < 0.001). Using the twirling method, PDMS D showed no significant difference from all controls in the viscosity coefficient or maximum and minimum torque values (P ≤ 0.001). By practitioners, PDMS D showed the greatest score. Conclusion PDMS D delivered a haptic sensation that is most similar to that of biological tissues in the case of acu-needle lifting-thrusting and twirling methods. This finding guides the preparation of tissue phantoms for acu-needle studies and acupuncture training.
Collapse
Affiliation(s)
- Yeonsun Lee
- Department of Acupuncture & Moxibustion, Bucheon Jaseng Hospital of Oriental Medicine, Bucheon, 14598, Republic of Korea
| | - Hyosang Lee
- Haptic intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Eun Jung Kim
- Department of Acupuncture & Moxibustion, Dongguk University Bundang Oriental Hospital, Seongnam, 13601, Republic of Korea
| | - Seung Deok Lee
- Dongguk University Los Angeles, 440 Shatto PI, Los Angeles, CA 90020, USA
| | - Chan Yung Jung
- Department of Acupuncture & Moxibustion, Dongguk University Ilsan Oriental Hospital, Goyang, 10326, Republic of Korea
| |
Collapse
|
44
|
Ahmed MAM, Jurczak KM, Lynn NS, Mulder JPSH, Verpoorte EMJ, Nagelkerke A. Rapid prototyping of PMMA-based microfluidic spheroid-on-a-chip models using micromilling and vapour-assisted thermal bonding. Sci Rep 2024; 14:2831. [PMID: 38310102 PMCID: PMC10838337 DOI: 10.1038/s41598-024-53266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
The application of microfluidic devices as next-generation cell and tissue culture systems has increased impressively in the last decades. With that, a plethora of materials as well as fabrication methods for these devices have emerged. Here, we describe the rapid prototyping of microfluidic devices, using micromilling and vapour-assisted thermal bonding of polymethyl methacrylate (PMMA), to create a spheroid-on-a-chip culture system. Surface roughness of the micromilled structures was assessed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), showing that the fabrication procedure can impact the surface quality of micromilled substrates with milling tracks that can be readily observed in micromilled channels. A roughness of approximately 153 nm was created. Chloroform vapour-assisted bonding was used for simultaneous surface smoothing and bonding. A 30-s treatment with chloroform-vapour was able to reduce the surface roughness and smooth it to approximately 39 nm roughness. Subsequent bonding of multilayer PMMA-based microfluidic chips created a durable assembly, as shown by tensile testing. MDA-MB-231 breast cancer cells were cultured as multicellular tumour spheroids in the device and their characteristics evaluated using immunofluorescence staining. Spheroids could be successfully maintained for at least three weeks. They consisted of a characteristic hypoxic core, along with expression of the quiescence marker, p27kip1. This core was surrounded by a ring of Ki67-positive, proliferative cells. Overall, the method described represents a versatile approach to generate microfluidic devices compatible with biological applications.
Collapse
Affiliation(s)
- Monieb A M Ahmed
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Klaudia M Jurczak
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, Groningen, The Netherlands
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - N Scott Lynn
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jean-Paul S H Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Elisabeth M J Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anika Nagelkerke
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
45
|
Fish A, Kulkarni A. Flow-Induced Shear Stress Primes NLRP3 Inflammasome Activation in Macrophages via Piezo1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4505-4518. [PMID: 38240257 DOI: 10.1021/acsami.3c18645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The NLRP3 inflammasome is a crucial component of the innate immune system, playing a pivotal role in initiating and regulating the body's inflammatory response to various pathogens and cellular damage. Environmental stimuli, such as temperature, pH level, and nutrient availability, can influence the behavior and functions of innate immune cells, including immune cell activity, proliferation, and cytokine production. However, there is limited understanding regarding how mechanical forces, like shear stress, govern the intrinsic inflammatory reaction, particularly the activation of the NLRP3 inflammasome, and how shear stress impacts NLRP3 inflammasome activation through its capacity to induce alterations in gene expression and cytokine secretion. Here, we investigated how shear stress can act as a priming signal in NLRP3 inflammasome activation by exposing immortalized bone marrow-derived macrophages (iBMDMs) to numerous physiologically relevant magnitudes of shear stress before chemically inducing inflammasome activation. We demonstrated that shear stress of large magnitudes was able to prime iBMDMs more effectively for inflammasome activation compared to lower shear stress magnitudes, as quantified by the percentage of cells where ASC-CFP specks formed and IL-1β secretion, the hallmarks of inflammasome activation. Testing this in NLRP3 and caspase-1 knockout iBMDMs showed that the NLRP3 inflammasome was primarily primed for activation due to shear stress exposure. Quantitative polymerase chain reaction (qPCR) and a small-molecule inhibitor study mechanistically determined that shear stress regulates the NLRP3 inflammasome by upregulating Piezo1, IKKβ, and NLRP3. These findings offer insights into the mechanistic relationship among physiological shear stresses, inflammasome activation, and their impact on the progression of inflammatory diseases and their interconnected pathogenesis.
Collapse
Affiliation(s)
- Adam Fish
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
46
|
Aubrecht P, Smejkal J, Panuška P, Španbauerová K, Neubertová V, Kaule P, Matoušek J, Vinopal S, Liegertová M, Štofik M, Malý J. Performance and biocompatibility of OSTEMER 322 in cell-based microfluidic applications. RSC Adv 2024; 14:3617-3635. [PMID: 38268545 PMCID: PMC10804231 DOI: 10.1039/d3ra05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
The Off-Stoichiometry Thiol-ene and Epoxy (OSTE+) polymer technology has been increasingly utilised in the field of microfluidics and lab-on-a-chip applications. However, the impact of OSTEMER polymers, specifically the OSTEMER 322 formulation, on cell viability has remained limited. In this work, we thoroughly explored the biocompatibility of this commercial OSTEMER formulation, along with various surface modifications, through a broad range of cell types, from fibroblasts to epithelial cells. We employed cell viability and confluence assays to evaluate the performance of the material and its modified variants in cell culturing. The properties of the pristine and modified OSTEMER were also investigated using surface characterization methods including contact angle, zeta potential, and X-ray photoelectron spectroscopy. Mass spectrometry analysis confirmed the absence of leaching constituents from OSTEMER, indicating its safety for cell-based applications. Our findings demonstrated that cell viability on OSTEMER surfaces is sufficient for typical cell culture experiments, suggesting OSTEMER 322 is a suitable material for a variety of cell-based assays in microfluidic devices.
Collapse
Affiliation(s)
- Petr Aubrecht
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jiří Smejkal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Petr Panuška
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Klára Španbauerová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Viktorie Neubertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Pavel Kaule
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
- Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jindřich Matoušek
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Stanislav Vinopal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Michaela Liegertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Marcel Štofik
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| | - Jan Malý
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem Pasteurova 3632/15 400 96 Ústí nad Labem Czech Republic
| |
Collapse
|
47
|
Buentello DC, Garcia-Corral M, Trujillo-de Santiago G, Alvarez MM. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Rev Biomed Eng 2024; 17:243-263. [PMID: 36301779 DOI: 10.1109/rbme.2022.3217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuron-on-chip (NoC) systems-microfluidic devices in which neurons are cultured-have become a promising alternative to replace or minimize the use of animal models and have greatly facilitated in vitro research. Here, we review and discuss current developments in neuron-on-chip platforms, with a particular emphasis on existing biological models, culturing techniques, biomaterials, and topologies. We also discuss how the architecture, flow, and gradients affect neuronal growth, differentiation, and development. Finally, we discuss some of the most recent applications of NoCs in fundamental research (i.e., studies on the effects of electrical, mechanical/topological, or chemical stimuli) and in disease modeling.
Collapse
|
48
|
Leal F, Zeiringer S, Jeitler R, Costa PF, Roblegg E. A comprehensive overview of advanced dynamic in vitro intestinal and hepatic cell culture models. Tissue Barriers 2024; 12:2163820. [PMID: 36680530 PMCID: PMC10832944 DOI: 10.1080/21688370.2022.2163820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Orally administered drugs pass through the gastrointestinal tract before being absorbed in the small intestine and metabolised in the liver. To test the efficacy and toxicity of drugs, animal models are often employed; however, they are not suitable for investigating drug-tissue interactions and making reliable predictions, since the human organism differs drastically from animals in terms of absorption, distribution, metabolism and excretion of substances. Likewise, simple static in vitro cell culture systems currently used in preclinical drug screening often do not resemble the native characteristics of biological barriers. Dynamic models, on the other hand, provide in vivo-like cell phenotypes and functionalities that offer great potential for safety and efficacy prediction. Herein, current microfluidic in vitro intestinal and hepatic models are reviewed, namely single- and multi-tissue micro-bioreactors, which are associated with different methods of cell cultivation, i.e., scaffold-based versus scaffold-free.
Collapse
Affiliation(s)
- Filipa Leal
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Scarlett Zeiringer
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| |
Collapse
|
49
|
Yang F, Chen P, Jiang H, Xie T, Shao Y, Kim DH, Li B, Sun Y. Directional Cell Migration Guided by a Strain Gradient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302404. [PMID: 37735983 PMCID: PMC11467785 DOI: 10.1002/smll.202302404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Strain gradients widely exist in development and physiological activities. The directional movement of cells is essential for proper cell localization, and directional cell migration in responses to gradients of chemicals, rigidity, density, and topography of extracellular matrices have been well-established. However; it is unclear whether strain gradients imposed on cells are sufficient to drive directional cell migration. In this work, a programmable uniaxial cell stretch device is developed that creates controllable strain gradients without changing substrate stiffness or ligand distributions. It is demonstrated that over 60% of the single rat embryonic fibroblasts migrate toward the lower strain side in static and the 0.1 Hz cyclic stretch conditions at ≈4% per mm strain gradients. It is confirmed that such responses are distinct from durotaxis or haptotaxis. Focal adhesion analysis confirms higher rates of contact area and protrusion formation on the lower strain side of the cell. A 2D extended motor-clutch model is developed to demonstrate that the strain-introduced traction force determines integrin fibronectin pairs' catch-release dynamics, which drives such directional migration. Together, these results establish strain gradient as a novel cue to regulate directional cell migration and may provide new insights in development and tissue repairs.
Collapse
Affiliation(s)
- Feiyu Yang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pengcheng Chen
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Han Jiang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bo Li
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
50
|
Venkatesalu S, Dilliyappan S, Satish Kumar A, Palaniyandi T, Baskar G, Ravi M, Sivaji A. Prospectives and retrospectives of microfluidics devices and lab-on-A-chip emphasis on cancer. Clin Chim Acta 2024; 552:117646. [PMID: 38000458 DOI: 10.1016/j.cca.2023.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Microfluidics is a science and technology that deals with the concept of "less sample-to-more precision" enabling portable device development via fabrication for in vitro analysis. On evolution, microfluidic system lead to the development of Organ-on-chip where recapitulation of organ's functionality and pathophysiological response can be performed under controlled environment. Further microfluidic-based "Lab-on-chip" device, a versatile innovation credited for its number of parameters that has capability to leverage next-generation companion of medicines. This emulsion science has enormous practise in the field of regenerative medicine, drug screening, medical diagnosis and therapy for accuracy in results. In this era of personalized medicine, getting precise tools for applying these theranostics is crucial. Oncological theranostics create a new gateway to develop precision in personalized medicine for cancer, where microfluidic chips are involved in diagnosis and therapy of various cancers using biomarkers for thyroid, lung cancers, and assay based for breast, circulating tumor cells and colorectal cancers and nanoparticles for ovarian cancer. This review shows more comprehensive approach to the state of art with respect to microfluidic devices in cancer theranostics.
Collapse
Affiliation(s)
- Sneha Venkatesalu
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Avanthika Satish Kumar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|